1
|
Kinnunen PC, Luker GD, Luker KE, Linderman JJ. Computational modeling implicates protein scaffolding in p38 regulation of Akt. J Theor Biol 2022; 555:111294. [PMID: 36195198 PMCID: PMC10394737 DOI: 10.1016/j.jtbi.2022.111294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 01/14/2023]
Abstract
Cells process environmental cues by activating intracellular signaling pathways with numerous interconnections and opportunities for cross-regulation. We employed a systems biology approach to investigate intersections of kinase p38, a context-dependent tumor suppressor or promoter, with Akt and ERK, two kinases known to promote cell survival, proliferation, and drug resistance in cancer. Using live, single cell microscopy, multiplexed fluorescent reporters of p38, Akt, and ERK activities, and a custom automated image-processing pipeline, we detected marked heterogeneity of signaling outputs in breast cancer cells stimulated with chemokine CXCL12 or epidermal growth factor (EGF). Basal activity of p38 correlated inversely with amplitude of Akt and ERK activation in response to either ligand. Remarkably, small molecule inhibitors of p38 immediately decreased basal activities of Akt and ERK but increased the proportion of cells with high amplitude ligand-induced activation of Akt signaling. To identify mechanisms underlying cross-talk of p38 with Akt signaling, we developed a computational model incorporating subcellular compartmentalization of signaling molecules by scaffold proteins. Dynamics of this model revealed that subcellular scaffolding of Akt accounted for observed regulation by p38. The model also predicted that differences in the amount of scaffold protein in a subcellular compartment captured the observed single cell heterogeneity in signaling. Finally, our model predicted that reduction in kinase signaling can be accomplished by both scaffolding and direct kinase inhibition. However, scaffolding inhibition can potentiate future kinase activity by redistribution of pathway components, potentially amplifying oncogenic signaling. These studies reveal how computational modeling can decipher mechanisms of cross-talk between the p38 and Akt signaling pathways and point to scaffold proteins as central regulators of signaling dynamics and amplitude.
Collapse
Affiliation(s)
- Patrick C Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States
| | - Gary D Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI, 48109 United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109 United States
| | - Kathryn E Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI, 48109 United States
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States.
| |
Collapse
|
2
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
3
|
Zhan X, Kaoud TS, Kook S, Dalby KN, Gurevich VV. JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-activated protein (MAP) kinase kinases. J Biol Chem 2013; 288:28535-28547. [PMID: 23960075 PMCID: PMC3789954 DOI: 10.1074/jbc.m113.508085] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Indexed: 12/29/2022] Open
Abstract
Arrestin-3 was previously shown to bind JNK3α2, MKK4, and ASK1. However, full JNK3α2 activation requires phosphorylation by both MKK4 and MKK7. Using purified proteins we show that arrestin-3 directly interacts with MKK7 and promotes JNK3α2 phosphorylation by both MKK4 and MKK7 in vitro as well as in intact cells. The binding of JNK3α2 promotes an arrestin-3 interaction with MKK4 while reducing its binding to MKK7. Interestingly, the arrestin-3 concentration optimal for scaffolding the MKK7-JNK3α2 module is ∼10-fold higher than for the MKK4-JNK3α2 module. The data provide a mechanistic basis for arrestin-3-dependent activation of JNK3α2. The opposite effects of JNK3α2 on arrestin-3 interactions with MKK4 and MKK7 is the first demonstration that the kinase components in mammalian MAPK cascades regulate each other's interactions with a scaffold protein. The results show how signaling outcomes can be affected by the relative expression of scaffolding proteins and components of signaling cascades that they assemble.
Collapse
Affiliation(s)
- Xuanzhi Zhan
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Tamer S. Kaoud
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas 78712
| | - Seunghyi Kook
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, Texas 78712
| | - Vsevolod V. Gurevich
- From the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232 and
| |
Collapse
|
4
|
Zubler F, Hauri A, Pfister S, Whatley AM, Cook M, Douglas R. An instruction language for self-construction in the context of neural networks. Front Comput Neurosci 2011; 5:57. [PMID: 22163218 PMCID: PMC3233694 DOI: 10.3389/fncom.2011.00057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/14/2011] [Indexed: 11/13/2022] Open
Abstract
Biological systems are based on an entirely different concept of construction than human artifacts. They construct themselves by a process of self-organization that is a systematic spatio-temporal generation of, and interaction between, various specialized cell types. We propose a framework for designing gene-like codes for guiding the self-construction of neural networks. The description of neural development is formalized by defining a set of primitive actions taken locally by neural precursors during corticogenesis. These primitives can be combined into networks of instructions similar to biochemical pathways, capable of reproducing complex developmental sequences in a biologically plausible way. Moreover, the conditional activation and deactivation of these instruction networks can also be controlled by these primitives, allowing for the design of a "genetic code" containing both coding and regulating elements. We demonstrate in a simulation of physical cell development how this code can be incorporated into a single progenitor, which then by replication and differentiation, reproduces important aspects of corticogenesis.
Collapse
Affiliation(s)
- Frederic Zubler
- Institute of Neuroinformatics, University of Zürich / Swiss Federal Institute of Technology Zürich Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
Zhan X, Kaoud TS, Dalby KN, Gurevich VV. Nonvisual arrestins function as simple scaffolds assembling the MKK4-JNK3α2 signaling complex. Biochemistry 2011; 50:10520-10529. [PMID: 22047447 PMCID: PMC3227541 DOI: 10.1021/bi201506g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Arrestins make up a small family of proteins with four mammalian members that play key roles in the regulation of multiple G protein-coupled receptor-dependent and -independent signaling pathways. Although arrestins were reported to serve as scaffolds for MAP kinase cascades, promoting the activation of JNK3, ERK1/2, and p38, the molecular mechanisms involved were not elucidated, and even the direct binding of arrestins with MAP kinases was never demonstrated. Here, using purified proteins, we show that both nonvisual arrestins directly bind JNK3α2 and its upstream activator MKK4, and that the affinity of arrestin-3 for these kinases is higher than that of arrestin-2. Reconstitution of the MKK4-JNK3α2 signaling module from pure proteins in the presence of different arrestin-3 concentrations showed that arrestin-3 acts as a "true" scaffold, facilitating JNK3α2 phosphorylation by bringing the two kinases together. Both the level of JNK3α2 phosphorylation by MKK4 and JNK3α2 activity toward its substrate ATF2 increase at low and then decrease at high arrestin-3 levels, yielding a bell-shaped concentration dependence expected with true scaffolds that do not activate the upstream kinase or its substrate. Thus, direct binding of both kinases and true scaffolding is the molecular mechanism of action of arrestin-3 on the MKK4-JNK3α2 signaling module.
Collapse
Affiliation(s)
- Xuanzhi Zhan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Tamer S. Kaoud
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Kevin N. Dalby
- Division of Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712
| | | |
Collapse
|
6
|
Kocieniewski P, Faeder JR, Lipniacki T. The interplay of double phosphorylation and scaffolding in MAPK pathways. J Theor Biol 2011; 295:116-24. [PMID: 22123371 DOI: 10.1016/j.jtbi.2011.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 09/19/2011] [Accepted: 11/14/2011] [Indexed: 01/08/2023]
Abstract
The MAPK cascades are principal kinase transduction pathways in eukaryotic cells. This family includes RAF/ERK, JNK, and p38 pathways. In the MAPK cascade, the signal is transmitted through three layers of sequentially activated kinases, MAP3K, MAP2K, and MAPK. The latter two kinases require dual phosphorylation for activation. The dual phosphorylation requirement has been implicated in bringing about bistability and switch-like responses in the cascade. MAPK signaling has been known to involve scaffolds-multidomain proteins that can assemble protein complexes; in this case the three MAPK components. Scaffolds are thought to increase the specificity of signaling by pairing enzymes and substrates. Scaffolds have been shown to biphasically control the response (the level of activated MAPK) and amplify it at a certain scaffold concentration range. In order to understand the interplay of scaffolding and multisite phosphorylation, in this study we analyze simplified MAPK signaling models in which we assume that either mono- or double phosphorylation of MAP2K and MAPK is required for activation. We demonstrate that the requirement for double phosphorylation directs signaling through scaffolds. In the hypothetical scenario in which mono-phosphorylation suffices for kinase activity, the presence of scaffolds has little effect on the response. This suggests that double phosphorylation in MAPK pathways, although not as efficient as mono-phosphorylation, evolved together with scaffolds to assure the tighter control and higher specificity in signaling, by enabling scaffolds to function as response amplifiers.
Collapse
|
7
|
Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 2011; 30:405-430. [PMID: 21824527 PMCID: PMC3196764 DOI: 10.1016/j.preteyeres.2011.07.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/14/2023]
Abstract
Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, PRB, Rm 417D, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
8
|
Scaffold-mediated nucleation of protein signaling complexes: elementary principles. Math Biosci 2011; 232:164-73. [PMID: 21683720 DOI: 10.1016/j.mbs.2011.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 05/24/2011] [Accepted: 06/02/2011] [Indexed: 11/20/2022]
Abstract
Proteins with multiple binding sites play important roles in cell signaling systems by nucleating protein complexes in which, for example, enzymes and substrates are co-localized. Proteins that specialize in this function are called by a variety names, including adapter, linker and scaffold. Scaffold-mediated nucleation of protein complexes can be either constitutive or induced. Induced nucleation is commonly mediated by a docking site on a scaffold that is activated by phosphorylation. Here, by considering minimalist mathematical models, which recapitulate scaffold effects seen in more mechanistically detailed models, we obtain analytical and numerical results that provide insights into scaffold function. These results elucidate how recruitment of a pair of ligands to a scaffold depends on the concentrations of the ligands, on the binding constants for ligand-scaffold interactions, on binding cooperativity, and on the milieu of the scaffold, as ligand recruitment is affected by competitive ligands and decoy receptors. For the case of a bivalent scaffold, we obtain an expression for the unique scaffold concentration that maximally recruits a pair of monovalent ligands. Through simulations, we demonstrate that a bivalent scaffold can nucleate distinct sets of ligands to equivalent extents when the scaffold is present at different concentrations. Thus, the function of a scaffold can potentially change qualitatively with a change in copy number. We also demonstrate how a scaffold can change the catalytic efficiency of an enzyme and the sensitivity of the rate of reaction to substrate concentration. The results presented here should be useful for understanding scaffold function and for engineering scaffolds to have desired properties.
Collapse
|
9
|
Finding undetected protein associations in cell signaling by belief propagation. Proc Natl Acad Sci U S A 2010; 108:882-7. [PMID: 21187432 DOI: 10.1073/pnas.1004751108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
External information propagates in the cell mainly through signaling cascades and transcriptional activation, allowing it to react to a wide spectrum of environmental changes. High-throughput experiments identify numerous molecular components of such cascades that may, however, interact through unknown partners. Some of them may be detected using data coming from the integration of a protein-protein interaction network and mRNA expression profiles. This inference problem can be mapped onto the problem of finding appropriate optimal connected subgraphs of a network defined by these datasets. The optimization procedure turns out to be computationally intractable in general. Here we present a new distributed algorithm for this task, inspired from statistical physics, and apply this scheme to alpha factor and drug perturbations data in yeast. We identify the role of the COS8 protein, a member of a gene family of previously unknown function, and validate the results by genetic experiments. The algorithm we present is specially suited for very large datasets, can run in parallel, and can be adapted to other problems in systems biology. On renowned benchmarks it outperforms other algorithms in the field.
Collapse
|
10
|
Abstract
Signaling cascades, in addition to proteins with obvious signaling-relevant activities (e.g. protein kinases or receptors), also employ dedicated 'inactive' proteins whose functions appear to be the organization of the former components into higher order complexes through protein-protein interactions. The core function of signaling adaptors, anchors and scaffolds is the recruitment of proteins into one macromolecular complex. Several recent studies have demonstrated that the recruiter and the recruited molecules mutually influence each other in a scaffolded complex. This yields fundamentally novel properties for the signaling complex as a whole. Because these are not merely additive to the properties of the individual components, scaffolded signaling complexes may behave as functionally distinct modules.
Collapse
Affiliation(s)
- Anita Alexa
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | | |
Collapse
|
11
|
Filbert EL, Nguyen A, Markiewicz MA, Fowlkes BJ, Huang YH, Shaw AS. Kinase suppressor of Ras 1 is required for full ERK activation in thymocytes but not for thymocyte selection. Eur J Immunol 2010; 40:3226-34. [PMID: 20865788 DOI: 10.1002/eji.201040349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 08/03/2010] [Accepted: 08/12/2010] [Indexed: 11/06/2022]
Abstract
The scaffold protein kinase suppressor of Ras 1 (KSR1) is critical for efficient activation of ERK in a number of cell types. Consistent with this, we observed a defect in ERK activation in thymocytes that lack KSR1. Interestingly, we found that the defect was much greater after PMA stimulation than by CD3 activation. Since ERK activation is believed to be important for thymocyte development, we analyzed thymocyte selection in KSR1-deficient (KSR1(-/-) ) mice. We found that positive selection in two different TCR transgenic models, HY and AND, was normal. On the other hand, negative selection in the HY model was slightly impaired in KSR1(-/-) mice. However, a defect in negative selection was not apparent in the AND TCR model system or in an endogenous superantigen-mediated model of negative selection. These results suggest that, despite a requirement for KSR1 for full ERK activation in thymocytes, full and efficient ERK activation is not essential for the majority of thymocyte selection events.
Collapse
Affiliation(s)
- Erin L Filbert
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
12
|
Theoretical study for regulatory property of scaffold protein on MAPK cascade: A qualitative modeling. Biophys Chem 2010; 147:130-9. [DOI: 10.1016/j.bpc.2010.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/17/2010] [Accepted: 01/17/2010] [Indexed: 01/10/2023]
|
13
|
Spatio-temporal correlations can drastically change the response of a MAPK pathway. Proc Natl Acad Sci U S A 2010; 107:2473-8. [PMID: 20133748 DOI: 10.1073/pnas.0906885107] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multisite covalent modification of proteins is omnipresent in eukaryotic cells. A well-known example is the mitogen-activated protein kinase (MAPK) cascade where, in each layer of the cascade, a protein is phosphorylated at two sites. It has long been known that the response of a MAPK pathway strongly depends on whether the enzymes that modify the protein act processively or distributively. A distributive mechanism, in which the enzyme molecules have to release the substrate molecules in between the modification of the two sites, can generate an ultrasensitive response and lead to hysteresis and bistability. We study by Green's Function Reaction Dynamics (GFRD), a stochastic scheme that makes it possible to simulate biochemical networks at the particle level in time and space, a dual phosphorylation cycle in which the enzymes act according to a distributive mechanism. We find that the response of this network can differ dramatically from that predicted by a mean-field analysis based on the chemical rate equations. In particular, rapid rebindings of the enzyme molecules to the substrate molecules after modification of the first site can markedly speed up the response and lead to loss of ultrasensitivity and bistability. In essence, rapid enzyme-substrate rebindings can turn a distributive mechanism into a processive mechanism. We argue that slow ADP release by the enzymes can protect the system against these rapid rebindings, thus enabling ultrasensitivity and bistability.
Collapse
|
14
|
Abstract
This paper summarises how scaffold proteins affects and regulate the JNK signalling pathway. We believe that some of these scaffold proteins, by virtue of their anchoring and catalytic properties contribute to a high degree of specificity of intra cellular signalling pathways that regulate the progression through the cell cycle.
Collapse
Affiliation(s)
- W Engström
- Department of Zoology, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
15
|
Escola S, Eisele M, Miller K, Paninski L. Maximally reliable Markov chains under energy constraints. Neural Comput 2009; 21:1863-912. [PMID: 19292647 DOI: 10.1162/neco.2009.08-08-843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Signal-to-noise ratios in physical systems can be significantly degraded if the outputs of the systems are highly variable. Biological processes for which highly stereotyped signal generations are necessary features appear to have reduced their signal variabilities by employing multiple processing steps. To better understand why this multistep cascade structure might be desirable, we prove that the reliability of a signal generated by a multistate system with no memory (i.e., a Markov chain) is maximal if and only if the system topology is such that the process steps irreversibly through each state, with transition rates chosen such that an equal fraction of the total signal is generated in each state. Furthermore, our result indicates that by increasing the number of states, it is possible to arbitrarily increase the reliability of the system. In a physical system, however, an energy cost is associated with maintaining irreversible transitions, and this cost increases with the number of such transitions (i.e., the number of states). Thus, an infinite-length chain, which would be perfectly reliable, is infeasible. To model the effects of energy demands on the maximally reliable solution, we numerically optimize the topology under two distinct energy functions that penalize either irreversible transitions or incommunicability between states, respectively. In both cases, the solutions are essentially irreversible linear chains, but with upper bounds on the number of states set by the amount of available energy. We therefore conclude that a physical system for which signal reliability is important should employ a linear architecture, with the number of states (and thus the reliability) determined by the intrinsic energy constraints of the system.
Collapse
Affiliation(s)
- Sean Escola
- Center for Theoretical Neuroscience and M.D./Ph.D. Program, Columbia University, New York, NY 10032, U.S.A.
| | | | | | | |
Collapse
|
16
|
Signal duration and the time scale dependence of signal integration in biochemical pathways. BMC SYSTEMS BIOLOGY 2008; 2:108. [PMID: 19091071 PMCID: PMC2663553 DOI: 10.1186/1752-0509-2-108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 12/17/2008] [Indexed: 11/16/2022]
Abstract
Background Signal duration (e.g. the time over which an active signaling intermediate persists) is a key regulator of biological decisions in myriad contexts such as cell growth, proliferation, and developmental lineage commitments. Accompanying differences in signal duration are numerous downstream biological processes that require multiple steps of biochemical regulation. Results Here we present an analysis that investigates how simple biochemical motifs that involve multiple stages of regulation can be constructed to differentially process signals that persist at different time scales. We compute the dynamic, frequency dependent gain within these networks and resulting power spectra to better understand how biochemical networks can integrate signals at different time scales. We identify topological features of these networks that allow for different frequency dependent signal processing properties. Conclusion We show that multi-staged cascades are effective in integrating signals of long duration whereas multi-staged cascades that operate in the presence of negative feedback are effective in integrating signals of short duration. Our studies suggest principles for why signal duration in connection with multiple steps of downstream regulation is a ubiquitous motif in biochemical systems.
Collapse
|
17
|
Locasale JW. Three-state kinetic mechanism for scaffold-mediated signal transduction. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:051921. [PMID: 19113169 PMCID: PMC2713820 DOI: 10.1103/physreve.78.051921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/30/2008] [Indexed: 05/27/2023]
Abstract
Signaling events in eukaryotic cells are often guided by a scaffolding protein. Scaffold proteins assemble multiple proteins into a spatially localized signaling complex and exert numerous physical effects on signaling pathways. To study these effects, we consider a minimal, three-state kinetic model of scaffold-mediated kinase activation. We first introduce and apply a path summation technique to obtain approximate solutions to a single molecule master equation that governs protein kinase activation. We then consider exact numerical solutions. We comment on when this approximation is appropriate and then use this analysis to illustrate the competition of processes occurring at many time scales that are involved in signal transduction in the presence of a scaffold protein. We find that our minimal model captures how scaffold concentration can influence the times over which signaling is distributed in kinase cascades. For a range of scaffold concentrations, scaffolds allow for signaling to be distributed over multiple decades. The findings are consistent with recent experiments and simulation data. These results provide a framework and offer a mechanism for understanding how scaffold proteins can influence the shape of the waiting time distribution of kinase activation and effectively broaden the times over which protein kinases are activated in the course of cell signaling.
Collapse
Affiliation(s)
- Jason W Locasale
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|