1
|
Crone MA, MacDonald JT, Freemont PS, Siciliano V. gDesigner: computational design of synthetic gRNAs for Cas12a-based transcriptional repression in mammalian cells. NPJ Syst Biol Appl 2022; 8:34. [PMID: 36114193 PMCID: PMC9481559 DOI: 10.1038/s41540-022-00241-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Synthetic networks require complex intertwined genetic regulation often relying on transcriptional activation or repression of target genes. CRISPRi-based transcription factors facilitate the programmable modulation of endogenous or synthetic promoter activity and the process can be optimised by using software to select appropriate gRNAs and limit non-specific gene modulation. Here, we develop a computational software pipeline, gDesigner, that enables the automated selection of orthogonal gRNAs with minimized off-target effects and promoter crosstalk. We next engineered a Lachnospiraceae bacterium Cas12a (dLbCas12a)-based repression system that downregulates target gene expression by means of steric hindrance of the cognate promoter. Finally, we generated a library of orthogonal synthetic dCas12a-repressed promoters and experimentally demonstrated it in HEK293FT, U2OS and H1299 cells lines. Our system expands the toolkit of mammalian synthetic promoters with a new complementary and orthogonal CRISPRi-based system, ultimately enabling the design of synthetic promoter libraries for multiplex gene perturbation that facilitate the understanding of complex cellular phenotypes.
Collapse
Affiliation(s)
- Michael A Crone
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, United Kingdom
- London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, 84 Wood Lane, London, United Kingdom
| | - James T MacDonald
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
| | - Paul S Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, United Kingdom.
- London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, 84 Wood Lane, London, United Kingdom.
| | - Velia Siciliano
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
- Istituto Italiano di Tecnologia IIT, Department of Synthetic and Systems Biology for Biomedicine, Genoa, Italy.
| |
Collapse
|
2
|
de Cesare I, Salzano D, di Bernardo M, Renson L, Marucci L. Control-Based Continuation: A New Approach to Prototype Synthetic Gene Networks. ACS Synth Biol 2022; 11:2300-2313. [PMID: 35729740 PMCID: PMC9295158 DOI: 10.1021/acssynbio.1c00632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
![]()
Control-Based Continuation
(CBC) is a general and systematic method
to carry out the bifurcation analysis of physical experiments. CBC
does not rely on a mathematical model and thus overcomes the uncertainty
introduced when identifying bifurcation curves indirectly through
modeling and parameter estimation. We demonstrate, in silico, CBC applicability to biochemical processes by tracking the equilibrium
curve of a toggle switch, which includes additive process noise and
exhibits bistability. We compare the results obtained when CBC uses
a model-free and model-based control strategy and show that both can
track stable and unstable solutions, revealing bistability. We then
demonstrate CBC in conditions more representative of an in
vivo experiment using an agent-based simulator describing
cell growth and division, cell-to-cell variability, spatial distribution,
and diffusion of chemicals. We further show how the identified curves
can be used for parameter estimation and discuss how CBC can significantly
accelerate the prototyping of synthetic gene regulatory networks.
Collapse
Affiliation(s)
- Irene de Cesare
- Engineering Mathematics Department, University of Bristol, Bristol BS8 1TW, U.K.,Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80125 Naples, Italy
| | - Davide Salzano
- Engineering Mathematics Department, University of Bristol, Bristol BS8 1TW, U.K.,Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80125 Naples, Italy
| | - Mario di Bernardo
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80125 Naples, Italy
| | - Ludovic Renson
- Department of Mechanical Engineering, Imperial College London, London SW7 2BX, U.K
| | - Lucia Marucci
- Engineering Mathematics Department, University of Bristol, Bristol BS8 1TW, U.K.,BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1UB, U.K
| |
Collapse
|
3
|
Abstract
Synthetic biology increasingly enables the construction of sophisticated functions in mammalian cells. A particularly promising frontier combines concepts drawn from industrial process control engineering-which is used to confer and balance properties such as stability and efficiency-with understanding as to how living systems have evolved to perform similar tasks with biological components. In this review, we first survey the state-of-the-art for both technologies and strategies available for genetic programming in mammalian cells. We then discuss recent progress in implementing programming objectives inspired by engineered and natural control mechanisms. Finally, we consider the transformative role of model-guided design in the present and future construction of customized mammalian cell functions for applications in biotechnology, medicine, and fundamental research.
Collapse
|
4
|
Yang J, Lee J, Land MA, Lai S, Igoshin OA, St-Pierre F. A synthetic circuit for buffering gene dosage variation between individual mammalian cells. Nat Commun 2021; 12:4132. [PMID: 34226556 PMCID: PMC8257781 DOI: 10.1038/s41467-021-23889-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Precise control of gene expression is critical for biological research and biotechnology. However, transient plasmid transfections in mammalian cells produce a wide distribution of copy numbers per cell, and consequently, high expression heterogeneity. Here, we report plasmid-based synthetic circuits - Equalizers - that buffer copy-number variation at the single-cell level. Equalizers couple a transcriptional negative feedback loop with post-transcriptional incoherent feedforward control. Computational modeling suggests that the combination of these two topologies enables Equalizers to operate over a wide range of plasmid copy numbers. We demonstrate experimentally that Equalizers outperform other gene dosage compensation topologies and produce as low cell-to-cell variation as chromosomally integrated genes. We also show that episome-encoded Equalizers enable the rapid generation of extrachromosomal cell lines with stable and uniform expression. Overall, Equalizers are simple and versatile devices for homogeneous gene expression and can facilitate the engineering of synthetic circuits that function reliably in every cell.
Collapse
Affiliation(s)
- Jin Yang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jihwan Lee
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Michelle A Land
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shujuan Lai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - François St-Pierre
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Gonzales DT, Zechner C, Tang TYD. Building synthetic multicellular systems using bottom–up approaches. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coisb.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Gambardella G, Staiano L, Moretti MN, De Cegli R, Fagnocchi L, Di Tullio G, Polletti S, Braccia C, Armirotti A, Zippo A, Ballabio A, De Matteis MA, di Bernardo D. GADD34 is a modulator of autophagy during starvation. SCIENCE ADVANCES 2020; 6:6/39/eabb0205. [PMID: 32978159 PMCID: PMC7518873 DOI: 10.1126/sciadv.abb0205] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/10/2020] [Indexed: 06/08/2023]
Abstract
Cells respond to starvation by shutting down protein synthesis and by activating catabolic processes, including autophagy, to recycle nutrients. This two-pronged response is mediated by the integrated stress response (ISR) through phosphorylation of eIF2α, which represses protein translation, and by inhibition of mTORC1 signaling, which promotes autophagy also through a stress-responsive transcriptional program. Implementation of such a program, however, requires protein synthesis, thus conflicting with general repression of translation. How is this mismatch resolved? We found that the main regulator of the starvation-induced transcriptional program, TFEB, counteracts protein synthesis inhibition by directly activating expression of GADD34, a component of the protein phosphatase 1 complex that dephosphorylates eIF2α. We discovered that GADD34 plays an essential role in autophagy by tuning translation during starvation, thus enabling lysosomal biogenesis and a sustained autophagic flux. Hence, the TFEB-GADD34 axis integrates the mTORC1 and ISR pathways in response to starvation.
Collapse
Affiliation(s)
- Gennaro Gambardella
- Telethon Institute of Genetics and Medicine, Naples, Italy
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy
| | | | | | | | - Luca Fagnocchi
- Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi" (INGM), Milan, Italy
- Chromatin Biology & Epigenetics Lab, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | - Alessio Zippo
- Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi" (INGM), Milan, Italy
- Chromatin Biology & Epigenetics Lab, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Naples, Italy
- University of Naples Federico II, Department of Medical and Translation Science, Naples, Italy
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Naples, Italy.
- University of Naples Federico II, Department of Medical Biotechnologies and Molecular Medicine, Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Naples, Italy.
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy
| |
Collapse
|
7
|
Donahue PS, Draut JW, Muldoon JJ, Edelstein HI, Bagheri N, Leonard JN. The COMET toolkit for composing customizable genetic programs in mammalian cells. Nat Commun 2020; 11:779. [PMID: 32034124 PMCID: PMC7005830 DOI: 10.1038/s41467-019-14147-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Engineering mammalian cells to carry out sophisticated and customizable genetic programs requires a toolkit of multiple orthogonal and well-characterized transcription factors (TFs). To address this need, we develop the COmposable Mammalian Elements of Transcription (COMET)-an ensemble of TFs and promoters that enable the design and tuning of gene expression to an extent not, to the best of our knowledge, previously possible. COMET currently comprises 44 activating and 12 inhibitory zinc-finger TFs and 83 cognate promoters, combined in a framework that readily accommodates new parts. This system can tune gene expression over three orders of magnitude, provides chemically inducible control of TF activity, and enables single-layer Boolean logic. We also develop a mathematical model that provides mechanistic insights into COMET performance characteristics. Altogether, COMET enables the design and construction of customizable genetic programs in mammalian cells.
Collapse
Affiliation(s)
- Patrick S Donahue
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joseph W Draut
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Joseph J Muldoon
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
| | - Hailey I Edelstein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA
- Biology and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
8
|
Pedone E, Postiglione L, Aulicino F, Rocca DL, Montes-Olivas S, Khazim M, di Bernardo D, Pia Cosma M, Marucci L. A tunable dual-input system for on-demand dynamic gene expression regulation. Nat Commun 2019; 10:4481. [PMID: 31578371 PMCID: PMC6775159 DOI: 10.1038/s41467-019-12329-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular systems have evolved numerous mechanisms to adapt to environmental stimuli, underpinned by dynamic patterns of gene expression. In addition to gene transcription regulation, modulation of protein levels, dynamics and localization are essential checkpoints governing cell functions. The introduction of inducible promoters has allowed gene expression control using orthogonal molecules, facilitating its rapid and reversible manipulation to study gene function. However, differing protein stabilities hinder the generation of protein temporal profiles seen in vivo. Here, we improve the Tet-On system integrating conditional destabilising elements at the post-translational level and permitting simultaneous control of gene expression and protein stability. We show, in mammalian cells, that adding protein stability control allows faster response times, fully tunable and enhanced dynamic range, and improved in silico feedback control of gene expression. Finally, we highlight the effectiveness of our dual-input system to modulate levels of signalling pathway components in mouse Embryonic Stem Cells.
Collapse
Affiliation(s)
- Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| | - Lorena Postiglione
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Francesco Aulicino
- BrisSynBio, Bristol, BS8 1TQ, UK
- Department of Biochemistry, Bristol, BS8 1TD, UK
| | - Dan L Rocca
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| | - Sandra Montes-Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| | - Mahmoud Khazim
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08002, Barcelona, Spain
- Universitati Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Luis Companys, 08010, Barcelona, Spain
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), 510005, Guangzhou, China
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, 510530, Guangzhou, China
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| |
Collapse
|
9
|
Farquhar KS, Charlebois DA, Szenk M, Cohen J, Nevozhay D, Balázsi G. Role of network-mediated stochasticity in mammalian drug resistance. Nat Commun 2019; 10:2766. [PMID: 31235692 PMCID: PMC6591227 DOI: 10.1038/s41467-019-10330-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 05/03/2019] [Indexed: 11/11/2022] Open
Abstract
A major challenge in biology is that genetically identical cells in the same environment can display gene expression stochasticity (noise), which contributes to bet-hedging, drug tolerance, and cell-fate switching. The magnitude and timescales of stochastic fluctuations can depend on the gene regulatory network. Currently, it is unclear how gene expression noise of specific networks impacts the evolution of drug resistance in mammalian cells. Answering this question requires adjusting network noise independently from mean expression. Here, we develop positive and negative feedback-based synthetic gene circuits to decouple noise from the mean for Puromycin resistance gene expression in Chinese Hamster Ovary cells. In low Puromycin concentrations, the high-noise, positive-feedback network delays long-term adaptation, whereas it facilitates adaptation under high Puromycin concentration. Accordingly, the low-noise, negative-feedback circuit can maintain resistance by acquiring mutations while the positive-feedback circuit remains mutation-free and regains drug sensitivity. These findings may have profound implications for chemotherapeutic inefficiency and cancer relapse. The role of gene expression noise in the evolution of drug resistance in mammalian cells is unclear. Here, by uncoupling noise from mean expression of a drug resistance gene in CHO cells the authors show that noisy expression aids adaptation to high drug levels, but delays it at low drug levels.
Collapse
Affiliation(s)
- Kevin S Farquhar
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA.,Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Daniel A Charlebois
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA.,Department of Physics, University of Alberta, Edmonton, AB, 4-181 CCIS, T6G-2E1, Canada
| | - Mariola Szenk
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Joseph Cohen
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Dmitry Nevozhay
- School of Biomedicine, Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950, Russia.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA. .,Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, 77030, USA. .,Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA. .,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Caliendo F, Dukhinova M, Siciliano V. Engineered Cell-Based Therapeutics: Synthetic Biology Meets Immunology. Front Bioeng Biotechnol 2019; 7:43. [PMID: 30937303 PMCID: PMC6431652 DOI: 10.3389/fbioe.2019.00043] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/20/2019] [Indexed: 12/30/2022] Open
Abstract
Synthetic Biology has enabled new approaches to several medical applications including the development of immunotherapies based on bioengineered cells, and most notably the engineering of T-cells with tumor-targeting receptors, the Chimeric Antigen Receptor (CAR)-T cells. CAR-T-cells have successfully treated blood tumors such as large B-cell lymphoma and promise a new scenario of therapeutic interventions also for solid tumors. Learning the lesson from CAR-T cells, we can foster the reprogramming of T lymphocytes with enhanced survival and functional activity in depressing tumor microenvironment, or to challenge diseases such as infections, autoimmune and chronic inflammatory disorders. This review will focus on the most updated bioengineering approaches to increase control, and safety of T-cell activity and to immunomodulate the extracellular microenvironment to augment immune responses. We will also discuss on applications beyond cancer treatment with implications toward the understanding and cure of a broader range of diseases by means of mammalian cells engineering.
Collapse
Affiliation(s)
- Fabio Caliendo
- Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, Italy
| | - Marina Dukhinova
- Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, Italy
| | - Velia Siciliano
- Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, Italy
- Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
11
|
Banerjee A, Weaver I, Thorsen T, Sarpeshkar R. Bioelectronic measurement and feedback control of molecules in living cells. Sci Rep 2017; 7:12511. [PMID: 28970494 PMCID: PMC5624954 DOI: 10.1038/s41598-017-12655-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022] Open
Abstract
We describe an electrochemical measurement technique that enables bioelectronic measurements of reporter proteins in living cells as an alternative to traditional optical fluorescence. Using electronically programmable microfluidics, the measurement is in turn used to control the concentration of an inducer input that regulates production of the protein from a genetic promoter. The resulting bioelectronic and microfluidic negative-feedback loop then serves to regulate the concentration of the protein in the cell. We show measurements wherein a user-programmable set-point precisely alters the protein concentration in the cell with feedback-loop parameters affecting the dynamics of the closed-loop response in a predictable fashion. Our work does not require expensive optical fluorescence measurement techniques that are prone to toxicity in chronic settings, sophisticated time-lapse microscopy, or bulky/expensive chemo-stat instrumentation for dynamic measurement and control of biomolecules in cells. Therefore, it may be useful in creating a: cheap, portable, chronic, dynamic, and precise all-electronic alternative for measurement and control of molecules in living cells.
Collapse
Affiliation(s)
- Areen Banerjee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, 03755, USA
| | - Isaac Weaver
- MIT Lincoln Laboratory, Massachusetts, 02421, USA
| | - Todd Thorsen
- MIT Lincoln Laboratory, Massachusetts, 02421, USA
| | - Rahul Sarpeshkar
- Departments of Engineering, Microbiology & Immunology, Physics, and Physiology & Neurobiology, Dartmouth College, Hanover, New Hampshire, 03755, USA.
| |
Collapse
|
12
|
Lee E, Lee TA, Kim JH, Park A, Ra EA, Kang S, Choi HJ, Choi JL, Huh HD, Lee JE, Lee S, Park B. CNBP acts as a key transcriptional regulator of sustained expression of interleukin-6. Nucleic Acids Res 2017; 45:3280-3296. [PMID: 28168305 PMCID: PMC5389554 DOI: 10.1093/nar/gkx071] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/26/2017] [Indexed: 12/17/2022] Open
Abstract
The transcription of inflammatory genes is an essential step in host defense activation. Here, we show that cellular nucleic acid-binding protein (CNBP) acts as a transcription regulator that is required for activating the innate immune response. We identified specific CNBP-binding motifs present in the promoter region of sustained inflammatory cytokines, thus, directly inducing the expression of target genes. In particular, lipopolysaccharide (LPS) induced cnbp expression through an NF-κB-dependent manner and a positive autoregulatory mechanism, which enables prolonged il-6 gene expression. This event depends strictly on LPS-induced CNBP nuclear translocation through phosphorylation-mediated dimerization. Consequently, cnbp-depleted zebrafish are highly susceptible to Shigella flexneri infection in vivo. Collectively, these observations identify CNBP as a key transcriptional regulator required for activating and maintaining the immune response.
Collapse
Affiliation(s)
- Eunhye Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
- These authors contributed equally to the paper as first authors
| | - Taeyun A. Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
- These authors contributed equally to the paper as first authors
| | - Ji Hyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea
- These authors contributed equally to the paper as first authors
| | - Areum Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Eun A. Ra
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Hyun jin Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Junhee L. Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Hyunbin D. Huh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea
- Samsung Genome Institute (SGI), Samsung Medical Center, Seoul 06351, South Korea
- To whom correspondence should be addressed. Tel: +82 2 2123 5655; Fax: +82 2 312 5657; . Correspondence may also be addressed to Ji Eun Lee. Tel: +82 2 3410 6129; Fax: +82 2 3410 0534; . Correspondence may also be addressed to Sungwook Lee. Tel: +82 31 920 2537; Fax: +82 31 920 2542;
| | - Sungwook Lee
- Cancer Immunology Branch, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, South Korea
- To whom correspondence should be addressed. Tel: +82 2 2123 5655; Fax: +82 2 312 5657; . Correspondence may also be addressed to Ji Eun Lee. Tel: +82 2 3410 6129; Fax: +82 2 3410 0534; . Correspondence may also be addressed to Sungwook Lee. Tel: +82 31 920 2537; Fax: +82 31 920 2542;
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
- To whom correspondence should be addressed. Tel: +82 2 2123 5655; Fax: +82 2 312 5657; . Correspondence may also be addressed to Ji Eun Lee. Tel: +82 2 3410 6129; Fax: +82 2 3410 0534; . Correspondence may also be addressed to Sungwook Lee. Tel: +82 31 920 2537; Fax: +82 31 920 2542;
| |
Collapse
|
13
|
Abstract
Recently developed DNA assembly methods have enabled the rapid and simultaneous assembly of multiple parts to create complex synthetic gene circuits. A number of groups have proposed the use of computationally designed orthogonal spacer sequences to guide the ordered assembly of parts using overlap-directed or homologous recombination-based methods. This approach is particularly useful for assembling multiple parts with repetitive elements. Orthogonal spacer sequences (sometimes called UNSs-unique nucleotide sequences) also have a number of other potential uses including in the design of synthetic promoters regulated by novel regulatory elements.
Collapse
Affiliation(s)
- James T MacDonald
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK. .,Department of Medicine, Imperial College, South Kensington Campus, London, SW7 2AZ, UK.
| | - Velia Siciliano
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK.,Department of Medicine, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
14
|
Fracassi C, Postiglione L, Fiore G, di Bernardo D. Automatic Control of Gene Expression in Mammalian Cells. ACS Synth Biol 2016; 5:296-302. [PMID: 26414746 DOI: 10.1021/acssynbio.5b00141] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Automatic control of gene expression in living cells is paramount importance to characterize both endogenous gene regulatory networks and synthetic circuits. In addition, such a technology can be used to maintain the expression of synthetic circuit components in an optimal range in order to ensure reliable performance. Here we present a microfluidics-based method to automatically control gene expression from the tetracycline-inducible promoter in mammalian cells in real time. Our approach is based on the negative-feedback control engineering paradigm. We validated our method in a monoclonal population of cells constitutively expressing a fluorescent reporter protein (d2EYFP) downstream of a minimal CMV promoter with seven tet-responsive operator motifs (CMV-TET). These cells also constitutively express the tetracycline transactivator protein (tTA). In cells grown in standard growth medium, tTA is able to bind the CMV-TET promoter, causing d2EYFP to be maximally expressed. Upon addition of tetracycline to the culture medium, tTA detaches from the CMV-TET promoter, thus preventing d2EYFP expression. We tested two different model-independent control algorithms (relay and proportional-integral (PI)) to force a monoclonal population of cells to express an intermediate level of d2EYFP equal to 50% of its maximum expression level for up to 3500 min. The control input is either tetracycline-rich or standard growth medium. We demonstrated that both the relay and PI controllers can regulate gene expression at the desired level, despite oscillations (dampened in the case of the PI controller) around the chosen set point.
Collapse
Affiliation(s)
- Chiara Fracassi
- TeleThon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Lorena Postiglione
- TeleThon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Department
of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Gianfranco Fiore
- TeleThon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Diego di Bernardo
- TeleThon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Department
of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy
| |
Collapse
|
15
|
Postiglione L, Santorelli M, Tumaini B, di Bernardo D. From a discrete to continuous actuation for improved real-time control of gene expression in mammalian cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.ifacol.2016.12.096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Duportet X, Wroblewska L, Guye P, Li Y, Eyquem J, Rieders J, Rimchala T, Batt G, Weiss R. A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res 2014; 42:13440-51. [PMID: 25378321 PMCID: PMC4245948 DOI: 10.1093/nar/gku1082] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian synthetic biology may provide novel therapeutic strategies, help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet, our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design, construction and screening of synthetic gene networks. To address this problem, here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units, 27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept, we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements, genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines.
Collapse
Affiliation(s)
- Xavier Duportet
- INRIA Paris-Rocquencourt, Rocquencourt, France Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Cellectis Therapeutics, Paris, France
| | - Liliana Wroblewska
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick Guye
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yinqing Li
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Justin Eyquem
- Laboratoire Matière et Systèmes Complexes, Centre National de la Recherche Scientifique and Université Paris Diderot, Paris, France
| | - Julianne Rieders
- INRIA Paris-Rocquencourt, Rocquencourt, France Laboratoire Matière et Systèmes Complexes, Centre National de la Recherche Scientifique and Université Paris Diderot, Paris, France
| | - Tharathorn Rimchala
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ron Weiss
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
17
|
Mustard J, Levin M. Bioelectrical Mechanisms for Programming Growth and Form: Taming Physiological Networks for Soft Body Robotics. Soft Robot 2014. [DOI: 10.1089/soro.2014.0011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jessica Mustard
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
18
|
Wurtmann EJ, Ratushny AV, Pan M, Beer KD, Aitchison JD, Baliga NS. An evolutionarily conserved RNase-based mechanism for repression of transcriptional positive autoregulation. Mol Microbiol 2014; 92:369-82. [PMID: 24612392 PMCID: PMC4060883 DOI: 10.1111/mmi.12564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2014] [Indexed: 01/27/2023]
Abstract
It is known that environmental context influences the degree of regulation at the transcriptional and post-transcriptional levels. However, the principles governing the differential usage and interplay of regulation at these two levels are not clear. Here, we show that the integration of transcriptional and post-transcriptional regulatory mechanisms in a characteristic network motif drives efficient environment-dependent state transitions. Through phenotypic screening, systems analysis, and rigorous experimental validation, we discovered an RNase (VNG2099C) in Halobacterium salinarum that is transcriptionally co-regulated with genes of the aerobic physiologic state but acts on transcripts of the anaerobic state. Through modelling and experimentation we show that this arrangement generates an efficient state-transition switch, within which RNase-repression of a transcriptional positive autoregulation (RPAR) loop is critical for shutting down ATP-consuming active potassium uptake to conserve energy required for salinity adaptation under aerobic, high potassium, or dark conditions. Subsequently, we discovered that many Escherichia coli operons with energy-associated functions are also putatively controlled by RPAR indicating that this network motif may have evolved independently in phylogenetically distant organisms. Thus, our data suggest that interplay of transcriptional and post-transcriptional regulation in the RPAR motif is a generalized principle for efficient environment-dependent state transitions across prokaryotes.
Collapse
Affiliation(s)
| | - Alexander V. Ratushny
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Seattle Biomedical Research Institute, Seattle, WA, 98109, USA
| | - Min Pan
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - John D. Aitchison
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Seattle Biomedical Research Institute, Seattle, WA, 98109, USA
| | | |
Collapse
|
19
|
Poisson P, Bhalerao KD. Hidden hysteresis - population dynamics can obscure gene network dynamics. J Biol Eng 2013; 7:16. [PMID: 23800122 PMCID: PMC3700772 DOI: 10.1186/1754-1611-7-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 06/11/2013] [Indexed: 11/24/2022] Open
Abstract
Background Positive feedback is a common motif in gene regulatory networks. It can be used in synthetic networks as an amplifier to increase the level of gene expression, as well as a nonlinear module to create bistable gene networks that display hysteresis in response to a given stimulus. Using a synthetic positive feedback-based tetracycline sensor in E. coli, we show that the population dynamics of a cell culture has a profound effect on the observed hysteretic response of a population of cells with this synthetic gene circuit. Results The amount of observable hysteresis in a cell culture harboring the gene circuit depended on the initial concentration of cells within the culture. The magnitude of the hysteresis observed was inversely related to the dilution procedure used to inoculate the subcultures; the higher the dilution of the cell culture, lower was the observed hysteresis of that culture at steady state. Although the behavior of the gene circuit in individual cells did not change significantly in the different subcultures, the proportion of cells exhibiting high levels of steady-state gene expression did change. Although the interrelated kinetics of gene expression and cell growth are unpredictable at first sight, we were able to resolve the surprising dilution-dependent hysteresis as a result of two interrelated phenomena - the stochastic switching between the ON and OFF phenotypes that led to the cumulative failure of the gene circuit over time, and the nonlinear, logistic growth of the cell in the batch culture. Conclusions These findings reinforce the fact that population dynamics cannot be ignored in analyzing the dynamics of gene networks. Indeed population dynamics may play a significant role in the manifestation of bistability and hysteresis, and is an important consideration when designing synthetic gene circuits intended for long-term application.
Collapse
Affiliation(s)
- Phillip Poisson
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W Pennsylvania Ave, Urbana, IL 61801, USA.
| | | |
Collapse
|
20
|
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 2013; 15:647-58. [PMID: 23604321 DOI: 10.1038/ncb2718] [Citation(s) in RCA: 785] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/26/2013] [Indexed: 12/27/2022]
Abstract
The lysosomal-autophagic pathway is activated by starvation and plays an important role in both cellular clearance and lipid catabolism. However, the transcriptional regulation of this pathway in response to metabolic cues is uncharacterized. Here we show that the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is induced by starvation through an autoregulatory feedback loop and exerts a global transcriptional control on lipid catabolism via Ppargc1α and Ppar1α. Thus, during starvation a transcriptional mechanism links the autophagic pathway to cellular energy metabolism. The conservation of this mechanism in Caenorhabditis elegans suggests a fundamental role for TFEB in the evolution of the adaptive response to food deprivation. Viral delivery of TFEB to the liver prevented weight gain and metabolic syndrome in both diet-induced and genetic mouse models of obesity, suggesting a new therapeutic strategy for disorders of lipid metabolism.
Collapse
|
21
|
Ejarque M, Cervantes S, Pujadas G, Tutusaus A, Sanchez L, Gasa R. Neurogenin3 cooperates with Foxa2 to autoactivate its own expression. J Biol Chem 2013; 288:11705-17. [PMID: 23471965 DOI: 10.1074/jbc.m112.388173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transcription factor Neurogenin3 functions as a master regulator of endocrine pancreas formation, and its deficiency leads to the development of diabetes in humans and mice. In the embryonic pancreas, Neurogenin3 is transiently expressed at high levels for a narrow time window to initiate endocrine differentiation in scattered progenitor cells. The mechanisms controlling these rapid and robust changes in Neurogenin3 expression are poorly understood. In this study, we characterize a Neurogenin3 positive autoregulatory loop whereby this factor may rapidly induce its own levels. We show that Neurogenin3 binds to a conserved upstream fragment of its own gene, inducing deposition of active chromatin marks and the activation of Neurog3 transcription. Additionally, we show that the broadly expressed endodermal forkhead factors Foxa1 and Foxa2 can cooperate synergistically to amplify Neurogenin3 autoregulation in vitro. However, only Foxa2 colocalizes with Neurogenin3 in pancreatic progenitors, thus indicating a primary role for this factor in regulating Neurogenin3 expression in vivo. Furthermore, in addition to decreasing Neurog3 autoregulation, inhibition of Foxa2 by RNA interference attenuates Neurogenin3-dependent activation of the endocrine developmental program in cultured duct mPAC cells. Hence, these data uncover the potential functional cooperation between the endocrine lineage-determining factor Neurogenin3 and the widespread endoderm progenitor factor Foxa2 in the implementation of the endocrine developmental program in the pancreas.
Collapse
Affiliation(s)
- Miriam Ejarque
- Diabetes and Obesity Laboratory, Institut D'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clínic, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Siciliano V, Garzilli I, Fracassi C, Criscuolo S, Ventre S, di Bernardo D. MiRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat Commun 2013; 4:2364. [PMID: 24077216 PMCID: PMC3836244 DOI: 10.1038/ncomms3364] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/26/2013] [Indexed: 01/23/2023] Open
Abstract
miRNAs are small non-coding RNAs able to modulate target gene expression. It has been postulated that miRNAs confer robustness to biological processes, but clear experimental evidence is still missing. Here, using a synthetic biological approach, we demonstrate that microRNAs provide phenotypic robustness to transcriptional regulatory networks by buffering fluctuations in protein levels. We construct a network motif in mammalian cells exhibiting a 'toggle-switch' phenotype in which two alternative protein expression levels define its ON and OFF states. The motif consists of an inducible transcription factor that self-regulates its own transcription and that of a miRNA against the transcription factor itself. We confirm, using mathematical modelling and experimental approaches, that the microRNA confers robustness to the toggle-switch by enabling the cell to maintain and transmit its state. When absent, a dramatic increase in protein noise level occurs, causing the cell to randomly switch between the two states.
Collapse
Affiliation(s)
- Velia Siciliano
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131, Naples, Italy
| | - Immacolata Garzilli
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131, Naples, Italy
| | - Chiara Fracassi
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131, Naples, Italy
| | - Stefania Criscuolo
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131, Naples, Italy
| | - Simona Ventre
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131, Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino 111, 80131, Naples, Italy
- Dept. of Electrical Engineering and Information Technology, University of Naples FEDERICO II, Via Claudio 21, 80125
| |
Collapse
|
23
|
Madrahimov A, Helikar T, Kowal B, Lu G, Rogers J. Dynamics of influenza virus and human host interactions during infection and replication cycle. Bull Math Biol 2012; 75:988-1011. [PMID: 23081726 DOI: 10.1007/s11538-012-9777-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 09/26/2012] [Indexed: 11/26/2022]
Abstract
The replication and life cycle of the influenza virus is governed by an intricate network of intracellular regulatory events during infection, including interactions with an even more complex system of biochemical interactions of the host cell. Computational modeling and systems biology have been successfully employed to further the understanding of various biological systems, however, computational studies of the complexity of intracellular interactions during influenza infection is lacking. In this work, we present the first large-scale dynamical model of the infection and replication cycle of influenza, as well as some of its interactions with the host's signaling machinery. Specifically, we focus on and visualize the dynamics of the internalization and endocytosis of the virus, replication and translation of its genomic components, as well as the assembly of progeny virions. Simulations and analyses of the models dynamics qualitatively reproduced numerous biological phenomena discovered in the laboratory. Finally, comparisons of the dynamics of existing and proposed drugs, our results suggest that a drug targeting PB1:PA would be more efficient than existing Amantadin/Rimantaine or Zanamivir/Oseltamivir.
Collapse
Affiliation(s)
- Alex Madrahimov
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | | | | | | | | |
Collapse
|
24
|
Wieland M, Fussenegger M. Engineering Molecular Circuits Using Synthetic Biology in Mammalian Cells. Annu Rev Chem Biomol Eng 2012; 3:209-34. [DOI: 10.1146/annurev-chembioeng-061010-114145] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Wieland
- Department of Biosystems Science and Bioengineering, ETH Zurich, CH-4058 Basel, Switzerland; ,
| | - Martin Fussenegger
- Department of Biosystems Science and Bioengineering, ETH Zurich, CH-4058 Basel, Switzerland; ,
| |
Collapse
|
25
|
Menolascina F, Siciliano V, di Bernardo D. Engineering and control of biological systems: A new way to tackle complex diseases. FEBS Lett 2012; 586:2122-8. [PMID: 22580058 DOI: 10.1016/j.febslet.2012.04.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
The ongoing merge between engineering and biology has contributed to the emerging field of synthetic biology. The defining features of this new discipline are abstraction and standardisation of biological parts, decoupling between parts to prevent undesired cross-talking, and the application of quantitative modelling of synthetic genetic circuits in order to guide their design. Most of the efforts in the field of synthetic biology in the last decade have been devoted to the design and development of functional gene circuits in prokaryotes and unicellular eukaryotes. Researchers have used synthetic biology not only to engineer new functions in the cell, but also to build simpler models of endogenous gene regulatory networks to gain knowledge of the "rules" governing their wiring diagram. However, the need for innovative approaches to study and modify complex signalling and regulatory networks in mammalian cells and multicellular organisms has prompted advances of synthetic biology also in these species, thus contributing to develop innovative ways to tackle human diseases. In this work, we will review the latest progress in synthetic biology and the most significant developments achieved so far, both in unicellular and multicellular organisms, with emphasis on human health.
Collapse
Affiliation(s)
- Filippo Menolascina
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy.
| | | | | |
Collapse
|
26
|
Kämpf MM, Engesser R, Busacker M, Hörner M, Karlsson M, Zurbriggen MD, Fussenegger M, Timmer J, Weber W. Rewiring and dosing of systems modules as a design approach for synthetic mammalian signaling networks. MOLECULAR BIOSYSTEMS 2012; 8:1824-32. [PMID: 22532387 DOI: 10.1039/c2mb05509k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modularly structured signaling networks coordinate the fate and function of complex biological systems. Each component in the network performs a discrete computational operation, but when connected to each other intricate functionality emerges. Here we study such an architecture by connecting auxin signaling modules and inducible protein biotinylation systems with transcriptional control systems to construct synthetic mammalian high-detect, low-detect and band-detect networks that translate overlapping gradients of inducer molecules into distinct gene expression patterns. Guided by a mathematical model we apply fundamental computational operations like conjunction or addition to rewire individual building blocks to qualitatively and quantitatively program the way the overall network interprets graded input signals. The design principles described in this study might serve as a conceptual blueprint for the development of next-generation mammalian synthetic gene networks in fundamental and translational research.
Collapse
Affiliation(s)
- Michael M Kämpf
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ratushny AV, Saleem RA, Sitko K, Ramsey SA, Aitchison JD. Asymmetric positive feedback loops reliably control biological responses. Mol Syst Biol 2012; 8:577. [PMID: 22531117 PMCID: PMC3361002 DOI: 10.1038/msb.2012.10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/06/2012] [Indexed: 01/03/2023] Open
Abstract
Positive feedback is a common mechanism enabling biological systems to respond to stimuli in a switch-like manner. Such systems are often characterized by the requisite formation of a heterodimer where only one of the pair is subject to feedback. This ASymmetric Self-UpREgulation (ASSURE) motif is central to many biological systems, including cholesterol homeostasis (LXRα/RXRα), adipocyte differentiation (PPARγ/RXRα), development and differentiation (RAR/RXR), myogenesis (MyoD/E12) and cellular antiviral defense (IRF3/IRF7). To understand why this motif is so prevalent, we examined its properties in an evolutionarily conserved transcriptional regulatory network in yeast (Oaf1p/Pip2p). We demonstrate that the asymmetry in positive feedback confers a competitive advantage and allows the system to robustly increase its responsiveness while precisely tuning the response to a consistent level in the presence of varying stimuli. This study reveals evolutionary advantages for the ASSURE motif, and mechanisms for control, that are relevant to pharmacologic intervention and synthetic biology applications.
Collapse
Affiliation(s)
- Alexander V Ratushny
- Institute for Systems Biology, Seattle, WA, USA
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Ramsey A Saleem
- Institute for Systems Biology, Seattle, WA, USA
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Katherine Sitko
- Institute for Systems Biology, Seattle, WA, USA
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - Stephen A Ramsey
- Institute for Systems Biology, Seattle, WA, USA
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | - John D Aitchison
- Institute for Systems Biology, Seattle, WA, USA
- Seattle Biomedical Research Institute, Seattle, WA, USA
| |
Collapse
|
28
|
Abstract
Synthetic biology aims at designing and building new biological functions in living organisms. The complexity of cellular regulation (regulatory, metabolic, and signaling interactions, and their coordinated action) can be tackled via the development of quantitative mathematical models. These models are useful to test biological hypotheses and observations, and to predict the possible behaviors of a synthetic network. Indeed, synthetic biology uses such models to design synthetic networks, prior to their construction in the cell, to perform specific tasks, or to change a biological process in a desired way. The synthetic network is built by assembling biological "parts" taken from different systems; therefore it is fundamental to identify, isolate, and test regulatory motifs which occur frequently in biological pathways. In this chapter, we describe how to model and predict the behavior of synthetic networks in two difference cases: (1) a synthetic network composed of five genes regulating each other through a variety of regulatory interactions in the yeast Saccharomyces cerevisiae (2) a synthetic transcriptional positive feedback loop stably integrated in Human Embryonic Kidney 293 cells (HEK293).
Collapse
Affiliation(s)
- Diego di Bernardo
- Faculty of Engineering, University of Naples "Fecerico II", Naples, Italy.
| | | | | | | |
Collapse
|