1
|
Liu Y, Hu J, Gore J. Ecosystem stability relies on diversity difference between trophic levels. Proc Natl Acad Sci U S A 2024; 121:e2416740121. [PMID: 39642194 DOI: 10.1073/pnas.2416740121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/09/2024] [Indexed: 12/08/2024] Open
Abstract
The stability of ecological communities has a profound impact on humans, ranging from individual health influenced by the microbiome to ecosystem services provided by fisheries. A long-standing goal of ecology is the elucidation of the interplay between biodiversity and ecosystem stability, with some ecologists warning of instability due to loss of species diversity while others arguing that greater diversity will instead lead to instability. Here, by considering a minimal two-level ecosystem with multiple predator and prey species, we show that stability does not depend on absolute diversity but rather on diversity differences between levels. We found that increasing diversity in either level first destabilizes but then stabilizes the community (i.e., a reentrant stability transition). We therefore find that it is the diversity difference between levels that is the key to stability, with the least stable communities having similar diversities in different levels. An analytical stability criterion is derived, demonstrating quantitatively that the critical diversity difference is determined by the correlation between how one level affects another and how it is affected in turn. Our stability criterion also applies to consumer-resource models with other forms of interaction such as cross-feeding. Finally, we show that stability depends on diversity differences in ecosystems with three trophic levels. Our finding of a nonmonotonic dependence of stability on diversity provides a natural explanation for the variety of diversity-stability relationships reported in the literature, and emphasizes the significance of level structure in predicting complex community behaviors.
Collapse
Affiliation(s)
- Yizhou Liu
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jiliang Hu
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
2
|
Brémont J, Bénichou O, Voituriez R. Exact Propagators of One-Dimensional Self-Interacting Random Walks. PHYSICAL REVIEW LETTERS 2024; 133:157101. [PMID: 39454179 DOI: 10.1103/physrevlett.133.157101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 10/27/2024]
Abstract
Self-interacting random walks (SIRWs) show long-range memory effects that result from the interaction of the random walker at time t with the territory already visited at earlier times t^{'}
Collapse
|
3
|
Ranc N, Cain JW, Cagnacci F, Moorcroft PR. The role of memory-based movements in the formation of animal home ranges. J Math Biol 2024; 88:59. [PMID: 38589609 DOI: 10.1007/s00285-024-02055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 04/10/2024]
Abstract
Most animals live in spatially-constrained home ranges. The prevalence of this space-use pattern in nature suggests that general biological mechanisms are likely to be responsible for their occurrence. Individual-based models of animal movement in both theoretical and empirical settings have demonstrated that the revisitation of familiar areas through memory can lead to the formation of stable home ranges. Here, we formulate a deterministic, mechanistic home range model that includes the interplay between a bi-component memory and resource preference, and evaluate resulting patterns of space-use. We show that a bi-component memory process can lead to the formation of stable home ranges and control its size, with greater spatial memory capabilities being associated with larger home range size. The interplay between memory and resource preferences gives rise to a continuum of space-use patterns-from spatially-restricted movements into a home range that is influenced by local resource heterogeneity, to diffusive-like movements dependent on larger-scale resource distributions, such as in nomadism. Future work could take advantage of this model formulation to evaluate the role of memory in shaping individual performance in response to varying spatio-temporal resource patterns.
Collapse
Affiliation(s)
- Nathan Ranc
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy.
| | - John W Cain
- Department of Mathematics, Harvard University, Cambridge, MA, USA
| | - Francesca Cagnacci
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Paul R Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
4
|
Mukherjee S, Smith NR. Large deviations in statistics of the convex hull of passive and active particles: A theoretical study. Phys Rev E 2024; 109:044120. [PMID: 38755832 DOI: 10.1103/physreve.109.044120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 05/18/2024]
Abstract
We investigate analytically the distribution tails of the area A and perimeter L of a convex hull for different types of planar random walks. For N noninteracting Brownian motions of duration T we find that the large-L and -A tails behave as P(L)∼e^{-b_{N}L^{2}/DT} and P(A)∼e^{-c_{N}A/DT}, while the small-L and -A tails behave as P(L)∼e^{-d_{N}DT/L^{2}} and P(A)∼e^{-e_{N}DT/A}, where D is the diffusion coefficient. We calculated all of the coefficients (b_{N},c_{N},d_{N},e_{N}) exactly. Strikingly, we find that b_{N} and c_{N} are independent of N for N≥3 and N≥4, respectively. We find that the large-L (A) tails are dominated by a single, most probable realization that attains the desired L (A). The left tails are dominated by the survival probability of the particles inside a circle of appropriate size. For active particles and at long times, we find that large-L and -A tails are given by P(L)∼e^{-TΨ_{N}^{per}(L/T)} and P(A)∼e^{-TΨ_{N}^{area}(sqrt[A]/T)}, respectively. We calculate the rate functions Ψ_{N} exactly and find that they exhibit multiple singularities. We interpret these as DPTs of first order. We extended several of these results to dimensions d>2. Our analytic predictions display excellent agreement with existing results that were obtained from extensive numerical simulations.
Collapse
Affiliation(s)
- Soheli Mukherjee
- Department of Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Naftali R Smith
- Department of Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| |
Collapse
|
5
|
Stalter L, Terry M, Riley A, Leeds A. Home is where the home range is: Identifying territoriality and exhibit preferences in an ex-situ group of all-male Nile crocodiles (Crocodylus niloticus). PLoS One 2024; 19:e0297687. [PMID: 38271386 PMCID: PMC10810454 DOI: 10.1371/journal.pone.0297687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Here, the presence or absence of territoriality was evaluated in an all-male Nile crocodile (Crocodylus niloticus) group living in an ex-situ environment. Location data for each crocodile within the exhibit were collected three times per day over a two-year period, including two warm seasons and two cold seasons. A geographic information system (GIS) was used to create seasonal home ranges and core areas for each crocodile, to quantify the overlap of these home ranges and core areas to assess potential territoriality, and to calculate exhibit preferences of the group. Core area overlap was significantly lower than home range overlap, suggesting the crocodiles established territories within their exhibit. This pattern of behavior was similar across seasons, though it moderately intensified during the cold season. The crocodiles appeared to be more territorial in water, as overlap was most concentrated on the central beach, the only feature utilized more than expected based in its availability in the exhibit. These findings highlight the behavioral complexity of Nile crocodiles in human care, specifically the ability of Nile crocodiles to adapt to ex-situ environments similar to their wild counterparts by forming territories despite spatial constraints. Identifying the presence of territorial behavior is important for the care and welfare of ex-situ animals, as territorial animals have specific requirements that may result in increased agonism when unmet. It can also provide valuable context to aid in mitigation strategies, for example, when undesirable levels of agonism do occur. The findings here provide an example of how methodology from the wildlife ecology field can be adapted to ex-situ settings using a GIS and contributes to the current understanding of crocodilian behavior in human care.
Collapse
Affiliation(s)
- Laura Stalter
- Animals, Science and Environment, Disney’s Animal Kingdom, Lake Buena Vista, FL, United States of America
| | - Megan Terry
- Animals, Science and Environment, Disney’s Animal Kingdom, Lake Buena Vista, FL, United States of America
| | - Alex Riley
- Animals, Science and Environment, Disney’s Animal Kingdom, Lake Buena Vista, FL, United States of America
| | - Austin Leeds
- Animals, Science and Environment, Disney’s Animal Kingdom, Lake Buena Vista, FL, United States of America
| |
Collapse
|
6
|
Tosa MI, Biel MJ, Graves TA. Bighorn sheep associations: understanding tradeoffs of sociality and implications for disease transmission. PeerJ 2023; 11:e15625. [PMID: 37576510 PMCID: PMC10416771 DOI: 10.7717/peerj.15625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/02/2023] [Indexed: 08/15/2023] Open
Abstract
Sociality directly influences mating success, survival rates, and disease, but ultimately likely evolved for its fitness benefits in a challenging environment. The tradeoffs between the costs and benefits of sociality can operate at multiple scales, resulting in different interpretations of animal behavior. We investigated the influence of intrinsic (e.g., relatedness, age) and extrinsic factors (e.g., land cover type, season) on direct contact (simultaneous GPS locations ≤ 25 m) rates of bighorn sheep (Ovis canadensis) at multiple scales near the Waterton-Glacier International Peace Park. During 2002-2012, male and female bighorn were equipped with GPS collars. Indirect contact (GPS locations ≤ 25 m regardless of time) networks identified two major breaks whereas direct contact networks identified an additional barrier in the population, all of which corresponded with prior disease exposure metrics. More direct contacts occurred between same-sex dyads than female-male dyads and between bighorn groups with overlapping summer home ranges. Direct contacts occurred most often during the winter-spring season when bighorn traveled at low speeds and when an adequate number of bighorn were collared in the area. Direct contact probabilities for all dyad types were inversely related to habitat quality, and differences in contact probability were driven by variables related to survival such as terrain ruggedness, distance to escape terrain, and canopy cover. We provide evidence that probabilities of association are higher when there is greater predation risk and that contact analysis provides valuable information for understanding fitness tradeoffs of sociality and disease transmission potential.
Collapse
Affiliation(s)
- Marie I. Tosa
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT, United States of America
| | - Mark J. Biel
- Glacier National Park, National Park Service, West Glacier, MT, United States of America
| | - Tabitha A. Graves
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT, United States of America
| |
Collapse
|
7
|
Golnaraghi F, Quint DA, Gopinathan A. Optimal foraging strategies for mutually avoiding competitors. J Theor Biol 2023; 570:111537. [PMID: 37207720 DOI: 10.1016/j.jtbi.2023.111537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Many animals are known to exhibit foraging patterns where the distances they travel in a given direction are drawn from a heavy-tailed Lévy distribution. Previous studies have shown that, under sparse and random resource conditions, solitary non-destructive (with regenerating resources) foragers perform a maximally efficient search with Lévy exponent μ equal to 2, while for destructive foragers, efficiency decreases with μ monotonically and there is no optimal μ. However, in nature, there also exist situations where multiple foragers, displaying avoidance behavior, interact with each other competitively. To understand the effects of such competition, we develop a stochastic agent-based simulation that models competitive foraging among mutually avoiding individuals by incorporating an avoidance zone, or territory, of a certain size around each forager which is not accessible for foraging by other competitors. For non-destructive foraging, our results show that with increasing size of the territory and number of agents the optimal Lévy exponent is still approximately 2 while the overall efficiency of the search decreases. At low values of the Lévy exponent, however, increasing territory size actually increases efficiency. For destructive foraging, we show that certain kinds of avoidance can lead to qualitatively different behavior from solitary foraging, such as the existence of an optimal search with 1<μ<2. Finally, we show that the variance among the efficiencies of the agents increases with increasing Lévy exponent for both solitary and competing foragers, suggesting that reducing variance might be a selective pressure for foragers adopting lower values of μ. Taken together, our results suggest that, for multiple foragers, mutual avoidance and efficiency variance among individuals can lead to optimal Lévy searches with exponents different from those for solitary foragers.
Collapse
Affiliation(s)
- Farnaz Golnaraghi
- Department of Physics, University of California - Merced, 5200 North Lake Road, Merced, 95343, CA, USA
| | - David A Quint
- Physical and Life Sciences (PLS), Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, 94550, CA, USA
| | - Ajay Gopinathan
- Department of Physics, University of California - Merced, 5200 North Lake Road, Merced, 95343, CA, USA.
| |
Collapse
|
8
|
Colombo EH, López C, Hernández-García E. Pulsed Interaction Signals as a Route to Biological Pattern Formation. PHYSICAL REVIEW LETTERS 2023; 130:058401. [PMID: 36800461 DOI: 10.1103/physrevlett.130.058401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
We identify a mechanism for biological spatial pattern formation arising when the signals that mediate interactions between individuals in a population have pulsed character. Our general population-signal framework shows that while for a slow signal-dynamics limit no pattern formation is observed for any values of the model parameters, for a fast limit, on the contrary, pattern formation can occur. Furthermore, at these limits, our framework reduces, respectively, to reaction-diffusion and spatially nonlocal models, thus bridging these approaches.
Collapse
Affiliation(s)
- Eduardo H Colombo
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901, USA
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain
| | - Cristóbal López
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain
| | - Emilio Hernández-García
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus Universitat Illes Balears, 07122 Palma de Mallorca, Spain
| |
Collapse
|
9
|
Luthra M, Todd PM. Social Search and Resource Clustering as Emergent Stable States. ARTIFICIAL LIFE 2023; 29:118-140. [PMID: 36264224 DOI: 10.1162/artl_a_00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Social search has stably evolved across various species and is often used by humans to search for resources (such as food, information, social partners). In turn, these resources frequently come distributed in patches or clusters. In the current work, we use an ecologically inspired agent-based model to investigate whether social search and clustering are stable outcomes of the dynamical mutual interactions between the two. While previous research has studied unidirectional influences of social search on resource clustering and vice versa, the current work investigates the consequential patterns emerging from their two-way interactions over time. In our model, consumers evolved search strategies (ranging from competitive to social) as adaptations to their environmental resource structures, and resources varied in distributions (ranging from random to clustered) that were shaped by agents' consumption patterns. Across four experiments, we systematically analyzed the patterns of influence that search strategies and environment structure have on each other to identify stable attractor states of both. In Experiment 1, we fixed resource clustering at various levels and observed its influence on social search, and in Experiment 2, we observed the influence of social search on resource distribution. In both these experiments we found that increasing levels of one variable produced increases in the other; however, at very high levels of the manipulated variable, the dependent variable tended to fall. Finally in Experiments 3 and 4, we studied the dynamics that arose when resource clustering and social search could both change and mutually influence each other, finding that low levels of social search and clustering were stable attractor states. Our simple 2D model yielded results that qualitatively resemble those across a wide range of search domains (from physical search for food to abstract search for information), highlighting some stable outcomes of mutually interacting consumer/resource systems.
Collapse
Affiliation(s)
- Mahi Luthra
- Indiana University Bloomington, Cognitive Science Program, Department of Psychological and Brain Sciences.
| | - Peter M Todd
- Indiana University Bloomington, Cognitive Science Program, Department of Psychological and Brain Sciences
| |
Collapse
|
10
|
Richardson TO, Stroeymeyt N, Crespi A, Keller L. Two simple movement mechanisms for spatial division of labour in social insects. Nat Commun 2022; 13:6985. [PMID: 36379933 PMCID: PMC9666475 DOI: 10.1038/s41467-022-34706-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
Many animal species divide space into a patchwork of home ranges, yet there is little consensus on the mechanisms individuals use to maintain fidelity to particular locations. Theory suggests that animal movement could be based upon simple behavioural rules that use local information such as olfactory deposits, or global strategies, such as long-range biases toward landmarks. However, empirical studies have rarely attempted to distinguish between these mechanisms. Here, we perform individual tracking experiments on four species of social insects, and find that colonies consist of different groups of workers that inhabit separate but partially-overlapping spatial zones. Our trajectory analysis and simulations suggest that worker movement is consistent with two local mechanisms: one in which workers increase movement diffusivity outside their primary zone, and another in which workers modulate turning behaviour when approaching zone boundaries. Parallels with other organisms suggest that local mechanisms might represent a universal method for spatial partitioning in animal populations.
Collapse
Affiliation(s)
- Thomas O Richardson
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Nathalie Stroeymeyt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Alessandro Crespi
- Biorobotics Laboratory (BioRob), Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Potts JR, Börger L, Strickland BK, Street GM. Assessing the predictive power of step selection functions: how social and environmental interactions affect animal space use. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan R. Potts
- School of Mathematics and Statistics University of Sheffield, Hicks Building, Hounsfield Road Sheffield UK
| | - Luca Börger
- Department of Biosciences College of Science Swansea University, Singleton Park Swansea Wales UK
- Centre for Biomathematics College of Science Swansea University, Singleton Park Swansea Wales UK
| | - Bronson K. Strickland
- Department of Wildlife, Fisheries, and Aquaculture Mississippi State University Mississippi State MS USA
| | - Garrett M. Street
- Department of Wildlife, Fisheries, and Aquaculture Mississippi State University Mississippi State MS USA
- Quantitative Ecology and Spatial Technologies Laboratory Mississippi State University Mississippi State MS USA
| |
Collapse
|
12
|
Potts JR, Giunta V, Lewis MA. Beyond resource selection: emergent spatio–temporal distributions from animal movements and stigmergent interactions. OIKOS 2022. [DOI: 10.1111/oik.09188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jonathan R. Potts
- School of Mathematics and Statistics, Univ. of Sheffield, Hicks Building Sheffield UK
| | - Valeria Giunta
- School of Mathematics and Statistics, Univ. of Sheffield, Hicks Building Sheffield UK
| | - Mark A. Lewis
- Depts of Mathematical and Statistical Sciences and Biological Sciences, Univ. of Alberta Edmonton Alberta Canada
| |
Collapse
|
13
|
Payne E, Spiegel O, Sinn DL, Leu ST, Gardner MG, Godfrey SS, Wohlfeil C, Sih A. Intrinsic traits, social context, and local environment shape home range size and fidelity of sleepy lizards. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- E. Payne
- Department of Environmental Science and Policy University of California Davis Davis USA
| | - O. Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University Tel Aviv Israel
| | - D. L. Sinn
- Department of Environmental Science and Policy University of California Davis Davis USA
- Department of Biological Sciences University of Tasmania, Hobart Tasmania Australia
| | - S. T. Leu
- School of Animal and Veterinary Sciences, University of Adelaide Adelaide Australia
| | - M. G. Gardner
- College of Science and Engineering, Flinders University Adelaide Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace Adelaide Australia
| | - S. S. Godfrey
- Department of Zoology University of Otago Dunedin New Zealand
| | - C. Wohlfeil
- College of Science and Engineering, Flinders University Adelaide Australia
| | - A. Sih
- Department of Environmental Science and Policy University of California Davis Davis USA
| |
Collapse
|
14
|
Ranc N, Cagnacci F, Moorcroft PR. Knowing your neighbours: How memory-mediated conspecific avoidance influences home ranges. J Anim Ecol 2021; 89:2746-2749. [PMID: 33615481 DOI: 10.1111/1365-2656.13374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022]
Abstract
In Focus: Ellison, N., Hatchwell, B. J., Biddiscombe, S. J., Napper, C. J., & Potts, J. R. (2020). Mechanistic home range analysis reveals drivers of space use patterns for a non-territorial passerine. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13292. Most animals for which space use has been studied restrict their movements into a constrained spatial area: their home range. The ubiquity of this space-use pattern suggests that home ranges are adaptive in a wide range of ecological contexts, and that they likely arise from general biological mechanisms. In this issue, Ellison et al. use a mechanistic home range analysis (MHRA) to uncover the drivers underlying home range patterns in a passerine that is non-territorial. They show that a model integrating both resource preferences (specifically, an attraction to woodland centre), and memory-mediated conspecific avoidance can capture the space-use patterns observed in a wild population of long-tailed tits Aegithalos caudatus. In doing so, their analysis extends the applicability of MHRA to capturing and predicting home range patterns beyond the previously studied cases where spatially exclusive home ranges emerge from scent mark-mediated avoidance responses to neighbouring groups.
Collapse
Affiliation(s)
- Nathan Ranc
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Paul R Moorcroft
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
15
|
Reconstructing the Intrinsic Statistical Properties of Intermittent Locomotion Through Corrections for Boundary Effects. Bull Math Biol 2021; 83:28. [PMID: 33594585 PMCID: PMC7886738 DOI: 10.1007/s11538-020-00848-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 12/15/2020] [Indexed: 12/03/2022]
Abstract
Locomotion characteristics are often recorded within bounded spaces, a constraint which introduces geometry-specific biases and potentially complicates the inference of behavioural features from empirical observations. We describe how statistical properties of an uncorrelated random walk, namely the steady-state stopping location probability density and the empirical step probability density, are affected by enclosure in a bounded space. The random walk here is considered as a null model for an organism moving intermittently in such a space, that is, the points represent stopping locations and the step is the displacement between them. Closed-form expressions are derived for motion in one dimension and simple two-dimensional geometries, in addition to an implicit expression for arbitrary (convex) geometries. For the particular choice of no-go boundary conditions, we demonstrate that the empirical step distribution is related to the intrinsic step distribution, i.e. the one we would observe in unbounded space, via a multiplicative transformation dependent solely on the boundary geometry. This conclusion allows in practice for the compensation of boundary effects and the reconstruction of the intrinsic step distribution from empirical observations.
Collapse
|
16
|
Schawe H, Hartmann AK. Large deviations of a random walk model with emerging territories. Phys Rev E 2021; 102:062141. [PMID: 33466107 DOI: 10.1103/physreve.102.062141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/02/2020] [Indexed: 11/07/2022]
Abstract
We study an agent-based model of animals marking their territory and evading adversarial territory in one dimension with respect to the distribution of the size of the resulting territories. In particular, we use sophisticated sampling methods to determine it over a large part of territory sizes, including atypically small and large configurations, which occur with probability of less than 10^{-30}. We find hints for the validity of a large deviation principle, the shape of the rate function for the right tail of the distribution, and insight into the structure of atypical realizations.
Collapse
Affiliation(s)
- Hendrik Schawe
- Laboratoire de Physique Théorique et Modélisation, UMR-8089 CNRS, CY Cergy Paris Université, 95000 Cergy, France
| | | |
Collapse
|
17
|
Van Belle S, Porter AM, Fernandez-Duque E, Di Fiore A. Ranging behavior and the potential for territoriality in pair-living titi monkeys (Plecturocebus discolor). Am J Primatol 2020; 83:e23225. [PMID: 33368565 DOI: 10.1002/ajp.23225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/23/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022]
Abstract
Patterns of ranging behavior and space use are key for evaluating current ideas about the evolution and maintenance of pair-living and sexual monogamy as they provide insights into the dispersion of females, the potential for territoriality, and whether males are limited to defending an area that can support only one female and her offspring. We examined ranging behavior and space use to evaluate the potential for territoriality in five groups of red titi monkeys (Plecturocebus discolor) during a 10-year study in Ecuadorian Amazonia. Mean home range size, calculated using a time-sensitive local convex hull estimation procedure, was 4.0 ± 1.4 ha. Annual home ranges of neighboring groups overlapped, on average, 0%-7%. Mean daily path length was 670 ± 194 m, resulting in defendability indices of 2.2-3.6 across groups. Groups visited, on average, 4 of 12 sections of their home range border area per day, but that was not more often than would be expected by chance, and intergroup encounters were infrequent. We did not find evidence of active monitoring for intruders in border areas, in that groups did not travel either faster or slower when at the border than when in central areas of their range. The absence of overt monitoring might be compensated for by engaging in loud calls, which the study groups did throughout their home ranges; these calls may serve as an advertisement of occupancy and a deterrent to intruding conspecifics. Our finding that red titis have a high potential for territoriality is consistent with several of the main hypotheses proposed to explain pair-living in mammals.
Collapse
Affiliation(s)
- Sarie Van Belle
- Department of Anthropology and Primate Molecular Ecology and Evolution Laboratory, The University of Texas at Austin, Austin, Texas, USA
| | - Amy M Porter
- Department of Anthropology, University of California Davis, Davis, California, USA
| | - Eduardo Fernandez-Duque
- Department of Anthropology and School of the Environment, Yale University, New Haven, Connecticut, USA.,Facultad de Recursos Naturales, Universidad Nacional de Formosa, Formosa, Argentina.,College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Cumbayá, Ecuador
| | - Anthony Di Fiore
- Department of Anthropology and Primate Molecular Ecology and Evolution Laboratory, The University of Texas at Austin, Austin, Texas, USA.,College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Cumbayá, Ecuador
| |
Collapse
|
18
|
Tóth Z, Jaloveczki B, Tarján G. Diffusion of Social Information in Non-grouping Animals. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.586058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent findings indicate that the utilization of social information, produced inadvertently by other individuals through their spatial location and/or interaction with the environment, may be ubiquitous in the animal kingdom. If so, social information-mediated effects on population growth and interspecies interactions may be more prevalent than previously thought. However, little is known about how social information may spread among non-grouping individuals, i.e., in animals that do not form cohesive groups and therefore social attraction among group-mates does not facilitate information diffusion. Are there any perception-related, temporal, and/or spatial parameters that may facilitate or limit the spread of social information in temporary aggregations or among dispersed individuals in a population? We argue that living in cohesive groups is not necessarily required for the diffusion of social information and for social information-mediated effects to emerge in a population. We propose that while learning complex problem-solving techniques socially is less likely to occur in non-grouping animals, the spread of adaptive responses to social stimuli, especially to non-visual cues, can be common and may affect population, and/or community dynamics in a wide range of taxa. We also argue that network-based diffusion analysis could be a suitable analytical method for studying information diffusion in future investigations, providing comparable estimations of social effects on information spread to previous studies on group-living animals. We conclude that more studies are warranted to verify what intrinsic and extrinsic factors influence information propagation among incidentally and/or indirectly interacting individuals if we are to better understand the role of social information in animal populations and how the social and ecological characteristics of species are related to information spread in natural communities.
Collapse
|
19
|
|
20
|
Christensen K, Cocconi L, Sendova-Franks AB. Animal intermittent locomotion: A null model for the probability of moving forward in bounded space. J Theor Biol 2020; 510:110533. [PMID: 33181179 DOI: 10.1016/j.jtbi.2020.110533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/06/2023]
Abstract
We present a null model to be compared with biological data to test for intrinsic persistence in movement between stops during intermittent locomotion in bounded space with different geometries and boundary conditions. We describe spatio-temporal properties of the sequence of stopping points r1,r2,r3,… visited by a Random Walker within a bounded space. The path between stopping points is not considered, only the displacement. Since there are no intrinsic correlations in the displacements between stopping points, there is no intrinsic persistence in the movement between them. Hence, this represents a null-model against which to compare empirical data for directional persistence in the movement between stopping points when there is external bias due to the bounded space. This comparison is a necessary first step in testing hypotheses about the function of the stops that punctuate intermittent locomotion in diverse organisms. We investigate the probability of forward movement, defined as a deviation of less than 90° between two successive displacement vectors, as a function of the ratio between the largest displacement between stops that could be performed by the random walker and the system size, α=Δℓ/Lmax. As expected, the probability of forward movement is 1/2 when α→0. However, when α is finite, this probability is less than 1/2 with a minimum value when α=1. For certain boundary conditions, the minimum value is between 1/3 and 1/4 in 1D while it can be even lower in 2D. The probability of forward movement in 1D is calculated exactly for all values 0<α⩽1 for several boundary conditions. Analytical calculations for the probability of forward movement are performed in 2D for circular and square bounded regions with one boundary condition. Numerical results for all values 0<α⩽1 are presented for several boundary conditions. The cases of rectangle and ellipse are also considered and an approximate model of the dependence of the forward movement probability on the aspect ratio is provided. Finally, some practical points are presented on how these results can be utilised in the empirical analysis of animal movement in two-dimensional bounded space.
Collapse
Affiliation(s)
- Kim Christensen
- Blackett Laboratory, Imperial College London, London SW7 2AZ, UK; Center for Complexity Science, Imperial College London, London SW7 2AZ, UK.
| | - Luca Cocconi
- Blackett Laboratory, Imperial College London, London SW7 2AZ, UK; Center for Complexity Science, Imperial College London, London SW7 2AZ, UK; Theoretical Physics of Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Ana B Sendova-Franks
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
21
|
Goldshtein A, Handel M, Eitan O, Bonstein A, Shaler T, Collet S, Greif S, Medellín RA, Emek Y, Korman A, Yovel Y. Reinforcement Learning Enables Resource Partitioning in Foraging Bats. Curr Biol 2020; 30:4096-4102.e6. [PMID: 32822610 PMCID: PMC7575196 DOI: 10.1016/j.cub.2020.07.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 07/27/2020] [Indexed: 10/29/2022]
Abstract
Every evening, from late spring to mid-summer, tens of thousands of hungry lactating female lesser long-nosed bats (Leptonycteris yerbabuenae) emerge from their roost and navigate over the Sonoran Desert, seeking for nectar and pollen [1, 2]. The bats roost in a huge maternal colony that is far from the foraging grounds but allows their pups to thermoregulate [3] while the mothers are foraging. Thus, the mothers have to fly tens of kilometers to the foraging sites-fields with thousands of Saguaro cacti [4, 5]. Once at the field, they must compete with many other bats over the same flowering cacti. Several solutions have been suggested for this classical foraging task of exploiting a resource composed of many renewable food sources whose locations are fixed. Some animals randomly visit the food sources [6], and some actively defend a restricted foraging territory [7-11] or use simple forms of learning, such as "win-stay lose-switch" strategy [12]. Many species have been suggested to follow a trapline, that is, to revisit the food sources in a repeating ordered manner [13-22]. We thus hypothesized that lesser long-nosed bats would visit cacti in a sequenced manner. Using miniature GPS devices, aerial imaging, and video recordings, we tracked the full movement of the bats and all of their visits to their natural food sources. Based on real data and evolutionary simulations, we argue that the bats use a reinforcement learning strategy that requires minimal memory to create small, non-overlapping cacti-cores and exploit nectar efficiently, without social communication.
Collapse
Affiliation(s)
- Aya Goldshtein
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michal Handel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofri Eitan
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Afrine Bonstein
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Talia Shaler
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Simon Collet
- The Research Institute on the Foundations of Computer Science (IRIF), CNRS and University of Paris, Paris 75013, France
| | - Stefan Greif
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rodrigo A Medellín
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Yuval Emek
- Faculty of Industrial Engineering and Management, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Amos Korman
- The Research Institute on the Foundations of Computer Science (IRIF), CNRS and University of Paris, Paris 75013, France.
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
22
|
White LA, VandeWoude S, Craft ME. A mechanistic, stigmergy model of territory formation in solitary animals: Territorial behavior can dampen disease prevalence but increase persistence. PLoS Comput Biol 2020; 16:e1007457. [PMID: 32525874 PMCID: PMC7289346 DOI: 10.1371/journal.pcbi.1007457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Although movement ecology has leveraged models of home range formation to explore the effects of spatial heterogeneity and social cues on movement behavior, disease ecology has yet to integrate these potential drivers and mechanisms of contact behavior into a generalizable disease modeling framework. Here we ask how dynamic territory formation and maintenance might contribute to disease dynamics in a territorial, solitary predator for an indirectly transmitted pathogen. We developed a mechanistic individual-based model where stigmergy—the deposition of signals into the environment (e.g., scent marking, scraping)—dictates local movement choices and long-term territory formation, but also the risk of pathogen transmission. Based on a variable importance analysis, the length of the infectious period was the single most important variable in predicting outbreak success, maximum prevalence, and outbreak duration. Host density and rate of pathogen decay were also key predictors. We found that territoriality best reduced maximum prevalence in conditions where we would otherwise expect outbreaks to be most successful: slower recovery rates (i.e., longer infectious periods) and higher conspecific densities. However, for slower pathogen decay rates, stigmergy-driven movement increased outbreak durations relative to random movement simulations. Our findings therefore support a limited version of the “territoriality benefits” hypothesis—where reduced home range overlap leads to reduced opportunities for pathogen transmission, but with the caveat that reduction in outbreak severity may increase the likelihood of pathogen persistence. For longer infectious periods and higher host densities, key trade-offs emerged between the strength of pathogen load, the strength of the stigmergy cue, and the rate at which those two quantities decayed; this finding raises interesting questions about the evolutionary nature of these competing processes and the role of possible feedbacks between parasitism and territoriality. This work also highlights the importance of considering social cues as part of the movement landscape in order to better understand the consequences of individual behaviors on population level outcomes. Making decisions about conservation and disease management relies on our understanding of what allows animal populations to be successful, which often depends on when and where animals encounter each other. However, disease ecology often focuses on the social behavior of animals without accounting for their individual movement patterns. We developed a simulation model that bridges the fields of disease and movement ecology by allowing hosts to inform their movement based on the past movements of other hosts. As hosts navigate their environment, they leave behind a scent trail while avoiding the scent trails of other individuals. We wanted to know if this means of territory formation could heighten or dampen disease spread when infectious hosts leave pathogens in their wake. We found that territoriality can inhibit disease spread under conditions that we would normally expect pathogens to be most successful: when there are many hosts on the landscape and hosts stay infectious for longer. This work points to how incorporating movement behavior into disease models can provide improved understanding of how diseases spread in wildlife populations; such understanding is particularly important in the face of combatting ongoing and emerging infectious diseases.
Collapse
Affiliation(s)
- Lauren A. White
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, Maryland, United States of America
- * E-mail:
| | - Sue VandeWoude
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Meggan E. Craft
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
23
|
Zhao X, Castelli FR, Wang R, Auger AP, Marler CA. Testosterone-related behavioral and neural mechanisms associated with location preferences: A model for territorial establishment. Horm Behav 2020; 121:104709. [PMID: 32007517 DOI: 10.1016/j.yhbeh.2020.104709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/21/2022]
Abstract
Territoriality is an adaptive behavioral trait that is important for animal's fitness and there still remains much to learn about the proximate mechanisms underlying the development of territoriality. We speculate that the formation of a conditioned place preference (CPP), an increased time allocation to the environment where a rewarding experience occurred, contributes to territoriality. Testosterone (T) plays an important role in modulating territorial behaviors and T pulses can induce a CPP. We confirmed previous findings in California mice (Peromyscus californicus) that T pulses can induce a CPP in singly-housed, but not group-housed males. Housing singly may be similar enough to dispersal in nature to initiate similar hormonal and neuroanatomical changes needed for the development of territoriality. We further revealed that T pulses interact with the single housing experience and appear to enhance the motivation to be aggressive towards a stimulus male. On a neural level, being singly housed upregulated levels of androgen receptors in the preoptic area, which positively correlated with the strength of the CPP. We speculate that this change in androgen sensitivity in the preoptic area is characteristic of males that have dispersed, making them more sensitive to T pulses. Also, single housing increased markers of synaptic plasticity in the nucleus accumbens, ventral and dorsal hippocampus, neural changes that may be associated with dispersal, reproduction and territory establishment. These behavioral and neural changes may reflect the life history transition from residing in the natal territory to dispersing and establishing a new territory.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA.
| | - Frank R Castelli
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| | - Ruyi Wang
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| | - Anthony P Auger
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
24
|
Kanda CZ, Oliveira‐Santos LGR, Morato RG, de Paula RC, Rampim LE, Sartorello L, Haberfeld M, Galetti M, Cezar Ribeiro M. Spatiotemporal dynamics of conspecific movement explain a solitary carnivore's space use. J Zool (1987) 2019. [DOI: 10.1111/jzo.12655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- C. Z. Kanda
- Programa de Pós‐graduação em Ecologia e Biodiversidade Department of Ecology Universidade Estadual Paulista Rio Claro Brazil
| | | | - R. G. Morato
- Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros Instituto Chico Mendes de Conservação da Biodiversidade Atibaia Brazil
| | - R. C. de Paula
- Centro Nacional de Pesquisa e Conservação de Mamíferos Carnívoros Instituto Chico Mendes de Conservação da Biodiversidade Atibaia Brazil
| | | | | | | | - M. Galetti
- Programa de Pós‐graduação em Ecologia e Biodiversidade Department of Ecology Universidade Estadual Paulista Rio Claro Brazil
| | - M. Cezar Ribeiro
- Programa de Pós‐graduação em Ecologia e Biodiversidade Department of Ecology Universidade Estadual Paulista Rio Claro Brazil
| |
Collapse
|
25
|
Berestycki H, Zilio A. Predator-Prey Models with Competition: The Emergence of Territoriality. Am Nat 2019; 193:436-446. [DOI: 10.1086/701670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Quaglietta L, Porto M. SiMRiv: an R package for mechanistic simulation of individual, spatially-explicit multistate movements in rivers, heterogeneous and homogeneous spaces incorporating landscape bias. MOVEMENT ECOLOGY 2019; 7:11. [PMID: 30984401 PMCID: PMC6444552 DOI: 10.1186/s40462-019-0154-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/04/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Lack of suitable analytical software and computational power constrains the comprehension of animal movement. In particular, we are aware of no tools allowing simulating spatially-explicit multistate Markovian movements constrained to linear features or conditioned by landscape heterogeneity, which hinders movement ecology research in linear/dendritic (e.g. river networks) and heterogeneous landscapes.SiMRiv is a novel, fast and intuitive R package we designed to fill such gap. It does so by allowing continuous-space mechanistic spatially-explicit simulation of multistate Markovian individual movements incorporating landscape bias on local behavior. RESULTS We present SiMRiv and its main functionalities, illustrate its simulation capabilities and easy-of-use, and discuss its limitations and potential improvements. We further provide examples of use and a preliminary evaluation, using real and simulated data, of a parameter approximation experimental method. SiMRiv allowed us to generate increasingly complex movements of three theoretical species (aquatic, semiaquatic and terrestrial), showing the effects of input parameters and water-dependence on emerging movement patterns, and to parameterize a high-frequency simulation model from real, low-frequency movement (telemetry) data. Typical running times for conducting 1000 simulations with 10,000 steps each, of two-state movement trajectories in a river network, were of ca. 3 min in an Intel Core i7 CPU X990 @ 3.47 GHz. CONCLUSIONS SiMRiv allows simulation of movements constrained to linear habitats or conditioned by landscape heterogeneity, therefore enhancing the application of movement ecology to linear/dendritic and heterogeneous landscapes. Importantly, the software is flexible enough to be used in linear, heterogeneous, as well as homogeneous landscapes. Using the same software, algorithm and approach, one can therefore use SiMRiv to study the movement of different organisms in a variety of landscapes, facilitating comparative research.SiMRiv balances ease and speed with high realism of the movement models obtainable, constituting a fast, powerful, yet intuitive tool, which should contribute exploring several movement-related questions. Its applications depart from the generation of mechanistic null movement models, up to population level (e.g. landscape connectivity) analyses, holding potential for all fields requiring the simulation of random trajectories.
Collapse
Affiliation(s)
- Lorenzo Quaglietta
- 1CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- 2CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Miguel Porto
- 1CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- 2CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
27
|
Potts JR, Fagan WF, Mourão G. Deciding when to intrude on a neighbour: quantifying behavioural mechanisms for temporary territory expansion. THEOR ECOL-NETH 2018. [DOI: 10.1007/s12080-018-0396-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Péron G, Duparc A, Garel M, Marchand P, Morellet N, Saïd S, Loison A. Circadian periodicity in space use by ungulates of temperate regions: How much, when and why? J Anim Ecol 2018; 87:1299-1308. [PMID: 29873399 DOI: 10.1111/1365-2656.12857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/13/2018] [Indexed: 11/26/2022]
Abstract
When they visit and revisit specific areas, animals may reveal what they need from their home range and how they acquire information. The temporal dimension of such movement recursions, that is, periodicity, is however rarely studied, yet potentially bears a species, population or individual-specific signature. A recent method allows estimating the contribution of periodic patterns to the variance in a movement path. We applied it to 709 individuals from five ungulate species, looking for species signatures in the form of seasonal variation in the intensity of circadian patterns. Circadian patterns were commonplace in the movement tracks, but the amount of variance they explained was highly variable among individuals. It increased in intensity during spring and summer, when key resources were spatially segregated, and decreased during winter, when food availability was more uniformly low. Other periodicity-inducing mechanisms supported by our comparison of species- and sex-specific patterns involve young antipredator behaviour, territoriality and behavioural thermoregulation. Model-based continuous-time movement metrics represent a new avenue for researchers interested in finding individual-, population- or species-specific signatures in heterogeneous movement databases featuring various study designs and sampling resolutions. However, we observed large amounts of individual variation, so comparative analyses should ideally use both GPS and animal-borne loggers to augment the discriminatory power and be based on large samples. We briefly outline potential uses of the intensity of circadian patterns as a metric for the study of animal personality and community ecology.
Collapse
Affiliation(s)
- Guillaume Péron
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Univ Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Antoine Duparc
- Laboratoire d'Ecologie Alpine, UMR CNRS 5553, Université de Savoie, Le Bourget-du-Lac, France
| | - Mathieu Garel
- Office National de la Chasse et de la Faune Sauvage, Direction de la Recherche et de l'Expertise, Unité ongulés sauvages, Gières, France
| | - Pascal Marchand
- Office National de la Chasse et de la Faune Sauvage, Direction de la Recherche et de l'Expertise, Unité ongulés sauvages, Gières, France
| | | | - Sonia Saïd
- Office National de la Chasse et de la Faune Sauvage, Direction de la Recherche et de l'Expertise, Unité ongulés sauvages, Gières, France
| | - Anne Loison
- Laboratoire d'Ecologie Alpine, UMR CNRS 5553, Université de Savoie, Le Bourget-du-Lac, France
| |
Collapse
|
29
|
Where should we meet? Mapping social network interactions of sleepy lizards shows sex-dependent social network structure. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2017.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Hinsch M, Komdeur J. What do territory owners defend against? Proc Biol Sci 2018; 284:rspb.2016.2356. [PMID: 28228512 DOI: 10.1098/rspb.2016.2356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/01/2017] [Indexed: 12/25/2022] Open
Abstract
Theoretical research on evolutionary aspects of territoriality has a long history. Existing studies, however, differ widely in modelling approach and research question. A generalized view on the evolution of territoriality is accordingly still missing. In this review, we show that territorial conflicts can be classified into qualitatively distinct types according to what mode of access to a territory which competitor attempts to gain. We argue that many of the inconsistencies between existing studies can be traced back to the fact that, while using the same terminology, different instances of these types of conflicts have been investigated. We discuss the connections of each type of conflict to existing research within the wider area of animal conflicts. We conclude that a clear conceptual separation of different types of territorial conflicts is helpful but that a more general theory of territoriality has to account for interdependencies between them and that a more mechanistic approach to modelling territoriality is needed.
Collapse
Affiliation(s)
- Martin Hinsch
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK .,TRÊS, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jan Komdeur
- GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
31
|
Getz WM, Marshall CR, Carlson CJ, Giuggioli L, Ryan SJ, Romañach SS, Boettiger C, Chamberlain SD, Larsen L, D'Odorico P, O'Sullivan D. Making ecological models adequate. Ecol Lett 2017; 21:153-166. [PMID: 29280332 DOI: 10.1111/ele.12893] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/07/2017] [Accepted: 11/12/2017] [Indexed: 12/22/2022]
Abstract
Critical evaluation of the adequacy of ecological models is urgently needed to enhance their utility in developing theory and enabling environmental managers and policymakers to make informed decisions. Poorly supported management can have detrimental, costly or irreversible impacts on the environment and society. Here, we examine common issues in ecological modelling and suggest criteria for improving modelling frameworks. An appropriate level of process description is crucial to constructing the best possible model, given the available data and understanding of ecological structures. Model details unsupported by data typically lead to over parameterisation and poor model performance. Conversely, a lack of mechanistic details may limit a model's ability to predict ecological systems' responses to management. Ecological studies that employ models should follow a set of model adequacy assessment protocols that include: asking a series of critical questions regarding state and control variable selection, the determinacy of data, and the sensitivity and validity of analyses. We also need to improve model elaboration, refinement and coarse graining procedures to better understand the relevancy and adequacy of our models and the role they play in advancing theory, improving hind and forecasting, and enabling problem solving and management.
Collapse
Affiliation(s)
- Wayne M Getz
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA.,Schools of Mathematical Sciences and Life Sciences, University of KwaZulu, Natal, South Africa
| | - Charles R Marshall
- Museum of Paleontology and Department Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Colin J Carlson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Luca Giuggioli
- Bristol Centre for Complexity Sciences, Department of Engineering Mathematics, and School of Biological Sciences, University of Bristol, Bristol, UK
| | - Sadie J Ryan
- Department of Geography, and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32601, USA.,Schools of Mathematical Sciences and Life Sciences, University of KwaZulu, Natal, South Africa
| | - Stephanie S Romañach
- Wetland and Aquatic Research Center, U.S. Geological Survey, Fort Lauderdale, FL, 33314, USA
| | - Carl Boettiger
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Samuel D Chamberlain
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - Laurel Larsen
- Department of Geography, University of California, Berkeley, CA, 94720, USA
| | - Paolo D'Odorico
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA
| | - David O'Sullivan
- Department of Geography, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
32
|
Schawe H, Hartmann AK, Majumdar SN. Convex hulls of random walks in higher dimensions: A large-deviation study. Phys Rev E 2017; 96:062101. [PMID: 29347304 DOI: 10.1103/physreve.96.062101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 06/07/2023]
Abstract
The distribution of the hypervolume V and surface ∂V of convex hulls of (multiple) random walks in higher dimensions are determined numerically, especially containing probabilities far smaller than P=10^{-1000} to estimate large deviation properties. For arbitrary dimensions and large walk lengths T, we suggest a scaling behavior of the distribution with the length of the walk T similar to the two-dimensional case and behavior of the distributions in the tails. We underpin both with numerical data in d=3 and d=4 dimensions. Further, we confirm the analytically known means of those distributions and calculate their variances for large T.
Collapse
Affiliation(s)
- Hendrik Schawe
- Institut für Physik, Universität Oldenburg, 26111 Oldenburg, Germany and LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Alexander K Hartmann
- Institut für Physik, Universität Oldenburg, 26111 Oldenburg, Germany and LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Satya N Majumdar
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
33
|
Abstract
The progress of science is influenced substantially by social behaviour of and social interactions within the scientific community. Similar to innovations in primate groups, the social acceptance of an innovation depends not only upon the relevance of the innovation but also on the social dominance and connectedness of the innovator. There are a number of parallels between many well-known phenomena in behavioural evolution and various behavioural traits observed in the scientific community. It would be useful, therefore, to use principles of behavioural evolution as hypotheses to study the social behaviour of the scientific community. I argue in this paper that a systematic study of social behavioural epistemology is likely to boost the progress of science by addressing several prevalent biases and other problems in scientific communication and by facilitating appropriate acceptance/rejection of novel concepts.
Collapse
Affiliation(s)
- Milind Watve
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411 008, India.
| |
Collapse
|
34
|
Abrahms B, Seidel DP, Dougherty E, Hazen EL, Bograd SJ, Wilson AM, Weldon McNutt J, Costa DP, Blake S, Brashares JS, Getz WM. Suite of simple metrics reveals common movement syndromes across vertebrate taxa. MOVEMENT ECOLOGY 2017; 5:12. [PMID: 28580149 PMCID: PMC5452391 DOI: 10.1186/s40462-017-0104-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/28/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Because empirical studies of animal movement are most-often site- and species-specific, we lack understanding of the level of consistency in movement patterns across diverse taxa, as well as a framework for quantitatively classifying movement patterns. We aim to address this gap by determining the extent to which statistical signatures of animal movement patterns recur across ecological systems. We assessed a suite of movement metrics derived from GPS trajectories of thirteen marine and terrestrial vertebrate species spanning three taxonomic classes, orders of magnitude in body size, and modes of movement (swimming, flying, walking). Using these metrics, we performed a principal components analysis and cluster analysis to determine if individuals organized into statistically distinct clusters. Finally, to identify and interpret commonalities within clusters, we compared them to computer-simulated idealized movement syndromes representing suites of correlated movement traits observed across taxa (migration, nomadism, territoriality, and central place foraging). RESULTS Two principal components explained 70% of the variance among the movement metrics we evaluated across the thirteen species, and were used for the cluster analysis. The resulting analysis revealed four statistically distinct clusters. All simulated individuals of each idealized movement syndrome organized into separate clusters, suggesting that the four clusters are explained by common movement syndrome. CONCLUSIONS Our results offer early indication of widespread recurrent patterns in movement ecology that have consistent statistical signatures, regardless of taxon, body size, mode of movement, or environment. We further show that a simple set of metrics can be used to classify broad-scale movement patterns in disparate vertebrate taxa. Our comparative approach provides a general framework for quantifying and classifying animal movements, and facilitates new inquiries into relationships between movement syndromes and other ecological processes.
Collapse
Affiliation(s)
- Briana Abrahms
- NOAA Southwest Fisheries Science Center, Environmental Research Division, 99 Pacific Street, Monterey, CA 93940 USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060 USA
| | - Dana P. Seidel
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
| | - Eric Dougherty
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
| | - Elliott L. Hazen
- NOAA Southwest Fisheries Science Center, Environmental Research Division, 99 Pacific Street, Monterey, CA 93940 USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060 USA
| | - Steven J. Bograd
- NOAA Southwest Fisheries Science Center, Environmental Research Division, 99 Pacific Street, Monterey, CA 93940 USA
| | - Alan M. Wilson
- Structure & Motion Lab, Royal Veterinary College, University of London, London, UK
| | | | - Daniel P. Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060 USA
| | - Stephen Blake
- Max Planck Institute for Ornithology, Radolfzell, Germany
| | - Justin S. Brashares
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
| | - Wayne M. Getz
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
- School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
35
|
Péron G, Fleming CH, de Paula RC, Mitchell N, Strohbach M, Leimgruber P, Calabrese JM. Periodic continuous-time movement models uncover behavioral changes of wild canids along anthropization gradients. ECOL MONOGR 2017. [DOI: 10.1002/ecm.1260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guillaume Péron
- Smithsonian Conservation Biology Institute; National Zoological Park Front Royal Virginia 22630 USA
- Univ Lyon; Laboratoire de Biométrie et Biologie Evolutive UMR5558; CNRS; Université Lyon 1; F-69622 Villeurbanne France
| | - Christen H. Fleming
- Smithsonian Conservation Biology Institute; National Zoological Park Front Royal Virginia 22630 USA
- Department of Biology; University of Maryland; College Park Maryland 20742 USA
| | - Rogerio C. de Paula
- National Research Center for Carnivore Conservation (CENAP/ICMBio); Atibaia Sao Paulo Brazil
| | - Numi Mitchell
- The Conservation Agency; 67 Howland Avenue Jamestown Rhode Island 02835 USA
| | - Michael Strohbach
- Landscape Ecology and Environmental Systems Analysis; Institute of Geoecology; Technische Universität Braunschweig; Braunschweig Germany
| | - Peter Leimgruber
- Smithsonian Conservation Biology Institute; National Zoological Park Front Royal Virginia 22630 USA
| | - Justin M. Calabrese
- Smithsonian Conservation Biology Institute; National Zoological Park Front Royal Virginia 22630 USA
- Univ Lyon; Laboratoire de Biométrie et Biologie Evolutive UMR5558; CNRS; Université Lyon 1; F-69622 Villeurbanne France
| |
Collapse
|
36
|
Potts JR, Petrovskii SV. Fortune favours the brave: Movement responses shape demographic dynamics in strongly competing populations. J Theor Biol 2017; 420:190-199. [DOI: 10.1016/j.jtbi.2017.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/20/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022]
|
37
|
Marchand P, Garel M, Bourgoin G, Duparc A, Dubray D, Maillard D, Loison A. Combining familiarity and landscape features helps break down the barriers between movements and home ranges in a non-territorial large herbivore. J Anim Ecol 2017; 86:371-383. [DOI: 10.1111/1365-2656.12616] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 11/26/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Pascal Marchand
- Office National de la Chasse et de la Faune Sauvage, Unité Faune de Montagne; 147 route de Lodève, Les Portes du Soleil F-34990 Juvignac France
- Laboratoire d’Ecologie Alpine, CNRS UMR 5553, Centre Interdisciplinaire des Sciences de la Montagne; Université Savoie Mont-Blanc; Bâtiment Belledonne Ouest F-73376 Le Bourget-du-Lac France
- Office National de la Chasse et de la Faune Sauvage, Délégation Régionale Occitanie; 18 rue Jean Perrin, Actisud Bâtiment 12 F-31100 Toulouse France
| | - Mathieu Garel
- Office National de la Chasse et de la Faune Sauvage, Unité Faune de Montagne; 147 route de Lodève, Les Portes du Soleil F-34990 Juvignac France
| | - Gilles Bourgoin
- Laboratoire de parasitologie vétérinaire, VetAgro Sup - Campus Vétérinaire de Lyon; Université de Lyon; 1 avenue Bourgelat, BP 83 F-69280 Marcy l’Etoile France
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558; Université Lyon 1; F-69622 Villeurbanne France
| | - Antoine Duparc
- Office National de la Chasse et de la Faune Sauvage, Unité Faune de Montagne; 147 route de Lodève, Les Portes du Soleil F-34990 Juvignac France
- Laboratoire d’Ecologie Alpine, CNRS UMR 5553, Centre Interdisciplinaire des Sciences de la Montagne; Université Savoie Mont-Blanc; Bâtiment Belledonne Ouest F-73376 Le Bourget-du-Lac France
| | - Dominique Dubray
- Office National de la Chasse et de la Faune Sauvage, Unité Faune de Montagne; 147 route de Lodève, Les Portes du Soleil F-34990 Juvignac France
| | - Daniel Maillard
- Office National de la Chasse et de la Faune Sauvage, Unité Faune de Montagne; 147 route de Lodève, Les Portes du Soleil F-34990 Juvignac France
| | - Anne Loison
- Laboratoire d’Ecologie Alpine, CNRS UMR 5553, Centre Interdisciplinaire des Sciences de la Montagne; Université Savoie Mont-Blanc; Bâtiment Belledonne Ouest F-73376 Le Bourget-du-Lac France
| |
Collapse
|
38
|
Abrahms B, Seidel DP, Dougherty E, Hazen EL, Bograd SJ, Wilson AM, Weldon McNutt J, Costa DP, Blake S, Brashares JS, Getz WM. Suite of simple metrics reveals common movement syndromes across vertebrate taxa. MOVEMENT ECOLOGY 2017. [PMID: 28580149 DOI: 10.5441/001/1.hm5nk220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Because empirical studies of animal movement are most-often site- and species-specific, we lack understanding of the level of consistency in movement patterns across diverse taxa, as well as a framework for quantitatively classifying movement patterns. We aim to address this gap by determining the extent to which statistical signatures of animal movement patterns recur across ecological systems. We assessed a suite of movement metrics derived from GPS trajectories of thirteen marine and terrestrial vertebrate species spanning three taxonomic classes, orders of magnitude in body size, and modes of movement (swimming, flying, walking). Using these metrics, we performed a principal components analysis and cluster analysis to determine if individuals organized into statistically distinct clusters. Finally, to identify and interpret commonalities within clusters, we compared them to computer-simulated idealized movement syndromes representing suites of correlated movement traits observed across taxa (migration, nomadism, territoriality, and central place foraging). RESULTS Two principal components explained 70% of the variance among the movement metrics we evaluated across the thirteen species, and were used for the cluster analysis. The resulting analysis revealed four statistically distinct clusters. All simulated individuals of each idealized movement syndrome organized into separate clusters, suggesting that the four clusters are explained by common movement syndrome. CONCLUSIONS Our results offer early indication of widespread recurrent patterns in movement ecology that have consistent statistical signatures, regardless of taxon, body size, mode of movement, or environment. We further show that a simple set of metrics can be used to classify broad-scale movement patterns in disparate vertebrate taxa. Our comparative approach provides a general framework for quantifying and classifying animal movements, and facilitates new inquiries into relationships between movement syndromes and other ecological processes.
Collapse
Affiliation(s)
- Briana Abrahms
- NOAA Southwest Fisheries Science Center, Environmental Research Division, 99 Pacific Street, Monterey, CA 93940 USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060 USA
| | - Dana P Seidel
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
| | - Eric Dougherty
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
| | - Elliott L Hazen
- NOAA Southwest Fisheries Science Center, Environmental Research Division, 99 Pacific Street, Monterey, CA 93940 USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060 USA
| | - Steven J Bograd
- NOAA Southwest Fisheries Science Center, Environmental Research Division, 99 Pacific Street, Monterey, CA 93940 USA
| | - Alan M Wilson
- Structure & Motion Lab, Royal Veterinary College, University of London, London, UK
| | | | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060 USA
| | - Stephen Blake
- Max Planck Institute for Ornithology, Radolfzell, Germany
| | - Justin S Brashares
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
| | - Wayne M Getz
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA
- School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
39
|
How Behaviour and the Environment Influence Transmission in Mobile Groups. TEMPORAL NETWORK EPIDEMIOLOGY 2017. [PMCID: PMC7123459 DOI: 10.1007/978-981-10-5287-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The movement of individuals living in groups leads to the formation of physical interaction networks over which signals such as information or disease can be transmitted. Direct contacts represent the most obvious opportunities for a signal to be transmitted. However, because signals that persist after being deposited into the environment may later be acquired by other group members, indirect environmentally-mediated transmission is also possible. To date, studies of signal transmission within groups have focused on direct physical interactions and ignored the role of indirect pathways. Here, we use an agent-based model to study how the movement of individuals and characteristics of the signal being transmitted modulate transmission. By analysing the dynamic interaction networks generated from these simulations, we show that the addition of indirect pathways speeds up signal transmission, while the addition of physically-realistic collisions between individuals in densely packed environments hampers it. Furthermore, the inclusion of spatial biases that induce the formation of individual territories, reveals the existence of a trade-off such that optimal signal transmission at the group level is only achieved when territories are of intermediate sizes. Our findings provide insight into the selective pressures guiding the evolution of behavioural traits in natural groups, and offer a means by which multi-agent systems can be engineered to achieve desired transmission capabilities.
Collapse
|
40
|
Dewenter T, Claussen G, Hartmann AK, Majumdar SN. Convex hulls of multiple random walks: A large-deviation study. Phys Rev E 2016; 94:052120. [PMID: 27967062 DOI: 10.1103/physreve.94.052120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 11/07/2022]
Abstract
We study the polygons governing the convex hull of a point set created by the steps of n independent two-dimensional random walkers. Each such walk consists of T discrete time steps, where x and y increments are independent and identically distributed Gaussian. We analyze area A and perimeter L of the convex hulls. We obtain probability densities for these two quantities over a large range of the support by using a large-deviation approach allowing us to study densities below 10^{-900}. We find that the densities exhibit in the limit T→∞ a time-independent scaling behavior as a function of A/T and L/sqrt[T], respectively. As in the case of one walker (n=1), the densities follow Gaussian distributions for L and sqrt[A], respectively. We also obtained the rate functions for the area and perimeter, rescaled with the scaling behavior of their maximum possible values, and found limiting functions for T→∞, revealing that the densities follow the large-deviation principle. These rate functions can be described by a power law for n→∞ as found in the n=1 case. We also investigated the behavior of the averages as a function of the number of walks n and found good agreement with the predicted behavior.
Collapse
Affiliation(s)
- Timo Dewenter
- Institut für Physik, Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Gunnar Claussen
- Institut für Physik, Universität Oldenburg, D-26111 Oldenburg, Germany.,Fachbereich Ingenieurwissenschaften, Jade Hochschule Wilhelmshaven/Oldenburg/Elsfleth, D-26389 Wilhelmshaven, Germany
| | | | - Satya N Majumdar
- Laboratoire de Physique Théorique et Modèles Statistiques (UMR 8626 du CNRS), Université de Paris-Sud, Bâtiment 100, 91405 Orsay Cedex, France
| |
Collapse
|
41
|
Cholaquidis A, Fraiman R, Lugosi G, Pateiro-López B. Set estimation from reflected Brownian motion. J R Stat Soc Series B Stat Methodol 2016. [DOI: 10.1111/rssb.12149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Gábor Lugosi
- Institució Catalana de Recerca i Estudis Avançats and Universitat Pompeu Fabra; Barcelona Spain
| | | |
Collapse
|
42
|
Bauder JM, Breininger DR, Bolt MR, Legare ML, Jenkins CL, Rothermel BB, McGarigal K. The Influence of Sex and Season on Conspecific Spatial Overlap in a Large, Actively-Foraging Colubrid Snake. PLoS One 2016; 11:e0160033. [PMID: 27490346 PMCID: PMC4973959 DOI: 10.1371/journal.pone.0160033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/11/2016] [Indexed: 11/18/2022] Open
Abstract
Understanding the factors influencing the degree of spatial overlap among conspecifics is important for understanding multiple ecological processes. Compared to terrestrial carnivores, relatively little is known about the factors influencing conspecific spatial overlap in snakes, although across snake taxa there appears to be substantial variation in conspecific spatial overlap. In this study, we described conspecific spatial overlap of eastern indigo snakes (Drymarchon couperi) in peninsular Florida and examined how conspecific spatial overlap varied by sex and season (breeding season vs. non-breeding season). We calculated multiple indices of spatial overlap using 6- and 3-month utilization distributions (UD) of dyads of simultaneously adjacent telemetered snakes. We also measured conspecific UD density values at each telemetry fix and modeled the distribution of those values as a function of overlap type, sex, and season using generalized Pareto distributions. Home range overlap between males and females was significantly greater than overlap between individuals of the same sex and male home ranges often completely contained female home ranges. Male home ranges overlapped little during both seasons, whereas females had higher levels of overlap during the non-breeding season. The spatial patterns observed in our study are consistent with those seen in many mammalian carnivores, in which low male-male overlap and high inter-sexual overlap provides males with greater access to females. We encourage additional research on the influence of prey availability on conspecific spatial overlap in snakes as well as the behavioral mechanisms responsible for maintaining the low levels of overlap we observed.
Collapse
Affiliation(s)
- Javan M. Bauder
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| | - David R. Breininger
- NASA Ecological Programs, Integrated Mission Support Services, Kennedy Space Center, Florida, United States of America
| | - M. Rebecca Bolt
- NASA Ecological Programs, Integrated Mission Support Services, Kennedy Space Center, Florida, United States of America
| | - Michael L. Legare
- Merritt Island National Wildlife Refuge, Titusville, Florida, United States of America
| | | | | | - Kevin McGarigal
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
43
|
Dickie M, Serrouya R, McNay RS, Boutin S. Faster and farther: wolf movement on linear features and implications for hunting behaviour. J Appl Ecol 2016. [DOI: 10.1111/1365-2664.12732] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Melanie Dickie
- Department of Biological Sciences; University of Alberta; Edmonton AB T6G 2R3 Canada
| | - Robert Serrouya
- Alberta Biodiversity Monitoring Institute; University of Alberta; Edmonton AB T6G 2R3 Canada
| | | | - Stan Boutin
- Department of Biological Sciences; University of Alberta; Edmonton AB T6G 2R3 Canada
| |
Collapse
|
44
|
Towerton AL, Kavanagh RP, Penman TD, Dickman CR. Ranging behaviour and movements of the red fox in remnant forest habitats. WILDLIFE RESEARCH 2016. [DOI: 10.1071/wr15203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context The Eurasian red fox (Vulpes vulpes) is a widespread pest in mixed agricultural and remnant forest habitats in southern Australia, and is controlled most commonly with baits containing poison (1080) to protect both agricultural and ecological assets. An understanding of fox movements in such habitats should assist in the strategic placement of baits and increase bait encounters by foxes across the landscape, thus improving the success of control efforts. Aims We seek to understand the ranges, movements and habitat use of foxes to aid the development of effective management plans. The fate of tracked animals was examined during a control program. Methods We radio-tracked 10 foxes using VHF transmitters and three foxes using GPS receivers during control operations in a remnant forest area near Dubbo, New South Wales. We used VHF location fixes to estimate fox range areas and GPS fixes to describe temporal and spatial aspects of fox movements and range use, focal points of activity and potential bait encounters. Selection of forest versus cleared areas was assessed, as was the impact of control operations on collared foxes. Key results Range areas (mean ± s.e.; 95% minimum convex polygon) for VHF- and GPS-tracked foxes were 420 ha ± 74 and 4462 ha ± 1799 respectively. Only small parts of range areas were visited on a daily basis, with little overlap. Animals were often within 200 m of roads and crossed or travelled on roads more than expected. At least 75% of collared foxes were probably poisoned in the control program. Conclusions Foxes occupy large ranges and move long distances in the study region, with little daily overlap, so successful defence of range areas is unlikely. Control efforts successfully poisoned foxes but also limited data collection because of reduced tracking periods. Implications The large and variable areas occupied by foxes suggested that control efforts need to be on-going, coordinated across the landscape, and use a minimum bait density of 0.5 baits per 100 ha in remnant forest habitat to ensure that gaps are minimised. Control operations should target roads and forest edges for bait placement, and increase the time that baits are available, to increase fox encounters and maximise the success of control efforts.
Collapse
|
45
|
Lai S, Bêty J, Berteaux D. Spatio-temporal hotspots of satellite-tracked arctic foxes reveal a large detection range in a mammalian predator. MOVEMENT ECOLOGY 2015; 3:37. [PMID: 26568827 PMCID: PMC4644628 DOI: 10.1186/s40462-015-0065-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/13/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND The scale at which animals perceive their environment is a strong fitness determinant, yet few empirical estimates of animal detection ranges exist, especially in mammalian predators. Using daily Argos satellite tracking of 26 adult arctic foxes (Vulpes lagopus) during a single winter in the High Canadian Arctic, we investigated the detection range of arctic foxes by detecting hotspots of fox activity on the sea ice. RESULTS While maintaining territories in the tundra, these solitary foragers occasionally used the sea ice where they sometimes formed spatio-temporal hotspots, likely scavenging on marine mammal carcasses. We detected 35 movements by 13 individuals forming five hotspots. Foxes often traveled more than 10 km, and up to 40 km, to reach hotspots, which lasted one-two weeks and could gather up to 12 individuals. The likelihood of a fox joining a hotspot was neither influenced by its distance from the hotspot nor by the distance of its home range to the coast. CONCLUSIONS Observed traveling distances may indicate a high detection range in arctic foxes, and our results suggest their ability to detect food sources on the sea ice from their terrestrial home range. While revealing a wide knowledge gap regarding resource detection abilities in mammalian predators, our study provides estimates of detection range useful for interpreting and modeling animal movements. It also allows a better understanding of foraging behavior and navigation capacity in terrestrial predators.
Collapse
Affiliation(s)
- Sandra Lai
- Canada Research Chair on Northern Biodiversity, Centre for Northern Studies and Quebec Center for Biodiversity Science, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1 Canada
| | - Joël Bêty
- Canada Research Chair on Northern Biodiversity, Centre for Northern Studies and Quebec Center for Biodiversity Science, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1 Canada
| | - Dominique Berteaux
- Canada Research Chair on Northern Biodiversity, Centre for Northern Studies and Quebec Center for Biodiversity Science, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1 Canada
| |
Collapse
|
46
|
Zhong LX, Xu WJ, Chen RD, Qiu T, Shi YD, Zhong CY. Coupled effects of local movement and global interaction on contagion. PHYSICA A 2015; 436:482-491. [PMID: 32288092 PMCID: PMC7125621 DOI: 10.1016/j.physa.2015.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/29/2015] [Indexed: 06/11/2023]
Abstract
By incorporating segregated spatial domain and individual-based linkage into the SIS (susceptible-infected-susceptible) model, we propose a generalized epidemic model which can change from the territorial epidemic model to the networked epidemic model. The role of the individual-based linkage between different spatial domains is investigated. As we adjust the timescale parameter τ from 0 to unity, which represents the degree of activation of the individual-based linkage, three regions are found. Within the region of 0 < τ < 0.02 , the epidemic is determined by local movement and is sensitive to the timescale τ . Within the region of 0.02 < τ < 0.5 , the epidemic is insensitive to the timescale τ . Within the region of 0.5 < τ < 1 , the outbreak of the epidemic is determined by the structure of the individual-based linkage. As we keep an eye on the first region, the role of activating the individual-based linkage in the present model is similar to the role of the shortcuts in the two-dimensional small world network. Only activating a small number of the individual-based linkage can prompt the outbreak of the epidemic globally. The role of narrowing segregated spatial domain and reducing mobility in epidemic control is checked. These two measures are found to be conducive to curbing the spread of infectious disease only when the global interaction is suppressed. A log-log relation between the change in the number of infected individuals and the timescale τ is found. By calculating the epidemic threshold and the mean first encounter time, we heuristically analyze the microscopic characteristics of the propagation of the epidemic in the present model.
Collapse
Affiliation(s)
- Li-Xin Zhong
- School of Finance and Coordinated Innovation Center of Wealth Management and Quantitative Investment, Zhejiang University of Finance and Economics, Hangzhou, 310018, China
- School of Economics and Management, Tsinghua University, Beijing, 100084, China
| | - Wen-Juan Xu
- School of Law, Zhejiang University of Finance and Economics, Hangzhou, 310018, China
| | - Rong-Da Chen
- School of Finance and Coordinated Innovation Center of Wealth Management and Quantitative Investment, Zhejiang University of Finance and Economics, Hangzhou, 310018, China
| | - Tian Qiu
- School of Information Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Yong-Dong Shi
- Research Center of Applied Finance, Dongbei University of Finance and Economics, Dalian, 116025, China
| | | |
Collapse
|
47
|
Richardson TO, Gorochowski TE. Beyond contact-based transmission networks: the role of spatial coincidence. J R Soc Interface 2015; 12:20150705. [PMID: 26400200 PMCID: PMC4614507 DOI: 10.1098/rsif.2015.0705] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/28/2015] [Indexed: 11/12/2022] Open
Abstract
Animal societies rely on interactions between group members to effectively communicate and coordinate their actions. To date, the transmission properties of interaction networks formed by direct physical contacts have been extensively studied for many animal societies and in all cases found to inhibit spreading. Such direct interactions do not, however, represent the only viable pathways. When spreading agents can persist in the environment, indirect transmission via 'same-place, different-time' spatial coincidences becomes possible. Previous studies have neglected these indirect pathways and their role in transmission. Here, we use rock ant colonies, a model social species whose flat nest geometry, coupled with individually tagged workers, allowed us to build temporally and spatially explicit interaction networks in which edges represent either direct physical contacts or indirect spatial coincidences. We show how the addition of indirect pathways allows the network to enhance or inhibit the spreading of different types of agent. This dual-functionality arises from an interplay between the interaction-strength distribution generated by the ants' movement and environmental decay characteristics of the spreading agent. These findings offer a general mechanism for understanding how interaction patterns might be tuned in animal societies to control the simultaneous transmission of harmful and beneficial agents.
Collapse
Affiliation(s)
- Thomas O Richardson
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland Department of Mathematics and Statistics, Bristol Institute of Technology, University of the West of England, Bristol BS16 1QY, UK School of Biological Sciences, University of Bristol, Bristol BS8 1UB, UK
| | - Thomas E Gorochowski
- Bristol Centre for Complexity Sciences, Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| |
Collapse
|
48
|
Lutnesky MM, Brown TR. Simulation of movement that potentially maximizes assessment, presence, and defense in territorial animals with varying movement strategies. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Carter N, Levin S, Barlow A, Grimm V. Modeling tiger population and territory dynamics using an agent-based approach. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Getz WM, Salter R, Lyons AJ, Sippl-Swezey N. Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds. PLoS One 2015; 10:e0133732. [PMID: 26274613 PMCID: PMC4537111 DOI: 10.1371/journal.pone.0133732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/01/2015] [Indexed: 11/20/2022] Open
Abstract
We develop a stochastic, agent-based model to study how genetic traits and experiential changes in the state of agents and available resources influence individuals’ foraging and movement behaviors. These behaviors are manifest as decisions on when to stay and exploit a current resource patch or move to a particular neighboring patch, based on information of the resource qualities of the patches and the anticipated level of intraspecific competition within patches. We use a genetic algorithm approach and an individual’s biomass as a fitness surrogate to explore the foraging strategy diversity of evolving guilds under clonal versus hermaphroditic sexual reproduction. We first present the resource exploitation processes, movement on cellular arrays, and genetic algorithm components of the model. We then discuss their implementation on the Nova software platform. This platform seamlessly combines the dynamical systems modeling of consumer-resource interactions with agent-based modeling of individuals moving over a landscapes, using an architecture that lays transparent the following four hierarchical simulation levels: 1.) within-patch consumer-resource dynamics, 2.) within-generation movement and competition mitigation processes, 3.) across-generation evolutionary processes, and 4.) multiple runs to generate the statistics needed for comparative analyses. The focus of our analysis is on the question of how the biomass production efficiency and the diversity of guilds of foraging strategy types, exploiting resources over a patchy landscape, evolve under clonal versus random hermaphroditic sexual reproduction. Our results indicate greater biomass production efficiency under clonal reproduction only at higher population densities, and demonstrate that polymorphisms evolve and are maintained under random mating systems. The latter result questions the notion that some type of associative mating structure is needed to maintain genetic polymorphisms among individuals exploiting a common patchy resource on an otherwise spatially homogeneous landscape.
Collapse
Affiliation(s)
- Wayne M. Getz
- Dept. ESPM, UC Berkeley, CA 94720-3114, United States of America
- School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- * E-mail:
| | - Richard Salter
- Computer Science Dept., Oberlin College, Oberlin, Ohio, OH 44074, United States of America
| | - Andrew J. Lyons
- Vice Provost Office for Undergraduate Education, Stanford University, Stanford, CA 94305, United States of America
| | - Nicolas Sippl-Swezey
- Francis I. Proctor Foundation for Research in Ophthalmology, UC San Francisco, Box 0412, San Francisco, CA 94143-0412, United States of America
| |
Collapse
|