1
|
Menz G, Engblom S. Modelling Population-Level Hes1 Dynamics: Insights from a Multi-framework Approach. Bull Math Biol 2025; 87:74. [PMID: 40379916 DOI: 10.1007/s11538-025-01447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/02/2025] [Indexed: 05/19/2025]
Abstract
Mathematical models of living cells have been successively refined with advancements in experimental techniques. A main concern is striking a balance between modelling power and the tractability of the associated mathematical analysis. In this work we model the dynamics for the transcription factor Hairy and enhancer of split-1 (Hes1), whose expression oscillates during neural development, and which critically enables stable fate decision in the embryonic brain. We design, parametrise, and analyse a detailed spatial model using ordinary differential equations (ODEs) over a grid capturing both transient oscillatory behaviour and fate decision on a population-level. We also investigate the relationship between this ODE model and a more realistic grid-based model involving intrinsic noise using mostly directly biologically motivated parameters. While we focus specifically on Hes1 in neural development, the approach of linking deterministic and stochastic grid-based models shows promise in modelling various biological processes taking place in a cell population. In this context, our work stresses the importance of the interpretability of complex computational models into a framework which is amenable to mathematical analysis.
Collapse
Affiliation(s)
- Gesina Menz
- Division of Scientific Computing, Department of Information Technology, Uppsala University, 751 05, Uppsala, Sweden
| | - Stefan Engblom
- Division of Scientific Computing, Department of Information Technology, Uppsala University, 751 05, Uppsala, Sweden.
- Science for Life Laboratory, Department of Information Technology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Chen D, Liu X, Wang H, Merks RM, Baker DA. A model of Notch signalling control of angiogenesis: Evidence of a role for Notch ligand heterodimerization. PLoS Comput Biol 2025; 21:e1012825. [PMID: 39932958 PMCID: PMC11841921 DOI: 10.1371/journal.pcbi.1012825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/20/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025] Open
Abstract
The ubiquitous Notch receptor signalling network is essential for tissue growth and maintenance. Operationally, receptor activity is regulated by two principal, counterposed mechanisms: intercellular Notch transactivation triggered by interactions between receptors and ligands expressed in neighbouring cells; intracellular cis inhibition mediated by ligands binding to receptors expressed in the same cell. Moreover, different Notch receptor/ligand combinations are known to elicit distinct molecular and cellular responses, and together, these phenomena determine the strength, the duration and the specificity of Notch receptor signalling. To date, it has been assumed that these processes involve discrete ligand homomers and not heteromeric complexes composed of more than one ligand species. In this study, we explore the molecular basis of the opposing actions of the Notch ligands, DLL4 and JAG1, which control angiogenic sprouting. Through a combination of experimental approaches and mathematical modelling, we provide evidence that two mechanisms could underpin this process: 1) DLL4 rather than JAG1 induces efficient Notch1 receptor transactivation; 2) JAG1 directly blocks DLL4-dependent cis-inhibition of Notch signalling through the formation of a JAG1/DLL4 complex. We propose a new model of Notch signalling that recapitulates the formation of tip and stalk cells, which is necessary for sprouting angiogenesis.
Collapse
Affiliation(s)
- Daipeng Chen
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Xinxin Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Haijiang Wang
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of General Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Roeland M.H. Merks
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - David A. Baker
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
3
|
Kuintzle R, Santat LA, Elowitz MB. Diversity in Notch ligand-receptor signaling interactions. eLife 2025; 12:RP91422. [PMID: 39751380 PMCID: PMC11698495 DOI: 10.7554/elife.91422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in Chinese hamster and mouse cell lines. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.
Collapse
Affiliation(s)
- Rachael Kuintzle
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Leah A Santat
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical Institute, California Institute of TechnologyPasadenaUnited States
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Howard Hughes Medical Institute, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
4
|
Santorelli M, Bhamidipati PS, Courte J, Swedlund B, Jain N, Poon K, Schildknecht D, Kavanagh A, MacKrell VA, Sondkar T, Malaguti M, Quadrato G, Lowell S, Thomson M, Morsut L. Control of spatio-temporal patterning via cell growth in a multicellular synthetic gene circuit. Nat Commun 2024; 15:9867. [PMID: 39562554 PMCID: PMC11577002 DOI: 10.1038/s41467-024-53078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
A major goal in synthetic development is to build gene regulatory circuits that control patterning. In natural development, an interplay between mechanical and chemical communication shapes the dynamics of multicellular gene regulatory circuits. For synthetic circuits, how non-genetic properties of the growth environment impact circuit behavior remains poorly explored. Here, we first describe an occurrence of mechano-chemical coupling in synthetic Notch (synNotch) patterning circuits: high cell density decreases synNotch-gated gene expression in different cellular systems in vitro. We then construct, both in vitro and in silico, a synNotch-based signal propagation circuit whose outcome can be regulated by cell density. Spatial and temporal patterning outcomes of this circuit can be predicted and controlled via modulation of cell proliferation, initial cell density, and/or spatial distribution of cell density. Our work demonstrates that synthetic patterning circuit outcome can be controlled via cellular growth, providing a means for programming multicellular circuit patterning outcomes.
Collapse
Affiliation(s)
- Marco Santorelli
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pranav S Bhamidipati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Josquin Courte
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Swedlund
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Naisargee Jain
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kyle Poon
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominik Schildknecht
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andriu Kavanagh
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biology, California State University Northridge, Northridge, CA, USA
| | - Victoria A MacKrell
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Trusha Sondkar
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mattias Malaguti
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Giorgia Quadrato
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sally Lowell
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Beckman Center for Single-Cell Profiling and Engineering, Pasadena, CA, USA.
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Ho C, Jutras-Dubé L, Zhao ML, Mönke G, Kiss IZ, François P, Aulehla A. Nonreciprocal synchronization in embryonic oscillator ensembles. Proc Natl Acad Sci U S A 2024; 121:e2401604121. [PMID: 39190346 PMCID: PMC11388350 DOI: 10.1073/pnas.2401604121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/10/2024] [Indexed: 08/28/2024] Open
Abstract
Synchronization of coupled oscillators is a universal phenomenon encountered across different scales and contexts, e.g., chemical wave patterns, superconductors, and the unison applause we witness in concert halls. The existence of common underlying coupling rules defines universality classes, revealing a fundamental sameness between seemingly distinct systems. Identifying rules of synchronization in any particular setting is hence of paramount relevance. Here, we address the coupling rules within an embryonic oscillator ensemble linked to vertebrate embryo body axis segmentation. In vertebrates, the periodic segmentation of the body axis involves synchronized signaling oscillations in cells within the presomitic mesoderm (PSM), from which somites, the prevertebrae, form. At the molecular level, it is known that intact Notch-signaling and cell-to-cell contact are required for synchronization between PSM cells. However, an understanding of the coupling rules is still lacking. To identify these, we develop an experimental assay that enables direct quantification of synchronization dynamics within mixtures of oscillating cell ensembles, for which the initial input frequency and phase distribution are known. Our results reveal a "winner-takes-it-all" synchronization outcome, i.e., the emerging collective rhythm matches one of the input rhythms. Using a combination of theory and experimental validation, we develop a coupling model, the "Rectified Kuramoto" (ReKu) model, characterized by a phase-dependent, nonreciprocal interaction in the coupling of oscillatory cells. Such nonreciprocal synchronization rules reveal fundamental similarities between embryonic oscillators and a class of collective behaviors seen in neurons and fireflies, where higher-level computations are performed and linked to nonreciprocal synchronization.
Collapse
Affiliation(s)
- Christine Ho
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | - Michael L Zhao
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Gregor Mönke
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - István Z Kiss
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103
| | - Paul François
- Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| |
Collapse
|
6
|
Corsini M, Ravelli C, Grillo E, Domenichini M, Mitola S. Mutation in the Kinase Domain Alters the VEGFR2 Membrane Dynamics. Cells 2024; 13:1346. [PMID: 39195235 PMCID: PMC11352761 DOI: 10.3390/cells13161346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Recently, the substitution R1051Q in VEGFR2 has been described as a cancer-associated "gain of function" mutation. VEGFR2R1051Q phosphorylation is ligand-independent and enhances the activation of intracellular pathways and cell growth both in vitro and in vivo. In cancer, this mutation is found in heterozygosity, suggesting that an interaction between VEGFR2R1051Q and VEGFR2WT may occur and could explain, at least in part, how VEGFR2R1051Q acts to promote VEGFR2 signaling. Despite this, the biochemical/biophysical mechanism of the activation of VEGFR2R1051Q remains poorly understood. On these bases, the aim of our study is to address how VEGFR2R1051Q influences the biophysical behavior (dimerization and membrane dynamics) of the co-expressed VEGFR2WT. METHODS We employed quantitative FLIM/FRET and FRAP imaging techniques using CHO cells co-transfected with the two forms of VEGFR2 to mimic heterozygosity. RESULTS Membrane protein biotinylation reveals that VEGFR2WT is more exposed on the cell membrane with respect to VEGFR2R1051Q. The imaging analyses show the ability of VEGFR2WT to form heterodimers with VEGFR2R1051Q and this interaction alters its membrane dynamics. Indeed, when the co-expression of VEGFR2WT/VEGFR2R1051Q occurs, VEGFR2WT shows reduced lateral motility and a minor pool of mobile fraction. CONCLUSIONS This study demonstrates that active VEGFR2R1051Q can affect the membrane behavior of the VEGFR2WT.
Collapse
Affiliation(s)
- Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.C.); (C.R.); (E.G.); (M.D.)
- CN3 “Sviluppo di Terapia Genica e Farmaci con Tecnologia ad RNA”, 25123 Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.C.); (C.R.); (E.G.); (M.D.)
- CIB Consorzio Interuniversitario per le Biotecnologie, 25123 Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.C.); (C.R.); (E.G.); (M.D.)
- CIB Consorzio Interuniversitario per le Biotecnologie, 25123 Brescia, Italy
| | - Mattia Domenichini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.C.); (C.R.); (E.G.); (M.D.)
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.C.); (C.R.); (E.G.); (M.D.)
- CN3 “Sviluppo di Terapia Genica e Farmaci con Tecnologia ad RNA”, 25123 Brescia, Italy
- CIB Consorzio Interuniversitario per le Biotecnologie, 25123 Brescia, Italy
| |
Collapse
|
7
|
Kuintzle R, Santat LA, Elowitz MB. Diversity in Notch ligand-receptor signaling interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.24.554677. [PMID: 37662208 PMCID: PMC10473737 DOI: 10.1101/2023.08.24.554677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The Notch signaling pathway uses families of ligands and receptors to transmit signals to nearby cells. These components are expressed in diverse combinations in different cell types, interact in a many-to-many fashion, both within the same cell (in cis) and between cells (in trans), and their interactions are modulated by Fringe glycosyltransferases. A fundamental question is how the strength of Notch signaling depends on which pathway components are expressed, at what levels, and in which cells. Here, we used a quantitative, bottom-up, cell-based approach to systematically characterize trans-activation, cis-inhibition, and cis-activation signaling efficiencies across a range of ligand and Fringe expression levels in two mammalian cell types. Each ligand (Dll1, Dll4, Jag1, and Jag2) and receptor variant (Notch1 and Notch2) analyzed here exhibited a unique profile of interactions, Fringe-dependence, and signaling outcomes. All four ligands were able to bind receptors in cis and in trans, and all ligands trans-activated both receptors, although Jag1-Notch1 signaling was substantially weaker than other ligand-receptor combinations. Cis-interactions were predominantly inhibitory, with the exception of the Dll1- and Dll4-Notch2 pairs, which exhibited cis-activation stronger than trans-activation. Lfng strengthened Delta-mediated trans-activation and weakened Jagged-mediated trans-activation for both receptors. Finally, cis-ligands showed diverse cis-inhibition strengths, which depended on the identity of the trans-ligand as well as the receptor. The map of receptor-ligand-Fringe interaction outcomes revealed here should help guide rational perturbation and control of the Notch pathway.
Collapse
|
8
|
Lam C. Mathematical and In Silico Analysis of Synthetic Inhibitory Circuits That Program Self-Organizing Multicellular Structures. ACS Synth Biol 2024; 13:1925-1940. [PMID: 38781040 DOI: 10.1021/acssynbio.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Bottom-up approaches are becoming increasingly popular for studying multicellular self-organization and development. In contrast to the classic top-down approach, where parts of the organization/developmental process are broken to understand the process, the goal is to build the process to understand it. For example, synthetic circuits have been built to understand how cell-cell communication and differential adhesion can drive multicellular development. The majority of current bottom-up efforts focus on using activatory circuits to engineer and understand development, but efforts with inhibitory circuits have been minimal. Yet, inhibitory circuits are ubiquitous and vital to native developmental processes. Thus, inhibitory circuits are a crucial yet poorly studied facet of bottom-up multicellular development. To demonstrate the potential of inhibitory circuits for building and developing multicellular structures, several synthetic inhibitory circuits that combine engineered cell-cell communication and differential adhesion were designed, and then examined for synthetic development capability using a previously validated in silico framework. These designed inhibitory circuits can build a variety of patterned, self-organized structures and even morphological oscillations. These results support that inhibitory circuits can be powerful tools for building, studying, and understanding developmental processes.
Collapse
Affiliation(s)
- Calvin Lam
- Independent Investigator, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
9
|
Pan Q, Mercker M, Klimovich A, Wittlieb J, Marciniak-Czochra A, Böttger A. Genetic interference with HvNotch provides new insights into the role of the Notch-signalling pathway for developmental pattern formation in Hydra. Sci Rep 2024; 14:8553. [PMID: 38609434 PMCID: PMC11014954 DOI: 10.1038/s41598-024-58837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The Notch-signalling pathway plays an important role in pattern formation in Hydra. Using pharmacological Notch inhibitors (DAPT and SAHM1), it has been demonstrated that HvNotch is required for head regeneration and tentacle patterning in Hydra. HvNotch is also involved in establishing the parent-bud boundary and instructing buds to develop feet and detach from the parent. To further investigate the functions of HvNotch, we successfully constructed NICD (HvNotch intracellular domain)-overexpressing and HvNotch-knockdown transgenic Hydra strains. NICD-overexpressing transgenic Hydra showed a pronounced inhibition on the expression of predicted HvNotch-target genes, suggesting a dominant negative effect of ectopic NICD. This resulted in a "Y-shaped" phenotype, which arises from the parent-bud boundary defect seen in polyps treated with DAPT. Additionally, "multiple heads", "two-headed" and "ectopic tentacles" phenotypes were observed. The HvNotch-knockdown transgenic Hydra with reduced expression of HvNotch exhibited similar, but not identical phenotypes, with the addition of a "two feet" phenotype. Furthermore, we observed regeneration defects in both, overexpression and knockdown strains. We integrated these findings into a mathematical model based on long-range gradients of signalling molecules underlying sharply defined positions of HvNotch-signalling cells at the Hydra tentacle and bud boundaries.
Collapse
Affiliation(s)
- Qin Pan
- Biocenter, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| | - Moritz Mercker
- Institute of Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Alexander Klimovich
- Zoological Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Jörg Wittlieb
- Zoological Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Angelika Böttger
- Biocenter, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
10
|
Thambyrajah R, Maqueda M, Neo WH, Imbach K, Guillén Y, Grases D, Fadlullah Z, Gambera S, Matteini F, Wang X, Calero-Nieto FJ, Esteller M, Florian MC, Porta E, Benedito R, Göttgens B, Lacaud G, Espinosa L, Bigas A. Cis inhibition of NOTCH1 through JAGGED1 sustains embryonic hematopoietic stem cell fate. Nat Commun 2024; 15:1604. [PMID: 38383534 PMCID: PMC10882055 DOI: 10.1038/s41467-024-45716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium (HE) in the aorta- gonads-and mesonephros (AGM) region and reside within Intra-aortic hematopoietic clusters (IAHC) along with hematopoietic progenitors (HPC). The signalling mechanisms that distinguish HSCs from HPCs are unknown. Notch signaling is essential for arterial specification, IAHC formation and HSC activity, but current studies on how Notch segregates these different fates are inconsistent. We now demonstrate that Notch activity is highest in a subset of, GFI1 + , HSC-primed HE cells, and is gradually lost with HSC maturation. We uncover that the HSC phenotype is maintained due to increasing levels of NOTCH1 and JAG1 interactions on the surface of the same cell (cis) that renders the NOTCH1 receptor from being activated. Forced activation of the NOTCH1 receptor in IAHC activates a hematopoietic differentiation program. Our results indicate that NOTCH1-JAG1 cis-inhibition preserves the HSC phenotype in the hematopoietic clusters of the embryonic aorta.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- Program in Cancer Research. Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red (CIBER), Madrid, Spain.
| | - Maria Maqueda
- Program in Cancer Research. Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Barcelona, Spain
| | - Wen Hao Neo
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Kathleen Imbach
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Yolanda Guillén
- Program in Cancer Research. Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Barcelona, Spain
| | - Daniela Grases
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Zaki Fadlullah
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Stefano Gambera
- Molecular Genetics of Angiogenesis Group. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francesca Matteini
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), Barcelona, Spain
| | - Xiaonan Wang
- Department of Haematology, Wellcome - MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- School of Public Health, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fernando J Calero-Nieto
- Department of Haematology, Wellcome - MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red (CIBER), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Maria Carolina Florian
- Centro de Investigacion Biomedica en Red (CIBER), Madrid, Spain
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), Barcelona, Spain
| | - Eduard Porta
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Berthold Göttgens
- Department of Haematology, Wellcome - MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Lluis Espinosa
- Program in Cancer Research. Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Barcelona, Spain
- Centro de Investigacion Biomedica en Red (CIBER), Madrid, Spain
| | - Anna Bigas
- Program in Cancer Research. Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red (CIBER), Madrid, Spain.
| |
Collapse
|
11
|
Yan W, Menjivar RE, Bonilla ME, Steele NG, Kemp SB, Du W, Donahue KL, Brown K, Carpenter ES, Avritt FR, Irizarry-Negron VM, Yang S, Burns WR, Zhang Y, di Magliano MP, Bednar F. Notch Signaling Regulates Immunosuppressive Tumor-Associated Macrophage Function in Pancreatic Cancer. Cancer Immunol Res 2024; 12:91-106. [PMID: 37931247 PMCID: PMC10842043 DOI: 10.1158/2326-6066.cir-23-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/08/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor survival of patients with PDA has been attributed to a high rate of early metastasis and low efficacy of current therapies, which partly result from its complex immunosuppressive tumor microenvironment. Previous studies from our group and others have shown that tumor-associated macrophages (TAM) are instrumental in maintaining immunosuppression in PDA. Here, we explored the role of Notch signaling, a key regulator of immune response, within the PDA microenvironment. We identified Notch pathway components in multiple immune cell types within human and mouse pancreatic cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, expressed high levels of Notch receptors, with cognate ligands such as JAG1 expressed on tumor epithelial cells, endothelial cells, and fibroblasts. TAMs with activated Notch signaling expressed higher levels of immunosuppressive mediators, suggesting that Notch signaling plays a role in macrophage polarization within the PDA microenvironment. Genetic inhibition of Notch in myeloid cells led to reduced tumor size and decreased macrophage infiltration in an orthotopic PDA model. Combination of pharmacologic Notch inhibition with PD-1 blockade resulted in increased cytotoxic T-cell infiltration, tumor cell apoptosis, and smaller tumor size. Our work implicates macrophage Notch signaling in the establishment of immunosuppression and indicates that targeting the Notch pathway may improve the efficacy of immune-based therapies in patients with PDA.
Collapse
Affiliation(s)
- Wei Yan
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rosa E. Menjivar
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica E. Bonilla
- Cancer Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nina G. Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samantha B. Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katelyn L. Donahue
- Cancer Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eileen S. Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor MI 48109, USA
| | - Faith R. Avritt
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sion Yang
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - William R. Burns
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Cancer Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Clements R, Smith T, Cowart L, Zhumi J, Sherrod A, Cahill A, Hunter GL. Myosin XV is a negative regulator of signaling filopodia during long-range lateral inhibition. Dev Biol 2024; 505:110-121. [PMID: 37956923 PMCID: PMC10767839 DOI: 10.1016/j.ydbio.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
The self-organization of cells during development is essential for the formation of healthy tissues and requires the coordination of cell activities at local scales. Cytonemes, or signaling filopodia, are dynamic actin-based cellular protrusions that allow cells to engage in contact mediated signaling at a distance. While signaling filopodia have been shown to support several signaling paradigms during development, less is understood about how these protrusions are regulated. We investigated the role of the plus-end directed, unconventional MyTH4-FERM myosins in regulating signaling filopodia during sensory bristle patterning on the dorsal thorax of the fruit fly Drosophila melanogaster. We found that Myosin XV is required for regulating signaling filopodia dynamics and, as a consequence, lateral inhibition more broadly throughout the patterning epithelium. We found that Myosin XV is required for limiting the length and number of signaling filopodia generated by bristle precursor cells. Cells with additional and longer signaling filopodia due to loss of Myosin XV are not signaling competent, due to altered levels of Delta ligand and Notch receptor along their lengths. We conclude that Myosin XV acts to negatively regulate signaling filopodia, as well as promote the ability of signaling filopodia to engage in long-range Notch signaling. Since Myosin XV isoforms are present across several vertebrate and invertebrate systems, this may have significance for other long-range signaling mechanisms.
Collapse
Affiliation(s)
- Rhiannon Clements
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Tyler Smith
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Luke Cowart
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Jennifer Zhumi
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Alan Sherrod
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Aidan Cahill
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States
| | - Ginger L Hunter
- Department of Biology, Clarkson University, Potsdam, NY, 13699, United States.
| |
Collapse
|
13
|
Chew YH, Marucci L. Mechanistic Model-Driven Biodesign in Mammalian Synthetic Biology. Methods Mol Biol 2024; 2774:71-84. [PMID: 38441759 DOI: 10.1007/978-1-0716-3718-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Mathematical modeling plays a vital role in mammalian synthetic biology by providing a framework to design and optimize design circuits and engineered bioprocesses, predict their behavior, and guide experimental design. Here, we review recent models used in the literature, considering mathematical frameworks at the molecular, cellular, and system levels. We report key challenges in the field and discuss opportunities for genome-scale models, machine learning, and cybergenetics to expand the capabilities of model-driven mammalian cell biodesign.
Collapse
Affiliation(s)
- Yin Hoon Chew
- School of Mathematics, University of Birmingham, Birmingham, UK
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
14
|
van Asten JGM, Latorre M, Karakaya C, Baaijens FPT, Sahlgren CM, Ristori T, Humphrey JD, Loerakker S. A multiscale computational model of arterial growth and remodeling including Notch signaling. Biomech Model Mechanobiol 2023; 22:1569-1588. [PMID: 37024602 PMCID: PMC10511605 DOI: 10.1007/s10237-023-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 04/08/2023]
Abstract
Blood vessels grow and remodel in response to mechanical stimuli. Many computational models capture this process phenomenologically, by assuming stress homeostasis, but this approach cannot unravel the underlying cellular mechanisms. Mechano-sensitive Notch signaling is well-known to be key in vascular development and homeostasis. Here, we present a multiscale framework coupling a constrained mixture model, capturing the mechanics and turnover of arterial constituents, to a cell-cell signaling model, describing Notch signaling dynamics among vascular smooth muscle cells (SMCs) as influenced by mechanical stimuli. Tissue turnover was regulated by both Notch activity, informed by in vitro data, and a phenomenological contribution, accounting for mechanisms other than Notch. This novel framework predicted changes in wall thickness and arterial composition in response to hypertension similar to previous in vivo data. The simulations suggested that Notch contributes to arterial growth in hypertension mainly by promoting SMC proliferation, while other mechanisms are needed to fully capture remodeling. The results also indicated that interventions to Notch, such as external Jagged ligands, can alter both the geometry and composition of hypertensive vessels, especially in the short term. Overall, our model enables a deeper analysis of the role of Notch and Notch interventions in arterial growth and remodeling and could be adopted to investigate therapeutic strategies and optimize vascular regeneration protocols.
Collapse
Affiliation(s)
- Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
15
|
Yoshihara M, Takahashi S. Recent advances in in situ Notch signaling measurement. Front Cell Dev Biol 2023; 11:1244105. [PMID: 37576594 PMCID: PMC10416437 DOI: 10.3389/fcell.2023.1244105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Notch signaling is necessary for the development of many organ systems, including the nervous system, biliary system, and visual and auditory sensory systems. This signaling pathway is composed of DSL ligands and Notch receptors. Upon the interaction of those components between neighboring cells, the intracellular domain of the Notch receptor is cleaved from the cell membrane to act as a transcription factor. To date, many mechanistic insights, including lateral inhibition and lateral induction, have been proposed from observation of patterning morphogenesis and expression profiles of Notch signaling-associated molecules. The lack of a direct measurement method for Notch signaling, however, has impeded the examination of those mechanistic insights. In this mini-review, recent advances in the direct measurement of Notch signaling are introduced with a focus on the application of genetic modification of Notch receptors with the components of the Cre/loxP system and Gal4/UAS system. The combination of such conventional genetic techniques is opening a new era in Notch signaling biology by direct visualization of Notch "signaling" in addition to Notch signaling-associated molecules.
Collapse
Affiliation(s)
- Masaharu Yoshihara
- Department of Primary Care and Medical Education, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
16
|
Clements R, Smith T, Cowart L, Zhumi J, Sherrod A, Cahill A, Hunter GL. Myosin XV is a negative regulator of signaling filopodia during long-range lateral inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.547992. [PMID: 37461640 PMCID: PMC10350058 DOI: 10.1101/2023.07.07.547992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The self-organization of cells during development is essential for the formation of healthy tissues, and requires the coordination of cell activities at local scales. Cytonemes, or signaling filopodia, are dynamic actin-based cellular protrusions that allow cells to engage in contact mediated signaling at a distance. While signaling filopodia have been shown to support several signaling paradigms during development, less is understood about how these protrusions are regulated. We investigated the role of the plus-end directed, unconventional MyTH4-FERM myosins in regulating signaling filopodia during sensory bristle patterning on the dorsal thorax of the fruit fly Drosophila melanogaster. We found that Myosin XV is required for regulating signaling filopodia dynamics and, as a consequence, lateral inhibition more broadly throughout the patterning epithelium. We found that Myosin XV is required for limiting the length and number of signaling filopodia generated by bristle precursor cells. Cells with additional and longer signaling filopodia due to loss of Myosin XV are not signaling competent, due to altered levels of Delta ligand and Notch receptor along their lengths. We conclude that Myosin XV acts to negatively regulate signaling filopodia, as well as promote the ability of signaling filopodia to engage in long-range Notch signaling. Since Myosin XV is present across several vertebrate and invertebrate systems, this may have significance for other long-range signaling mechanisms.
Collapse
Affiliation(s)
| | - Tyler Smith
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Luke Cowart
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Jennifer Zhumi
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Alan Sherrod
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Aidan Cahill
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| | - Ginger L Hunter
- Department of Biology, Clarkson University, Potsdam, NY, 13699, USA
| |
Collapse
|
17
|
Roth G, Misailidis G, Pappa M, Ferralli J, Tsiairis CD. Unidirectional and phase-gated signaling synchronizes murine presomitic mesoderm cells. Dev Cell 2023:S1534-5807(23)00155-7. [PMID: 37098349 DOI: 10.1016/j.devcel.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/06/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
Oscillator systems achieve synchronization when oscillators are coupled. The presomitic mesoderm is a system of cellular oscillators, where coordinated genetic activity is necessary for proper periodic generation of somites. While Notch signaling is required for the synchronization of these cells, it is unclear what information the cells exchange and how they react to this information to align their oscillatory pace with that of their neighbors. Combining mathematical modeling and experimental data, we found that interaction between murine presomitic mesoderm cells is controlled by a phase-gated and unidirectional coupling mechanism and results in deceleration of their oscillation pace upon Notch signaling. This mechanism predicts that isolated populations of well-mixed cells synchronize, revealing a stereotypical synchronization in the mouse PSM and contradicting expectations from previously applied theoretical approaches. Collectively, our theoretical and experimental findings reveal the underlying coupling mechanisms of the presomitic mesoderm cells and provide a framework to quantitatively characterize their synchronization.
Collapse
Affiliation(s)
- Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Georgios Misailidis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Maria Pappa
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Jacqueline Ferralli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Charisios D Tsiairis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| |
Collapse
|
18
|
Kuyyamudi C, Menon SN, Sinha S. Precision of morphogen-driven tissue patterning during development is enhanced through contact-mediated cellular interactions. Phys Rev E 2023; 107:024407. [PMID: 36932610 DOI: 10.1103/physreve.107.024407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Cells in developing embryos reliably differentiate to attain location-specific fates, despite fluctuations in morphogen concentrations that provide positional information and in molecular processes that interpret it. We show that local contact-mediated cell-cell interactions utilize inherent asymmetry in the response of patterning genes to the global morphogen signal yielding a bimodal response. This results in robust developmental outcomes with a consistent identity for the dominant gene at each cell, substantially reducing the uncertainty in the location of boundaries between distinct fates.
Collapse
Affiliation(s)
- Chandrashekar Kuyyamudi
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
19
|
Chen D, Forghany Z, Liu X, Wang H, Merks RMH, Baker DA. A new model of Notch signalling: Control of Notch receptor cis-inhibition via Notch ligand dimers. PLoS Comput Biol 2023; 19:e1010169. [PMID: 36668673 PMCID: PMC9891537 DOI: 10.1371/journal.pcbi.1010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 02/01/2023] [Accepted: 12/30/2022] [Indexed: 01/22/2023] Open
Abstract
All tissue development and replenishment relies upon the breaking of symmetries leading to the morphological and operational differentiation of progenitor cells into more specialized cells. One of the main engines driving this process is the Notch signal transduction pathway, a ubiquitous signalling system found in the vast majority of metazoan cell types characterized to date. Broadly speaking, Notch receptor activity is governed by a balance between two processes: 1) intercellular Notch transactivation triggered via interactions between receptors and ligands expressed in neighbouring cells; 2) intracellular cis inhibition caused by ligands binding to receptors within the same cell. Additionally, recent reports have also unveiled evidence of cis activation. Whilst context-dependent Notch receptor clustering has been hypothesized, to date, Notch signalling has been assumed to involve an interplay between receptor and ligand monomers. In this study, we demonstrate biochemically, through a mutational analysis of DLL4, both in vitro and in tissue culture cells, that Notch ligands can efficiently self-associate. We found that the membrane proximal EGF-like repeat of DLL4 was necessary and sufficient to promote oligomerization/dimerization. Mechanistically, our experimental evidence supports the view that DLL4 ligand dimerization is specifically required for cis-inhibition of Notch receptor activity. To further substantiate these findings, we have adapted and extended existing ordinary differential equation-based models of Notch signalling to take account of the ligand dimerization-dependent cis-inhibition reported here. Our new model faithfully recapitulates our experimental data and improves predictions based upon published data. Collectively, our work favours a model in which net output following Notch receptor/ligand binding results from ligand monomer-driven Notch receptor transactivation (and cis activation) counterposed by ligand dimer-mediated cis-inhibition.
Collapse
Affiliation(s)
- Daipeng Chen
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Zary Forghany
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
| | - Xinxin Liu
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
| | - Haijiang Wang
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
- Department of General Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Roeland M. H. Merks
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- * E-mail: (RMHM); (DAB)
| | - David A. Baker
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
- * E-mail: (RMHM); (DAB)
| |
Collapse
|
20
|
Yan W, Steele NG, Kemp SB, Menjivar RE, Du W, Carpenter ES, Donahue KL, Brown KL, Irizarry-Negron V, Yang S, Burns WR, Zhang Y, di Magliano MP, Bednar F. Notch signaling regulates immunosuppressive tumor-associated macrophage function in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523584. [PMID: 36711890 PMCID: PMC9882066 DOI: 10.1101/2023.01.11.523584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor survival of patients with PDA has been attributed to a high rate of early metastasis and low efficacy of current therapies, which partly result from its complex immunosuppressive tumor microenvironment. Previous studies from our group and others have shown that tumor-associated macrophages (TAMs) are instrumental in maintaining immunosuppression in PDA. Here, we explored the role of Notch signaling, a key regulator of immune response, within the PDA microenvironment. We identified Notch pathway components in multiple immune cell types within human and mouse pancreatic cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, express high levels of Notch receptors with cognate ligands such as JAG1 expressed on tumor epithelial cells, endothelial cells and fibroblasts. TAMs with activated Notch signaling expressed higher levels of immunosuppressive mediators including arginase 1 (Arg1) suggesting that Notch signaling plays a role in macrophage polarization within the PDA microenvironment. Combination of Notch inhibition with PD-1 blockade resulted in increased cytotoxic T cell infiltration, tumor cell apoptosis, and smaller tumor size. Our work implicates macrophage Notch signaling in the establishment of immunosuppression and indicates that targeting the Notch pathway may improve the efficacy of immune-based therapies in PDA patients.
Collapse
Affiliation(s)
- Wei Yan
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nina G. Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samantha B. Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rosa E. Menjivar
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eileen S. Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor Ml 48109, USA
| | - Katelyn L. Donahue
- Cancer Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristee L. Brown
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sion Yang
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - William R. Burns
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Kim JW, Ko JH, Sage J. DLL3 regulates Notch signaling in small cell lung cancer. iScience 2022; 25:105603. [PMID: 36483011 PMCID: PMC9722452 DOI: 10.1016/j.isci.2022.105603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor heterogeneity plays a critical role in tumor development and response to treatment. In small-cell lung cancer (SCLC), intratumoral heterogeneity is driven in part by the Notch signaling pathway, which reprograms neuroendocrine cancer cells to a less/non-neuroendocrine state. Here we investigated the atypical Notch ligand DLL3 as a biomarker of the neuroendocrine state and a regulator of cell-cell interactions in SCLC. We first built a mathematical model to predict the impact of DLL3 expression on SCLC cell populations. We next tested this model using a single-chain variable fragment (scFv) to track DLL3 expression in vivo and a new mouse model of SCLC with inducible expression of DLL3 in SCLC tumors. We found that high levels of DLL3 promote the expansion of a SCLC cell population with lower expression levels of both neuroendocrine and non-neuroendocrine markers. This work may influence how DLL3-targeting therapies are used in SCLC patients.
Collapse
Affiliation(s)
- Jun W. Kim
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
- Department of Genetics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
| | - Julie H. Ko
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
- Department of Genetics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
- Department of Genetics, Stanford University, 265 Campus Drive, SIM1 G2078, Stanford, CA, USA
| |
Collapse
|
22
|
Wang S, Garcia-Ojalvo J, Elowitz MB. Periodic spatial patterning with a single morphogen. Cell Syst 2022; 13:1033-1047.e7. [PMID: 36435178 DOI: 10.1016/j.cels.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/13/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022]
Abstract
During multicellular development, periodic spatial patterning systems generate repetitive structures, such as digits, vertebrae, and teeth. Turing patterning provides a foundational paradigm for understanding such systems. The simplest Turing systems are believed to require at least two morphogens to generate periodic patterns. Here, using mathematical modeling, we show that a simpler circuit, including only a single diffusible morphogen, is sufficient to generate long-range, spatially periodic patterns that propagate outward from transient initiating perturbations and remain stable after the perturbation is removed. Furthermore, an additional bistable intracellular feedback or operation on a growing cell lattice can make patterning robust to noise. Together, these results show that a single morphogen can be sufficient for robust spatial pattern formation and should provide a foundation for engineering pattern formation in the emerging field of synthetic developmental biology.
Collapse
Affiliation(s)
- Sheng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
23
|
Zamfirescu AM, Yatsenko AS, Shcherbata HR. Notch signaling sculpts the stem cell niche. Front Cell Dev Biol 2022; 10:1027222. [PMID: 36605720 PMCID: PMC9810114 DOI: 10.3389/fcell.2022.1027222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Adult stem cells depend on their niches for regulatory signaling that controls their maintenance, division, and their progeny differentiation. While communication between various types of stem cells and their niches is becoming clearer, the process of stem cell niche establishment is still not very well understood. Model genetic organisms provide simplified systems to address various complex questions, for example, how is a stem cell niche formed? What signaling cascades induce the stem cell niche formation? Are the mechanisms of stem cell niche formation conserved? Notch signaling is an evolutionarily conserved pathway first identified in fruit flies, crucial in fate acquisition and spatiotemporal patterning. While the core logic behind its activity is fairly simple and requires direct cell-cell interaction, it reaches an astonishing complexity and versatility by combining its different modes of action. Subtleties such as equivalency between communicating cells, their physical distance, receptor and ligand processing, and endocytosis can have an effect on the way the events unfold, and this review explores some important general mechanisms of action, later on focusing on its involvement in stem cell niche formation. First, looking at invertebrates, we will examine how Notch signaling induces the formation of germline stem cell niche in male and female Drosophila. In the developing testis, a group of somatic gonadal precursor cells receive Delta signals from the gut, activating Notch signaling and sealing their fate as niche cells even before larval hatching. Meanwhile, the ovarian germline stem cell niche is built later during late larval stages and requires a two-step process that involves terminal filament formation and cap cell specification. Intriguingly, double security mechanisms of Notch signaling activation coordinated by the soma or the germline control both steps to ensure the robustness of niche assembly. Second, in the vast domains of mammalian cellular signaling, there is an emerging picture of Notch being an active player in a variety of tissues in health and disease. Notch involvement has been shown in stem cell niche establishment in multiple organs, including the brain, muscle, and intestine, where the stem cell niches are essential for the maintenance of adult stem cells. But adult stem cells are not the only cells looking for a home. Cancer stem cells use Notch signaling at specific stages to gain an advantage over endogenous tissue and overpower it, at the same time acquiring migratory and invasive abilities to claim new tissues (e.g., bone) as their territory. Moreover, in vitro models such as organoids reveal similar Notch employment when it comes to the developing stem cell niches. Therefore, a better understanding of the processes regulating stem cell niche assembly is key for the fields of stem cell biology and regenerative medicines.
Collapse
Affiliation(s)
| | | | - Halyna R. Shcherbata
- Mount Desert Island Biological Laboratory, Bar Harbor, ME, United States,*Correspondence: Halyna R. Shcherbata,
| |
Collapse
|
24
|
van Asten JGM, Ristori T, Nolan DR, Lally C, Baaijens FPT, Sahlgren CM, Loerakker S. Computational analysis of the role of mechanosensitive Notch signaling in arterial adaptation to hypertension. J Mech Behav Biomed Mater 2022; 133:105325. [PMID: 35839633 PMCID: PMC7613661 DOI: 10.1016/j.jmbbm.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
Arteries grow and remodel in response to mechanical stimuli. Hypertension, for example, results in arterial wall thickening. Cell-cell Notch signaling between vascular smooth muscle cells (VSMCs) is known to be involved in this process, but the underlying mechanisms are still unclear. Here, we investigated whether Notch mechanosensitivity to strain may regulate arterial thickening in hypertension. We developed a multiscale computational framework by coupling a finite element model of arterial mechanics, including residual stress, to an agent-based model of mechanosensitive Notch signaling, to predict VSMC phenotypes as an indicator of growth and remodeling. Our simulations revealed that the sensitivity of Notch to strain at mean blood pressure may be a key mediator of arterial thickening in hypertensive arteries. Further simulations showed that loss of residual stress can have synergistic effects with hypertension, and that changes in the expression of Notch receptors, but not Jagged ligands, may be used to control arterial growth and remodeling and to intensify or counteract hypertensive thickening. Overall, we identify Notch mechanosensitivity as a potential mediator of vascular adaptation, and we present a computational framework that can facilitate the testing of new therapeutic and regenerative strategies.
Collapse
Affiliation(s)
- Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David R Nolan
- School of Engineering and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- School of Engineering and Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
25
|
Vázquez-Ulloa E, Lin KL, Lizano M, Sahlgren C. Reversible and bidirectional signaling of notch ligands. Crit Rev Biochem Mol Biol 2022; 57:377-398. [PMID: 36048510 DOI: 10.1080/10409238.2022.2113029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kai-Lan Lin
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genomica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Cecilia Sahlgren
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
26
|
Kuyyamudi C, Menon SN, Sinha S. Contact-mediated signaling enables disorder-driven transitions in cellular assemblies. Phys Rev E 2022; 106:L022401. [PMID: 36109907 DOI: 10.1103/physreve.106.l022401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
We show that, when cells communicate by contact-mediated interactions, heterogeneity in cell shapes and sizes leads to qualitatively distinct collective behavior in the tissue. For intercellular coupling that implements lateral inhibition, such disorder-driven transitions can substantially alter the asymptotic pattern of differentiated cells by modulating their fate choice through changes in the neighborhood geometry. In addition, when contact-induced signals influence inherent cellular oscillations, disorder leads to the emergence of functionally relevant partially-ordered dynamical states.
Collapse
Affiliation(s)
- Chandrashekar Kuyyamudi
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
27
|
Sánchez-Iranzo H, Halavatyi A, Diz-Muñoz A. Strength of interactions in the Notch gene regulatory network determines patterning and fate in the notochord. eLife 2022; 11:75429. [PMID: 35658971 PMCID: PMC9170247 DOI: 10.7554/elife.75429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Development of multicellular organisms requires the generation of gene expression patterns that determines cell fate and organ shape. Groups of genetic interactions known as Gene Regulatory Networks (GRNs) play a key role in the generation of such patterns. However, how the topology and parameters of GRNs determine patterning in vivo remains unclear due to the complexity of most experimental systems. To address this, we use the zebrafish notochord, an organ where coin-shaped precursor cells are initially arranged in a simple unidimensional geometry. These cells then differentiate into vacuolated and sheath cells. Using newly developed transgenic tools together with in vivo imaging, we identify jag1a and her6/her9 as the main components of a Notch GRN that generates a lateral inhibition pattern and determines cell fate. Making use of this experimental system and mathematical modeling we show that lateral inhibition patterning is promoted when ligand-receptor interactions are stronger within the same cell than in neighboring cells. Altogether, we establish the zebrafish notochord as an experimental system to study pattern generation, and identify and characterize how the properties of GRNs determine self-organization of gene patterning and cell fate.
Collapse
Affiliation(s)
- Héctor Sánchez-Iranzo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Aliaksandr Halavatyi
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
28
|
Bajpai S, Chelakkot R, Prabhakar R, Inamdar MM. Role of Delta-Notch signalling molecules on cell-cell adhesion in determining heterogeneous chemical and cell morphological patterning. SOFT MATTER 2022; 18:3505-3520. [PMID: 35438097 DOI: 10.1039/d2sm00064d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell mechanics and motility are responsible for collective motion of cells that result in overall deformation of epithelial tissues. On the other hand, contact-dependent cell-cell signalling is responsible for generating a large variety of intricate, self-organized, spatial patterns of the signalling molecules. Moreover, it is becoming increasingly clear that the combined mechanochemical patterns of cell shape/size and signalling molecules in the tissues, for example, in cancerous and sensory epithelium, are governed by mechanochemical coupling between chemical signalling and cell mechanics. However, a clear quantitative picture of how these two aspects of tissue dynamics, i.e., signalling and mechanics, lead to pattern and form is still emerging. Although, a number of recent experiments demonstrate that cell mechanics, cell motility, and cell-cell signalling are tightly coupled in many morphogenetic processes, relatively few modeling efforts have focused on an integrated approach. We extend the vertex model of an epithelial monolayer to account for contact-dependent signalling between adjacent cells and between non-adjacent neighbors through long protrusional contacts with a feedback mechanism wherein the adhesive strength between adjacent cells is controlled by the expression of the signalling molecules in those cells. Local changes in cell-cell adhesion lead to changes in cell shape and size, which in turn drives changes in the levels of signalling molecules. Our simulations show that even this elementary two-way coupling of chemical signalling and cell mechanics is capable of giving rise to a rich variety of mechanochemical patterns in epithelial tissues. In particular, under certain parametric conditions, bimodal distributions in cell size and shape are obtained, which resemble experimental observations in cancerous and sensory tissues.
Collapse
Affiliation(s)
- Supriya Bajpai
- IITB-Monash Research Academy, Mumbai 400076, India.
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
29
|
Lam C, Saluja S, Courcoubetis G, Yu D, Chung C, Courte J, Morsut L. Parameterized Computational Framework for the Description and Design of Genetic Circuits of Morphogenesis Based on Contact-Dependent Signaling and Changes in Cell-Cell Adhesion. ACS Synth Biol 2022; 11:1417-1439. [PMID: 35363477 PMCID: PMC10389258 DOI: 10.1021/acssynbio.0c00369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthetic development is a nascent field of research that uses the tools of synthetic biology to design genetic programs directing cellular patterning and morphogenesis in higher eukaryotic cells, such as mammalian cells. One specific example of such synthetic genetic programs was based on cell-cell contact-dependent signaling using synthetic Notch pathways and was shown to drive the formation of multilayered spheroids by modulating cell-cell adhesion via differential expression of cadherin family proteins in a mouse fibroblast cell line (L929). The design method for these genetic programs relied on trial and error, which limited the number of possible circuits and parameter ranges that could be explored. Here, we build a parameterized computational framework that, given a cell-cell communication network driving changes in cell adhesion and initial conditions as inputs, predicts developmental trajectories. We first built a general computational framework where contact-dependent cell-cell signaling networks and changes in cell-cell adhesion could be designed in a modular fashion. We then used a set of available in vitro results (that we call the "training set" in analogy to similar pipelines in the machine learning field) to parameterize the computational model with values for adhesion and signaling. We then show that this parameterized model can qualitatively predict experimental results from a "testing set" of available in vitro data that varied the genetic network in terms of adhesion combinations, initial number of cells, and even changes to the network architecture. Finally, this parameterized model is used to recommend novel network implementation for the formation of a four-layered structure that has not been reported previously. The framework that we develop here could function as a testing ground to identify the reachable space of morphologies that can be obtained by controlling contact-dependent cell-cell communications and adhesion with these molecular tools and in this cellular system. Additionally, we discuss how the model could be expanded to include other forms of communication or effectors for the computational design of the next generation of synthetic developmental trajectories.
Collapse
Affiliation(s)
- Calvin Lam
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - Sajeev Saluja
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - George Courcoubetis
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484, United States
| | - Dottie Yu
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - Christian Chung
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - Josquin Courte
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-9080, United States
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089-1111, United States
| |
Collapse
|
30
|
Karakaya C, van Asten JGM, Ristori T, Sahlgren CM, Loerakker S. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol 2022; 21:5-54. [PMID: 34613528 PMCID: PMC8807458 DOI: 10.1007/s10237-021-01521-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
31
|
Thambyrajah R, Bigas A. Notch Signaling in HSC Emergence: When, Why and How. Cells 2022; 11:cells11030358. [PMID: 35159166 PMCID: PMC8833884 DOI: 10.3390/cells11030358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
The hematopoietic stem cell (HSC) sustains blood homeostasis throughout life in vertebrates. During embryonic development, HSCs emerge from the aorta-gonads and mesonephros (AGM) region along with hematopoietic progenitors within hematopoietic clusters which are found in the dorsal aorta, the main arterial vessel. Notch signaling, which is essential for arterial specification of the aorta, is also crucial in hematopoietic development and HSC activity. In this review, we will present and discuss the evidence that we have for Notch activity in hematopoietic cell fate specification and the crosstalk with the endothelial and arterial lineage. The core hematopoietic program is conserved across vertebrates and here we review studies conducted using different models of vertebrate hematopoiesis, including zebrafish, mouse and in vitro differentiated Embryonic stem cells. To fulfill the goal of engineering HSCs in vitro, we need to understand the molecular processes that modulate Notch signaling during HSC emergence in a temporal and spatial context. Here, we review relevant contributions from different model systems that are required to specify precursors of HSC and HSC activity through Notch interactions at different stages of development.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, 08003 Barcelona, Spain
- Correspondence: (R.T.); (A.B.); Tel.: +34-933160437 (R.T.); +34-933160440 (A.B.)
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, 08003 Barcelona, Spain
- Josep Carreras Leukemia Research Institute, 08003 Barcelona, Spain
- Correspondence: (R.T.); (A.B.); Tel.: +34-933160437 (R.T.); +34-933160440 (A.B.)
| |
Collapse
|
32
|
Hadjivasiliou Z, Hunter G. Talking to your neighbors across scales: Long-distance Notch signaling during patterning. Curr Top Dev Biol 2022; 150:299-334. [DOI: 10.1016/bs.ctdb.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Kuyyamudi C, Menon SN, Sinha S. Morphogen-regulated contact-mediated signaling between cells can drive the transitions underlying body segmentation in vertebrates. Phys Biol 2021; 19. [PMID: 34670199 DOI: 10.1088/1478-3975/ac31a3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022]
Abstract
We propose a unified mechanism that reproduces the sequence of dynamical transitions observed during somitogenesis, the process of body segmentation during embryonic development, that is invariant across all vertebrate species. This is achieved by combining inter-cellular interactions mediated via receptor-ligand coupling with global spatial heterogeneity introduced through a morphogen gradient known to occur along the anteroposterior axis. Our model reproduces synchronized oscillations in the gene expression in cells at the anterior of the presomitic mesoderm as it grows by adding new cells at its posterior, followed by travelling waves and subsequent arrest of activity, with the eventual appearance of somite-like patterns. This framework integrates a boundary-organized pattern formation mechanism, which uses positional information provided by a morphogen gradient, with the coupling-mediated self-organized emergence of collective dynamics, to explain the processes that lead to segmentation.
Collapse
Affiliation(s)
- Chandrashekar Kuyyamudi
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
34
|
Abstract
Notch signalling is a well-conserved signalling pathway that regulates cell fate through cell-cell communication. A typical feature of Notch signalling is ‘lateral inhibition’, whereby two neighbouring cells of equivalent state of differentiation acquire different cell fates. Recently, mathematical and computational approaches have addressed the Notch dynamics in Drosophila neural development. Typical examples of lateral inhibition are observed in the specification of neural stem cells in the embryo and sensory organ precursors in the thorax. In eye disc development, Notch signalling cooperates with other signalling pathways to define the evenly spaced positioning of the photoreceptor cells. The interplay between Notch and epidermal growth factor receptor signalling regulates the timing of neural stem cell differentiation in the optic lobe. In this review, we summarize the theoretical studies that have been conducted to elucidate the Notch dynamics in these systems and discuss the advantages of combining mathematical models with biological experiments.
Collapse
Affiliation(s)
- Tetsuo Yasugi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan.,Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
35
|
Yoshihara M, Nishino T, Yadav MK, Kuno A, Nagata T, Ando H, Takahashi S. Mathematical analysis of the effect of portal vein cells on biliary epithelial cell differentiation through the Delta-Notch signaling pathway. BMC Res Notes 2021; 14:243. [PMID: 34187572 PMCID: PMC8243745 DOI: 10.1186/s13104-021-05656-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/15/2021] [Indexed: 12/01/2022] Open
Abstract
Objective The Delta-Notch signaling pathway induces fine-grained patterns of differentiation from initially homogeneous progenitor cells in many biological contexts, including Drosophila bristle formation, where mathematical modeling reportedly suggests the importance of production rate of the components of this signaling pathway. In contrast, the epithelial differentiation of bile ducts in the developing liver is unique in that it occurs around the portal vein cells, which express extremely high amounts of Delta ligands and act as a disturbance for the amount of Delta ligands in the field by affecting the expression levels of downstream target genes in the cells nearby. In the present study, we mathematically examined the dynamics of the Delta-Notch signaling pathway components in disturbance-driven biliary differentiation, using the model for fine-grained patterns of differentiation. Results A portal vein cell induced a high Notch signal in its neighboring cells, which corresponded to epithelial differentiation, depending on the production rates of Delta ligands and Notch receptors. In addition, this epithelial differentiation tended to occur in conditions where fine-grained patterning was reported to be lacking. These results highlighted the potential importance of the stability towards homogeneity determined by the production rates in Delta ligands and Notch receptors, in a disturbance-dependent epithelial differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05656-y.
Collapse
Affiliation(s)
- Masaharu Yoshihara
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan. .,Laboratory Animal Resource Center, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Teppei Nishino
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Japan
| | - Manoj Kumar Yadav
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nagata
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Hiroyasu Ando
- Division of Policy and Planning Science, Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
36
|
Kuyyamudi C, Menon SN, Sinha S. Contact-mediated cellular communication supplements positional information to regulate spatial patterning during development. Phys Rev E 2021; 103:062409. [PMID: 34271677 DOI: 10.1103/physreve.103.062409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Development in multicellular organisms is marked by a high degree of spatial organization of the cells attaining distinct fates in the embryo. Recent experiments showing that suppression of intercellular interactions can alter the spatial patterns arising during development suggest that cell fates cannot be determined by the exclusive regulation of differential gene expression by morphogen gradients (the conventional view encapsulated in the French flag model). Using a mathematical model that describes the receptor-ligand interaction between cells in close physical proximity, we show that such intercellular signaling can regulate the process of selective gene expression within each cell, allowing information from the cellular neighborhood to influence the process by which the thresholds of morphogen concentration that dictate cell fates adaptively emerge. This results in local modulations of the positional cues provided by the global field set up by the morphogen, allowing interaction-mediated self-organized pattern formation to complement boundary-organized mechanisms in the context of development.
Collapse
Affiliation(s)
- Chandrashekar Kuyyamudi
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| | - Sitabhra Sinha
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
37
|
Wang X, Harrison A. A general principle for spontaneous genetic symmetry breaking and pattern formation within cell populations. J Theor Biol 2021; 526:110809. [PMID: 34119496 DOI: 10.1016/j.jtbi.2021.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Elements within biological systems interact and frequently self-organize from initially disordered states into highly structured patterns. The local self-activation and lateral inhibition mechanism, derived from the coupling between two reacting and diffusing chemicals, has been believed to be one of the main causes for biological pattern formation. Graded positional information can be produced by the limited diffusion of one single signaling molecule through cell populations with no pre-patterns being required. We demonstrate, using multiscale computations, that spontaneous symmetry breaking can be driven within expanding and non-expanding cell populations, without local self-enhancement of activators and long-range inhibition. Instead, cells can self-organize into structured gene patterns via a combination of timing gene expression in cells and the graded positional information which has been coupled to the gene expression. We show that the genetic symmetry breaking in expanding E. coli populations occurs at a critical colony size, which is independent of the cell doubling time but scales with the diffusion speed of the signaling molecule. We also show the quasi-3D structure of gene patterns, and observe that the wave length of periodic genetic stripes is in proportion to the genetic oscillation cycle time and in inverse proportion to cell doubling time. Our results provide insights into relevant biological development processes.
Collapse
Affiliation(s)
- Xiaoliang Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Andrew Harrison
- Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, UK.
| |
Collapse
|
38
|
Abstract
Notch signaling is a conserved system of communication between adjacent cells, influencing numerous cell fate decisions in the development of multicellular organisms. Aberrant signaling is also implicated in many human pathologies. At its core, Notch has a mechanotransduction module that decodes receptor-ligand engagement at the cell surface under force to permit proteolytic cleavage of the receptor, leading to the release of the Notch intracellular domain (NICD). NICD enters the nucleus and acts as a transcriptional effector to regulate expression of Notch-responsive genes. In this article, we review and integrate current understanding of the detailed molecular basis for Notch signal transduction, highlighting quantitative, structural, and dynamic features of this developmentally central signaling mechanism. We discuss the implications of this mechanistic understanding for the functionality of the signaling pathway in different molecular and cellular contexts.
Collapse
Affiliation(s)
- David Sprinzak
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
39
|
Distant activation of Notch signaling induces stem cell niche assembly. PLoS Genet 2021; 17:e1009489. [PMID: 33780456 PMCID: PMC8031783 DOI: 10.1371/journal.pgen.1009489] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022] Open
Abstract
Here we show that multiple modes of Notch signaling activation specify the complexity of spatial cellular interactions necessary for stem cell niche assembly. In particular, we studied the formation of the germline stem cell niche in Drosophila ovaries, which is a two-step process whereby terminal filaments are formed first. Then, terminal filaments signal to the adjacent cap cell precursors, resulting in Notch signaling activation, which is necessary for the lifelong acquisition of stem cell niche cell fate. The genetic data suggest that in order to initiate the process of stem cell niche assembly, Notch signaling is activated among non-equipotent cells via distant induction, where germline Delta is delivered to somatic cells located several diameters away via cellular projections generated by primordial germ cells. At the same time, to ensure the robustness of niche formation, terminal filament cell fate can also be induced by somatic Delta via cis- or trans-inhibition. This exemplifies a double security mechanism that guarantees that the germline stem cell niche is formed, since it is indispensable for the adjacent germline precursor cells to acquire and maintain stemness necessary for successful reproduction. These findings contribute to our understanding of the formation of stem cell niches in their natural environment, which is important for stem cell biology and regenerative medicine. Adult organs often contain a stem cell niche that maintains stem cells necessary for the replenishment of different types of terminally differentiated cells that are continuously lost. This study reveals that various modes of Notch signaling activation induce the formation of the germline stem cell niche in Drosophila. We show for the first time that even among non-equipotent cells, Notch signaling can be trans-activated via distant induction mode, where the ligand Delta is delivered via cellular protrusions to the somatic stem cell niche precursors located several cell diameters away. Moreover, there is a second security mechanism controlled by the soma that additionally ensures that the stem cell niche is formed. In the stem cell niche precursors, Notch signaling can be locally inhibited by the somatic Delta. While Notch signaling trans-inhibition has been proposed via mathematical modelling, our findings show that a group of cells that have high Delta can be seen in a living organism, confirming that this mode of Notch signaling inhibition by trans-Delta exists in vivo. This work provides significant advances in the understanding of Notch signaling and the stem cell niche formation, which is important for the fields of stem cell biology and regenerative medicine.
Collapse
|
40
|
Bajpai S, Prabhakar R, Chelakkot R, Inamdar MM. Role of cell polarity dynamics and motility in pattern formation due to contact-dependent signalling. J R Soc Interface 2021; 18:20200825. [PMID: 33561375 DOI: 10.1098/rsif.2020.0825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A key challenge in biology is to understand how spatio-temporal patterns and structures arise during the development of an organism. An initial aggregate of spatially uniform cells develops and forms the differentiated structures of a fully developed organism. On the one hand, contact-dependent cell-cell signalling is responsible for generating a large number of complex, self-organized, spatial patterns in the distribution of the signalling molecules. On the other hand, the motility of cells coupled with their polarity can independently lead to collective motion patterns that depend on mechanical parameters influencing tissue deformation, such as cellular elasticity, cell-cell adhesion and active forces generated by actin and myosin dynamics. Although modelling efforts have, thus far, treated cell motility and cell-cell signalling separately, experiments in recent years suggest that these processes could be tightly coupled. Hence, in this paper, we study how the dynamics of cell polarity and migration influence the spatiotemporal patterning of signalling molecules. Such signalling interactions can occur only between cells that are in physical contact, either directly at the junctions of adjacent cells or through cellular protrusional contacts. We present a vertex model which accounts for contact-dependent signalling between adjacent cells and between non-adjacent neighbours through long protrusional contacts that occur along the orientation of cell polarization. We observe a rich variety of spatiotemporal patterns of signalling molecules that is influenced by polarity dynamics of the cells, relative strengths of adjacent and non-adjacent signalling interactions, range of polarized interaction, signalling activation threshold, relative time scales of signalling and polarity orientation, and cell motility. Though our results are developed in the context of Delta-Notch signalling, they are sufficiently general and can be extended to other contact dependent morpho-mechanical dynamics.
Collapse
Affiliation(s)
- Supriya Bajpai
- IITB-Monash Research Academy, Mumbai 400076, India.,Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.,Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ranganathan Prabhakar
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
41
|
Stepanova D, Byrne HM, Maini PK, Alarcón T. A multiscale model of complex endothelial cell dynamics in early angiogenesis. PLoS Comput Biol 2021; 17:e1008055. [PMID: 33411727 PMCID: PMC7817011 DOI: 10.1371/journal.pcbi.1008055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/20/2021] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
We introduce a hybrid two-dimensional multiscale model of angiogenesis, the process by which endothelial cells (ECs) migrate from a pre-existing vascular bed in response to local environmental cues and cell-cell interactions, to create a new vascular network. Recent experimental studies have highlighted a central role of cell rearrangements in the formation of angiogenic networks. Our model accounts for this phenomenon via the heterogeneous response of ECs to their microenvironment. These cell rearrangements, in turn, dynamically remodel the local environment. The model reproduces characteristic features of angiogenic sprouting that include branching, chemotactic sensitivity, the brush border effect, and cell mixing. These properties, rather than being hardwired into the model, emerge naturally from the gene expression patterns of individual cells. After calibrating and validating our model against experimental data, we use it to predict how the structure of the vascular network changes as the baseline gene expression levels of the VEGF-Delta-Notch pathway, and the composition of the extracellular environment, vary. In order to investigate the impact of cell rearrangements on the vascular network structure, we introduce the mixing measure, a scalar metric that quantifies cell mixing as the vascular network grows. We calculate the mixing measure for the simulated vascular networks generated by ECs of different lineages (wild type cells and mutant cells with impaired expression of a specific receptor). Our results show that the time evolution of the mixing measure is directly correlated to the generic features of the vascular branching pattern, thus, supporting the hypothesis that cell rearrangements play an essential role in sprouting angiogenesis. Furthermore, we predict that lower cell rearrangement leads to an imbalance between branching and sprout elongation. Since the computation of this statistic requires only individual cell trajectories, it can be computed for networks generated in biological experiments, making it a potential biomarker for pathological angiogenesis. Angiogenesis, the process by which new blood vessels are formed by sprouting from the pre-existing vascular bed, plays a key role in both physiological and pathological processes, including tumour growth. The structure of a growing vascular network is determined by the coordinated behaviour of endothelial cells in response to various signalling cues. Recent experimental studies have highlighted the importance of cell rearrangements as a driver for sprout elongation. However, the functional role of this phenomenon remains unclear. We formulate a new multiscale model of angiogenesis which, by accounting explicitly for the complex dynamics of endothelial cells within growing angiogenic sprouts, is able to reproduce generic features of angiogenic structures (branching, chemotactic sensitivity, cell mixing, etc.) as emergent properties of its dynamics. We validate our model against experimental data and then use it to quantify the phenomenon of cell mixing in vascular networks generated by endothelial cells of different lineages. Our results show that there is a direct correlation between the time evolution of cell mixing in a growing vascular network and its branching structure, thus paving the way for understanding the functional role of cell rearrangements in angiogenesis.
Collapse
Affiliation(s)
- Daria Stepanova
- Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- * E-mail:
| | - Helen M. Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Tomás Alarcón
- Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| |
Collapse
|
42
|
Nunley H, Nagashima M, Martin K, Lorenzo Gonzalez A, Suzuki SC, Norton DA, Wong ROL, Raymond PA, Lubensky DK. Defect patterns on the curved surface of fish retinae suggest a mechanism of cone mosaic formation. PLoS Comput Biol 2020; 16:e1008437. [PMID: 33320887 PMCID: PMC7771878 DOI: 10.1371/journal.pcbi.1008437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/29/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022] Open
Abstract
The outer epithelial layer of zebrafish retinae contains a crystalline array of cone photoreceptors, called the cone mosaic. As this mosaic grows by mitotic addition of new photoreceptors at the rim of the hemispheric retina, topological defects, called "Y-Junctions", form to maintain approximately constant cell spacing. The generation of topological defects due to growth on a curved surface is a distinct feature of the cone mosaic not seen in other well-studied biological patterns like the R8 photoreceptor array in the Drosophila compound eye. Since defects can provide insight into cell-cell interactions responsible for pattern formation, here we characterize the arrangement of cones in individual Y-Junction cores as well as the spatial distribution of Y-junctions across entire retinae. We find that for individual Y-junctions, the distribution of cones near the core corresponds closely to structures observed in physical crystals. In addition, Y-Junctions are organized into lines, called grain boundaries, from the retinal center to the periphery. In physical crystals, regardless of the initial distribution of defects, defects can coalesce into grain boundaries via the mobility of individual particles. By imaging in live fish, we demonstrate that grain boundaries in the cone mosaic instead appear during initial mosaic formation, without requiring defect motion. Motivated by this observation, we show that a computational model of repulsive cell-cell interactions generates a mosaic with grain boundaries. In contrast to paradigmatic models of fate specification in mostly motionless cell packings, this finding emphasizes the role of cell motion, guided by cell-cell interactions during differentiation, in forming biological crystals. Such a route to the formation of regular patterns may be especially valuable in situations, like growth on a curved surface, where the resulting long-ranged, elastic, effective interactions between defects can help to group them into grain boundaries.
Collapse
Affiliation(s)
- Hayden Nunley
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mikiko Nagashima
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kamirah Martin
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alcides Lorenzo Gonzalez
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sachihiro C. Suzuki
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Declan A. Norton
- Department of Physics, Trinity College Dublin, Dublin, Ireland
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rachel O. L. Wong
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Pamela A. Raymond
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David K. Lubensky
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
43
|
Mulberry N, Edelstein-Keshet L. Self-organized multicellular structures from simple cell signaling: a computational model. Phys Biol 2020; 17:066003. [PMID: 33210618 DOI: 10.1088/1478-3975/abb2dc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent synthetic biology experiments reveal that signaling modules designed to target cell-cell adhesion enable self-organization of multicellular structures Toda et al (2018 Science 361 156-162). Changes in homotypic adhesion that arise through contact-dependent signaling networks result in sorting of an aggregate into two- or three-layered structures. Here we investigate the formation, maintenance, and robustness of such self-organization in the context of a computational model. To do so, we use an established model for Notch/ligand signaling within cells to set up differential E-cadherin expression. This signaling model is integrated with the cellular Potts model to track state changes, adhesion, and cell sorting in a group of cells. The resulting multicellular structures are in accordance with those observed in the experimental reference. In addition to reproducing these experimental results, we track the dynamics of the evolving structures and cell states to understand how such morphologies are dynamically maintained. This appears to be an important developmental principle that was not emphasized in previous models. Our computational model facilitates more detailed understanding of the link between intra- and intercellular signaling, spatio-temporal rearrangement, and emergent behavior at the scale of hundred(s) of cells.
Collapse
|
44
|
York HM, Coyle J, Arumugam S. To be more precise: the role of intracellular trafficking in development and pattern formation. Biochem Soc Trans 2020; 48:2051-2066. [PMID: 32915197 PMCID: PMC7609031 DOI: 10.1042/bst20200223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Living cells interpret a variety of signals in different contexts to elucidate functional responses. While the understanding of signalling molecules, their respective receptors and response at the gene transcription level have been relatively well-explored, how exactly does a single cell interpret a plethora of time-varying signals? Furthermore, how their subsequent responses at the single cell level manifest in the larger context of a developing tissue is unknown. At the same time, the biophysics and chemistry of how receptors are trafficked through the complex dynamic transport network between the plasma membrane-endosome-lysosome-Golgi-endoplasmic reticulum are much more well-studied. How the intracellular organisation of the cell and inter-organellar contacts aid in orchestrating trafficking, as well as signal interpretation and modulation by the cells are beginning to be uncovered. In this review, we highlight the significant developments that have strived to integrate endosomal trafficking, signal interpretation in the context of developmental biology and relevant open questions with a few chosen examples. Furthermore, we will discuss the imaging technologies that have been developed in the recent past that have the potential to tremendously accelerate knowledge gain in this direction while shedding light on some of the many challenges.
Collapse
Affiliation(s)
- Harrison M. York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Joanne Coyle
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Melbourne, VIC 3800, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
45
|
Abstract
Reconstitution is an experimental strategy that seeks to recapitulate biological events outside their natural contexts using a reduced set of components. Classically, biochemical reconstitution has been extensively applied to identify the minimal set of molecules sufficient for recreating the basic chemistry of life. By analogy, reconstitution approaches to developmental biology recapitulate aspects of developmental events outside an embryo, with the goal of revealing the basic genetic circuits or physical cues sufficient for recreating developmental decisions. The rapidly growing repertoire of genetic, molecular, microscopic, and bioengineering tools is expanding the complexity and precision of reconstitution experiments. We review the emerging field of synthetic developmental biology, with a focus on the ways in which reconstitution strategies and new biological tools have enhanced our modern understanding of fundamental questions in developmental biology.
Collapse
Affiliation(s)
- Gavin Schlissel
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Pulin Li
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
46
|
Rodríguez-Cano MM, González-Gómez MJ, Sánchez-Solana B, Monsalve EM, Díaz-Guerra MJM, Laborda J, Nueda ML, Baladrón V. NOTCH Receptors and DLK Proteins Enhance Brown Adipogenesis in Mesenchymal C3H10T1/2 Cells. Cells 2020; 9:cells9092032. [PMID: 32899774 PMCID: PMC7565505 DOI: 10.3390/cells9092032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/26/2022] Open
Abstract
The NOTCH family of receptors and ligands is involved in numerous cell differentiation processes, including adipogenesis. We recently showed that overexpression of each of the four NOTCH receptors in 3T3-L1 preadipocytes enhances adipogenesis and modulates the acquisition of the mature adipocyte phenotype. We also revealed that DLK proteins modulate the adipogenesis of 3T3-L1 preadipocytes and mesenchymal C3H10T1/2 cells in an opposite way, despite their function as non-canonical inhibitory ligands of NOTCH receptors. In this work, we used multipotent C3H10T1/2 cells as an adipogenic model. We used standard adipogenic procedures and analyzed different parameters by using quantitative-polymerase chain reaction (qPCR), quantitative reverse transcription-polymerase chain reaction (qRT-PCR), luciferase, Western blot, and metabolic assays. We revealed that C3H10T1/2 multipotent cells show higher levels of NOTCH receptors expression and activity and lower Dlk gene expression levels than 3T3-L1 preadipocytes. We found that the overexpression of NOTCH receptors enhanced C3H10T1/2 adipogenesis levels, and the overexpression of NOTCH receptors and DLK (DELTA-like homolog) proteins modulated the conversion of cells towards a brown-like adipocyte phenotype. These and our prior results with 3T3-L1 preadipocytes strengthen the idea that, depending on the cellular context, a precise and highly regulated level of global NOTCH signaling is necessary to allow adipogenesis and determine the mature adipocyte phenotype.
Collapse
Affiliation(s)
- María-Milagros Rodríguez-Cano
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (M.-M.R.-C.); (M.-J.G.-G.)
| | - María-Julia González-Gómez
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (M.-M.R.-C.); (M.-J.G.-G.)
| | - Beatriz Sánchez-Solana
- National Institutes of Health, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Eva-María Monsalve
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (E.-M.M.); (M.-J.M.D.-G.)
| | - María-José M. Díaz-Guerra
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (E.-M.M.); (M.-J.M.D.-G.)
| | - Jorge Laborda
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (M.-M.R.-C.); (M.-J.G.-G.)
- Correspondence: (J.L.); (M.-L.N.); (V.B.); Tel.: +34-967-599-200 (ext. 2926) (V.B.); Fax: +34-967-599-327 (V.B.)
| | - María-Luisa Nueda
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Farmacia/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (M.-M.R.-C.); (M.-J.G.-G.)
- Correspondence: (J.L.); (M.-L.N.); (V.B.); Tel.: +34-967-599-200 (ext. 2926) (V.B.); Fax: +34-967-599-327 (V.B.)
| | - Victoriano Baladrón
- Departamento de Química Inorgánica, Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina de Albacete/CRIB/Unidad de Biomedicina, Orgánica y Bioquímica, Universidad de Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain; (E.-M.M.); (M.-J.M.D.-G.)
- Correspondence: (J.L.); (M.-L.N.); (V.B.); Tel.: +34-967-599-200 (ext. 2926) (V.B.); Fax: +34-967-599-327 (V.B.)
| |
Collapse
|
47
|
Bocci F, Onuchic JN, Jolly MK. Understanding the Principles of Pattern Formation Driven by Notch Signaling by Integrating Experiments and Theoretical Models. Front Physiol 2020; 11:929. [PMID: 32848867 PMCID: PMC7411240 DOI: 10.3389/fphys.2020.00929] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Notch signaling is an evolutionary conserved cell-cell communication pathway. Besides regulating cell-fate decisions at an individual cell level, Notch signaling coordinates the emergent spatiotemporal patterning in a tissue through ligand-receptor interactions among transmembrane molecules of neighboring cells, as seen in embryonic development, angiogenesis, or wound healing. Due to its ubiquitous nature, Notch signaling is also implicated in several aspects of cancer progression, including tumor angiogenesis, stemness of cancer cells and cellular invasion. Here, we review experimental and computational models that help understand the operating principles of cell patterning driven by Notch signaling. First, we discuss the basic mechanisms of spatial patterning via canonical lateral inhibition and lateral induction mechanisms, including examples from angiogenesis, inner ear development and cancer metastasis. Next, we analyze additional layers of complexity in the Notch pathway, including the effect of varying cell sizes and shapes, ligand-receptor binding within the same cell, variable binding affinity of different ligand/receptor subtypes, and filopodia. Finally, we discuss some recent evidence of mechanosensitivity in the Notch pathway in driving collective epithelial cell migration and cardiovascular morphogenesis.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
48
|
Schweisguth F, Corson F. Self-Organization in Pattern Formation. Dev Cell 2020; 49:659-677. [PMID: 31163171 DOI: 10.1016/j.devcel.2019.05.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/16/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
Abstract
Self-organization is pervasive in development, from symmetry breaking in the early embryo to tissue patterning and morphogenesis. For a few model systems, the underlying molecular and cellular processes are now sufficiently characterized that mathematical models can be confronted with experiments, to explore the dynamics of pattern formation. Here, we review selected systems, ranging from cyanobacteria to mammals, where different forms of cell-cell communication, acting alone or together with positional cues, drive the patterning of cell fates, highlighting the insights that even very simple models can provide as well as the challenges on the path to a predictive understanding of development.
Collapse
Affiliation(s)
- François Schweisguth
- Institut Pasteur, Department of Developmental and Stem Cell Biology F-75015 Paris, France; CNRS, UMR 3738 F-75015 Paris, France.
| | - Francis Corson
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Sorbonne Université, Université Paris Diderot 75005 Paris, France.
| |
Collapse
|
49
|
Hadjivasiliou Z, Moore RE, McIntosh R, Galea GL, Clarke JDW, Alexandre P. Basal Protrusions Mediate Spatiotemporal Patterns of Spinal Neuron Differentiation. Dev Cell 2020; 49:907-919.e10. [PMID: 31211994 PMCID: PMC6584357 DOI: 10.1016/j.devcel.2019.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/26/2019] [Accepted: 05/20/2019] [Indexed: 12/22/2022]
Abstract
During early spinal cord development, neurons of particular subtypes differentiate with a sparse periodic pattern while later neurons differentiate in the intervening space to eventually produce continuous columns of similar neurons. The mechanisms that regulate this spatiotemporal pattern are unknown. In vivo imaging in zebrafish reveals that differentiating spinal neurons transiently extend two long protrusions along the basal surface of the spinal cord before axon initiation. These protrusions express Delta protein, consistent with the hypothesis they influence Notch signaling at a distance of several cell diameters. Experimental reduction of Laminin expression leads to smaller protrusions and shorter distances between differentiating neurons. The experimental data and a theoretical model support the proposal that neuronal differentiation pattern is regulated by transient basal protrusions that deliver temporally controlled lateral inhibition mediated at a distance. This work uncovers a stereotyped protrusive activity of newborn neurons that organize long-distance spatiotemporal patterning of differentiation.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- Department of Biochemistry, Science II, University of Geneva, Geneva, Switzerland; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1N 1EH, UK
| | - Rachel E Moore
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE1 1UL, UK
| | - Rebecca McIntosh
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE1 1UL, UK; Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Jonathan D W Clarke
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE1 1UL, UK.
| | - Paula Alexandre
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London WC1N 1EH, UK.
| |
Collapse
|
50
|
Boareto M. Patterning via local cell-cell interactions in developing systems. Dev Biol 2019; 460:77-85. [PMID: 31866513 DOI: 10.1016/j.ydbio.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 01/26/2023]
Abstract
Spatial patterning during embryonic development emerges from the differentiation of progenitor cells that share the same genetic program. One of the main challenges in systems biology is to understand the relationship between gene network and patterning, especially how the cells communicate to coordinate their differentiation. This review aims to describe the principles of pattern formation from local cell-cell interactions mediated by the Notch signalling pathway. Notch mediates signalling via direct cell-cell contact and regulates cell fate decisions in many tissues during embryonic development. Here, I will describe the patterning mechanisms via different Notch ligands and the critical role of Notch oscillations during the segmentation of the vertebrate body, brain development, and blood vessel formation.
Collapse
Affiliation(s)
- Marcelo Boareto
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland; Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|