1
|
Jigisha J, Ly J, Minadakis N, Freund F, Kunz L, Piechota U, Akin B, Balmas V, Ben-David R, Bencze S, Bourras S, Bozzoli M, Cotuna O, Couleaud G, Cséplő M, Czembor P, Desiderio F, Dörnte J, Dreiseitl A, Feechan A, Gadaleta A, Gauthier K, Giancaspro A, Giove SL, Handley-Cornillet A, Hubbard A, Karaoglanidis G, Kildea S, Koc E, Liatukas Ž, Lopes MS, Mascher F, McCabe C, Miedaner T, Martínez-Moreno F, Nellist CF, Okoń S, Praz C, Sánchez-Martín J, Sărăţeanu V, Schulz P, Schwartz N, Seghetta D, Martel IS, Švarta A, Testempasis S, Villegas D, Widrig V, Menardo F. Population genomics and molecular epidemiology of wheat powdery mildew in Europe. PLoS Biol 2025; 23:e3003097. [PMID: 40315179 PMCID: PMC12047814 DOI: 10.1371/journal.pbio.3003097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/04/2025] [Indexed: 05/04/2025] Open
Abstract
Agricultural diseases are a major threat to sustainable food production. Yet, for many pathogens we know exceptionally little about their epidemiological and population dynamics, and this knowledge gap is slowing the development of efficient control strategies. Here we study the population genomics and molecular epidemiology of wheat powdery mildew, a disease caused by the biotrophic fungus Blumeria graminis forma specialis tritici (Bgt). We sampled Bgt across two consecutive years, 2022 and 2023, and compiled a genomic dataset of 415 Bgt isolates from 22 countries in Europe and surrounding regions. We identified a single epidemic unit in the north of Europe, consisting of a highly homogeneous population. Conversely, the south of Europe hosts smaller local populations which are less interconnected. In addition, we show that the population structure can be largely predicted by the prevalent wind patterns. We identified several loci that were under selection in the recent past, including fungicide targets and avirulence genes. Some of these loci are common between populations, while others are not, suggesting different local selective pressures. We reconstructed the evolutionary history of one of these loci, AvrPm17, coding for an effector recognized by the wheat receptor Pm17. We found evidence for a soft sweep on standing genetic variation. Multiple AvrPm17 haplotypes, which can partially escape recognition by Pm17, spread rapidly throughout the continent upon its introduction in the early 2000s. We also identified a new virulent variant, which emerged more recently and can evade Pm17 resistance altogether. Overall, we highlight the potential of genomic surveillance in resolving the evolutionary and epidemiological dynamics of agricultural pathogens, as well as in guiding control strategies.
Collapse
Affiliation(s)
- Jigisha Jigisha
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jeanine Ly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Nikolaos Minadakis
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Fabian Freund
- Department of Genetics, Genomics and Cancer Science, University of Leicester, Leicester, United Kingdom
| | - Lukas Kunz
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Urszula Piechota
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Poland
| | | | - Virgilio Balmas
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Roi Ben-David
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization–Volcani Institute, Rishon LeZion, Israel
| | - Szilvia Bencze
- Hungarian Research Institute of Organic Agriculture, Budapest, Hungary
| | - Salim Bourras
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Matteo Bozzoli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Otilia Cotuna
- Agriculture Faculty, University of Life Sciences “King Mihai I” from Timișoara, Timișoara, Romania
| | - Gilles Couleaud
- Arvalis Institut du végétal, Station Expérimentale, Boigneville, France
| | - Mónika Cséplő
- Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Paweł Czembor
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Poland
| | - Francesca Desiderio
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Jost Dörnte
- Deutsche Saatveredelung AG, Leutewitz, Germany
| | - Antonín Dreiseitl
- Department of Integrated Plant Protection, Agrotest Fyto Ltd., Kroměříž, Czech Republic
| | - Angela Feechan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
- Institute for Life and Earth Sciences, School of Energy, Geosciences, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Kevin Gauthier
- Agroscope, Department of Plant Breeding, Nyon, Switzerland
| | - Angelica Giancaspro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Stefania L. Giove
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | | | - George Karaoglanidis
- Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Žilvinas Liatukas
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | | | - Fabio Mascher
- Haute école des sciences agronomiques, forestières et alimentaires, Bern, Switzerland
| | - Cathal McCabe
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | | | | | - Sylwia Okoń
- Institute of Genetics, Breeding and Biotechnology of Plants, University of Life Sciences in Lublin, Lublin, Poland
| | - Coraline Praz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier Sánchez-Martín
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research, University of Salamanca, Salamanca, Spain
| | - Veronica Sărăţeanu
- Agriculture Faculty, University of Life Sciences “King Mihai I” from Timișoara, Timișoara, Romania
| | - Philipp Schulz
- Institut für Pflanzenschutz in Ackerbau und Grünland, Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen, Braunschweig, Germany
| | - Nathalie Schwartz
- Arvalis Institut du végétal, Station Expérimentale, Boigneville, France
| | - Daniele Seghetta
- Centro Ricerche e Sperimentazione per il Miglioramento Vegetale “N. Strampelli”, Macerata, Italy
| | | | - Agrita Švarta
- Latvia University of Life sciences and technologies, Jelgava, Latvia
| | - Stefanos Testempasis
- Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dolors Villegas
- Sustainable Field Crops, IRTA, Lleida, Spain
- Estacion Experimental de Aula Dei, CSIC, Zaragoza, Spain
| | - Victoria Widrig
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research, University of Salamanca, Salamanca, Spain
| | - Fabrizio Menardo
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Valent B. Dynamic Gene-for-Gene Interactions Undermine Durable Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:104-117. [PMID: 40272515 DOI: 10.1094/mpmi-02-25-0022-hh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Harold Flor's gene-for-gene model explained boom-bust cycles in which resistance (R) genes are deployed in farmers' fields, only to have pathogens overcome resistance by modifying or losing corresponding active avirulence (AVR) genes. Flor understood that host R genes with corresponding low rates of virulence mutation in the pathogen should maintain resistance for longer periods of time. This review focuses on AVR gene dynamics of the haploid Ascomycete fungus Pyricularia oryzae, which causes rice blast disease, a gene-for-gene system with a complex race structure and a very rapid boom-bust cycle due to high rates of AVR gene mutation. Highly mutable blast AVR genes are often characterized by deletion and by movement to new chromosomal locations, implying a loss/regain mechanism in response to R gene deployment. Beyond rice blast, the recent emergence of two serious new blast diseases on wheat and Lolium ryegrasses highlighted the role of AVR genes that act at the host genus level and serve as infection barriers that separate host genus-specialized P. oryzae subpopulations. Wheat and ryegrass blast diseases apparently evolved through sexual crosses involving fungal individuals from five host-adapted subpopulations, with the host jump enabled by the introduction of virulence alleles of key host-specificity AVR genes. Despite identification of wheat AVR/R gene interactions operating at the host genus specificity level, the paucity of effective R genes identified thus far limits control of wheat blast disease. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, U.S.A
| |
Collapse
|
3
|
Fagundes WC, Huang YS, Häußler S, Langner T. From Lesions to Lessons: Two Decades of Filamentous Plant Pathogen Genomics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:187-205. [PMID: 39813026 DOI: 10.1094/mpmi-09-24-0115-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Many filamentous microorganisms, such as fungi and oomycetes, have evolved the ability to colonize plants and cause devastating crop diseases. Coevolutionary conflicts with their hosts have shaped the genomes of these plant pathogens. Over the past 20 years, genomics and genomics-enabled technologies have revealed remarkable diversity in genome size, architecture, and gene regulatory mechanisms. Technical and conceptual advances continue to provide novel insights into evolutionary dynamics, diversification of distinct genomic compartments, and facilitated molecular disease diagnostics. In this review, we discuss how genomics has advanced our understanding of genome organization and plant-pathogen coevolution and provide a perspective on future developments in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Yu-Seng Huang
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Sophia Häußler
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
4
|
Quime BG, Ryder LS, Talbot NJ. Live cell imaging of plant infection provides new insight into the biology of pathogenesis by the rice blast fungus Magnaporthe oryzae. J Microsc 2025; 297:274-288. [PMID: 39797625 PMCID: PMC11808454 DOI: 10.1111/jmi.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium. The appressorium forms in response to the hydrophobic leaf surface and relies on multiple signalling pathways, including a MAP kinase phosphorelay and cAMP-dependent signalling, integrated with cell cycle control and autophagic cell death of the conidium. Together, these pathways regulate appressorium morphogenesis.The appressorium generates enormous turgor, applied as mechanical force to breach the rice cuticle. Re-polarisation of the appressorium requires a turgor-dependent sensor kinase which senses when a critical threshold of turgor has been reached to initiate septin-dependent re-polarisation of the appressorium and plant infection. Invasive growth then requires differential expression and secretion of a large repertoire of effector proteins secreted by distinct secretory pathways depending on their destination, which is also governed by codon usage and tRNA thiolation. Cytoplasmic effectors require an unconventional Golgi-independent secretory pathway and evidence suggests that clathrin-mediated endocytosis is necessary for their delivery into plant cells. The blast fungus then develops a transpressorium, a specific invasion structure used to move from cell-to-cell using pit field sites containing plasmodesmata, to facilitate its spread in plant tissue. This is controlled by the same MAP kinase signalling pathway as appressorium development and requires septin-dependent hyphal constriction. Recent progress in understanding the mechanisms of rice infection by this devastating pathogen using live cell imaging procedures are presented.
Collapse
|
5
|
Alkemade JA, Hohmann P, Messmer MM, Barraclough TG. Comparative Genomics Reveals Sources of Genetic Variability in the Asexual Fungal Plant Pathogen Colletotrichum lupini. MOLECULAR PLANT PATHOLOGY 2024; 25:e70039. [PMID: 39673077 PMCID: PMC11645255 DOI: 10.1111/mpp.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
Fungal plant pathogens cause major crop losses worldwide, with many featuring compartmentalised genomes that include both core and accessory regions, which are believed to drive adaptation. The highly host-specific fungus Colletotrichum lupini greatly impacts lupin (Lupinus spp.) cultivation. This pathogen is part of clade 1 of the C. acutatum species complex and comprises four genetically uniform, presumably clonal, lineages (I-IV). Despite this, variation in virulence and morphology has been observed within these lineages. To investigate the potential sources of genetic variability in this asexual fungus, we compared the genomes of 16 C. lupini strains and 17 related Colletotrichum species. Phylogenomics confirmed the presence of four distinct lineages, but further examination based on genome size, gene content, transposable elements (TEs), and deletions revealed that lineage II could be split into two groups, II-A and II-B. TE content varied between lineages and correlated strongly with genome size variation, supporting a role for TEs in genome expansion in this species. Pangenome analysis revealed a highly variable accessory genome, including a minichromosome present in lineages II, III, and IV, but absent in lineage I. Accessory genes and effectors appeared to cluster in proximity to TEs. Presence/absence variation of putative effectors was lineage-specific, suggesting that these genes play a crucial role in determining host range. Notably, no effectors were found on the TE-rich minichromosome. Our findings shed light on the potential mechanisms generating genetic diversity in this asexual fungal pathogen that could aid future disease management.
Collapse
Affiliation(s)
- Joris A. Alkemade
- Department of BiologyUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human ScienceMagdalen CollegeOxfordUK
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
| | - Pierre Hohmann
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food SciencesUniversitat de BarcelonaBarcelonaSpain
| | - Monika M. Messmer
- Department of Crop SciencesResearch Institute of Organic Agriculture (FiBL)FrickSwitzerland
| | - Timothy G. Barraclough
- Department of BiologyUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human ScienceMagdalen CollegeOxfordUK
| |
Collapse
|
6
|
Fisher MC, Burnett F, Chandler C, Gow NAR, Gurr S, Hart A, Holmes A, May RC, Quinn J, Soliman T, Talbot NJ, West HM, West JS, White PL, Bromley M, Armstrong-James D. A one health roadmap towards understanding and mitigating emerging Fungal Antimicrobial Resistance: fAMR. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:36. [PMID: 39524479 PMCID: PMC11543597 DOI: 10.1038/s44259-024-00055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The emergence of fungal antimicrobial resistance-fAMR-is having a growing impact on human and animal health, and food security. This roadmap charts inter-related actions that will enhance our ability to mitigate the risk of fAMR. As humanity's reliance on antifungal chemicals escalates, our understanding of their one-health consequences needs to scale accordingly if we are to protect our ability to manage the global spectrum of fungal disease sustainably.
Collapse
Affiliation(s)
- Matthew C. Fisher
- MRC Centre for Global Infectious Disease Outbreak Analysis, Imperial, London, UK
| | - Fiona Burnett
- Scotland’s Rural College (SRUC), West Mains Road, Edinburgh, UK
| | - Clare Chandler
- Department of Global Health & Development, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London, UK
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Sarah Gurr
- Biosciences, University of Exeter, Exeter, UK
| | - Alwyn Hart
- Chief Scientist’s Group, Environment Agency, Bristol, UK
| | - Alison Holmes
- Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Robin C. May
- School of Biosciences, The University of Birmingham, Birmingham, UK
| | - Janet Quinn
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tarek Soliman
- Scotland’s Rural College (SRUC), West Mains Road, Edinburgh, UK
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Colney Lane Norwich, UK
| | - Helen M. West
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Jon S. West
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - P. Lewis White
- Public Health Wales Mycology Reference Laboratory, University Hospital of Wales, Cardiff, UK
| | - Michael Bromley
- Manchester Fungal Infection Group, University of Manchester, Manchester, UK
| | | |
Collapse
|
7
|
Yoshioka M, Kishii M, Singh PK, Inoue Y, Vy TTP, Tosa Y, Asuke S. Rmg10, a Novel Wheat Blast Resistance Gene Derived from Aegilops tauschii. PHYTOPATHOLOGY 2024; 114:2113-2120. [PMID: 38870178 DOI: 10.1094/phyto-01-24-0018-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Wheat blast, caused by Pyricularia oryzae (syn. Magnaporthe oryzae) pathotype Triticum (MoT), is a devastating disease that can result in up to 100% yield loss in affected fields. To find new resistance genes against wheat blast, we screened 199 accessions of Aegilops tauschii, the D genome progenitor of common wheat (Triticum aestivum), by seedling inoculation assays with Brazilian MoT isolate Br48 and found 14 resistant accessions. A synthetic hexaploid wheat line (Ldn/KU-2097) derived from a cross between the T. turgidum 'Langdon' (Ldn) and resistant A. tauschii accession KU-2097 exhibited resistance in seedlings and spikes against Br48. In an F2 population derived from 'Chinese Spring' × Ldn/KU-2097, resistant and susceptible individuals segregated in a 3:1 ratio, suggesting that the resistance from KU-2097 is controlled by a single dominant gene. We designated this gene Rmg10. Genetic mapping using an F2:3 population from the same cross mapped the RMG10 locus to the short arm of chromosome 2D. Rmg10 was ineffective against Bangladesh isolates but effective against Brazilian isolates. Field tests in Bolivia showed increased spike resistance in a synthetic octaploid wheat line produced from a cross between common wheat cultivar 'Gladius' and KU-2097. These results suggest that Rmg10 would be beneficial in farmers' fields in South America.
Collapse
Affiliation(s)
- Motohiro Yoshioka
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Masahiro Kishii
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Trinh Thi Phuong Vy
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
8
|
Gyawali N, Hao Y, Lin G, Huang J, Bika R, Daza L, Zheng H, Cruppe G, Caragea D, Cook D, Valent B, Liu S. Using recurrent neural networks to detect supernumerary chromosomes in fungal strains causing blast diseases. NAR Genom Bioinform 2024; 6:lqae108. [PMID: 39165675 PMCID: PMC11333962 DOI: 10.1093/nargab/lqae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
The genomes of the fungus Magnaporthe oryzae that causes blast diseases on diverse grass species, including major crops, have indispensable core-chromosomes and may contain supernumerary chromosomes, also known as mini-chromosomes. These mini-chromosomes are speculated to provide effector gene mobility, and may transfer between strains. To understand the biology of mini-chromosomes, it is valuable to be able to detect whether a M. oryzae strain possesses a mini-chromosome. Here, we applied recurrent neural network models for classifying DNA sequences as arising from core- or mini-chromosomes. The models were trained with sequences from available core- and mini-chromosome assemblies, and then used to predict the presence of mini-chromosomes in a global collection of M. oryzae isolates using short-read DNA sequences. The model predicted that mini-chromosomes were prevalent in M. oryzae isolates. Interestingly, at least one mini-chromosome was present in all recent wheat isolates, but no mini-chromosomes were found in early isolates collected before 1991, indicating a preferential selection for strains carrying mini-chromosomes in recent years. The model was also used to identify assembled contigs derived from mini-chromosomes. In summary, our study has developed a reliable method for categorizing DNA sequences and showcases an application of recurrent neural networks in predictive genomics.
Collapse
Affiliation(s)
- Nikesh Gyawali
- Department of Computer Science, Kansas State University, Manhattan, KS 66506, USA
| | - Yangfan Hao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Jun Huang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Ravi Bika
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Lidia Calderon Daza
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Huakun Zheng
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Giovana Cruppe
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Doina Caragea
- Department of Computer Science, Kansas State University, Manhattan, KS 66506, USA
| | - David Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
9
|
Després PC, Shapiro RS, Cuomo CA. New approaches to tackle a rising problem: Large-scale methods to study antifungal resistance. PLoS Pathog 2024; 20:e1012478. [PMID: 39236046 PMCID: PMC11376582 DOI: 10.1371/journal.ppat.1012478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Affiliation(s)
- Philippe C Després
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
10
|
Barragan AC, Latorre SM, Malmgren A, Harant A, Win J, Sugihara Y, Burbano HA, Kamoun S, Langner T. Multiple Horizontal Mini-chromosome Transfers Drive Genome Evolution of Clonal Blast Fungus Lineages. Mol Biol Evol 2024; 41:msae164. [PMID: 39107250 PMCID: PMC11346369 DOI: 10.1093/molbev/msae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024] Open
Abstract
Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.
Collapse
Affiliation(s)
- Ana Cristina Barragan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sergio M Latorre
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Angus Malmgren
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hernán A Burbano
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
11
|
Dey T, Dwivedi SK, Datta S, Cooke DEL, Roy SG. Understanding the Temporal Dynamics of Invasive Late Blight Populations in India for Improved Management Practices. PHYTOPATHOLOGY 2024; 114:1810-1821. [PMID: 38723191 DOI: 10.1094/phyto-03-24-0082-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The microbial oomycete pathogen Phytophthora infestans causes severe epidemics of potato late blight in crops globally. Disease management benefits from an understanding of the diversity of pathogen populations. In this study, we explore the dynamics of P. infestans populations in the late blight-potato agro-ecosystem across the Indian subcontinent. Investigations of the macroecological observations at the field level and microbial ecological principles provided insights into future pathogen behavior. We use a comprehensive simple sequence repeat allele dataset to demonstrate that an invasive clonal lineage called EU_13_A2 has dominated populations over 14 years across India, Bangladesh, and Pakistan. Increasing levels of subclonal variation were tracked over time and space, and, for the first time, populations in Asia were also compared with the source populations from Europe. Within India, a regional pathogen population structure was observed with evidence for local migration, cross-border movement between surrounding countries, and introductions via imports. There was also evidence of genetic drift and between-season transmission of more strongly pathogenic subclones with a complete displacement of some subclonal types. The limited introduction of novel genotypes and the use of resistant potato cultivars could contribute to the dominance of the 13_A2 lineage. The insights will contribute to the management of the pathogen in these key global potato production regions.
Collapse
Affiliation(s)
- Tanmoy Dey
- Department of Botany, West Bengal State University, Kolkata 700126, India
| | | | | | | | - Sanjoy Guha Roy
- Department of Botany, West Bengal State University, Kolkata 700126, India
| |
Collapse
|
12
|
Yoshioka M, Shibata M, Morita K, Islam MT, Fujita M, Hatta K, Tougou M, Tosa Y, Asuke S. Breeding of a Near-Isogenic Wheat Line Resistant to Wheat Blast at Both Seedling and Heading Stages Through Incorporation of Rmg8. PHYTOPATHOLOGY 2024; 114:1843-1850. [PMID: 38776064 DOI: 10.1094/phyto-07-23-0234-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Wheat blast caused by Pyricularia oryzae pathotype Triticum (MoT) has been transmitted from South America to Bangladesh and Zambia and is now spreading in these countries. To prepare against its further spread to Asian countries, we introduced Rmg8, a gene for resistance to wheat blast, into a Japanese elite cultivar, Chikugoizumi (ChI), through recurrent backcrosses and established ChI near-isogenic lines, #2-1-10 with the Rmg8/Rmg8 genotype and #4-2-10 with the rmg8/rmg8 genotype. A molecular analysis suggested that at least 96.6% of the #2-1-10 genome was derived from the recurrent parent ChI. The #2-1-10 line was resistant to MoT not only in primary leaves at the seedling stage but also in spikes and flag leaves at the heading stage. The strength of the resistance in spikes of this Rmg8 carrier was comparable to that of a carrier of the 2NS segment, which has been the only genetic resource released to farmers' fields for wheat blast resistance. On the other hand, the 2NS resistance was not expressed on leaves at the seedling stage nor flag leaves at the heading stage. Considering that leaf blast has been increasingly reported and regarded as an important inoculum source for spike blast, Rmg8 expressed at both the seedling and heading stages, or more strictly in both leaves and spikes, is suggested to be useful to prevent the spread of MoT in Asia and Africa.
Collapse
Affiliation(s)
- Motohiro Yoshioka
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Mai Shibata
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kohei Morita
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - M Thoihidul Islam
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Masaya Fujita
- The Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Koichi Hatta
- The Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Makoto Tougou
- The Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
13
|
Islam MT, Nago C, Yoshioka M, Vy TTP, Tosa Y, Asuke S. Identification of Rmg11 in Tetraploid Wheat as a New Blast Resistance Gene with Tolerance to High Temperature. PHYTOPATHOLOGY 2024; 114:1878-1883. [PMID: 38723149 DOI: 10.1094/phyto-02-24-0074-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Wheat blast caused by Pyricularia oryzae pathotype Triticum has spread to Asia (Bangladesh) and Africa (Zambia) from the endemic region of South America. Wheat varieties with durable resistance are needed, but very limited resistance resources are currently available. After screening tetraploid wheat accessions, we found an exceptional accession St19 (Triticum dicoccum, KU-114). Primary leaves of St19 were resistant not only to Brazilian isolate Br48 (a carrier of Type eI of AVR-Rmg8) but also to Br48ΔA8, an AVR-Rmg8 disruptant of Br48, even at 30°C, suggesting that the resistance of St19 is tolerant to high temperature and controlled by a gene or genes other than Rmg8. When an F2 population derived from a cross between St19 and St30 (a susceptible accession of T. paleocolchicum, KU-191) was inoculated with Br48, resistant and susceptible seedlings segregated in a 3:1 ratio, indicating that resistance of St19 is conferred by a single gene. We designated this gene Rmg11. Molecular mapping revealed that the RMG11 locus is located on the short arm of chromosome 7A. Rmg11 is effective not only against other two Brazilian isolates (Br5 and Br116.5) but also against Bangladeshi isolates (T-108 and T-109) at the seedling stage. At the heading stage, lines containing Rmg11 were highly susceptible to the Bangladeshi isolates but moderately resistant to the Brazilian isolates. Stacking of Rmg11 with Rmg8 and the 2NS segment is highly recommended to achieve durable wheat blast resistance.
Collapse
Affiliation(s)
- M Thoihidul Islam
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Chika Nago
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Motohiro Yoshioka
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Trinh Thi Phuong Vy
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
14
|
Zdrzałek R, Xi Y, Langner T, Bentham AR, Petit-Houdenot Y, De la Concepcion JC, Harant A, Shimizu M, Were V, Talbot NJ, Terauchi R, Kamoun S, Banfield MJ. Bioengineering a plant NLR immune receptor with a robust binding interface toward a conserved fungal pathogen effector. Proc Natl Acad Sci U S A 2024; 121:e2402872121. [PMID: 38968126 PMCID: PMC11252911 DOI: 10.1073/pnas.2402872121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.
Collapse
Affiliation(s)
- Rafał Zdrzałek
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Yuxuan Xi
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | - Adam R. Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | | | - Juan Carlos De la Concepcion
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | - Motoki Shimizu
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate024-0003, Japan
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto606-8501, Japan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, NorwichNR4 7UH, United Kingdom
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
15
|
Vy TTP, Inoue Y, Asuke S, Chuma I, Nakayashiki H, Tosa Y. The ACE1 secondary metabolite gene cluster is a pathogenicity factor of wheat blast fungus. Commun Biol 2024; 7:812. [PMID: 38965407 PMCID: PMC11224330 DOI: 10.1038/s42003-024-06517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Wheat blast caused by Pyricularia oryzae pathotype Triticum is now becoming a very serious threat to global food security. Here, we report an essential pathogenicity factor of the wheat blast fungus that is recognized and may be targeted by a rice resistance gene. Map-based cloning of Pwt2 showed that its functional allele is the ACE1 secondary metabolite gene cluster of the wheat blast fungus required for its efficient penetration of wheat cell walls. ACE1 is required for the strong aggressiveness of Triticum, Eleusine, and Lolium pathotypes on their respective hosts, but not for that of Oryza and Setaria pathotypes on rice and foxtail millet, respectively. All ACE1 alleles found in wheat blast population are recognized by a rice resistance gene, Pi33, when introduced into rice blast isolates. ACE1 mutations for evading the recognition by Pi33 do not affect the aggressiveness of the rice blast fungus on rice but inevitably impair the aggressiveness of the wheat blast fungus on wheat. These results suggest that a blast resistance gene already defeated in rice may be revived as a durable resistance gene in wheat by targeting an Achilles heel of the wheat blast fungus.
Collapse
Affiliation(s)
- Trinh T P Vy
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Izumi Chuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Hitoshi Nakayashiki
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
16
|
Zong X, Lou Y, Xia M, Zhao K, Chen J, Huang J, Yang S, Wang L. Recombination and repeat-induced point mutation landscapes reveal trade-offs between the sexual and asexual cycles of Magnaporthe oryzae. J Genet Genomics 2024; 51:723-734. [PMID: 38490361 DOI: 10.1016/j.jgg.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The fungal disease caused by Magnaporthe oryzae is one of the most devastating diseases that endanger many crops worldwide. Evidence shows that sexual reproduction can be advantageous for fungal diseases as hybridization facilitates host-jumping. However, the pervasive clonal lineages of M. oryzae observed in natural fields contradict this expectation. A better understanding of the roles of recombination and the fungi-specific repeat-induced point mutation (RIP) in shaping its evolutionary trajectory is essential to bridge this knowledge gap. Here we systematically investigate the RIP and recombination landscapes in M. oryzae using a whole genome sequencing data from 252 population samples and 92 cross progenies. Our data reveal that the RIP can robustly capture the population history of M. oryzae, and we provide accurate estimations of the recombination and RIP rates across different M. oryzae clades. Significantly, our results highlight a parent-of-origin bias in both recombination and RIP rates, tightly associating with their sexual potential and variations of effector proteins. This bias suggests a critical trade-off between generating novel allelic combinations in the sexual cycle to facilitate host-jumping and stimulating transposon-associated diversification of effectors in the asexual cycle to facilitate host coevolution. These findings provide unique insights into understanding the evolution of blast fungus.
Collapse
Affiliation(s)
- Xifang Zong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Yaxin Lou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Mengshuang Xia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Kunyang Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Jingxuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Ju Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210000, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210000, China.
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
17
|
Islam T, Azad RB. Rmg8 gene against wheat blast. NATURE PLANTS 2024; 10:836-837. [PMID: 38898163 DOI: 10.1038/s41477-024-01690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Affiliation(s)
- Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh.
| | - Rojana Binte Azad
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
18
|
O'Hara T, Steed A, Goddard R, Gaurav K, Arora S, Quiroz-Chávez J, Ramírez-González R, Badgami R, Gilbert D, Sánchez-Martín J, Wingen L, Feng C, Jiang M, Cheng S, Dreisigacker S, Keller B, Wulff BBH, Uauy C, Nicholson P. The wheat powdery mildew resistance gene Pm4 also confers resistance to wheat blast. NATURE PLANTS 2024; 10:984-993. [PMID: 38898165 PMCID: PMC11208137 DOI: 10.1038/s41477-024-01718-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024]
Abstract
Wheat blast, caused by the fungus Magnaporthe oryzae, threatens global cereal production since its emergence in Brazil in 1985 and recently spread to Bangladesh and Zambia. Here we demonstrate that the AVR-Rmg8 effector, common in wheat-infecting isolates, is recognized by the gene Pm4, previously shown to confer resistance to specific races of Blumeria graminis f. sp. tritici, the cause of powdery mildew of wheat. We show that Pm4 alleles differ in their recognition of different AVR-Rmg8 alleles, and some confer resistance only in seedling leaves but not spikes, making it important to select for those alleles that function in both tissues. This study has identified a gene recognizing an important virulence factor present in wheat blast isolates in Bangladesh and Zambia and represents an important first step towards developing durably resistant wheat cultivars for these regions.
Collapse
Affiliation(s)
- Tom O'Hara
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Andrew Steed
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Kumar Gaurav
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sanu Arora
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | - David Gilbert
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- Department of Microbiology and Genetics, Spanish-Portuguese Agricultural Research Center (CIALE), University of Salamanca, Salamanca, Spain
| | - Luzie Wingen
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Cong Feng
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mei Jiang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shifeng Cheng
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Beat Keller
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Brande B H Wulff
- John Innes Centre, Norwich Research Park, Norwich, UK
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | | | | |
Collapse
|
19
|
De la Concepcion JC, Langner T, Fujisaki K, Yan X, Were V, Lam AHC, Saado I, Brabham HJ, Win J, Yoshida K, Talbot NJ, Terauchi R, Kamoun S, Banfield MJ. Zinc-finger (ZiF) fold secreted effectors form a functionally diverse family across lineages of the blast fungus Magnaporthe oryzae. PLoS Pathog 2024; 20:e1012277. [PMID: 38885263 PMCID: PMC11213319 DOI: 10.1371/journal.ppat.1012277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/28/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date. Here, we demonstrate that Zinc-finger fold (ZiF) secreted proteins form a functionally diverse effector family in the blast fungus Magnaporthe oryzae. This family relies on the Zinc-finger motif for protein stability and is ubiquitously present in blast fungus lineages infecting 13 different host species, forming different effector tribes. Homologs of the canonical ZiF effector, AVR-Pii, from rice infecting isolates are present in multiple M. oryzae lineages. Wheat infecting strains of the fungus also possess an AVR-Pii like allele that binds host Exo70 proteins and activates the immune receptor Pii. Furthermore, ZiF tribes may vary in the proteins they bind to, indicating functional diversification and an intricate effector/host interactome. Altogether, we uncovered a new effector family with a common protein fold that has functionally diversified in lineages of M. oryzae. This work expands our understanding of the diversity of M. oryzae effectors, the molecular basis of plant pathogenesis and may ultimately facilitate the development of new sources for pathogen resistance.
Collapse
Affiliation(s)
- Juan Carlos De la Concepcion
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Koki Fujisaki
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, Japan
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Anson Ho Ching Lam
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Indira Saado
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Helen J. Brabham
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Kentaro Yoshida
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
20
|
Asuke S, Morita K, Shimizu M, Abe F, Terauchi R, Nago C, Takahashi Y, Shibata M, Yoshioka M, Iwakawa M, Kishi-Kaboshi M, Su Z, Nasuda S, Handa H, Fujita M, Tougou M, Hatta K, Mori N, Matsuoka Y, Kato K, Tosa Y. Evolution of wheat blast resistance gene Rmg8 accompanied by differentiation of variants recognizing the powdery mildew fungus. NATURE PLANTS 2024; 10:971-983. [PMID: 38898164 DOI: 10.1038/s41477-024-01711-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
Wheat blast, a devastating disease having spread recently from South America to Asia and Africa, is caused by Pyricularia oryzae (synonym of Magnaporthe oryzae) pathotype Triticum, which first emerged in Brazil in 1985. Rmg8 and Rmg7, genes for resistance to wheat blast found in common wheat and tetraploid wheat, respectively, recognize the same avirulence gene, AVR-Rmg8. Here we show that an ancestral resistance gene, which had obtained an ability to recognize AVR-Rmg8 before the differentiation of Triticum and Aegilops, has expanded its target pathogens. Molecular cloning revealed that Rmg7 was an allele of Pm4, a gene for resistance to wheat powdery mildew on 2AL, whereas Rmg8 was its homoeologue on 2BL ineffective against wheat powdery mildew. Rmg8 variants with the ability to recognize AVR-Rmg8 were distributed not only in Triticum spp. but also in Aegilops speltoides, Aegilops umbellulata and Aegilops comosa. This result suggests that the origin of resistance gene(s) recognizing AVR-Rmg8 dates back to the time before differentiation of A, B, S, U and M genomes, that is, ~5 Myr before the emergence of its current target, the wheat blast fungus. Phylogenetic analyses suggested that, in the evolutionary process thereafter, some of their variants gained the ability to recognize the wheat powdery mildew fungus and evolved into genes controlling dual resistance to wheat powdery mildew and wheat blast.
Collapse
Affiliation(s)
- Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kohei Morita
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Fumitaka Abe
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ryohei Terauchi
- Iwate Biotechnology Research Centre, Kitakami, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chika Nago
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yoshino Takahashi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mai Shibata
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Motohiro Yoshioka
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mizuki Iwakawa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mitsuko Kishi-Kaboshi
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Zhuo Su
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hirokazu Handa
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masaya Fujita
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Makoto Tougou
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Koichi Hatta
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Naoki Mori
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Kenji Kato
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| |
Collapse
|
21
|
Joubert PM, Krasileva KV. Distinct genomic contexts predict gene presence-absence variation in different pathotypes of Magnaporthe oryzae. Genetics 2024; 226:iyae012. [PMID: 38290434 PMCID: PMC10990425 DOI: 10.1093/genetics/iyae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Fungi use the accessory gene content of their pangenomes to adapt to their environments. While gene presence-absence variation contributes to shaping accessory gene reservoirs, the genomic contexts that shape these events remain unclear. Since pangenome studies are typically species-wide and do not analyze different populations separately, it is yet to be uncovered whether presence-absence variation patterns and mechanisms are consistent across populations. Fungal plant pathogens are useful models for studying presence-absence variation because they rely on it to adapt to their hosts, and members of a species often infect distinct hosts. We analyzed gene presence-absence variation in the blast fungus, Magnaporthe oryzae (syn. Pyricularia oryzae), and found that presence-absence variation genes involved in host-pathogen and microbe-microbe interactions may drive the adaptation of the fungus to its environment. We then analyzed genomic and epigenomic features of presence-absence variation and observed that proximity to transposable elements, gene GC content, gene length, expression level in the host, and histone H3K27me3 marks were different between presence-absence variation genes and conserved genes. We used these features to construct a model that was able to predict whether a gene is likely to experience presence-absence variation with high precision (86.06%) and recall (92.88%) in M. oryzae. Finally, we found that presence-absence variation genes in the rice and wheat pathotypes of M. oryzae differed in their number and their genomic context. Our results suggest that genomic and epigenomic features of gene presence-absence variation can be used to better understand and predict fungal pangenome evolution. We also show that substantial intra-species variation can exist in these features.
Collapse
Affiliation(s)
- Pierre M Joubert
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Baudin M, Le Naour‐Vernet M, Gladieux P, Tharreau D, Lebrun M, Lambou K, Leys M, Fournier E, Césari S, Kroj T. Pyricularia oryzae: Lab star and field scourge. MOLECULAR PLANT PATHOLOGY 2024; 25:e13449. [PMID: 38619508 PMCID: PMC11018116 DOI: 10.1111/mpp.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.
Collapse
Affiliation(s)
- Maël Baudin
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Present address:
Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Marie Le Naour‐Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- CIRAD, UMR PHIMMontpellierFrance
| | - Marc‐Henri Lebrun
- UMR 1290 BIOGER – Campus Agro Paris‐Saclay – INRAE‐AgroParisTechPalaiseauFrance
| | - Karine Lambou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Marie Leys
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
23
|
Surovy MZ, Dutta S, Mahmud NU, Gupta DR, Farhana T, Paul SK, Win J, Dunlap C, Oliva R, Rahman M, Sharpe AG, Islam T. Biological control potential of worrisome wheat blast disease by the seed endophytic bacilli. Front Microbiol 2024; 15:1336515. [PMID: 38529179 PMCID: PMC10961374 DOI: 10.3389/fmicb.2024.1336515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Crop production often faces challenges from plant diseases, and biological control emerges as an effective, environmentally friendly, cost-effective, and sustainable alternative to chemical control. Wheat blast disease caused by fungal pathogen Magnaporthe oryzae Triticum (MoT), is a potential catastrophic threat to global food security. This study aimed to identify potential bacterial isolates from rice and wheat seeds with inhibitory effects against MoT. In dual culture and seedling assays, three bacterial isolates (BTS-3, BTS-4, and BTLK6A) demonstrated effective suppression of MoT growth and reduced wheat blast severity when artificially inoculated at the seedling stage. Genome phylogeny identified these isolates as Bacillus subtilis (BTS-3) and B. velezensis (BTS-4 and BTLK6A). Whole-genome analysis revealed the presence of genes responsible for controlling MoT through antimicrobial defense, antioxidant defense, cell wall degradation, and induced systemic resistance (ISR). Taken together, our results suggest that the suppression of wheat blast disease by seed endophytic B. subtilis (BTS-3) and B. velezensis (BTS-4 and BTLK6A) is liked with antibiosis and induced systemic resistance to wheat plants. A further field validation is needed before recommending these endophytic bacteria for biological control of wheat blast.
Collapse
Affiliation(s)
- Musrat Zahan Surovy
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Sudipta Dutta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Tarin Farhana
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Sanjay Kumar Paul
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Joe Win
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Christopher Dunlap
- Crop Bioprotection Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture (USDA), Peoria, IL, United States
| | | | - Mahfuzur Rahman
- W.V.U. Extension Service, West Virginia University, Morgantown, WV, United States
| | | | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
24
|
Liu S, Lin G, Ramachandran SR, Daza LC, Cruppe G, Tembo B, Singh PK, Cook D, Pedley KF, Valent B. Rapid mini-chromosome divergence among fungal isolates causing wheat blast outbreaks in Bangladesh and Zambia. THE NEW PHYTOLOGIST 2024; 241:1266-1276. [PMID: 37984076 DOI: 10.1111/nph.19402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
The fungal pathogen, Magnaporthe oryzae Triticum pathotype, causing wheat blast disease was first identified in South America and recently spread across continents to South Asia and Africa. Here, we studied the genetic relationship among isolates found on the three continents. Magnaporthe oryzae strains closely related to a South American field isolate B71 were found to have caused the wheat blast outbreaks in South Asia and Africa. Genomic variation among isolates from the three continents was examined using an improved B71 reference genome and whole-genome sequences. We found strong evidence to support that the outbreaks in Bangladesh and Zambia were caused by the introductions of genetically separated isolates, although they were all close to B71 and, therefore, collectively referred to as the B71 branch. In addition, B71 branch strains carried at least one supernumerary mini-chromosome. Genome assembly of a Zambian strain revealed that its mini-chromosome was similar to the B71 mini-chromosome but with a high level of structural variation. Our findings show that while core genomes of the multiple introductions are highly similar, the mini-chromosomes have undergone marked diversification. The maintenance of the mini-chromosome and rapid genomic changes suggest the mini-chromosomes may serve important virulence or niche adaptation roles under diverse environmental conditions.
Collapse
Affiliation(s)
- Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Sowmya R Ramachandran
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD, 21702-9253, USA
| | - Lidia Calderon Daza
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Giovana Cruppe
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Batiseba Tembo
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Lusaka, 10101, Zambia
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, 56237, Mexico
| | - David Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Kerry F Pedley
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD, 21702-9253, USA
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506-5502, USA
| |
Collapse
|
25
|
Oliveira-Garcia E, Yan X, Oses-Ruiz M, de Paula S, Talbot NJ. Effector-triggered susceptibility by the rice blast fungus Magnaporthe oryzae. THE NEW PHYTOLOGIST 2024; 241:1007-1020. [PMID: 38073141 DOI: 10.1111/nph.19446] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024]
Abstract
Rice blast, the most destructive disease of cultivated rice world-wide, is caused by the filamentous fungus Magnaporthe oryzae. To cause disease in plants, M. oryzae secretes a diverse range of effector proteins to suppress plant defense responses, modulate cellular processes, and support pathogen growth. Some effectors can be secreted by appressoria even before host penetration, while others accumulate in the apoplast, or enter living plant cells where they target specific plant subcellular compartments. During plant infection, the blast fungus induces the formation of a specialized plant structure known as the biotrophic interfacial complex (BIC), which appears to be crucial for effector delivery into plant cells. Here, we review recent advances in the cell biology of M. oryzae-host interactions and show how new breakthroughs in disease control have stemmed from an increased understanding of effector proteins of M. oryzae are deployed and delivered into plant cells to enable pathogen invasion and host susceptibility.
Collapse
Affiliation(s)
- Ely Oliveira-Garcia
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Miriam Oses-Ruiz
- IMAB, Public University of Navarre (UPNA), Campus Arrosadia, 31006, Pamplona, Navarra, Spain
| | - Samuel de Paula
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
26
|
Croll D. Dimensions of genome dynamics in fungal pathogens: from fundamentals to applications. BMC Biol 2024; 22:19. [PMID: 38279095 PMCID: PMC10821559 DOI: 10.1186/s12915-023-01786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/28/2024] Open
Affiliation(s)
- Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
27
|
Ascari JP, Cazón LI, Rahnama M, Lamour K, Fernandes JMC, Farman ML, Ponte EMD. Pyricularia Are Mostly Host-Specialized with Limited Reciprocal Cross-Infection Between Wheat and Endemic Grasses in Minas Gerais, Brazil. PHYTOPATHOLOGY 2024; 114:226-240. [PMID: 37399001 DOI: 10.1094/phyto-01-23-0024-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Wheat blast, caused by Pyricularia oryzae Triticum (PoT), is an emerging threat to global wheat production. The current understanding of the population biology of the pathogen and epidemiology of the disease has been based on phylogenomic studies that compared the wheat blast pathogen with isolates collected from grasses that were invasive to Brazilian wheat fields. In this study, we performed a comprehensive sampling of blast lesions in wheat crops and endemic grasses found in and away from wheat fields in Minas Gerais. A total of 1,368 diseased samples were collected (976 leaves of wheat and grasses and 392 wheat heads), which yielded a working collection of 564 Pyricularia isolates. We show that, contrary to earlier implications, PoT was rarely found on endemic grasses, and, conversely, members of grass-adapted lineages were rarely found on wheat. Instead, most lineages were host-specialized, with constituent isolates usually grouping according to their host of origin. With regard to the dominant role proposed for signalgrass in wheat blast epidemiology, we found only one PoT member in 67 isolates collected from signalgrass grown away from wheat fields and only three members of Urochloa-adapted lineages among hundreds of isolates from wheat. Cross-inoculation assays on wheat and a signalgrass used in pastures (U. brizantha) suggested that the limited cross-infection observed in the field may be due to innate compatibility differences. Whether or not the observed level of cross-infection would be sufficient to provide an inoculum reservoir, or serve as a bridge between wheat growing regions, is questionable and, therefore, deserves further investigation.
Collapse
Affiliation(s)
- João P Ascari
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Luis I Cazón
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
- Department of Biology, Tennessee Tech University, Cookeville, TN 38501, U.S.A
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | | | - Mark L Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
28
|
Asuke S, Horie A, Komatsu K, Mori R, Vy TTP, Inoue Y, Jiang Y, Tatematsu Y, Shimizu M, Tosa Y. Loss of PWT7, Located on a Supernumerary Chromosome, Is Associated with Parasitic Specialization of Pyricularia oryzae on Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:716-725. [PMID: 37432132 DOI: 10.1094/mpmi-06-23-0078-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Pyricularia oryzae, a blast fungus of gramineous plants, is composed of various host genus-specific pathotypes. The avirulence of an Avena isolate on wheat is conditioned by PWT3 and PWT4. We isolated the third avirulence gene from the Avena isolate and designated it as PWT7. PWT7 was effective as an avirulence gene only at the seedling stage or on leaves. PWT7 homologs were widely distributed in a subpopulation of the Eleusine pathotype and the Lolium pathotype but completely absent in the Triticum pathotype (the wheat blast fungus). The PWT7 homolog found in the Eleusine pathotype was one of the five genes involved in its avirulence on wheat. A comparative analysis of distribution of PWT7 and the other two genes previously identified in the Eleusine pathotype suggested that, in the course of parasitic specialization toward the wheat blast fungus, a common ancestor of the Eleusine, Lolium, Avena, and Triticum pathotypes first lost PWT6, secondly PWT7, and, finally, the function of PWT3. PWT7 or its homologs were located on core chromosomes in Setaria and Eleusine isolates but on supernumerary chromosomes in Lolium and Avena isolates. This is an example of interchromosomal translocations of effector genes between core and supernumerary chromosomes. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Akiko Horie
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kaori Komatsu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Ryota Mori
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Trinh Thi Phuong Vy
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yushan Jiang
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yuna Tatematsu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
29
|
Kiermer V. Authorship practices must evolve to support collaboration and open science. PLoS Biol 2023; 21:e3002364. [PMID: 37831717 PMCID: PMC10599500 DOI: 10.1371/journal.pbio.3002364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/25/2023] [Indexed: 10/15/2023] Open
Abstract
Journal authorship practices have not sufficiently evolved to reflect the way research is now done. Improvements to support teams, collaboration, and open science are urgently needed.
Collapse
Affiliation(s)
- Veronique Kiermer
- Public Library of Science, San Francisco, California, United States of America
| |
Collapse
|
30
|
Were V, Talbot NJ. Breaking the biotrophic interfacial complex: How genome editing can lead to rice blast resistance. MOLECULAR PLANT 2023; 16:1243-1245. [PMID: 37491817 DOI: 10.1016/j.molp.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 07/27/2023]
Affiliation(s)
- Vincent Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
31
|
Uchida M, Konishi T, Fujigasaki A, Kita K, Arie T, Teraoka T, Kanda Y, Mori M, Arazoe T, Kamakura T. Dysfunctional Pro1 leads to female sterility in rice blast fungi. iScience 2023; 26:107020. [PMID: 37416480 PMCID: PMC10320130 DOI: 10.1016/j.isci.2023.107020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/20/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Although sexual reproduction is widespread in eukaryotes, some fungal species can only reproduce asexually. In the rice blast fungus Pyricularia (Magnaporthe) oryzae, several isolates from the region of origin retain mating ability, but most isolates are female sterile. Therefore, female fertility may have been lost during its spread from the origin. Here, we show that functional mutations of Pro1, a global transcriptional regulator of mating-related genes in filamentous fungi, is one cause of loss of female fertility in this fungus. We identified the mutation of Pro1 by backcrossing analysis between female-fertile and female-sterile isolates. The dysfunctional Pro1 did not affect the infection processes but conidial release was increased. Furthermore, various mutations in Pro1 were detected in geographically distant P. oryzae, including pandemic isolates of wheat blast fungus. These results provide the first evidence that loss of female fertility may be advantageous to the life cycle of some plant pathogenic fungi.
Collapse
Affiliation(s)
- Momotaka Uchida
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takahiro Konishi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ayaka Fujigasaki
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kohtetsu Kita
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tsutomu Arie
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-0054, Japan
| | - Tohru Teraoka
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-0054, Japan
| | - Yasukazu Kanda
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO (NIAS), 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Masaki Mori
- Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO (NIAS), 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Takayuki Arazoe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takashi Kamakura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
32
|
Latorre SM, Were VM, Foster AJ, Langner T, Malmgren A, Harant A, Asuke S, Reyes-Avila S, Gupta DR, Jensen C, Ma W, Mahmud NU, Mehebub MS, Mulenga RM, Md Muzahid AN, Paul SK, Fajle Rabby SM, Rahat AAM, Ryder L, Shrestha RK, Sichilima S, Soanes DM, Singh PK, Bentley AR, Saunders DGO, Tosa Y, Croll D, Lamour KH, Islam T, Tembo B, Win J, Talbot NJ, Burbano HA, Kamoun S. Correction: Genomic surveillance uncovers a pandemic clonal lineage of the wheat blast fungus. PLoS Biol 2023; 21:e3002236. [PMID: 39417205 PMCID: PMC11483275 DOI: 10.1371/journal.pbio.3002236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pbio.3002052.].
Collapse
|
33
|
Wang Z, Kim W, Wang YW, Yakubovich E, Dong C, Trail F, Townsend JP, Yarden O. The Sordariomycetes: an expanding resource with Big Data for mining in evolutionary genomics and transcriptomics. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1214537. [PMID: 37746130 PMCID: PMC10512317 DOI: 10.3389/ffunb.2023.1214537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 09/26/2023]
Abstract
Advances in genomics and transcriptomics accompanying the rapid accumulation of omics data have provided new tools that have transformed and expanded the traditional concepts of model fungi. Evolutionary genomics and transcriptomics have flourished with the use of classical and newer fungal models that facilitate the study of diverse topics encompassing fungal biology and development. Technological advances have also created the opportunity to obtain and mine large datasets. One such continuously growing dataset is that of the Sordariomycetes, which exhibit a richness of species, ecological diversity, economic importance, and a profound research history on amenable models. Currently, 3,574 species of this class have been sequenced, comprising nearly one-third of the available ascomycete genomes. Among these genomes, multiple representatives of the model genera Fusarium, Neurospora, and Trichoderma are present. In this review, we examine recently published studies and data on the Sordariomycetes that have contributed novel insights to the field of fungal evolution via integrative analyses of the genetic, pathogenic, and other biological characteristics of the fungi. Some of these studies applied ancestral state analysis of gene expression among divergent lineages to infer regulatory network models, identify key genetic elements in fungal sexual development, and investigate the regulation of conidial germination and secondary metabolism. Such multispecies investigations address challenges in the study of fungal evolutionary genomics derived from studies that are often based on limited model genomes and that primarily focus on the aspects of biology driven by knowledge drawn from a few model species. Rapidly accumulating information and expanding capabilities for systems biological analysis of Big Data are setting the stage for the expansion of the concept of model systems from unitary taxonomic species/genera to inclusive clusters of well-studied models that can facilitate both the in-depth study of specific lineages and also investigation of trait diversity across lineages. The Sordariomycetes class, in particular, offers abundant omics data and a large and active global research community. As such, the Sordariomycetes can form a core omics clade, providing a blueprint for the expansion of our knowledge of evolution at the genomic scale in the exciting era of Big Data and artificial intelligence, and serving as a reference for the future analysis of different taxonomic levels within the fungal kingdom.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Republic of Korea
| | - Yen-Wen Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Elizabeta Yakubovich
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caihong Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
34
|
Surovy MZ, Rahman S, Rostás M, Islam T, von Tiedemann A. Suppressive Effects of Volatile Compounds from Bacillus spp. on Magnaporthe oryzae Triticum (MoT) Pathotype, Causal Agent of Wheat Blast. Microorganisms 2023; 11:1291. [PMID: 37317265 DOI: 10.3390/microorganisms11051291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The Magnaporthe oryzae Triticum (MoT) pathotype is the causal agent of wheat blast, which has caused significant economic losses and threatens wheat production in South America, Asia, and Africa. Three bacterial strains from rice and wheat seeds (B. subtilis BTS-3, B. velezensis BTS-4, and B. velezensis BTLK6A) were used to explore the antifungal effects of volatile organic compounds (VOCs) of Bacillus spp. as a potential biocontrol mechanism against MoT. All bacterial treatments significantly inhibited both the mycelial growth and sporulation of MoT in vitro. We found that this inhibition was caused by Bacillus VOCs in a dose-dependent manner. In addition, biocontrol assays using detached wheat leaves infected with MoT showed reduced leaf lesions and sporulation compared to the untreated control. VOCs from B. velezensis BTS-4 alone or a consortium (mixture of B. subtilis BTS-3, B. velezensis BTS-4, and B. velezensis BTLK6A) of treatments consistently suppressed MoT in vitro and in vivo. Compared to the untreated control, VOCs from BTS-4 and the Bacillus consortium reduced MoT lesions in vivo by 85% and 81.25%, respectively. A total of thirty-nine VOCs (from nine different VOC groups) from four Bacillus treatments were identified by gas chromatography-mass spectrometry (GC-MS), of which 11 were produced in all Bacillus treatments. Alcohols, fatty acids, ketones, aldehydes, and S-containing compounds were detected in all four bacterial treatments. In vitro assays using pure VOCs revealed that hexanoic acid, 2-methylbutanoic acid, and phenylethyl alcohol are potential VOCs emitted by Bacillus spp. that are suppressive for MoT. The minimum inhibitory concentrations for MoT sporulation were 250 mM for phenylethyl alcohol and 500 mM for 2-methylbutanoic acid and hexanoic acid. Therefore, our results indicate that VOCs from Bacillus spp. are effective compounds to suppress the growth and sporulation of MoT. Understanding the MoT sporulation reduction mechanisms exerted by Bacillus VOCs may provide novel options to manage the further spread of wheat blast by spores.
Collapse
Affiliation(s)
- Musrat Zahan Surovy
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University of Goettingen, Grisebachstrasse 6, 37077 Goettingen, Germany
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Shahinoor Rahman
- Division of Agricultural Entomology, Department of Crop Sciences, Georg-August-University of Goettingen, Grisebachstrasse 6, 37077 Goettingen, Germany
| | - Michael Rostás
- Division of Agricultural Entomology, Department of Crop Sciences, Georg-August-University of Goettingen, Grisebachstrasse 6, 37077 Goettingen, Germany
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Andreas von Tiedemann
- Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Georg-August-University of Goettingen, Grisebachstrasse 6, 37077 Goettingen, Germany
| |
Collapse
|
35
|
Rhodes J. Genomic surveillance urgently needed to control wheat blast pandemic spreading across continents. PLoS Biol 2023; 21:e3002090. [PMID: 37043438 PMCID: PMC10096264 DOI: 10.1371/journal.pbio.3002090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
A new study in PLOS Biology highlights the alarming potential of a pandemic clone of wheat blast disease to evolve fungicide-insensitive variants and argues the urgent need for genomic surveillance and preemptive breeding of resistant wheat.
Collapse
Affiliation(s)
- Johanna Rhodes
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
36
|
Latorre SM, Were VM, Foster AJ, Langner T, Malmgren A, Harant A, Asuke S, Reyes-Avila S, Gupta DR, Jensen C, Ma W, Mahmud NU, Mehebub MS, Mulenga RM, Muzahid ANM, Paul SK, Rabby SMF, Rahat AAM, Ryder L, Shrestha RK, Sichilima S, Soanes DM, Singh PK, Bentley AR, Saunders DGO, Tosa Y, Croll D, Lamour KH, Islam T, Tembo B, Win J, Talbot NJ, Burbano HA, Kamoun S. Genomic surveillance uncovers a pandemic clonal lineage of the wheat blast fungus. PLoS Biol 2023; 21:e3002052. [PMID: 37040332 PMCID: PMC10089362 DOI: 10.1371/journal.pbio.3002052] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 04/12/2023] Open
Abstract
Wheat, one of the most important food crops, is threatened by a blast disease pandemic. Here, we show that a clonal lineage of the wheat blast fungus recently spread to Asia and Africa following two independent introductions from South America. Through a combination of genome analyses and laboratory experiments, we show that the decade-old blast pandemic lineage can be controlled by the Rmg8 disease resistance gene and is sensitive to strobilurin fungicides. However, we also highlight the potential of the pandemic clone to evolve fungicide-insensitive variants and sexually recombine with African lineages. This underscores the urgent need for genomic surveillance to track and mitigate the spread of wheat blast outside of South America and to guide preemptive wheat breeding for blast resistance.
Collapse
Affiliation(s)
- Sergio M. Latorre
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Vincent M. Were
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J. Foster
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Angus Malmgren
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Sarai Reyes-Avila
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Cassandra Jensen
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Shabab Mehebub
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Rabson M. Mulenga
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Lusaka, Zambia
| | - Abu Naim Md. Muzahid
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Sanjoy Kumar Paul
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - S. M. Fajle Rabby
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Abdullah Al Mahbub Rahat
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Lauren Ryder
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ram-Krishna Shrestha
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Suwilanji Sichilima
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Lusaka, Zambia
| | - Darren M. Soanes
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Center, (CIMMYT), Texcoco, Mexico
| | - Alison R. Bentley
- International Maize and Wheat Improvement Center, (CIMMYT), Texcoco, Mexico
| | | | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Kurt H. Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Batiseba Tembo
- Zambia Agricultural Research Institute, Mt. Makulu Central Research Station, Lusaka, Zambia
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Hernán A. Burbano
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|