1
|
Dey R, Taraphder S. Molecular Modeling of Glycosylated Catalytic Domain of Human Carbonic Anhydrase IX. J Phys Chem B 2024; 128:11054-11068. [PMID: 39487784 DOI: 10.1021/acs.jpcb.4c03514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Glycans exhibit significant structural diversity due to the flexibility of glycosidic bonds linking their constituent monosaccharides and the formation of numerous hydrogen bonds. The present work searches a simulated ensemble of glycan chain conformations attached to the catalytic domain of N-glycosylated human carbonic anhydrase IX (HCA IX-c) to identify conformations pointed away or back-folded toward the protein surface guided by different amino acid residues. A series of classical molecular dynamics (MD) simulation studies for a total of 30 μs followed by accelerated MD simulations for a total of 2 μs have been performed using two different force fields to capture varying degrees of fluctuations of both glycan chain and HCA IX. From the underlying free energy profile and kinetics derived using hidden Markov state model, several stable glycan orientations are identified that extend away from the protein surface and convert among each other with rate constants of the order 107-1010 S-1. Most importantly, we have identified a rare glycan conformation which reaches close to a catalytically important amino acid residue, Glu-106. We further enlist the protein residues that couple such less frequent event of the glycan chain back-folding toward the surface of the protein.
Collapse
Affiliation(s)
- Ritwika Dey
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
2
|
Krishna R, Wang J, Ahern W, Sturmfels P, Venkatesh P, Kalvet I, Lee GR, Morey-Burrows FS, Anishchenko I, Humphreys IR, McHugh R, Vafeados D, Li X, Sutherland GA, Hitchcock A, Hunter CN, Kang A, Brackenbrough E, Bera AK, Baek M, DiMaio F, Baker D. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 2024; 384:eadl2528. [PMID: 38452047 DOI: 10.1126/science.adl2528] [Citation(s) in RCA: 250] [Impact Index Per Article: 250.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin.
Collapse
Affiliation(s)
- Rohith Krishna
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Jue Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Woody Ahern
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Pascal Sturmfels
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Preetham Venkatesh
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA
| | - Indrek Kalvet
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| | - Gyu Rie Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| | | | - Ivan Anishchenko
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Ryan McHugh
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA
| | - Dionne Vafeados
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | | | - Andrew Hitchcock
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alex Kang
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Evans Brackenbrough
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Asim K Bera
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Minkyung Baek
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
3
|
Dixit B, Vranken W, Ghysels A. Conformational dynamics of α-1 acid glycoprotein (AGP) in cancer: A comparative study of glycosylated and unglycosylated AGP. Proteins 2024; 92:246-264. [PMID: 37837263 DOI: 10.1002/prot.26607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
α-1 acid glycoprotein (AGP) is one of the most abundant plasma proteins. It fulfills two important functions: immunomodulation, and binding to various drugs and receptors. These different functions are closely associated and modulated via changes in glycosylation and cancer missense mutations. From a structural point of view, glycans alter the local biophysical properties of the protein leading to a diverse ligand-binding spectrum. However, glycans can typically not be observed in the resolved X-ray crystallography structure of AGP due to their high flexibility and microheterogeneity, so limiting our understanding of AGP's conformational dynamics 70 years after its discovery. We here investigate how mutations and glycosylation interfere with AGP's conformational dynamics changing its biophysical behavior, by using molecular dynamics (MD) simulations and sequence-based dynamics predictions. The MD trajectories show that glycosylation decreases the local backbone flexibility of AGP and increases the flexibility of distant regions through allosteric effects. We observe that mutations near the glycosylation site affect glycan's conformational preferences. Thus, we conclude that mutations control glycan dynamics which modulates the protein's backbone flexibility directly affecting its accessibility. These findings may assist in the drug design targeting AGP's glycosylation and mutations in cancer.
Collapse
Affiliation(s)
- Bhawna Dixit
- IBiTech-BioMMeda Group, Ghent University, Ghent, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - An Ghysels
- IBiTech-BioMMeda Group, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Esmail S, Manolson MF. Advances in understanding N-glycosylation structure, function, and regulation in health and disease. Eur J Cell Biol 2021; 100:151186. [PMID: 34839178 DOI: 10.1016/j.ejcb.2021.151186] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
N-linked glycosylation is a post-translational modification crucial for membrane protein folding, stability and other cellular functions. Alteration of membrane protein N-glycans is implicated in wide range of pathological conditions including cancer metastasis, chronic inflammatory diseases, and viral pathogenesis. Even though the roles of N-glycans have been studied extensively, our knowledge of their mechanisms remains unclear due to the lack of detailed structural analysis of the N-glycome. Mapping the N-glycome landscape will open new avenues to explore disease mechanisms and identify novel therapeutic targets. This review discusses the diverse structure of N-linked glycans, the function and regulation of N-glycosylation in health and disease, and ends with a focus on recent approaches to target N-glycans in rheumatoid arthritis and cancer metastasis.
Collapse
Affiliation(s)
- Sally Esmail
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada.
| | - Morris F Manolson
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
5
|
Balli OI, Uversky VN, Durdagi S, Coskuner-Weber O. Challenges and limitations in the studies of glycoproteins: A computational chemist's perspective. Proteins 2021; 90:322-339. [PMID: 34549826 DOI: 10.1002/prot.26242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022]
Abstract
Experimenters face challenges and limitations while analyzing glycoproteins due to their high flexibility, stereochemistry, anisotropic effects, and hydration phenomena. Computational studies complement experiments and have been used in characterization of the structural properties of glycoproteins. However, recent investigations revealed that computational studies face significant challenges as well. Here, we introduce and discuss some of these challenges and weaknesses in the investigations of glycoproteins. We also present requirements of future developments in computational biochemistry and computational biology areas that could be necessary for providing more accurate structural property analyses of glycoproteins using computational tools. Further theoretical strategies that need to be and can be developed are discussed herein.
Collapse
Affiliation(s)
- Oyku Irem Balli
- Molecular Biotechnology, Turkish-German University, Istanbul, Turkey
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | | |
Collapse
|
6
|
Miller NL, Clark T, Raman R, Sasisekharan R. Glycans in Virus-Host Interactions: A Structural Perspective. Front Mol Biosci 2021; 8:666756. [PMID: 34164431 PMCID: PMC8215384 DOI: 10.3389/fmolb.2021.666756] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many interactions between microbes and their hosts are driven or influenced by glycans, whose heterogeneous and difficult to characterize structures have led to an underappreciation of their role in these interactions compared to protein-based interactions. Glycans decorate microbe glycoproteins to enhance attachment and fusion to host cells, provide stability, and evade the host immune system. Yet, the host immune system may also target these glycans as glycoepitopes. In this review, we provide a structural perspective on the role of glycans in host-microbe interactions, focusing primarily on viral glycoproteins and their interactions with host adaptive immunity. In particular, we discuss a class of topological glycoepitopes and their interactions with topological mAbs, using the anti-HIV mAb 2G12 as the archetypical example. We further offer our view that structure-based glycan targeting strategies are ready for application to viruses beyond HIV, and present our perspective on future development in this area.
Collapse
Affiliation(s)
- Nathaniel L Miller
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Thomas Clark
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rahul Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ram Sasisekharan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
7
|
Wang SH, Wu TJ, Lee CW, Yu J. Dissecting the conformation of glycans and their interactions with proteins. J Biomed Sci 2020; 27:93. [PMID: 32900381 PMCID: PMC7487937 DOI: 10.1186/s12929-020-00684-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
The use of in silico strategies to develop the structural basis for a rational optimization of glycan-protein interactions remains a great challenge. This problem derives, in part, from the lack of technologies to quantitatively and qualitatively assess the complex assembling between a glycan and the targeted protein molecule. Since there is an unmet need for developing new sugar-targeted therapeutics, many investigators are searching for technology platforms to elucidate various types of molecular interactions within glycan-protein complexes and aid in the development of glycan-targeted therapies. Here we discuss three important technology platforms commonly used in the assessment of the complex assembly of glycosylated biomolecules, such as glycoproteins or glycosphingolipids: Biacore analysis, molecular docking, and molecular dynamics simulations. We will also discuss the structural investigation of glycosylated biomolecules, including conformational changes of glycans and their impact on molecular interactions within the glycan-protein complex. For glycoproteins, secreted protein acidic and rich in cysteine (SPARC), which is associated with various lung disorders, such as chronic obstructive pulmonary disease (COPD) and lung cancer, will be taken as an example showing that the core fucosylation of N-glycan in SPARC regulates protein-binding affinity with extracellular matrix collagen. For glycosphingolipids (GSLs), Globo H ceramide, an important tumor-associated GSL which is being actively investigated as a target for new cancer immunotherapies, will be used to demonstrate how glycan structure plays a significant role in enhancing angiogenesis in tumor microenvironments.
Collapse
Affiliation(s)
- Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Chien-Wei Lee
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Santhosh R, Bankoti N, Gurudarshan M, Jeyakanthan J, Sekar K. IMRPS: Inserted and Modified Residues in Protein Structures. A database. J Appl Crystallogr 2020. [DOI: 10.1107/s1600576720001880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Modified residues present in proteins are the result of post-translational modifications (PTMs). These PTMs increase the functional diversity of the proteome and influence various biological processes and diseased conditions. Therefore, identification and understanding of PTMs in various protein structures is of great significance. In view of this, an online database, Inserted and Modified Residues in Protein Structures (IMRPS), has been developed. IMRPS is a derived database that furnishes information on the residues modified and inserted in the protein structures available in the Protein Data Bank (PDB). The database is equipped with a graphical user interface and has an option to view the data for non-redundant protein structures (25 and 90%) as well. A quality criteria cutoff has been incorporated to assist in displaying the specific set of PDB codes. The entire protein structure along with the inserted or modified residues can be visualized in JSmol. This database will be updated regularly (presently, every three months) and can be accessed through the URL http://cluster.physics.iisc.ac.in/imrps/.
Collapse
|
9
|
Grimsey E, Collis DWP, Mikut R, Hilpert K. The effect of lipidation and glycosylation on short cationic antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183195. [PMID: 32130974 DOI: 10.1016/j.bbamem.2020.183195] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/16/2023]
Abstract
The global health threat surrounding bacterial resistance has resulted in antibiotic researchers shifting their focus away from 'traditional' antibiotics and concentrating on other antimicrobial agents, including antimicrobial peptides. These low molecular weight "mini-proteins" exhibit broad-spectrum activity against bacteria, including multi-drug resistant strains, viruses, fungi and protozoa and constitute a major element of the innate-immune system of many multicellular organisms. Some naturally occurring antimicrobial peptides are lipidated and/or glycosylated and almost all antimicrobial peptides in clinical use are either lipopeptides (Daptomycin and Polymyxin E and B) or glycopeptides (Vancomycin). Lipidation, glycosylation and PEGylation are an option for improving stability and activity in serum and for reducing the rapid clearing via the kidneys and liver. Two broad-spectrum antimicrobial peptides NH2-RIRIRWIIR-CONH2 (A1) and NH2-KRRVRWIIW-CONH2 (B1) were conjugated via a linker, producing A2 and B2, to individual fatty acids of C8, C10, C12 and C14 and in addition, A2 was conjugated to either glucose, N-acetyl glucosamine, galactose, mannose, lactose or polyethylene glycol (PEG). Antimicrobial activity against two Gram-positive strains (methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus faecalis (VRE)) and three Gram-negative strains (Salmonella typhimurium, E. coli and Pseudomonas aeruginosa) were determined. Activity patterns for the lipidated versions are very complex, dependent on sequence, bacteria and fatty acid. Two reciprocal effects were measured; compared to the parental peptides, some combinations led to a 16-fold improvement whereas other combinations let to a 32-fold reduction in antimicrobial activity. Glycosylation decreased antimicrobial activity by 2 to 16-fold in comparison to A1, respectively on the sugar-peptide combination. PEGylation rendered the peptide inactive. Antimicrobial activity in the presence of 25% human serum of A1 and B1 was reduced 32-fold and 8-fold, respectively. The longer chain fatty acids almost completely restored this activity; however, these fatty acids increased hemolytic activity. B1 modified with C8 increased the therapeutic index by 2-fold for four bacterial strains. Our results suggest that finding the right lipid-peptide combination can lead to improved activity in the presence of serum and potentially more effective drug candidates for animal studies. Glycosylation with the optimal sugar and numbers of sugars at the right peptide position could be an alternative route or could be used in addition to lipidation to counteract solubility and toxicity issues.
Collapse
Affiliation(s)
- Elizabeth Grimsey
- Institute for Infection and Immunity, St. George's University of London, London, UK
| | | | - Ralf Mikut
- Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI), Eggenstein-Leopoldshafen, Germany
| | - Kai Hilpert
- Institute for Infection and Immunity, St. George's University of London, London, UK.
| |
Collapse
|
10
|
Park SJ, Lee J, Qi Y, Kern NR, Lee HS, Jo S, Joung I, Joo K, Lee J, Im W. CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology 2019; 29:320-331. [PMID: 30689864 DOI: 10.1093/glycob/cwz003] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Characterizing glycans and glycoconjugates in the context of three-dimensional structures is important in understanding their biological roles and developing efficient therapeutic agents. Computational modeling and molecular simulation have become an essential tool complementary to experimental methods. Here, we present a computational tool, Glycan Modeler for in silico N-/O-glycosylation of the target protein and generation of carbohydrate-only systems. In our previous study, we developed Glycan Reader, a web-based tool for detecting carbohydrate molecules from a PDB structure and generation of simulation system and input files. As integrated into Glycan Reader in CHARMM-GUI, Glycan Modeler (Glycan Reader & Modeler) enables to generate the structures of glycans and glycoconjugates for given glycan sequences and glycosylation sites using PDB glycan template structures from Glycan Fragment Database (http://glycanstructure.org/fragment-db). Our benchmark tests demonstrate the universal applicability of Glycan Reader & Modeler to various glycan sequences and target proteins. We also investigated the structural properties of modeled glycan structures by running 2-μs molecular dynamics simulations of HIV envelope protein. The simulations show that the modeled glycan structures built by Glycan Reader & Modeler have the similar structural features compared to the ones solved by X-ray crystallography. We also describe the representative examples of glycoconjugate modeling with video demos to illustrate the practical applications of Glycan Reader & Modeler. Glycan Reader & Modeler is freely available at http://charmm-gui.org/input/glycan.
Collapse
Affiliation(s)
- Sang-Jun Park
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Jumin Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Nathan R Kern
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Hui Sun Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory, Argonne, IL, USA
| | - InSuk Joung
- Center for Advanced Computation, Korea Institute for Advanced Study, Republic of Korea
| | - Keehyung Joo
- Center for Advanced Computation, Korea Institute for Advanced Study, Republic of Korea
| | - Jooyoung Lee
- Center for Advanced Computation, Korea Institute for Advanced Study, Republic of Korea
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
11
|
Sequence-to-structure dependence of isolated IgG Fc complex biantennaryN-glycans: a molecular dynamics study. Glycobiology 2018; 29:94-103. [DOI: 10.1093/glycob/cwy097] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
|
12
|
Conformational Heterogeneity of the HIV Envelope Glycan Shield. Sci Rep 2017; 7:4435. [PMID: 28667249 PMCID: PMC5493700 DOI: 10.1038/s41598-017-04532-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023] Open
Abstract
To better understand the conformational properties of the glycan shield covering the surface of the HIV gp120/gp41 envelope (Env) trimer, and how the glycan shield impacts the accessibility of the underlying protein surface, we performed enhanced sampling molecular dynamics (MD) simulations of a model glycosylated HIV Env protein and related systems. Our simulation studies revealed a conformationally heterogeneous glycan shield with a network of glycan-glycan interactions more extensive than those observed to date. We found that partial preorganization of the glycans potentially favors binding by established broadly neutralizing antibodies; omission of several specific glycans could increase the accessibility of other glycans or regions of the protein surface to antibody or CD4 receptor binding; the number of glycans that can potentially interact with known antibodies is larger than that observed in experimental studies; and specific glycan conformations can maximize or minimize interactions with individual antibodies. More broadly, the enhanced sampling MD simulations described here provide a valuable tool to guide the engineering of specific Env glycoforms for HIV vaccine design.
Collapse
|
13
|
Malaker SA, Ferracane MJ, Depontieu FR, Zarling AL, Shabanowitz J, Bai DL, Topalian SL, Engelhard VH, Hunt DF. Identification and Characterization of Complex Glycosylated Peptides Presented by the MHC Class II Processing Pathway in Melanoma. J Proteome Res 2016; 16:228-237. [PMID: 27550523 DOI: 10.1021/acs.jproteome.6b00496] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The MHC class II (MHCII) processing pathway presents peptides derived from exogenous or membrane-bound proteins to CD4+ T cells. Several studies have shown that glycopeptides are necessary to modulate CD4+ T cell recognition, though glycopeptide structures in these cases are generally unknown. Here, we present a total of 93 glycopeptides from three melanoma cell lines and one matched EBV-transformed line with most found only in the melanoma cell lines. The glycosylation we detected was diverse and comprised 17 different glycoforms. We then used molecular modeling to demonstrate that complex glycopeptides are capable of binding the MHC and may interact with complementarity determining regions. Finally, we present the first evidence of disulfide-bonded peptides presented by MHCII. This is the first large scale study to sequence glyco- and disulfide bonded MHCII peptides from the surface of cancer cells and could represent a novel avenue of tumor activation and/or immunoevasion.
Collapse
Affiliation(s)
| | - Michael J Ferracane
- Department of Medicinal Chemistry, University of Florida , Gainesville, Florida 32610, United States
| | - Florence R Depontieu
- Department of Surgery, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | | | | | | | - Suzanne L Topalian
- Department of Surgery, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | | | | |
Collapse
|
14
|
Yang M, Angles d’Ortoli T, Säwén E, Jana M, Widmalm G, MacKerell AD. Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations. Phys Chem Chem Phys 2016; 18:18776-94. [PMID: 27346493 PMCID: PMC4945446 DOI: 10.1039/c6cp02970a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure. Instead, they are better represented by an ensemble of conformations associated with their structural diversity and flexibility. In this study, we delineate the conformational heterogeneity of five trisaccharides via a combination of experimental and computational techniques. Experimental NMR measurements target conformationally sensitive parameters, including J couplings and effective distances around the glycosidic linkages, while the computational simulations apply the well-calibrated additive CHARMM carbohydrate force field in combination with efficient enhanced sampling molecular dynamics simulation methods. Analysis of conformational heterogeneity is performed based on sampling of discreet states as defined by dihedral angles, on root-mean-square differences of Cartesian coordinates and on the extent of volume sampled. Conformational clustering, based on the glycosidic linkage dihedral angles, shows that accounting for the full range of sampled conformations is required to reproduce the experimental data, emphasizing the utility of the molecular simulations in obtaining an atomic detailed description of the conformational properties of the saccharides. Results show the presence of differential conformational preferences as a function of primary sequence and glycosidic linkage types. Significant differences in conformational ensembles associated with the anomeric configuration of a single glycosidic linkage reinforce the impact of such changes on the conformational properties of carbohydrates. The present structural insights of the studied trisaccharides represent a foundation for understanding the range of conformations adopted in larger oligosaccharides and how these molecules encode their conformational heterogeneity into the monosaccharide sequence.
Collapse
Affiliation(s)
- Mingjun Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Thibault Angles d’Ortoli
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Elin Säwén
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Madhurima Jana
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
- Department of Chemistry, National Institute of Technology Rourkela, Odisha, India 769008
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
15
|
Yang M, Huang J, MacKerell AD. Enhanced conformational sampling using replica exchange with concurrent solute scaling and hamiltonian biasing realized in one dimension. J Chem Theory Comput 2016; 11:2855-67. [PMID: 26082676 PMCID: PMC4463548 DOI: 10.1021/acs.jctc.5b00243] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 12/17/2022]
Abstract
![]()
Replica exchange (REX) is a powerful
computational tool for overcoming
the quasi-ergodic sampling problem of complex molecular systems. Recently,
several multidimensional extensions of this method have been developed
to realize exchanges in both temperature and biasing potential space
or the use of multiple biasing potentials to improve sampling efficiency.
However, increased computational cost due to the multidimensionality
of exchanges becomes challenging for use on complex systems under
explicit solvent conditions. In this study, we develop a one-dimensional
(1D) REX algorithm to concurrently combine the advantages of overall
enhanced sampling from Hamiltonian solute scaling and the specific
enhancement of collective variables using Hamiltonian biasing potentials.
In the present Hamiltonian replica exchange method, termed HREST-BP,
Hamiltonian solute scaling is applied to the solute subsystem, and
its interactions with the environment to enhance overall conformational
transitions and biasing potentials are added along selected collective
variables associated with specific conformational transitions, thereby
balancing the sampling of different hierarchical degrees of freedom.
The two enhanced sampling approaches are implemented concurrently
allowing for the use of a small number of replicas (e.g., 6 to 8)
in 1D, thus greatly reducing the computational cost in complex system
simulations. The present method is applied to conformational sampling
of two nitrogen-linked glycans (N-glycans) found
on the HIV gp120 envelope protein. Considering the general importance
of the conformational sampling problem, HREST-BP represents an efficient
procedure for the study of complex saccharides, and, more generally,
the method is anticipated to be of general utility for the conformational
sampling in a wide range of macromolecular systems.
Collapse
Affiliation(s)
- Mingjun Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | | | | |
Collapse
|
16
|
Jo S, Qi Y, Im W. Preferred conformations of N-glycan core pentasaccharide in solution and in glycoproteins. Glycobiology 2015; 26:19-29. [PMID: 26405106 DOI: 10.1093/glycob/cwv083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
N-linked glycans are on protein surfaces and have direct and water/ion-mediated interactions with surrounding amino acids. Such contacts could restrict their conformational freedom compared to the same glycans free in solution. In this work, we have examined the conformational freedom of the N-glycan core pentasaccharide moiety in solution using standard molecular dynamics (MD) simulations as well as temperature replica-exchange MD simulations. Both simulations yield the comparable conformational variability of the pentasaccharide in solution, indicating the convergence of both simulations. The glycoprotein crystal structures are analyzed to compare the conformational freedom of the N-glycan on the protein surface with the simulation result. Surprisingly, the pentasaccharide free in solution shows more restricted conformational variability than the N-glycan on the protein surface. The interactions between the carbohydrate and the protein side chain appear to be responsible for the increased conformational diversity of the N-glycan on the protein surface. Finally, the transfer entropy analysis of the simulation trajectory also reveals an unexpected causality relationship between intramolecular hydrogen bonds and the conformational states in that the hydrogen bonds play a role in maintaining the conformational states rather than driving the change in glycosidic torsional states.
Collapse
Affiliation(s)
- Sunhwan Jo
- Leadership Computing Center, Argonne National Laboratory, 9700 Cass Ave Bldg. 240, Argonne, IL 60439, USA
| | - Yifei Qi
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| |
Collapse
|
17
|
Guvench O. Revealing the Mechanisms of Protein Disorder and N-Glycosylation in CD44-Hyaluronan Binding Using Molecular Simulation. Front Immunol 2015; 6:305. [PMID: 26136744 PMCID: PMC4468915 DOI: 10.3389/fimmu.2015.00305] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/28/2015] [Indexed: 11/13/2022] Open
Abstract
The extracellular N-terminal hyaluronan binding domain (HABD) of CD44 is a small globular domain that confers hyaluronan (HA) binding functionality to this large transmembrane glycoprotein. When recombinantly expressed by itself, HABD exists as a globular water-soluble protein that retains the capacity to bind HA. This has enabled atomic-resolution structural biology experiments that have revealed the structure of HABD and its binding mode with oligomeric HA. Such experiments have also pointed to an order-to-disorder transition in HABD that is associated with HA binding. However, it had remained unclear how this structural transition was involved in binding since it occurs in a region of HABD distant from the HA-binding site. Furthermore, HABD is known to be N-glycosylated, and such glycosylation can diminish HA binding when the associated N-glycans are capped with sialic acid residues. The intrinsic flexibility of disordered proteins and of N-glycans makes it difficult to apply experimental structural biology approaches to probe the molecular mechanisms of how the order-to-disorder transition and N-glycosylation can modulate HA binding by HABD. We review recent results from molecular dynamics simulations that provide atomic-resolution mechanistic understanding of such modulation to help bridge gaps between existing experimental binding and structural biology data. Findings from these simulations include: Tyr42 may function as a molecular switch that converts the HA-binding site from a low affinity to a high affinity state; in the partially disordered form of HABD, basic amino acids in the C-terminal region can gain sufficient mobility to form direct contacts with bound HA to further stabilize binding; and terminal sialic acids on covalently attached N-glycans can form charge-paired hydrogen bonding interactions with basic amino acids that could otherwise bind to HA, thereby blocking HA binding to glycosylated CD44 HABD.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy , Portland, ME , USA
| |
Collapse
|
18
|
Lee HS, Jo S, Mukherjee S, Park SJ, Skolnick J, Lee J, Im W. GS-align for glycan structure alignment and similarity measurement. Bioinformatics 2015; 31:2653-9. [PMID: 25857669 DOI: 10.1093/bioinformatics/btv202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/03/2015] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Glycans play critical roles in many biological processes, and their structural diversity is key for specific protein-glycan recognition. Comparative structural studies of biological molecules provide useful insight into their biological relationships. However, most computational tools are designed for protein structure, and despite their importance, there is no currently available tool for comparing glycan structures in a sequence order- and size-independent manner. RESULTS A novel method, GS-align, is developed for glycan structure alignment and similarity measurement. GS-align generates possible alignments between two glycan structures through iterative maximum clique search and fragment superposition. The optimal alignment is then determined by the maximum structural similarity score, GS-score, which is size-independent. Benchmark tests against the Protein Data Bank (PDB) N-linked glycan library and PDB homologous/non-homologous N-glycoprotein sets indicate that GS-align is a robust computational tool to align glycan structures and quantify their structural similarity. GS-align is also applied to template-based glycan structure prediction and monosaccharide substitution matrix generation to illustrate its utility. AVAILABILITY AND IMPLEMENTATION http://www.glycanstructure.org/gsalign. CONTACT wonpil@ku.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hui Sun Lee
- Department of Molecular Biosciences and Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
| | - Sunhwan Jo
- Department of Molecular Biosciences and Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
| | - Srayanta Mukherjee
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sang-Jun Park
- School of Computational Sciences and Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul 130-722, Korea and
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, GA 30076, USA
| | - Jooyoung Lee
- School of Computational Sciences and Center for In Silico Protein Science, Korea Institute for Advanced Study, Seoul 130-722, Korea and
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
19
|
Carbohydrate Microarrays. POLYSACCHARIDES 2015. [PMCID: PMC7123348 DOI: 10.1007/978-3-319-16298-0_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Carbohydrates, like nucleic acids and proteins, are essential biological molecules. Owing to their intrinsic physicochemical properties, carbohydrates are capable of generating structural diversity in a multitude of ways and are prominently displayed on the surfaces of cell membranes or on the exposed regions of macromolecules. Recent studies highlight that carbohydrate moieties are critical for molecular recognition, cell-cell interactions, and cell signaling in many physiological and pathological processes, and for biocommunication between microbes and host species. Modern carbohydrate microarrays emerged in 2002 and brought in new high-throughput tools for “glyco code” exploration. In this section, some basic concepts of sugar chain diversity, glyco-epitope recognition, and the evolving area of glyco-epitomics and biomarker discovery are discussed. Two complementary technologies, carbohydrate antigen arrays and photogenerated glyco-chips, serve as models to illustrate how to apply carbohydrate microarrays to address biomedical questions.
Collapse
|
20
|
Faller CE, Guvench O. Terminal sialic acids on CD44 N-glycans can block hyaluronan binding by forming competing intramolecular contacts with arginine sidechains. Proteins 2014; 82:3079-89. [PMID: 25116630 DOI: 10.1002/prot.24668] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/25/2014] [Accepted: 08/03/2014] [Indexed: 01/29/2023]
Abstract
Specific sugar residues and their linkages form the basis of molecular recognition for interactions of glycoproteins with other biomolecules. Seemingly small changes, like the addition of a single monosaccharide in the covalently attached glycan component of glycoproteins, can greatly affect these interactions. For instance, the sialic acid capping of glycans affects protein-ligand binding involved in cell-cell and cell-matrix interactions. CD44 is a single-pass transmembrane glycoprotein whose binding with its carbohydrate ligand hyaluronan (HA), an extracellular matrix component, mediates processes such as leukocyte homing, cell adhesion, and tumor metastasis. This binding is highly regulated by glycosylation of the N-terminal extracellular hyaluronan-binding domain (HABD); specifically, sialic acid capped N-glycans of HABD inhibit ligand binding. However, the molecular mechanism behind this sialic acid mediated regulation has remained unknown. Two of the five N-glycosyation sites of HABD have been previously identified as having the greatest inhibitory effect on HA binding, but only if the glycans contain terminal sialic acid residues. These two sites, Asn25 and Asn120, were chosen for in silico glycosylation in this study. Here, from extensive standard molecular dynamics simulations and biased simulations, we propose a molecular mechanism for this behavior based on spontaneously-formed charge-paired hydrogen bonding interactions between the negatively-charged sialic acid residues and positively-charged Arg sidechains known to be critically important for binding to HA, which itself is negatively charged. Such intramolecular hydrogen bonds would preclude associations critical to hyaluronan binding. This observation suggests how CD44 and related glycoprotein binding is regulated by sialylation as cellular environments fluctuate.
Collapse
Affiliation(s)
- Christina E Faller
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, ortland, Maine, 04103
| | | |
Collapse
|
21
|
Fortunato ME, Colina CM. Effects of galactosylation in immunoglobulin G from all-atom molecular dynamics simulations. J Phys Chem B 2014; 118:9844-51. [PMID: 25116858 DOI: 10.1021/jp504243e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Explicit water atomistic molecular dynamics simulations (200 ns, ∼330,000 atoms) were performed to study the effects of galactosylation in the Fc domain of immunoglobulin G1. Two glycoforms were simulated to observe changes in protein-carbohydrate interactions and carbohydrate structure. A high degree of flexibility was observed in the small hinge region of the protein, while large domains remained stable. The hinge region flexibility allowed both translation and rotation of the domains relative to each other, resulting in a large number of possible conformations available. The distributions of rotational orientations between the Fab1 and Fab2 domains showed that while these domains are able to orient themselves rather freely pointing in space they rotated in unison to remain rotationally oriented at specific angles. Additionally, removing specific terminal galactose residues increased the mobility of the carbohydrate, resulting in different protein-carbohydrate interactions. Glycosylation has been suggested as a route to improve the aggregation resistance of monoclonal antibodies for therapeutic treatments to aid the immune system. The results presented here may provide insight into the search for IgG molecules with increased aggregation resistance to be used as monoclonal antibodies.
Collapse
Affiliation(s)
- Michael E Fortunato
- Department of Materials Science and Engineering, The Pennsylvania State University , 320 Steidle Building, University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
22
|
Craveur P, Rebehmed J, de Brevern AG. PTM-SD: a database of structurally resolved and annotated posttranslational modifications in proteins. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau041. [PMID: 24857970 PMCID: PMC4038255 DOI: 10.1093/database/bau041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Posttranslational modifications (PTMs) define covalent and chemical modifications of protein residues. They play important roles in modulating various biological functions. Current PTM databases contain important sequence annotations but do not provide informative 3D structural resource about these modifications. Posttranslational modification structural database (PTM-SD) provides access to structurally solved modified residues, which are experimentally annotated as PTMs. It combines different PTM information and annotation gathered from other databases, e.g. Protein DataBank for the protein structures and dbPTM and PTMCuration for fine sequence annotation. PTM-SD gives an accurate detection of PTMs in structural data. PTM-SD can be browsed by PDB id, UniProt accession number, organism and classic PTM annotation. Advanced queries can also be performed, i.e. detailed PTM annotations, amino acid type, secondary structure, SCOP class classification, PDB chain length and number of PTMs by chain. Statistics and analyses can be computed on a selected dataset of PTMs. Each PTM entry is detailed in a dedicated page with information on the protein sequence, local conformation with secondary structure and Protein Blocks. PTM-SD gives valuable information on observed PTMs in protein 3D structure, which is of great interest for studying sequence-structure- function relationships at the light of PTMs, and could provide insights for comparative modeling and PTM predictions protocols. Database URL: PTM-SD can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/PTM-SD/.
Collapse
Affiliation(s)
- Pierrick Craveur
- INSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, France
| | - Joseph Rebehmed
- INSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, France
| | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, FranceINSERM, U 1134, DSIMB, F-75739 Paris, France, Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, F-75739 Paris, France, Institut National de la Transfusion Sanguine (INTS), F-75739 Paris, France and Laboratoire d'Excellence GR-Ex, F-75739 Paris, France
| |
Collapse
|
23
|
Wang D. Glyco-epitope Diversity: An Evolving Area of Glycomics Research and Biomarker Discovery. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2014; 7:23539. [PMID: 25378871 PMCID: PMC4219575 DOI: 10.4172/jpb.10000e24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA, USA
| |
Collapse
|
24
|
Wang D, Tang J, Wolfinger RD, Carroll GT. Carbohydrate Microarrays. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_35-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
25
|
Barry C, Cocinero EJ, Çarçabal P, Gamblin D, Stanca-Kaposta EC, Remmert SM, Fernández-Alonso MC, Rudić S, Simons JP, Davis BG. 'Naked' and hydrated conformers of the conserved core pentasaccharide of N-linked glycoproteins and its building blocks. J Am Chem Soc 2013; 135:16895-903. [PMID: 24127839 PMCID: PMC3901393 DOI: 10.1021/ja4056678] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 12/11/2022]
Abstract
N-glycosylation of eukaryotic proteins is widespread and vital to survival. The pentasaccharide unit -Man3GlcNAc2- lies at the protein-junction core of all oligosaccharides attached to asparagine side chains during this process. Although its absolute conservation implies an indispensable role, associated perhaps with its structure, its unbiased conformation and the potential modulating role of solvation are unknown; both have now been explored through a combination of synthesis, laser spectroscopy, and computation. The proximal -GlcNAc-GlcNAc- unit acts as a rigid rod, while the central, and unusual, -Man-β-1,4-GlcNAc- linkage is more flexible and is modulated by the distal Man-α-1,3- and Man-α-1,6- branching units. Solvation stiffens the 'rod' but leaves the distal residues flexible, through a β-Man pivot, ensuring anchored projection from the protein shell while allowing flexible interaction of the distal portion of N-glycosylation with bulk water and biomolecular assemblies.
Collapse
Affiliation(s)
- Conor
S. Barry
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Emilio J. Cocinero
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ United Kingdom
| | - Pierre Çarçabal
- Institut
des Sciences Moléculaire d’Orsay-CNRS, Université Paris Sud, Bâtiment 210, 91405 Orsay Cedex, France
| | - David
P. Gamblin
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - E. Cristina Stanca-Kaposta
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ United Kingdom
| | - Sarah M. Remmert
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ United Kingdom
| | | | - Svemir Rudić
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ United Kingdom
| | - John P. Simons
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ United Kingdom
| | - Benjamin G. Davis
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
26
|
Goh BC, Rynkiewicz MJ, Cafarella TR, White MR, Hartshorn KL, Allen K, Crouch EC, Calin O, Seeberger PH, Schulten K, Seaton BA. Molecular mechanisms of inhibition of influenza by surfactant protein D revealed by large-scale molecular dynamics simulation. Biochemistry 2013; 52:8527-38. [PMID: 24224757 DOI: 10.1021/bi4010683] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Surfactant protein D (SP-D), a mammalian C-type lectin, is the primary innate inhibitor of influenza A virus (IAV) in the lung. Interactions of SP-D with highly branched viral N-linked glycans on hemagglutinin (HA), an abundant IAV envelope protein and critical virulence factor, promote viral aggregation and neutralization through as yet unknown molecular mechanisms. Two truncated human SP-D forms, wild-type (WT) and double mutant D325A+R343V, representing neck and carbohydrate recognition domains are compared in this study. Whereas both WT and D325A+R343V bind to isolated glycosylated HA, WT does not inhibit IAV in neutralization assays; in contrast, D325A+R343V neutralization compares well with that of full-length native SP-D. To elucidate the mechanism for these biochemical observations, we have determined crystal structures of D325A+R343V in the presence and absence of a viral nonamannoside (Man9). On the basis of the D325A+R343V-Man9 structure and other crystallographic data, models of complexes between HA and WT or D325A+R343V were produced and subjected to molecular dynamics. Simulations reveal that whereas WT and D325A+R343V both block the sialic acid receptor site of HA, the D325A+R343V complex is more stable, with stronger binding caused by additional hydrogen bonds and hydrophobic interactions with HA residues. Furthermore, the blocking mechanism of HA differs for WT and D325A+R343V because of alternate glycan binding modes. The combined results suggest a mechanism through which the mode of SP-D-HA interaction could significantly influence viral aggregation and neutralization. These studies provide the first atomic-level molecular view of an innate host defense lectin inhibiting its viral glycoprotein target.
Collapse
Affiliation(s)
- Boon Chong Goh
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|