1
|
Grewal RK, Das J. Spatially resolved in silico modeling of NKG2D signaling kinetics suggests a key role of NKG2D and Vav1 Co-clustering in generating natural killer cell activation. PLoS Comput Biol 2022; 18:e1010114. [PMID: 35584138 PMCID: PMC9154193 DOI: 10.1371/journal.pcbi.1010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/31/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Natural Killer (NK) cells provide key resistance against viral infections and tumors. A diverse set of activating and inhibitory NK cell receptors (NKRs) interact with cognate ligands presented by target host cells, where integration of dueling signals initiated by the ligand-NKR interactions determines NK cell activation or tolerance. Imaging experiments over decades have shown micron and sub-micron scale spatial clustering of activating and inhibitory NKRs. The mechanistic roles of these clusters in affecting downstream signaling and activation are often unclear. To this end, we developed a predictive in silico framework by combining spatially resolved mechanistic agent based modeling, published TIRF imaging data, and parameter estimation to determine mechanisms by which formation and spatial movements of activating NKG2D microclusters affect early time NKG2D signaling kinetics in a human cell line NKL. We show co-clustering of NKG2D and the guanosine nucleotide exchange factor Vav1 in NKG2D microclusters plays a dominant role over ligand (ULBP3) rebinding in increasing production of phospho-Vav1(pVav1), an activation marker of early NKG2D signaling. The in silico model successfully predicts several scenarios of inhibition of NKG2D signaling and time course of NKG2D spatial clustering over a short (~3 min) interval. Modeling shows the presence of a spatial positive feedback relating formation and centripetal movements of NKG2D microclusters, and pVav1 production offers flexibility towards suppression of activating signals by inhibitory KIR ligands organized in inhomogeneous spatial patterns (e.g., a ring). Our in silico framework marks a major improvement in developing spatiotemporal signaling models with quantitatively estimated model parameters using imaging data. Natural Killer cells are lymphocytes of our innate immunity and provide important resistance against viral infections and tumors. NK cells scan the local environment with diverse activating and inhibitory NK cell receptors (NKRs) and remain tolerized or lyse target cells expressing cognate ligands to NKRs. NKRs have been found to form micron sized clusters (or microclusters) as they interact with cognate ligands, and mechanisms regarding how the formation and movements of these microclusters influence NK cell signaling and activation, specifically related to activating NKRs, are often unclear. To this end, we develop a predictive spatially resolved early-time NK cell signaling model to study the interplay between membrane-proximal biochemical signaling events and the kinetics of microclusters of activating NKG2D and inhibitory KIR2DL2 receptors. We used published TIRF imaging data to validate our in silico models and estimate model parameters. Predictions from multiple in silico models are tested against a variety of data obtained from published imaging experiments and immunoassays. Our analysis suggests co-clustering of NKG2D and the guanosine nucleotide exchange factor Vav1 in the microclusters plays a major role in enhancing downstream activating signals. The developed framework can be extended to describe spatiotemporal signaling for other activating NKRs including CD16.
Collapse
Affiliation(s)
- Rajdeep Kaur Grewal
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jayajit Das
- Battelle Center for Mathematical Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
2
|
Simulation of receptor triggering by kinetic segregation shows role of oligomers and close-contacts. Biophys J 2022; 121:1660-1674. [PMID: 35367423 PMCID: PMC9117938 DOI: 10.1016/j.bpj.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
The activation of T cells, key players of the immune system, involves local evacuation of phosphatase CD45 from a region of the T cell's surface, segregating it from the T cell receptor. What drives this evacuation? In the presence of antigen, what ensures evacuation happens in the subsecond timescales necessary to initiate signaling? In the absence of antigen, what mechanisms ensure that evacuation does not happen spontaneously, which could cause signaling errors? Phenomena known to influence spatial organization of CD45 or similar surface molecules include diffusive motion in the lipid bilayer, oligomerization reactions, and mechanical compression against a nearby surface, such as that of the cell presenting the antigen. Computer simulations can investigate hypothesized spatiotemporal mechanisms of T cell signaling. The challenge to computational studies of evacuation is that the base process, spontaneous evacuation by simple diffusion, is in the extreme rare event limit, meaning direct stochastic simulation is unfeasible. Here, we combine particle-based spatial stochastic simulation with the weighted ensemble method for rare events to compute the mean first passage time for cell surface availability by surface reorganization of CD45. We confirm mathematical estimates that, at physiological concentrations, spontaneous evacuation is extremely rare, roughly 300 years. We find that dimerization decreases the time required for evacuation. A weak bimolecular interaction (dissociation constant estimate 460 μM) is sufficient for an order of magnitude reduction of spontaneous evacuation times, and oligomerization to hexamers reduces times to below 1 s. This introduces a mechanism whereby externally induced CD45 oligomerization could significantly modify T cell function. For large regions of close contact, such as those induced by large microvilli, molecular size and compressibility imply a nonzero reentry probability of 60%, decreasing evacuation times. Simulations show that these reduced evacuation times are still unrealistically long (even with a fourfold variation centered around previous estimates of parameters), suggesting that a yet-to-be-described mechanism, besides compressional exclusion at a close contact, drives evacuation.
Collapse
|
3
|
Kern N, Dong R, Douglas SM, Vale RD, Morrissey MA. Tight nanoscale clustering of Fcγ receptors using DNA origami promotes phagocytosis. eLife 2021; 10:68311. [PMID: 34080973 PMCID: PMC8175083 DOI: 10.7554/elife.68311] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022] Open
Abstract
Macrophages destroy pathogens and diseased cells through Fcγ receptor (FcγR)-driven phagocytosis of antibody-opsonized targets. Phagocytosis requires activation of multiple FcγRs, but the mechanism controlling the threshold for response is unclear. We developed a DNA origami-based engulfment system that allows precise nanoscale control of the number and spacing of ligands. When the number of ligands remains constant, reducing ligand spacing from 17.5 nm to 7 nm potently enhances engulfment, primarily by increasing efficiency of the engulfment-initiation process. Tighter ligand clustering increases receptor phosphorylation, as well as proximal downstream signals. Increasing the number of signaling domains recruited to a single ligand-receptor complex was not sufficient to recapitulate this effect, indicating that clustering of multiple receptors is required. Our results suggest that macrophages use information about local ligand densities to make critical engulfment decisions, which has implications for the mechanism of antibody-mediated phagocytosis and the design of immunotherapies.
Collapse
Affiliation(s)
- Nadja Kern
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, United States
| | - Rui Dong
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, United States
| | - Shawn M Douglas
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, United States
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, United States.,Howard Hughes Medical Institute Janelia Research Campus, Ashburn, United States
| | - Meghan A Morrissey
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, United States.,Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, United States
| |
Collapse
|
4
|
Li L, Stumpf BH, Smith AS. Molecular Biomechanics Controls Protein Mixing and Segregation in Adherent Membranes. Int J Mol Sci 2021; 22:3699. [PMID: 33918167 PMCID: PMC8037219 DOI: 10.3390/ijms22073699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 01/28/2023] Open
Abstract
Cells interact with their environment by forming complex structures involving a multitude of proteins within assemblies in the plasma membrane. Despite the omnipresence of these assemblies, a number of questions about the correlations between the organisation of domains and the biomechanical properties of the involved proteins, namely their length, flexibility and affinity, as well as about the coupling to the elastic, fluctuating membrane, remain open. Here we address these issues by developing an effective Kinetic Monte Carlo simulation to model membrane adhesion. We apply this model to a typical experiment in which a cell binds to a functionalized solid supported bilayer and use two ligand-receptor pairs to study these couplings. We find that differences in affinity and length of proteins forming adhesive contacts result in several characteristic features in the calculated phase diagrams. One such feature is mixed states occurring even with proteins with length differences of 10 nm. Another feature are stable nanodomains with segregated proteins appearing on time scales of cell experiments, and for biologically relevant parameters. Furthermore, we show that macroscopic ring-like patterns can spontaneously form as a consequence of emergent protein fluxes. The capacity to form domains is captured by an order parameter that is founded on the virial coefficients for the membrane mediated interactions between bonds, which allow us to collapse all the data. These findings show that taking into account the role of the membrane allows us to recover a number of experimentally observed patterns. This is an important perspective in the context of explicit biological systems, which can now be studied in significant detail.
Collapse
Affiliation(s)
- Long Li
- PULS Group, Institute for Theoretical Physics and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany; (L.L.); (B.H.S.)
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
| | - Bernd Henning Stumpf
- PULS Group, Institute for Theoretical Physics and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany; (L.L.); (B.H.S.)
| | - Ana-Sunčana Smith
- PULS Group, Institute for Theoretical Physics and Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany; (L.L.); (B.H.S.)
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Kulenkampff K, Lippert AH, McColl J, Santos AM, Ponjavic A, Jenkins E, Humphrey J, Winkel A, Franze K, Lee SF, Davis SJ, Klenerman D. The Costs of Close Contacts: Visualizing the Energy Landscape of Cell Contacts at the Nanoscale. Biophys J 2020; 118:1261-1269. [PMID: 32075748 PMCID: PMC7091464 DOI: 10.1016/j.bpj.2020.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/27/2022] Open
Abstract
Cell-cell contacts often underpin signaling between cells. For immunology, the binding of a T cell receptor to an antigen-presenting pMHC initiates downstream signaling and an immune response. Although this contact is mediated by proteins on both cells creating interfaces with gap sizes typically around 14 nm, many, often contradictory observations have been made regarding the influence of the contact on parameters such as the binding kinetics, spatial distribution, and diffusion of signaling proteins within the contact. Understanding the basic physical constraints on probes inside this crowded environment will help inform studies on binding kinetics and dynamics of signaling of relevant proteins in the synapse. By tracking quantum dots of different dimensions for extended periods of time, we have shown that it is possible to obtain the probability of a molecule entering the contact, the change in its diffusion upon entry, and the impact of spatial heterogeneity of adhesion protein density in the contact. By analyzing the contacts formed by a T cell interacting with adhesion proteins anchored to a supported lipid bilayer, we find that probes are excluded from contact entry in a size-dependent manner for gap-to-probe differences of 4.1 nm. We also observed probes being trapped inside the contact and a decrease in diffusion of up to 85% in dense adhesion protein contacts. This approach provides new, to our knowledge, insights into the nature of cell-cell contacts, revealing that cell contacts are highly heterogeneous because of topography- and protein-density-related processes. These effects are likely to profoundly influence signaling between cells.
Collapse
Affiliation(s)
- Klara Kulenkampff
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Anna H Lippert
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Aleks Ponjavic
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Edward Jenkins
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jane Humphrey
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alexander Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
6
|
Mathematical Models for Immunology: Current State of the Art and Future Research Directions. Bull Math Biol 2016; 78:2091-2134. [PMID: 27714570 PMCID: PMC5069344 DOI: 10.1007/s11538-016-0214-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/26/2016] [Indexed: 01/01/2023]
Abstract
The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years.
Collapse
|
7
|
Schmid EM, Bakalar MH, Choudhuri K, Weichsel J, Ann H, Geissler PL, Dustin ML, Fletcher DA. Size-dependent protein segregation at membrane interfaces. NATURE PHYSICS 2016; 12:704-711. [PMID: 27980602 PMCID: PMC5152624 DOI: 10.1038/nphys3678] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 01/29/2016] [Indexed: 05/21/2023]
Abstract
Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane protein organization, such as E-cadherin enrichment in epithelial junctional complexes and CD45 exclusion from the signaling foci of immunological synapses. To isolate the role of protein size in these processes, we reconstituted membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between binding and non-binding proteins can dramatically alter their organization at membrane interfaces in the absence of active contributions from the cytoskeleton, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally-driven membrane height fluctuations that transiently limit access to the interface. This simple, sensitive, and highly effective means of passively segregating proteins has implications for signaling at cell-cell junctions and protein sorting at intracellular contact points between membrane-bound organelles.
Collapse
Affiliation(s)
- Eva M Schmid
- Department of Bioengineering, University of California, Berkeley, CA
| | - Matthew H Bakalar
- UC Berkeley / UC San Francisco Graduate Group in Bioengineering, Berkeley, CA
| | - Kaushik Choudhuri
- Skirball Institute, New York University School of Medicine, New York, NY
| | - Julian Weichsel
- Department of Chemistry, University of California, Berkeley, CA
| | - HyoungSook Ann
- Department of Bioengineering, University of California, Berkeley, CA
| | - Phillip L Geissler
- Department of Chemistry, University of California, Berkeley, CA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Michael L Dustin
- Skirball Institute, New York University School of Medicine, New York, NY
- Kennedy Institute, NDORMS, University of Oxford, Oxford, UK
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, CA
- UC Berkeley / UC San Francisco Graduate Group in Bioengineering, Berkeley, CA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
8
|
Chang VT, Fernandes RA, Ganzinger KA, Lee SF, Siebold C, McColl J, Jönsson P, Palayret M, Harlos K, Coles CH, Jones EY, Lui Y, Huang E, Gilbert RJC, Klenerman D, Aricescu AR, Davis SJ. Initiation of T cell signaling by CD45 segregation at 'close contacts'. Nat Immunol 2016; 17:574-582. [PMID: 26998761 PMCID: PMC4839504 DOI: 10.1038/ni.3392] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
Abstract
It has been proposed that the local segregation of kinases and the tyrosine phosphatase CD45 underpins T cell antigen receptor (TCR) triggering, but how such segregation occurs and whether it can initiate signaling is unclear. Using structural and biophysical analysis, we show that the extracellular region of CD45 is rigid and extends beyond the distance spanned by TCR-ligand complexes, implying that sites of TCR-ligand engagement would sterically exclude CD45. We also show that the formation of 'close contacts', new structures characterized by spontaneous CD45 and kinase segregation at the submicron-scale, initiates signaling even when TCR ligands are absent. Our work reveals the structural basis for, and the potent signaling effects of, local CD45 and kinase segregation. TCR ligands have the potential to heighten signaling simply by holding receptors in close contacts.
Collapse
Affiliation(s)
- Veronica T Chang
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Ricardo A Fernandes
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN
| | - James McColl
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW
| | - Peter Jönsson
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW
| | - Matthieu Palayret
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN
| | - Charlotte H Coles
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN
| | - Yuan Lui
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Elizabeth Huang
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN
| | - Simon J Davis
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
9
|
Rocha-Perugini V, Sánchez-Madrid F, Martínez Del Hoyo G. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation. Front Immunol 2016; 6:653. [PMID: 26793193 PMCID: PMC4707441 DOI: 10.3389/fimmu.2015.00653] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022] Open
Abstract
Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms driven by protein–protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen-presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) and their downstream-induced signaling, as well as the regulation of MHC-II–peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS) formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation and in the dynamics of IS architectural organization.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gloria Martínez Del Hoyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) , Madrid , Spain
| |
Collapse
|
10
|
Armond JW, Harry EF, McAinsh AD, Burroughs NJ. Inferring the Forces Controlling Metaphase Kinetochore Oscillations by Reverse Engineering System Dynamics. PLoS Comput Biol 2015; 11:e1004607. [PMID: 26618929 PMCID: PMC4664287 DOI: 10.1371/journal.pcbi.1004607] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
Kinetochores are multi-protein complexes that mediate the physical coupling of sister chromatids to spindle microtubule bundles (called kinetochore (K)-fibres) from respective poles. These kinetochore-attached K-fibres generate pushing and pulling forces, which combine with polar ejection forces (PEF) and elastic inter-sister chromatin to govern chromosome movements. Classic experiments in meiotic cells using calibrated micro-needles measured an approximate stall force for a chromosome, but methods that allow the systematic determination of forces acting on a kinetochore in living cells are lacking. Here we report the development of mathematical models that can be fitted (reverse engineered) to high-resolution kinetochore tracking data, thereby estimating the model parameters and allowing us to indirectly compute the (relative) force components (K-fibre, spring force and PEF) acting on individual sister kinetochores in vivo. We applied our methodology to thousands of human kinetochore pair trajectories and report distinct signatures in temporal force profiles during directional switches. We found the K-fibre force to be the dominant force throughout oscillations, and the centromeric spring the smallest although it has the strongest directional switching signature. There is also structure throughout the metaphase plate, with a steeper PEF potential well towards the periphery and a concomitant reduction in plate thickness and oscillation amplitude. This data driven reverse engineering approach is sufficiently flexible to allow fitting of more complex mechanistic models; mathematical models of kinetochore dynamics can therefore be thoroughly tested on experimental data for the first time. Future work will now be able to map out how individual proteins contribute to kinetochore-based force generation and sensing. To achieve proper cell division, newly duplicated chromosomes must be segregated into daughter cells with high fidelity. This occurs in mitosis where during the crucial metaphase stage chromosomes are aligned on an imaginary plate, called the metaphase plate. Chromosomes are attached to a structural scaffold—the mitotic spindle, which is composed of dynamic fibres called microtubules—by protein machines called kinetochores. Observation of kinetochores during metaphase reveals they undergo a series of forward and backward movements. The mechanical system generating this oscillatory motion is not well understood. By tracking kinetochores in live cell 3D confocal microscopy and reverse engineering their trajectories we decompose the forces acting on kinetochores into the three main force generating components. Kinetochore dynamics are dominated by K-fibre forces, although changes in the minor spring force over time suggests an important role in controlling directional switching. In addition, we show that the strength of forces can vary both spatially within cells throughout the plate and between cells.
Collapse
Affiliation(s)
- Jonathan W. Armond
- Warwick Systems Biology Centre and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Edward F. Harry
- Molecular Organisation and Assembly in Cells (MOAC) Doctoral Training Centre, University of Warwick, Coventry, United Kingdom
| | - Andrew D. McAinsh
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Nigel J. Burroughs
- Warwick Systems Biology Centre and Mathematics Institute, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
The immune synapse clears and excludes molecules above a size threshold. Nat Commun 2014; 5:5479. [PMID: 25407222 PMCID: PMC4248232 DOI: 10.1038/ncomms6479] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
Natural killer cells assess target cell health via interactions at the immune synapse (IS) that facilitates signal integration and directed secretion. Here we test whether the IS also functions as a gasket. Quantitative fluorescence microscopy of nanometer-scale dextrans within synapses formed by various effector-target cell conjugates reveal that molecules are excluded in a size-dependent manner at activating synapses. Dextran sized ≤4 nm move in and out of the IS, but access is significantly reduced (by >50%) for dextran sized 10–13 nm, and dextran ≥32 nm is almost entirely excluded. Depolymerization of F-actin abrogated exclusion. Unexpectedly, larger-sized dextrans are cleared as the IS assembles in a zipper-like manner. Monoclonal antibodies are also excluded from the IS but smaller single-domain antibodies are able to penetrate. Therefore, the IS can clear and exclude molecules above a size threshold, and drugs designed to target synaptic cytokines or cytotoxic proteins must fit these dimensions. Natural killer cells can be switched on or off by the immune synapse formed with another cell. Here, the authors show that when a natural killer cell is activated, the immune synapse also functions to clear and exclude extracellular molecules, including antibodies, in a size-dependent manner.
Collapse
|
12
|
Bush DR, Chattopadhyay AK. Contact time periods in immunological synapse. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042706. [PMID: 25375522 DOI: 10.1103/physreve.90.042706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Indexed: 06/04/2023]
Abstract
This paper resolves the long standing debate as to the proper time scale 〈τ〉 of the onset of the immunological synapse bond, the noncovalent chemical bond defining the immune pathways involving T cells and antigen presenting cells. Results from our model calculations show 〈τ〉 to be of the order of seconds instead of minutes. Close to the linearly stable regime, we show that in between the two critical spatial thresholds defined by the integrin:ligand pair (Δ2∼ 40-45 nm) and the T-cell receptor TCR:peptide-major-histocompatibility-complex pMHC bond (Δ1∼ 14-15 nm), 〈τ〉 grows monotonically with increasing coreceptor bond length separation δ (= Δ2-Δ1∼ 26-30 nm) while 〈τ〉 decays with Δ1 for fixed Δ2. The nonuniversal δ-dependent power-law structure of the probability density function further explains why only the TCR:pMHC bond is a likely candidate to form a stable synapse.
Collapse
Affiliation(s)
- Daniel R Bush
- Non-linearity and Complexity Research Group - Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| | - Amit K Chattopadhyay
- Non-linearity and Complexity Research Group - Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
13
|
CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses. Mol Cell Biol 2013; 33:3644-58. [PMID: 23858057 DOI: 10.1128/mcb.00302-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated the dynamics of the molecular interactions of tetraspanin CD81 in T lymphocytes, and we show that CD81 controls the organization of the immune synapse (IS) and T cell activation. Using quantitative microscopy, including fluorescence recovery after photobleaching (FRAP), phasor fluorescence lifetime imaging microscopy-Föster resonance energy transfer (phasorFLIM-FRET), and total internal reflection fluorescence microscopy (TIRFM), we demonstrate that CD81 interacts with ICAM-1 and CD3 during conjugation between T cells and antigen-presenting cells (APCs). CD81 and ICAM-1 exhibit distinct mobilities in central and peripheral areas of early and late T cell-APC contacts. Moreover, CD81-ICAM-1 and CD81-CD3 dynamic interactions increase over the time course of IS formation, as these molecules redistribute throughout the contact area. Therefore, CD81 associations unexpectedly define novel sequential steps of IS maturation. Our results indicate that CD81 controls the temporal progression of the IS and the permanence of CD3 in the membrane contact area, contributing to sustained T cell receptor (TCR)-CD3-mediated signaling. Accordingly, we find that CD81 is required for proper T cell activation, regulating CD3ζ, ZAP-70, LAT, and extracellular signal-regulated kinase (ERK) phosphorylation; CD69 surface expression; and interleukin-2 (IL-2) secretion. Our data demonstrate the important role of CD81 in the molecular organization and dynamics of the IS architecture that sets the signaling threshold in T cell activation.
Collapse
|
14
|
Watzl C, Sternberg-Simon M, Urlaub D, Mehr R. Understanding natural killer cell regulation by mathematical approaches. Front Immunol 2012; 3:359. [PMID: 23264774 PMCID: PMC3525018 DOI: 10.3389/fimmu.2012.00359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/10/2012] [Indexed: 11/13/2022] Open
Abstract
The activity of natural killer (NK) cells is regulated by various processes including education/licensing, priming, integration of positive and negative signals through an array of activating and inhibitory receptors, and the development of memory-like functionality. These processes are often very complex due to the large number of different receptors and signaling pathways involved. Understanding these complex mechanisms is therefore a challenge, but is critical for understanding NK cell regulation. Mathematical approaches can facilitate the analysis and understanding of complex systems. Therefore, they may be instrumental for studies in NK cell biology. Here we provide a review of the different mathematical approaches to the analysis of NK cell signal integration, activation, proliferation, and the acquisition of inhibitory receptors. These studies show how mathematical methods can aid the analysis of NK cell regulation.
Collapse
Affiliation(s)
- Carsten Watzl
- IfADo - Leibniz Institute for Occupational Research Dortmund, Germany
| | | | | | | |
Collapse
|
15
|
Pageon SV, Rudnicka D, Davis DM. Illuminating the dynamics of signal integration in Natural Killer cells. Front Immunol 2012; 3:308. [PMID: 23060886 PMCID: PMC3463929 DOI: 10.3389/fimmu.2012.00308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 09/17/2012] [Indexed: 11/13/2022] Open
Abstract
Natural Killer (NK) cell responses are shaped by the integration of signals transduced from multiple activating and inhibitory receptors at their surface. Biochemical and genetic approaches have identified most of the key proteins involved in signal integration but a major challenge remains in understanding how the spatial and temporal dynamics of their interactions lead to NK cells responding appropriately when encountering ligands on target cells. Well over a decade of research using fluorescence microscopy has revealed much about the architecture of the NK cell immune synapse - the structured interface between NK cells and target cells - and how it varies when inhibition or activation is the outcome of signal integration. However, key questions - such as the proximity of individual activating and inhibitory receptors - have remained unanswered because the resolution of optical microscopy has been insufficient, being limited by diffraction. Recent developments in fluorescence microscopy have broken this limit, seeding new opportunities for studying the nanometer-scale organization of the NK cell immune synapse. Here, we discuss how these new technologies, super-resolution imaging and other novel light-based methods, can illuminate our understanding of NK cell biology.
Collapse
Affiliation(s)
- Sophie V Pageon
- Division of Cell and Molecular Biology, Imperial College London London, UK
| | | | | |
Collapse
|
16
|
Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol 2012; 3:155. [PMID: 22701458 PMCID: PMC3372939 DOI: 10.3389/fimmu.2012.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR Prague, Czech Republic
| | | | | |
Collapse
|
17
|
Allard J, Dushek O, Coombs D, Anton van der Merwe P. Mechanical modulation of receptor-ligand interactions at cell-cell interfaces. Biophys J 2012; 102:1265-73. [PMID: 22455909 PMCID: PMC3309404 DOI: 10.1016/j.bpj.2012.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/01/2012] [Accepted: 02/07/2012] [Indexed: 01/13/2023] Open
Abstract
Cell surface receptors have been extensively studied because they initiate and regulate signal transduction cascades leading to a variety of functional cellular outcomes. An important class of immune receptors (e.g., T-cell antigen receptors) whose ligands are anchored to the surfaces of other cells remain poorly understood. The mechanism by which ligand binding initiates receptor phosphorylation, a process termed "receptor triggering", remains controversial. Recently, direct measurements of the (two-dimensional) receptor-ligand complex lifetimes at cell-cell interface were found to be smaller than (three-dimensional) lifetimes in solution but the underlying mechanism is unknown. At the cell-cell interface, the receptor-ligand complex spans a short intermembrane distance (15 nm) compared to long surface molecules (LSMs) whose ectodomains span >40 nm and these LSMs include phosphatases (e.g., CD45) that dephosphorylate the receptor. It has been proposed that size-based segregation of LSMs from a receptor-ligand complex is a mechanism of receptor triggering but it is unclear whether the mechanochemistry supports such small-scale segregation. Here we present a nanometer-scale mathematical model that couples membrane elasticity with the compressional stiffness and lateral mobility of LSMs. We find robust supradiffusive segregation of LSMs from a single receptor-ligand complex. The model predicts that LSM redistribution will result in a time-dependent tension on the complex leading to a decreased two-dimensional lifetime. Interestingly, the model predicts a nonlinear relationship between the three- and two-dimensional lifetimes, which can enhance the ability of receptors to discriminate between similar ligands.
Collapse
Affiliation(s)
- Jun F. Allard
- Department of Mathematics, University of California, Davis, California
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Centre for Mathematical Biology, University of Oxford, Oxford, United Kingdom
| | - Daniel Coombs
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
18
|
Weil N, Farago O. Entropic attraction of adhesion bonds toward cell boundaries. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051907. [PMID: 22181444 DOI: 10.1103/physreve.84.051907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/19/2011] [Indexed: 05/31/2023]
Abstract
Adhesion bonds between membranes and surfaces are attracted to each other via effective interactions whose origin is the entropy loss due to the reduction in the amplitude of the membrane thermal fluctuations in the vicinity of the adhesion bonds. These fluctuation-induced interactions are also expected to drive the adhesion bonds toward the rim of the cell as well as toward the surfaces of membrane inclusions. In this paper we analyze the attraction of adhesion bonds to the cell inner and outer boundaries. Our analysis shows that the probability distribution function of a single (diffusing) adhesion bond decays algebraically with the distance from the boundaries. Upon increasing the concentration of the adhesion bonds, the attraction to the boundaries becomes strongly self-screened.
Collapse
Affiliation(s)
- Noam Weil
- Department of Biomedical Engineering, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | |
Collapse
|