1
|
Shu T, Chen Y, Xiao K, Huang H, Jia J, Yu Z, Jiang W, Yang J. Effects of short-term water velocity stimulation on the biochemical and transcriptional responses of grass carp ( Ctenopharyngodon idellus). Front Physiol 2023; 14:1248999. [PMID: 37719458 PMCID: PMC10501314 DOI: 10.3389/fphys.2023.1248999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Since 2011, ecological operation trials of the Three Gorges Reservoir (TGR) have been continuously conducted to improve the spawning quantity of the four major Chinese carp species below the Gezhouba Dam. In particular, exploring the effects of short-term water velocity stimulation on ovarian development in grass carp (Ctenopharyngodon idellus) is essential to understand the response of natural reproduction to ecological flows. We performed ovary histology analysis and biochemical assays among individuals with or without stimulation by running water. Although there were no obvious effects on the ovarian development characteristics of grass carp under short-term water velocity stimulation, estradiol, progesterone, follicle-stimulating hormone (FSH), and triiodothyronine (T3) concentrations were elevated. Then, we further explored the ovarian development of grass carp under short-term water velocity stimulation by RNA sequencing of ovarian tissues. In total, 221 and 741 genes were up- or downregulated under short-term water velocity stimulation, respectively, compared to the control group. The majority of differentially expressed genes (DEGs) were enriched in pathways including ABC transporters, cytokine-cytokine receptor interaction, ECM-receptor interaction, and steroid hormone biosynthesis. Important genes including gpr4, vtg1, C-type lectin, hsd17b1, cyp19a1a, cyp17a1, and rdh12 that are involved in ovarian development were regulated. Our results provide new insights and reveal potential regulatory genes and pathways involved in the ovarian development of grass carp under short-term water velocity stimulation, which may be beneficial when devising further ecological regulation strategies.
Collapse
Affiliation(s)
- Tingting Shu
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Yan Chen
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
- State Key Laboratory for Cellular Stress Biology, Innovation Centre for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Kan Xiao
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Hongtao Huang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Jingyi Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhaoxi Yu
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Wei Jiang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| | - Jing Yang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, China
| |
Collapse
|
2
|
Radhakrishnan ML. How to Model for a Living: The CSGF as a Catalyst for Supermodels. Comput Sci Eng 2021; 23:34-41. [DOI: 10.1109/mcse.2021.3119764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
3
|
Hong L, Lavrentovich DO, Chavan A, Leypunskiy E, Li E, Matthews C, LiWang A, Rust MJ, Dinner AR. Bayesian modeling reveals metabolite-dependent ultrasensitivity in the cyanobacterial circadian clock. Mol Syst Biol 2020; 16:e9355. [PMID: 32496641 PMCID: PMC7271899 DOI: 10.15252/msb.20199355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Mathematical models can enable a predictive understanding of mechanism in cell biology by quantitatively describing complex networks of interactions, but such models are often poorly constrained by available data. Owing to its relative biochemical simplicity, the core circadian oscillator in Synechococcus elongatus has become a prototypical system for studying how collective dynamics emerge from molecular interactions. The oscillator consists of only three proteins, KaiA, KaiB, and KaiC, and near-24-h cycles of KaiC phosphorylation can be reconstituted in vitro. Here, we formulate a molecularly detailed but mechanistically naive model of the KaiA-KaiC subsystem and fit it directly to experimental data within a Bayesian parameter estimation framework. Analysis of the fits consistently reveals an ultrasensitive response for KaiC phosphorylation as a function of KaiA concentration, which we confirm experimentally. This ultrasensitivity primarily results from the differential affinity of KaiA for competing nucleotide-bound states of KaiC. We argue that the ultrasensitive stimulus-response relation likely plays an important role in metabolic compensation by suppressing premature phosphorylation at nighttime.
Collapse
Affiliation(s)
- Lu Hong
- Graduate Program in Biophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Danylo O Lavrentovich
- Department of ChemistryUniversity of ChicagoChicagoILUSA
- Present address:
Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Archana Chavan
- School of Natural SciencesUniversity of CaliforniaMercedCAUSA
| | - Eugene Leypunskiy
- Graduate Program in Biophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Eileen Li
- Department of StatisticsUniversity of ChicagoChicagoILUSA
| | - Charles Matthews
- Department of StatisticsUniversity of ChicagoChicagoILUSA
- Present address:
School of MathematicsUniversity of EdinburghEdinburghUK
| | - Andy LiWang
- School of Natural SciencesUniversity of CaliforniaMercedCAUSA
- Quantitative and Systems BiologyUniversity of CaliforniaMercedCAUSA
- Center for Circadian BiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
- Chemistry and Chemical BiologyUniversity of CaliforniaMercedCAUSA
- Health Sciences Research InstituteUniversity of CaliforniaMercedCAUSA
- Center for Cellular and Biomolecular MachinesUniversity of CaliforniaMercedCAUSA
| | - Michael J Rust
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
- Institute for Genomics and Systems BiologyUniversity of ChicagoChicagoILUSA
| | - Aaron R Dinner
- Department of ChemistryUniversity of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
- James Franck InstituteUniversity of ChicagoChicagoILUSA
| |
Collapse
|
4
|
Strainic MG, Pohlmann E, Valley CC, Sammeta A, Hussain W, Lidke DS, Medof ME. RTK signaling requires C3ar1/C5ar1 and IL-6R joint signaling to repress dominant PTEN, SOCS1/3 and PHLPP restraint. FASEB J 2019; 34:2105-2125. [PMID: 31908021 DOI: 10.1096/fj.201900677r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/26/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
Abstract
How receptor tyrosine kinase (RTK) growth signaling is controlled physiologically is incompletely understood. We have previously provided evidence that the survival and mitotic activities of vascular endothelial cell growth factor receptor-2 (VEGFR2) signaling are dependent on C3a/C5a receptor (C3ar1/C5ar1) and IL-6 receptor (IL-6R)-gp130 joint signaling in a physically interactive platform. Herein, we document that the platelet derived and epidermal growth factor receptors (PDGFR and EGFR) are regulated by the same interconnection and clarify the mechanism underlying the dependence. We show that the joint signaling is required to overcome dominant restraint on RTK function by the combined repression of tonically activated PHLPP, SOCS1/SOCS3, and CK2/Fyn dependent PTEN. Signaling studies showed that augmented PI-3Kɣ activation is the process that overcomes the multilevel growth restraint. Live-cell flow cytometry and single-particle tracking indicated that blockade of C3ar1/C5ar1 or IL-6R signaling suppresses RTK growth factor binding and RTK complex formation. C3ar1/C5ar1 blockade abrogated growth signaling of four additional RTKs. Active relief of dominant growth repression via joint C3ar1/C5ar1 and IL-6R joint signaling thus enables RTK mitotic/survival signaling.
Collapse
Affiliation(s)
- Michael G Strainic
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Elliot Pohlmann
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Christopher C Valley
- Department of Pathology and Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ajay Sammeta
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Wasim Hussain
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Diane S Lidke
- Department of Pathology and Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - M Edward Medof
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio.,Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
5
|
Nieto Gutierrez A, McDonald PH. GPCRs: Emerging anti-cancer drug targets. Cell Signal 2017; 41:65-74. [PMID: 28931490 DOI: 10.1016/j.cellsig.2017.09.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest and most diverse protein family in the human genome with over 800 members identified to date. They play critical roles in numerous cellular and physiological processes, including cell proliferation, differentiation, neurotransmission, development and apoptosis. Consequently, aberrant receptor activity has been demonstrated in numerous disorders/diseases, and as a result GPCRs have become the most successful drug target class in pharmaceuticals treating a wide variety of indications such as pain, inflammation, neurobiological and metabolic disorders. Many independent studies have also demonstrated a key role for GPCRs in tumourigenesis, establishing their involvement in cancer initiation, progression, and metastasis. Given the growing appreciation of the role(s) that GPCRs play in cancer pathogenesis, it is surprising to note that very few GPCRs have been effectively exploited in pursuit of anti-cancer therapies. The present review provides a broad overview of the roles that various GPCRs play in cancer growth and development, highlighting the potential of pharmacologically modulating these receptors for the development of novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- Ainhoa Nieto Gutierrez
- The Scripps Research Institute, Department of Molecular Medicine, 130 Scripps Way, Jupiter, FL 33458, United States.
| | - Patricia H McDonald
- The Scripps Research Institute, Department of Molecular Medicine, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
6
|
Abstract
Myeloid cells make extensive use of the complement system in the context of recruitment, phagocytosis, and other effector functions. There are several types of complement receptors on myeloid cells, including G protein-coupled receptors for localizing the source of complement activation, and three sets of type I transmembrane proteins that link complement to phagocytosis: complement receptor 1, having an extracellular domain with tandem complement regulatory repeats; complement receptors 3 and 4, which are integrin family receptors comprising heterodimers of type I transmembrane subunits; and VSIG4, a member of the Ig superfamily. This review will focus on the role of the different classes of complement receptors and how their activities are integrated in the setting of immune tolerance and inflammatory responses.
Collapse
|
7
|
Role of IGF1R(+) MSCs in modulating neuroplasticity via CXCR4 cross-interaction. Sci Rep 2016; 6:32595. [PMID: 27586516 PMCID: PMC5009335 DOI: 10.1038/srep32595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
Abstract
To guide the use of human mesenchymal stem cells (MSCs) toward clinical applications, identifying pluripotent-like-markers for selecting MSCs that retain potent self-renewal-ability should be addressed. Here, an insulin-like growth factor 1 receptor (IGF1R)–expressing sub-population in human dental pulp MSCs (hDSCs), displayed multipotent properties. IGF1R expression could be maintained in hDSCs when they were cultured in 2% human cord blood serum (hUCS) in contrast to that in 10% fetal calf serum (FCS). Cytokine array showed that hUCS contained higher amount of several growth factors compared to FCS, including IGF-1 and platelet-derived growth factor (PDGF-BB). These cytokines modulates the signaling events in the hDSCs and potentially enhances engraftment upon transplantation. Specifically, a bidirectional cross-talk between IGF1R/IGF1 and CXCR4/SDF-1α signaling pathways in hDSCs, as revealed by interaction of the two receptors and synergistic activation of both signaling pathways. In rat stroke model, animals receiving IGF1R+ hDSCs transplantation, interaction between IGF1R and CXCR4 was demonstrated to promote neuroplasticity, therefore improving neurological function through increasing glucose metabolic activity, enhancing angiogenesis and anti-inflammatiory effects. Therefore, PDGF in hUCS-culture system contributed to the maintenance of the expression of IGF1R in hDSCs. Furthermore, implantation of IGF1R+ hDSCs exerted enhanced neuroplasticity via integrating inputs from both CXCR4 and IGF1R signaling pathways.
Collapse
|
8
|
Garmaroudi FS, Handy DE, Liu YY, Loscalzo J. Systems Pharmacology and Rational Polypharmacy: Nitric Oxide-Cyclic GMP Signaling Pathway as an Illustrative Example and Derivation of the General Case. PLoS Comput Biol 2016; 12:e1004822. [PMID: 26985825 PMCID: PMC4795786 DOI: 10.1371/journal.pcbi.1004822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/19/2016] [Indexed: 11/23/2022] Open
Abstract
Impaired nitric oxide (NO˙)-cyclic guanosine 3', 5'-monophosphate (cGMP) signaling has been observed in many cardiovascular disorders, including heart failure and pulmonary arterial hypertension. There are several enzymatic determinants of cGMP levels in this pathway, including soluble guanylyl cyclase (sGC) itself, the NO˙-activated form of sGC, and phosphodiesterase(s) (PDE). Therapies for some of these disorders with PDE inhibitors have been successful at increasing cGMP levels in both cardiac and vascular tissues. However, at the systems level, it is not clear whether perturbation of PDE alone, under oxidative stress, is the best approach for increasing cGMP levels as compared with perturbation of other potential pathway targets, either alone or in combination. Here, we develop a model-based approach to perturbing this pathway, focusing on single reactions, pairs of reactions, or trios of reactions as targets, then monitoring the theoretical effects of these interventions on cGMP levels. Single perturbations of all reaction steps within this pathway demonstrated that three reaction steps, including the oxidation of sGC, NO˙ dissociation from sGC, and cGMP degradation by PDE, exerted a dominant influence on cGMP accumulation relative to other reaction steps. Furthermore, among all possible single, paired, and triple perturbations of this pathway, the combined perturbations of these three reaction steps had the greatest impact on cGMP accumulation. These computational findings were confirmed in cell-based experiments. We conclude that a combined perturbation of the oxidatively-impaired NO˙-cGMP signaling pathway is a better approach to the restoration of cGMP levels as compared with corresponding individual perturbations. This approach may also yield improved therapeutic responses in other complex pharmacologically amenable pathways. Developing drugs for a well-defined biochemical or molecular pathway has conventionally been approached by optimizing the inhibition (or activation) of a single target by a single pharmacologic agent. On occasion, drug combinations have been used that generally target multiple pathways affecting a common phenotype, again by optimizing the extent of inhibition of individual targets, semi-empirically adjusting their doses to minimize toxicities as they are manifest. Here, we present a computational approach for identifying optimal combinations of agents that can affect (inhibit) a well-defined biochemical pathway, doing so at minimal combined concentrations, thereby potentially minimizing dose-dependent toxicities. This approach is illustrated computationally and experimentally with a well-known pathway, the nitric oxide-cyclic GMP pathway, but is readily generalizable to rational polypharmacy.
Collapse
Affiliation(s)
- Farshid S. Garmaroudi
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diane E. Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joseph Loscalzo
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Hierarchical feedback modules and reaction hubs in cell signaling networks. PLoS One 2015; 10:e0125886. [PMID: 25951347 PMCID: PMC4424001 DOI: 10.1371/journal.pone.0125886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/24/2015] [Indexed: 11/20/2022] Open
Abstract
Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks.
Collapse
|
10
|
O'Neill PR, Giri L, Karunarathne WKA, Patel AK, Venkatesh KV, Gautam N. The structure of dynamic GPCR signaling networks. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2014; 6:115-23. [PMID: 24741711 DOI: 10.1002/wsbm.1249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) stimulate signaling networks that control a variety of critical physiological processes. Static information on the map of interacting signaling molecules at the basis of many cellular processes exists, but little is known about the dynamic operation of these networks. Here we focus on two questions. First, Is the network architecture underlying GPCR-activated cellular processes unique in comparison with others such as transcriptional networks? We discuss how spatially localized GPCR signaling requires uniquely organized networks to execute polarized cell responses. Second, What approaches overcome challenges in deciphering spatiotemporally dynamic networks that govern cell behavior? We focus on recently developed microfluidic and optical approaches that allow GPCR signaling pathways to be triggered and perturbed with spatially and temporally variant input while simultaneously visualizing molecular and cellular responses. When integrated with mathematical modeling, these approaches can help identify design principles that govern cell responses to extracellular signals. We outline why optical approaches that allow the behavior of a selected cell to be orchestrated continually are particularly well suited for probing network organization in single cells.
Collapse
|
11
|
Jacob A, Alexander JJ. Complement and blood-brain barrier integrity. Mol Immunol 2014; 61:149-52. [PMID: 25041699 DOI: 10.1016/j.molimm.2014.06.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 01/17/2023]
Abstract
The blood-brain barrier (BBB) is structurally unique and regulates what is transported into and out of the brain, thereby maintaining brain homeostasis. In inflammatory settings the BBB becomes leaky, regulation of transport is lost and neuronal function goes awry. It is caused by a number of mediators such as complement activation products, processes and networks going haywire, the exact cellular and molecular mechanisms of which remain an enigma. Complement activation byproduct, C5a signaling through its G-protein coupled receptor C5aR1/CD88 increased BBB permeability in neuroinflammatory disease settings in vivo. Studies in brain endothelial cells in vitro demonstrated that the C5a/C5aR1 signaling occurred through the NF-κB pathway and altered miRNA in these cells. Inhibition or deletion of C5aR1 was protective in brain, both in vivo and in vitro revealing their potential as possible effective therapeutic targets. Although, this is a field where progress has been made, yet a lot remains to be done due to a number of limitations. This review will deal with the advances in the experimental models, technology and the underlying mechanisms causing the BBB pathology, with an emphasis on the complement proteins and their downstream mechanisms.
Collapse
|
12
|
Leander R, Friedman A. Modulation of the cAMP response by Gαi and Gβγ: a computational study of G protein signaling in immune cells. Bull Math Biol 2014; 76:1352-75. [PMID: 24809944 DOI: 10.1007/s11538-014-9964-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 04/14/2014] [Indexed: 12/15/2022]
Abstract
Cyclic AMP is important for the resolution of inflammation, as it promotes anti-inflammatory signaling in several immune cell lines. In this paper, we present an immune cell specific model of the cAMP signaling cascade, paying close attention to the specific isoforms of adenylyl cyclase (AC) and phosphodiesterase that control cAMP production and degradation, respectively, in these cells. The model describes the role that G protein subunits, including Gαs, Gαi, and Gβγ, have in regulating cAMP production. Previously, Gαi activation has been shown to increase the level of cAMP in certain immune cell types. This increase in cAMP is thought to be mediated by βγ subunits which are released upon Gα activation and can directly stimulate specific isoforms of AC. We conduct numerical experiments in order to explore the mechanisms through which Gαi activation can increase cAMP production. An important conclusion of our analysis is that the relative abundance of different G protein subunits is an essential determinant of the cAMP profile in immune cells. In particular, our model predicts that limited availability of βγ subunits may both (i) enable immune cells to link inflammatory Gαi signaling to anti-inflammatory cAMP production thereby creating a balanced immune response to stimulation with low concentrations of PGE2, and (ii) prohibit robust anti-inflammatory cAMP signaling in response to stimulation with high concentrations of PGE2.
Collapse
Affiliation(s)
- R Leander
- Department of Mathematics, Middle Tennessee State University, Murfreesboro, TN , 37132, USA,
| | | |
Collapse
|
13
|
Ramirez JM, Doi A, Garcia AJ, Elsen FP, Koch H, Wei AD. The cellular building blocks of breathing. Compr Physiol 2013; 2:2683-731. [PMID: 23720262 DOI: 10.1002/cphy.c110033] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of "inspiring behaviors" such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general.
Collapse
Affiliation(s)
- J M Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institut, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Jalbert E, Shikuma CM, Ndhlovu LC, Barbour JD. Sequential staining improves detection of CCR2 and CX3CR1 on monocytes when simultaneously evaluating CCR5 by multicolor flow cytometry. Cytometry A 2013; 83:280-6. [PMID: 23426986 DOI: 10.1002/cyto.a.22257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/04/2012] [Accepted: 12/23/2012] [Indexed: 01/24/2023]
Abstract
Chemokines and their receptors play an essential role within the immune system by dictating cellular migration. In vivo, receptor-ligand interactions rarely occur in isolation as cellular recruitment and migration are complex and highly coordinated processes often involving networks of multiple chemokines and multiple receptors. Simultaneous detection of multiple chemokine receptors on the single cell level is necessary to allow immunophenotyping studies that will help understand the intricacies of these networks. Chemokine receptors undergo a basal level of ongoing internalization, intracellular trafficking, and recycling back to the cell surface, even in the absence of the ligand. In the presence of ligand, receptor-ligand interactions enhance receptor internalization, reducing the cell surface receptor concentration, making precise determination of intrinsic levels challenging. Using multicolor flow cytometry, we sought to evaluate and optimize the simultaneous detection of cell surface expression levels of CCR2, CX3CR1, and CCR5 in primary human monocytes using a single antibody panel. We observed that staining for CCR2 alone or for CX3CR1 alone showed greater expression levels than when the cells were stained with the full panel of antibodies. Fluorescent-minus-one (FMO) controls revealed that ligation of the CCR5 monoclonal antibody to the receptor interfered with detection of CX3CR1 and CCR2. Sequential addition of antibodies during the staining procedure was sufficient to restore the detection levels, suggesting close proximity and possible functional interactions between CCR2/CCR5 and CX3CR1/CCR5 in monocytes. This study highlights the importance of optimizing staining procedures and using proper controls when simultaneously evaluating expression levels of multiple chemokine receptors by flow cytometry. Concurrent assessment of multiple receptors will provide insight and greater understanding of the complex interactions involved in cellular migration.
Collapse
Affiliation(s)
- Emilie Jalbert
- Hawaii Center for HIV/AIDS, University of Hawaii Manoa, Honolulu, Hawaii 96813, USA.
| | | | | | | |
Collapse
|
15
|
Profile of Michael I. Jordan. Proc Natl Acad Sci U S A 2013; 110:1141-3. [DOI: 10.1073/pnas.1222664110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Eydgahi H, Chen WW, Muhlich JL, Vitkup D, Tsitsiklis JN, Sorger PK. Properties of cell death models calibrated and compared using Bayesian approaches. Mol Syst Biol 2013; 9:644. [PMID: 23385484 PMCID: PMC3588908 DOI: 10.1038/msb.2012.69] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/17/2012] [Indexed: 01/18/2023] Open
Abstract
Using models to simulate and analyze biological networks requires principled approaches to parameter estimation and model discrimination. We use Bayesian and Monte Carlo methods to recover the full probability distributions of free parameters (initial protein concentrations and rate constants) for mass-action models of receptor-mediated cell death. The width of the individual parameter distributions is largely determined by non-identifiability but covariation among parameters, even those that are poorly determined, encodes essential information. Knowledge of joint parameter distributions makes it possible to compute the uncertainty of model-based predictions whereas ignoring it (e.g., by treating parameters as a simple list of values and variances) yields nonsensical predictions. Computing the Bayes factor from joint distributions yields the odds ratio (∼20-fold) for competing 'direct' and 'indirect' apoptosis models having different numbers of parameters. Our results illustrate how Bayesian approaches to model calibration and discrimination combined with single-cell data represent a generally useful and rigorous approach to discriminate between competing hypotheses in the face of parametric and topological uncertainty.
Collapse
Affiliation(s)
- Hoda Eydgahi
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William W Chen
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Jeremy L Muhlich
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Dennis Vitkup
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY, USA
| | - John N Tsitsiklis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter K Sorger
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, WAB Room 438, 200 Longwood Avenue, Boston, MA 02115, USA. Tel.:+1 617 432 6901/6902; Fax:+1 617 432 5012;
| |
Collapse
|
17
|
Meens MJPMT, Mattheij NJA, van Loenen PB, Spijkers LJA, Lemkens P, Nelissen J, Compeer MG, Alewijnse AE, De Mey JGR. G-protein βγ subunits in vasorelaxing and anti-endothelinergic effects of calcitonin gene-related peptide. Br J Pharmacol 2012; 166:297-308. [PMID: 22074193 DOI: 10.1111/j.1476-5381.2011.01774.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Calcitonin gene-related peptide (CGRP) has been proposed to relax vascular smooth muscle cells (VSMC) via cAMP and can promote dissociation of endothelin-1 (ET-1) from ET(A) receptors. The latter is not mimicked by other stimuli of adenylate cyclases. Therefore, we evaluated the involvement of G-protein βγ subunits (Gβγ) in the arterial effects of CGRP receptor stimulation. EXPERIMENTAL APPROACH To test the hypothesis that instead of α subunits of G-proteins (Gαs), Gβγ mediates the effects of CGRP receptor activation, we used (i) rat isolated mesenteric resistance arteries (MRA), (ii) pharmacological modulators of cyclic nucleotides; and (iii) low molecular weight inhibitors of the functions of Gβγ, gallein and M119. To validate these tools with respect to CGRP receptor function, we performed organ bath studies with rat isolated MRA, radioligand binding on membranes from CHO cells expressing human CGRP receptors and cAMP production assays in rat cultured VSMC. KEY RESULTS In isolated arteries contracted with K(+) or ET-1, IBMX (PDE inhibitor) increased sodium nitroprusside (SNP)- and isoprenaline (ISO)- but not CGRP-induced relaxations. While fluorescein (negative control) was without effects, gallein increased binding of [(125) I]-CGRP in the absence and presence of GTPγS. Gallein also increased CGRP-induced cAMP production in VSMC. Despite these stimulating effects, gallein and M119 selectively inhibited the relaxing and anti-endothelinergic effects of CGRP in isolated arteries while not altering contractile responses to K(+) or ET-1 or relaxing responses to ISO or SNP. CONCLUSION AND IMPLICATIONS Activated CGRP receptors induce cyclic nucleotide-independent relaxation of VSMC and terminate arterial effects of ET-1 via Gβγ.
Collapse
Affiliation(s)
- M J P M T Meens
- Department of Pharmacology, Maastricht University, Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nabavi S, Williams CM. A novel cost function to estimate parameters of oscillatory biochemical systems. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2012; 2012:3. [PMID: 22587221 PMCID: PMC3384360 DOI: 10.1186/1687-4153-2012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 05/16/2012] [Indexed: 11/23/2022]
Abstract
Oscillatory pathways are among the most important classes of biochemical systems with examples ranging from circadian rhythms and cell cycle maintenance. Mathematical modeling of these highly interconnected biochemical networks is needed to meet numerous objectives such as investigating, predicting and controlling the dynamics of these systems. Identifying the kinetic rate parameters is essential for fully modeling these and other biological processes. These kinetic parameters, however, are not usually available from measurements and most of them have to be estimated by parameter fitting techniques. One of the issues with estimating kinetic parameters in oscillatory systems is the irregularities in the least square (LS) cost function surface used to estimate these parameters, which is caused by the periodicity of the measurements. These irregularities result in numerous local minima, which limit the performance of even some of the most robust global optimization algorithms. We proposed a parameter estimation framework to address these issues that integrates temporal information with periodic information embedded in the measurements used to estimate these parameters. This periodic information is used to build a proposed cost function with better surface properties leading to fewer local minima and better performance of global optimization algorithms. We verified for three oscillatory biochemical systems that our proposed cost function results in an increased ability to estimate accurate kinetic parameters as compared to the traditional LS cost function. We combine this cost function with an improved noise removal approach that leverages periodic characteristics embedded in the measurements to effectively reduce noise. The results provide strong evidence on the efficacy of this noise removal approach over the previous commonly used wavelet hard-thresholding noise removal methods. This proposed optimization framework results in more accurate kinetic parameters that will eventually lead to biochemical models that are more precise, predictable, and controllable.
Collapse
Affiliation(s)
- Seyedbehzad Nabavi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA.
| | | |
Collapse
|
19
|
Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol 2011; 48:1592-603. [PMID: 21546088 PMCID: PMC3142281 DOI: 10.1016/j.molimm.2011.04.003] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 01/24/2023]
Abstract
The brain is considered to be an immune privileged site, because the blood-brain barrier limits entry of blood borne cells and proteins into the central nervous system (CNS). As a result, the detection and clearance of invading microorganisms and senescent cells as well as surplus neurotransmitters, aged and glycated proteins, in order to maintain a healthy environment for neuronal and glial cells, is largely confined to the innate immune system. In recent years it has become clear that many factors of innate immunity are expressed throughout the brain. Neuronal and glial cells express Toll like receptors as well as complement receptors, and virtually all complement components can be locally produced in the brain, often in response to injury or developmental cues. However, as inflammatory reactions could interfere with proper functioning of the brain, tight and fine tuned regulatory mechanisms are warranted. In age related diseases, such as Alzheimer's disease (AD), accumulating amyloid proteins elicit complement activation and a local, chronic inflammatory response that leads to attraction and activation of glial cells that, under such activation conditions, can produce neurotoxic substances, including pro-inflammatory cytokines and oxygen radicals. This process may be exacerbated by a disturbed balance between complement activators and complement regulatory proteins such as occurs in AD, as the local synthesis of these proteins is differentially regulated by pro-inflammatory cytokines. Much knowledge about the role of complement in neurodegenerative diseases has been derived from animal studies with transgenic overexpressing or knockout mice for specific complement factors or receptors. These studies have provided insight into the potential therapeutic use of complement regulators and complement receptor antagonists in chronic neurodegenerative diseases as well as in acute conditions, such as stroke. Interestingly, recent animal studies have also indicated that complement activation products are involved in brain development and synapse formation. Not only are these findings important for the understanding of how brain development and neural network formation is organized, it may also give insights into the role of complement in processes of neurodegeneration and neuroprotection in the injured or aged and diseased adult central nervous system, and thus aid in identifying novel and specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Robert Veerhuis
- Depts of Clinical Chemistry, Pathology, Psychiatry and Alzheimer Center, VU, University Medical Center, Amsterdam, The Netherlands
| | - Henrietta M. Nielsen
- Dept of Clinical Sciences Malmö, Molecular Memory Research Unit, Lund University, The Wallenberg Lab 2floor, Skåne University Hospital entrance 46, Malmö, Sweden
| | - Andrea J. Tenner
- Depts of Molecular Biology and Biochemistry and Neurobiology and Behavior, Institute for Immunology, UCI MIND, University of California, Irvine, USA
| |
Collapse
|
20
|
Bao XR, Fraser IDC, Wall EA, Quake SR, Simon MI. Variability in G-protein-coupled signaling studied with microfluidic devices. Biophys J 2010; 99:2414-22. [PMID: 20959081 PMCID: PMC2955501 DOI: 10.1016/j.bpj.2010.08.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 08/18/2010] [Accepted: 08/24/2010] [Indexed: 11/23/2022] Open
Abstract
Different cells, even those that are genetically identical, can respond differently to identical stimuli, but the precise source of this variability remains obscure. To study this problem, we built a microfluidic experimental system which can track responses of individual cells across multiple stimulations. We used this system to determine that amplitude variation in G-protein-activated calcium release in RAW264.7 macrophages is generally extrinsic, i.e., they arise from long-lived variations between cells and not from stochastic activation of signaling components. In the case of responses linked to P2Y family purine receptors, we estimate that approximately one-third of the observed variability in calcium release is receptor-specific. We further demonstrate that the signaling apparatus downstream of P2Y6 receptor activation is moderately saturable. These observations will be useful in constructing and constraining single-cell models of G protein-coupled calcium dynamics.
Collapse
Affiliation(s)
- Xiaoyan Robert Bao
- Department of Applied Physics, California Institute of Technology, Pasadena, USA.
| | | | | | | | | |
Collapse
|
21
|
Apgar JF, Witmer DK, White FM, Tidor B. Sloppy models, parameter uncertainty, and the role of experimental design. MOLECULAR BIOSYSTEMS 2010; 6:1890-900. [PMID: 20556289 PMCID: PMC3505121 DOI: 10.1039/b918098b] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational models are increasingly used to understand and predict complex biological phenomena. These models contain many unknown parameters, at least some of which are difficult to measure directly, and instead are estimated by fitting to time-course data. Previous work has suggested that even with precise data sets, many parameters are unknowable by trajectory measurements. We examined this question in the context of a pathway model of epidermal growth factor (EGF) and neuronal growth factor (NGF) signaling. Computationally, we examined a palette of experimental perturbations that included different doses of EGF and NGF as well as single and multiple gene knockdowns and overexpressions. While no single experiment could accurately estimate all of the parameters, experimental design methodology identified a set of five complementary experiments that could. These results suggest optimism for the prospects for calibrating even large models, that the success of parameter estimation is intimately linked to the experimental perturbations used, and that experimental design methodology is important for parameter fitting of biological models and likely for the accuracy that can be expected from them.
Collapse
Affiliation(s)
- Joshua F. Apgar
- Department of Biological Engineering
- Computer Science and Artificial Intelligence Laboratory
| | - David K. Witmer
- Computer Science and Artificial Intelligence Laboratory
- Department of Electrical Engineering and Computer Science
| | - Forest M. White
- Department of Biological Engineering
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bruce Tidor
- Department of Biological Engineering
- Computer Science and Artificial Intelligence Laboratory
- Department of Electrical Engineering and Computer Science
| |
Collapse
|
22
|
Abstract
Recent interest in modeling biochemical networks raises questions about the relationship between often complex mathematical models and familiar arithmetic concepts from classical enzymology, and also about connections between modeling and experimental data. This review addresses both topics by familiarizing readers with key concepts (and terminology) in the construction, validation, and application of deterministic biochemical models, with particular emphasis on a simple enzyme-catalyzed reaction. Networks of coupled ordinary differential equations (ODEs) are the natural language for describing enzyme kinetics in a mass action approximation. We illustrate this point by showing how the familiar Briggs-Haldane formulation of Michaelis-Menten kinetics derives from the outer (or quasi-steady-state) solution of a dynamical system of ODEs describing a simple reaction under special conditions. We discuss how parameters in the Michaelis-Menten approximation and in the underlying ODE network can be estimated from experimental data, with a special emphasis on the origins of uncertainty. Finally, we extrapolate from a simple reaction to complex models of multiprotein biochemical networks. The concepts described in this review, hitherto of interest primarily to practitioners, are likely to become important for a much broader community of cellular and molecular biologists attempting to understand the promise and challenges of "systems biology" as applied to biochemical mechanisms.
Collapse
Affiliation(s)
- William W. Chen
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mario Niepel
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter K. Sorger
- Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
23
|
Ager RR, Fonseca MI, Chu SH, Sanderson SD, Taylor SM, Woodruff TM, Tenner AJ. Microglial C5aR (CD88) expression correlates with amyloid-beta deposition in murine models of Alzheimer's disease. J Neurochem 2010; 113:389-401. [PMID: 20132482 DOI: 10.1111/j.1471-4159.2010.06595.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by the accumulation of amyloid-beta protein and neuronal loss, is the leading cause of age-related dementia in the world today. The disease is also associated with neuroinflammation, robust activation of astrocytes and microglia, and evidence of activation of the complement system, localized with both fibrillar amyloid-beta (fAbeta) plaques and tangles. The observations are consistent with a complement-dependent component of AD progression. We have previously shown that inhibition of the major complement receptor for C5a (CD88) with the antagonist PMX205 results in a significant reduction in pathology in two mouse models of AD. To further characterize the role of complement in AD-related neuroinflammation, we examined the age- and disease-associated expression of CD88 in brain of transgenic mouse models of AD and the influence of PMX205 on the presence of various complement activation products using flow cytometry, western blot, and immunohistochemistry. CD88 was found to be up-regulated in microglia, in the immediate vicinity of amyloid plaques. While thioflavine plaque load and glial recruitment is significantly reduced after treatment with PMX205, C1q remains co-localized with fAbeta plaques and C3 is still expressed by the recruited astrocytes. Thus, with PMX205, potentially beneficial activities of these early complement components may remain intact, while detrimental activities resulting from C5a-CD88 interaction are inhibited. This further supports the targeted inhibition of specific complement mediated activities as an approach for AD therapy.
Collapse
Affiliation(s)
- Rahasson R Ager
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Daigle BJ, Srinivasan BS, Flannick JA, Novak AF, Batzoglou S. Current Progress in Static and Dynamic Modeling of Biological Networks. SYSTEMS BIOLOGY FOR SIGNALING NETWORKS 2010. [DOI: 10.1007/978-1-4419-5797-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Klinke DJ. An empirical Bayesian approach for model-based inference of cellular signaling networks. BMC Bioinformatics 2009; 10:371. [PMID: 19900289 PMCID: PMC2781012 DOI: 10.1186/1471-2105-10-371] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/09/2009] [Indexed: 12/02/2022] Open
Abstract
Background A common challenge in systems biology is to infer mechanistic descriptions of biological process given limited observations of a biological system. Mathematical models are frequently used to represent a belief about the causal relationships among proteins within a signaling network. Bayesian methods provide an attractive framework for inferring the validity of those beliefs in the context of the available data. However, efficient sampling of high-dimensional parameter space and appropriate convergence criteria provide barriers for implementing an empirical Bayesian approach. The objective of this study was to apply an Adaptive Markov chain Monte Carlo technique to a typical study of cellular signaling pathways. Results As an illustrative example, a kinetic model for the early signaling events associated with the epidermal growth factor (EGF) signaling network was calibrated against dynamic measurements observed in primary rat hepatocytes. A convergence criterion, based upon the Gelman-Rubin potential scale reduction factor, was applied to the model predictions. The posterior distributions of the parameters exhibited complicated structure, including significant covariance between specific parameters and a broad range of variance among the parameters. The model predictions, in contrast, were narrowly distributed and were used to identify areas of agreement among a collection of experimental studies. Conclusion In summary, an empirical Bayesian approach was developed for inferring the confidence that one can place in a particular model that describes signal transduction mechanisms and for inferring inconsistencies in experimental measurements.
Collapse
Affiliation(s)
- David J Klinke
- Department of Chemical Engineering, West Virginia University, Morgantown, WV 26506-6102, USA.
| |
Collapse
|
26
|
Siso-Nadal F, Fox JJ, Laporte SA, Hébert TE, Swain PS. Cross-talk between signaling pathways can generate robust oscillations in calcium and cAMP. PLoS One 2009; 4:e7189. [PMID: 19844582 PMCID: PMC2760754 DOI: 10.1371/journal.pone.0007189] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022] Open
Abstract
Background To control and manipulate cellular signaling, we need to understand cellular strategies for information transfer, integration, and decision-making. A key feature of signal transduction is the generation of only a few intracellular messengers by many extracellular stimuli. Methodology/Principal Findings Here we model molecular cross-talk between two classic second messengers, cyclic AMP (cAMP) and calcium, and show that the dynamical complexity of the response of both messengers increases substantially through their interaction. In our model of a non-excitable cell, both cAMP and calcium concentrations can oscillate. If mutually inhibitory, cross-talk between the two second messengers can increase the range of agonist concentrations for which oscillations occur. If mutually activating, cross-talk decreases the oscillation range, but can generate ‘bursting’ oscillations of calcium and may enable better filtering of noise. Conclusion We postulate that this increased dynamical complexity allows the cell to encode more information, particularly if both second messengers encode signals. In their native environments, it is unlikely that cells are exposed to one stimulus at a time, and cross-talk may help generate sufficiently complex responses to allow the cell to discriminate between different combinations and concentrations of extracellular agonists.
Collapse
Affiliation(s)
- Fernando Siso-Nadal
- Gene Network Sciences, Cambridge, Massachusetts, United States of America
- Centre for Non-linear Dynamics, McGill University, Montreal, Canada
| | - Jeffrey J. Fox
- Centre for Applied Mathematics, Cornell University, Ithaca, New York, United States of America
| | - Stéphane A. Laporte
- Department of Medicine, McGill University, Montreal, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Peter S. Swain
- Centre for Non-linear Dynamics, McGill University, Montreal, Canada
- Centre for Systems Biology at Edinburgh, University of Edinburgh, Edinburgh, Scotland
- * E-mail:
| |
Collapse
|
27
|
Klos A, Tenner AJ, Johswich KO, Ager RR, Reis ES, Köhl J. The role of the anaphylatoxins in health and disease. Mol Immunol 2009; 46:2753-66. [PMID: 19477527 PMCID: PMC2725201 DOI: 10.1016/j.molimm.2009.04.027] [Citation(s) in RCA: 535] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/28/2009] [Indexed: 12/16/2022]
Abstract
The anaphylatoxin (AT) C3a, C5a and C5a-desArg are generally considered pro-inflammatory polypeptides generated after proteolytic cleavage of C3 and C5 in response to complement activation. Their well-appreciated effector functions include chemotaxis and activation of granulocytes, mast cells and macrophages. Recent evidence suggests that ATs are also generated locally within tissues by pathogen-, cell-, or contact system-derived proteases. This local generation of ATs is important for their pleiotropic biologic effects beyond inflammation. The ATs exert most of the biologic activities through ligation of three cognate receptors, i.e. the C3a receptor, the C5a receptor and the C5a receptor-like, C5L2. Here, we will discuss recent findings suggesting that ATs regulate cell apoptosis, lipid metabolism as well as innate and adaptive immune responses through their impact on antigen-presenting cells and T cells. As we will outline, such regulatory functions of ATs and their receptors play important roles in the pathogenesis of allergy, autoimmunity, neurodegenerative diseases, cancer and infections with intracellular pathogens.
Collapse
Affiliation(s)
- Andreas Klos
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover (MHH), Hannover, Germany
| | - Andrea J. Tenner
- Department of Molecular Biology and Biochemistry, Institute for Immunology, Institute for Brain Aging and Dementia, University of California, Irvine, USA
| | - Kay-Ole Johswich
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover (MHH), Hannover, Germany
| | - Rahasson R. Ager
- Department of Molecular Biology and Biochemistry, Institute for Immunology, Institute for Brain Aging and Dementia, University of California, Irvine, USA
| | - Edimara S. Reis
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|
28
|
Fallahi-Sichani M, Linderman JJ. Lipid raft-mediated regulation of G-protein coupled receptor signaling by ligands which influence receptor dimerization: a computational study. PLoS One 2009; 4:e6604. [PMID: 19668374 PMCID: PMC2719103 DOI: 10.1371/journal.pone.0006604] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 07/22/2009] [Indexed: 11/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are the largest family of cell surface receptors; they activate heterotrimeric G-proteins in response to ligand stimulation. Although many GPCRs have been shown to form homo- and/or heterodimers on the cell membrane, the purpose of this dimerization is not known. Recent research has shown that receptor dimerization may have a role in organization of receptors on the cell surface. In addition, microdomains on the cell membrane termed lipid rafts have been shown to play a role in GPCR localization. Using a combination of stochastic (Monte Carlo) and deterministic modeling, we propose a novel mechanism for lipid raft partitioning of GPCRs based on reversible dimerization of receptors and then demonstrate that such localization can affect GPCR signaling. Modeling results are consistent with a variety of experimental data indicating that lipid rafts have a role in amplification or attenuation of G-protein signaling. Thus our work suggests a new mechanism by which dimerization-inducing or inhibiting characteristics of ligands can influence GPCR signaling by controlling receptor organization on the cell membrane.
Collapse
Affiliation(s)
- Mohammad Fallahi-Sichani
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer J. Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
29
|
Fonseca MI, Ager RR, Chu SH, Yazan O, Sanderson SD, LaFerla FM, Taylor SM, Woodruff TM, Tenner AJ. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer's disease. THE JOURNAL OF IMMUNOLOGY 2009; 183:1375-83. [PMID: 19561098 DOI: 10.4049/jimmunol.0901005] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is an age-related dementia, characterized by amyloid plaques, neurofibrillary tangles, neuroinflammation, and neuronal loss in the brain. Components of the complement system, known to produce a local inflammatory reaction, are associated with the plaques and tangles in AD brain, and thus a role for complement-mediated inflammation in the acceleration or progression of disease has been proposed. A complement activation product, C5a, is known to recruit and activate microglia and astrocytes in vitro by activation of a G protein-coupled cell-surface C5aR. Here, oral delivery of a cyclic hexapeptide C5a receptor antagonist (PMX205) for 2-3 mo resulted in substantial reduction of pathological markers such as fibrillar amyloid deposits (49-62%) and activated glia (42-68%) in two mouse models of AD. The reduction in pathology was correlated with improvements in a passive avoidance behavioral task in Tg2576 mice. In 3xTg mice, PMX205 also significantly reduced hyperphosphorylated tau (69%). These data provide the first evidence that inhibition of a proinflammatory receptor-mediated function of the complement cascade (i.e., C5aR) can interfere with neuroinflammation and neurodegeneration in AD rodent models, suggesting a novel therapeutic target for reducing pathology and improving cognitive function in human AD patients.
Collapse
Affiliation(s)
- Maria I Fonseca
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Chemokines are small, secreted proteins that bind to the chemokine receptor subfamily of class A G protein-coupled receptors. Collectively, these receptor-ligand pairs are responsible for diverse physiological responses including immune cell trafficking, development and mitogenic signaling, both in the context of homeostasis and disease. However, chemokines and their receptors are not isolated entities, but instead function in complex networks involving homo- and heterodimer formation as well as crosstalk with other signaling complexes. Here the functional consequences of chemokine receptor activity, from the perspective of both direct physical associations with other receptors and indirect crosstalk with orthogonal signaling pathways, are reviewed. Modulation of chemokine receptor activity through these mechanisms has significant implications in physiological and pathological processes, as well as drug discovery and drug efficacy. The integration of signals downstream of chemokine and other receptors will be key to understanding how cells fine-tune their response to a variety of stimuli, including therapeutics.
Collapse
Affiliation(s)
- C. L. Salanga
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA 92093-0684 USA
| | - M. O’Hayre
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA 92093-0684 USA
| | - T. Handel
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA 92093-0684 USA
| |
Collapse
|
31
|
|