1
|
Parrino L, Rosenzweig I. The futuristic manifolds of REM sleep. J Sleep Res 2025; 34:e14271. [PMID: 40090704 PMCID: PMC11911055 DOI: 10.1111/jsr.14271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 03/18/2025]
Abstract
Since one of its first descriptions 70 years ago, rapid eye movement sleep has continually inspired and excited new generations of sleep researchers. Despite significant advancements in understanding its neurocircuitry, underlying mechanisms and microstates, many questions regarding its function, especially beyond the early neurodevelopment, remain unanswered. This opinion review delves into some of the unresolved issues in rapid eye movement sleep research, highlighting the ongoing need for comprehensive exploration in this fascinating field.
Collapse
Affiliation(s)
- Liborio Parrino
- Sleep Medicine CenterUniversity of ParmaParmaItaly
- Neurology UnitParma University HospitalParmaItaly
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of PsychiatryPsychology and Neuroscience (IoPPN), King's College LondonLondonUK
- Sleep Disorders CentreGuy's and St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
2
|
Neri M, Brovelli A, Castro S, Fraisopi F, Gatica M, Herzog R, Mediano PAM, Mindlin I, Petri G, Bor D, Rosas FE, Tramacere A, Estarellas M. A Taxonomy of Neuroscientific Strategies Based on Interaction Orders. Eur J Neurosci 2025; 61:e16676. [PMID: 39906974 DOI: 10.1111/ejn.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/15/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025]
Abstract
In recent decades, neuroscience has advanced with increasingly sophisticated strategies for recording and analysing brain activity, enabling detailed investigations into the roles of functional units, such as individual neurons, brain regions and their interactions. Recently, new strategies for the investigation of cognitive functions regard the study of higher order interactions-that is, the interactions involving more than two brain regions or neurons. Although methods focusing on individual units and their interactions at various levels offer valuable and often complementary insights, each approach comes with its own set of limitations. In this context, a conceptual map to categorize and locate diverse strategies could be crucial to orient researchers and guide future research directions. To this end, we define the spectrum of orders of interaction, namely, a framework that categorizes the interactions among neurons or brain regions based on the number of elements involved in these interactions. We use a simulation of a toy model and a few case studies to demonstrate the utility and the challenges of the exploration of the spectrum. We conclude by proposing future research directions aimed at enhancing our understanding of brain function and cognition through a more nuanced methodological framework.
Collapse
Affiliation(s)
- Matteo Neri
- Institut de Neurosciences de la Timone, Aix-Marseille Université, UMR 7289 CNRS, Marseille, France
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, Aix-Marseille Université, UMR 7289 CNRS, Marseille, France
| | - Samy Castro
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, Strasbourg, France
- Institut de Neurosciences Des Systèmes (INS), Aix-Marseille Université, UMR 1106, Marseille, France
| | - Fausto Fraisopi
- Institute for Advanced Study, Aix-Marseille University, Marseille, France
| | - Marilyn Gatica
- NPLab, Network Science Institute, Northeastern University London, London, UK
| | - Ruben Herzog
- DreamTeam, Paris Brain Institute (ICM), Paris, France
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Ivan Mindlin
- DreamTeam, Paris Brain Institute (ICM), Paris, France
- PICNIC lab, Paris Brain Institute (ICM), Paris, France
| | - Giovanni Petri
- NPLab, Network Science Institute, Northeastern University London, London, UK
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
- NPLab, CENTAI Institute, Turin, Italy
| | - Daniel Bor
- Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Sussex Centre for Consciousness Science and Sussex AI, Department of Informatics, University of Sussex, Brighton, UK
- Center for Psychedelic Research and Centre for Complexity Science, Department of Brain Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Principles of Intelligent Behavior in Biological and Social Systems (PIBBSS), Prague, Czechia
| | - Antonella Tramacere
- Department of Philosophy, Communication and Performing Arts, Roma Tre University, Rome, Italy
| | - Mar Estarellas
- Department of Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Rocha RP, Zorzi M, Corbetta M. Role of homeostatic plasticity in critical brain dynamics following focal stroke lesions. Sci Rep 2024; 14:31631. [PMID: 39738232 PMCID: PMC11685905 DOI: 10.1038/s41598-024-80196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/15/2024] [Indexed: 01/01/2025] Open
Abstract
Can focal brain lesions, such as those caused by stroke, disrupt critical brain dynamics? What biological mechanisms drive its recovery? In a recent study, we showed that focal lesions generate a sub-critical state that recovers over time in parallel with behavior (Rocha et al., Nat. Commun. 13, 2022). The loss of criticality in a cohort of stroke patients was associated with structural brain disconnections, while its recovery was accompanied by the re-modeling of specific white-matter tracts. These results were challenged by Janarek et al. (Sci. Rep. 13, 2023), who proposed an alternative interpretation for the anomalous monotonic decaying of the second cluster size, which is the neural signature originally used to infer loss of criticality. The present study tackles this controversy and provides evidence that the theoretical framework proposed by Janarek et al. cannot explain the anomalous cluster dynamics observed in our patients. Notably, this invalidates the claim that the brain maintains its critical dynamics regardless of the lesion severity. In addition, we explore biological mechanisms beyond white-matter remodeling that may facilitate the recovery of criticality over time. We considered two distinct scenarios: one where we suppress homeostatic plasticity, and another where we increase the excitability of brain regions. We find that suppressing homeostatic plasticity - specifically, the inhibition-excitation balance - disfavors the emergence of criticality. Conversely, increasing brain excitability can help to restore criticality when the latter is disrupted. Our results suggest that normalizing the excitation-inhibition balance is crucial for supporting recovery of critical brain dynamics.
Collapse
Affiliation(s)
- Rodrigo P Rocha
- Departamento de Física, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| | - Marco Zorzi
- Department of General Psychology and Padova Neuroscience Center, Università di Padova, Padova, Italy.
- IRCCS San Camillo Hospital, Venice, Italy.
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, Università di Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Fondazione Biomedica, Padova, Italy
| |
Collapse
|
4
|
Yaghoubi M, Orlandi JG, Colicos MA, Davidsen J. Criticality and universality in neuronal cultures during "up" and "down" states. Front Neural Circuits 2024; 18:1456558. [PMID: 39323503 PMCID: PMC11423291 DOI: 10.3389/fncir.2024.1456558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024] Open
Abstract
The brain can be seen as a self-organized dynamical system that optimizes information processing and storage capabilities. This is supported by studies across scales, from small neuronal assemblies to the whole brain, where neuronal activity exhibits features typically associated with phase transitions in statistical physics. Such a critical state is characterized by the emergence of scale-free statistics as captured, for example, by the sizes and durations of activity avalanches corresponding to a cascading process of information flow. Another phenomenon observed during sleep, under anesthesia, and in in vitro cultures, is that cortical and hippocampal neuronal networks alternate between "up" and "down" states characterized by very distinct firing rates. Previous theoretical work has been able to relate these two concepts and proposed that only up states are critical whereas down states are subcritical, also indicating that the brain spontaneously transitions between the two. Using high-speed high-resolution calcium imaging recordings of neuronal cultures, we test this hypothesis here by analyzing the neuronal avalanche statistics in populations of thousands of neurons during "up" and "down" states separately. We find that both "up" and "down" states can exhibit scale-free behavior when taking into account their intrinsic time scales. In particular, the statistical signature of "down" states is indistinguishable from those observed previously in cultures without "up" states. We show that such behavior can not be explained by network models of non-conservative leaky integrate-and-fire neurons with short-term synaptic depression, even when realistic noise levels, spatial network embeddings, and heterogeneous populations are taken into account, which instead exhibits behavior consistent with previous theoretical models. Similar differences were also observed when taking into consideration finite-size scaling effects, suggesting that the intrinsic dynamics and self-organization mechanisms of these cultures might be more complex than previously thought. In particular, our findings point to the existence of different mechanisms of neuronal communication, with different time scales, acting during either high-activity or low-activity states, potentially requiring different plasticity mechanisms.
Collapse
Affiliation(s)
- Mohammad Yaghoubi
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Javier G. Orlandi
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Michael A. Colicos
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Huo C, Lombardi F, Blanco-Centurion C, Shiromani PJ, Ivanov PC. Role of the Locus Coeruleus Arousal Promoting Neurons in Maintaining Brain Criticality across the Sleep-Wake Cycle. J Neurosci 2024; 44:e1939232024. [PMID: 38951035 PMCID: PMC11358608 DOI: 10.1523/jneurosci.1939-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Sleep control depends on a delicate interplay among brain regions. This generates a complex temporal architecture with numerous sleep-stage transitions and intermittent fluctuations to micro-states and brief arousals. These temporal dynamics exhibit hallmarks of criticality, suggesting that tuning to criticality is essential for spontaneous sleep-stage and arousal transitions. However, how the brain maintains criticality remains not understood. Here, we investigate θ- and δ-burst dynamics during the sleep-wake cycle of rats (Sprague-Dawley, adult male) with lesion in the wake-promoting locus coeruleus (LC). We show that, in control rats, θ- and δ-bursts exhibit power-law (θ-bursts, active phase) and exponential-like (δ-bursts, quiescent phase) duration distributions, as well as power-law long-range temporal correlations (LRTCs)-typical of non-equilibrium systems self-organizing at criticality. Furthermore, consecutive θ- and δ-bursts durations are characterized by anti-correlated coupling, indicating a new class of self-organized criticality that emerges from underlying feedback between neuronal populations and brain areas involved in generating arousals and sleep states. In contrast, we uncover that LC lesion leads to alteration of θ- and δ-burst critical features, with change in duration distributions and correlation properties, and increase in θ-δ coupling. Notably, these LC-lesion effects are opposite to those observed for lesions in the sleep-promoting ventrolateral preoptic (VLPO) nucleus. Our findings indicate that critical dynamics of θ- and δ-bursts arise from a balanced interplay of LC and VLPO, which maintains brain tuning to criticality across the sleep-wake cycle-a non-equilibrium behavior in sleep micro-architecture at short timescales that coexists with large-scale sleep-wake homeostasis.
Collapse
Affiliation(s)
- Chengyu Huo
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts 02215
- School of Electronic Information Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Fabrizio Lombardi
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts 02215
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Carlos Blanco-Centurion
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Priyattam J Shiromani
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina 29425
- Ralph H. Johnson Veterans Healthcare System Charleston, Charleston, South Carolina 29401
| | - Plamen Ch Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts 02215
- Harvard Medical School and Division of Sleep Medicine, Brigham and Women Hospital, Boston, Massachusetts 02115
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria
| |
Collapse
|
6
|
Curic D, Ashby DM, McGirr A, Davidsen J. Existence of multiple transitions of the critical state due to anesthetics. Nat Commun 2024; 15:7025. [PMID: 39147749 PMCID: PMC11327335 DOI: 10.1038/s41467-024-51399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Scale-free statistics of coordinated neuronal activity, suggesting a universal operating mechanism across spatio-temporal scales, have been proposed as a necessary condition of healthy resting-state brain activity. Recent studies have focused on anesthetic agents to induce distinct neural states in which consciousness is altered to understand the importance of critical dynamics. However, variation in experimental techniques, species, and anesthetics, have made comparisons across studies difficult. Here we conduct a survey of several common anesthetics (isoflurane, pentobarbital, ketamine) at multiple dosages, using calcium wide-field optical imaging of the mouse cortex. We show that while low-dose anesthesia largely preserves scale-free statistics, surgical plane anesthesia induces multiple dynamical modes, most of which do not maintain critical avalanche dynamics. Our findings indicate multiple pathways away from default critical dynamics associated with quiet wakefulness, not only reflecting differences between these common anesthetics but also showing significant variations in individual responses. This is suggestive of a non-trivial relationship between criticality and the underlying state of the subject.
Collapse
Affiliation(s)
- Davor Curic
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Donovan M Ashby
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Alexander McGirr
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
7
|
Curic D, Singh S, Nazari M, Mohajerani MH, Davidsen J. Spatial-Temporal Analysis of Neural Desynchronization in Sleeplike States Reveals Critical Dynamics. PHYSICAL REVIEW LETTERS 2024; 132:218403. [PMID: 38856286 DOI: 10.1103/physrevlett.132.218403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 02/26/2024] [Accepted: 04/10/2024] [Indexed: 06/11/2024]
Abstract
Sleep is characterized by nonrapid eye movement sleep, originating from widespread neuronal synchrony, and rapid eye movement sleep, with neuronal desynchronization akin to waking behavior. While these were thought to be global brain states, recent research suggests otherwise. Using time-frequency analysis of mesoscopic voltage-sensitive dye recordings of mice in a urethane-anesthetized model of sleep, we find transient neural desynchronization occurring heterogeneously across the cortex within a background of synchronized neural activity, in a manner reminiscent of a critical spreading process and indicative of an "edge-of-synchronization" phase transition.
Collapse
Affiliation(s)
- Davor Curic
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Surjeet Singh
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
8
|
Simões TSAN, Filho CINS, Herrmann HJ, Andrade JS, de Arcangelis L. Thermodynamic analog of integrate-and-fire neuronal networks by maximum entropy modelling. Sci Rep 2024; 14:9480. [PMID: 38664504 PMCID: PMC11045794 DOI: 10.1038/s41598-024-60117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Recent results have evidenced that spontaneous brain activity signals are organized in bursts with scale free features and long-range spatio-temporal correlations. These observations have stimulated a theoretical interpretation of results inspired in critical phenomena. In particular, relying on maximum entropy arguments, certain aspects of time-averaged experimental neuronal data have been recently described using Ising-like models, allowing the study of neuronal networks under an analogous thermodynamical framework. This method has been so far applied to a variety of experimental datasets, but never to a biologically inspired neuronal network with short and long-term plasticity. Here, we apply for the first time the Maximum Entropy method to an Integrate-and-fire (IF) model that can be tuned at criticality, offering a controlled setting for a systematic study of criticality and finite-size effects in spontaneous neuronal activity, as opposed to experiments. We consider generalized Ising Hamiltonians whose local magnetic fields and interaction parameters are assigned according to the average activity of single neurons and correlation functions between neurons of the IF networks in the critical state. We show that these Hamiltonians exhibit a spin glass phase for low temperatures, having mostly negative intrinsic fields and a bimodal distribution of interaction constants that tends to become unimodal for larger networks. Results evidence that the magnetization and the response functions exhibit the expected singular behavior near the critical point. Furthermore, we also found that networks with higher percentage of inhibitory neurons lead to Ising-like systems with reduced thermal fluctuations. Finally, considering only neuronal pairs associated with the largest correlation functions allows the study of larger system sizes.
Collapse
Affiliation(s)
- T S A N Simões
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Lincoln, 5, 81100, Caserta, Italy.
| | - C I N Sampaio Filho
- Departamento de Física, Fortaleza, Universidade Federal do Ceará, Ceará, 60451-970, Brazil
| | - H J Herrmann
- Departamento de Física, Fortaleza, Universidade Federal do Ceará, Ceará, 60451-970, Brazil
- ESPCI, PMMH, Paris, 7 quai St., 75005, Bernard, France
| | - J S Andrade
- Departamento de Física, Fortaleza, Universidade Federal do Ceará, Ceará, 60451-970, Brazil
| | - L de Arcangelis
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Lincoln, 5, 81100, Caserta, Italy
| |
Collapse
|
9
|
Liparoti M, Cipriano L, Troisi Lopez E, Polverino A, Minino R, Sarno L, Sorrentino G, Lucidi F, Sorrentino P. Brain flexibility increases during the peri-ovulatory phase as compared to early follicular phase of the menstrual cycle. Sci Rep 2024; 14:1976. [PMID: 38263324 PMCID: PMC10805777 DOI: 10.1038/s41598-023-49588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/09/2023] [Indexed: 01/25/2024] Open
Abstract
The brain operates in a flexible dynamic regime, generating complex patterns of activity (i.e. neuronal avalanches). This study aimed at describing how brain dynamics change according to menstrual cycle (MC) phases. Brain activation patterns were estimated from resting-state magnetoencephalography (MEG) scans, acquired from women at early follicular (T1), peri-ovulatory (T2) and mid-luteal (T3) phases of the MC. We investigated the functional repertoire (number of brain configurations based on fast high-amplitude bursts of the brain signals) and the region-specific influence on large-scale dynamics across the MC. Finally, we assessed the relationship between sex hormones and changes in brain dynamics. A significantly larger number of visited configurations in T2 as compared to T1 was specifically observed in the beta frequency band. No relationship between changes in brain dynamics and sex hormones was evident. Finally, we showed that the left posterior cingulate gyrus and the right insula were recruited more often in the functional repertoire during T2 as compared to T1, while the right pallidum was more often part of the functional repertoires during T1 as compared to T2. In summary, we showed hormone-independent increased flexibility of the brain dynamics during the ovulatory phase. Moreover, we demonstrated that several specific brain regions play a key role in determining this change.
Collapse
Affiliation(s)
- Marianna Liparoti
- Department of Philosophical, Pedagogical and Quantitative-Economic Sciences, University of Chieti-Pescara "G. d'Annunzio", 66100, Chieti, Italy
| | - Lorenzo Cipriano
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", 80133, Naples, Italy
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078, Pozzuoli, Italy
| | - Arianna Polverino
- Institute for Diagnosis and Cure Hermitage Capodimonte, 80131, Naples, Italy
| | - Roberta Minino
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", 80133, Naples, Italy
| | - Laura Sarno
- Department of Neurosciences, Reproductive Science and Dentistry, University of Naples "Federico II", 80131, Naples, Italy
| | - Giuseppe Sorrentino
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", 80133, Naples, Italy
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078, Pozzuoli, Italy
- Institute for Diagnosis and Cure Hermitage Capodimonte, 80131, Naples, Italy
| | - Fabio Lucidi
- Department of Social and Developmental Psychology, "Sapienza" University of Rome, 00185, Rome, Italy
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078, Pozzuoli, Italy.
- Institut de Neurosciences Des Systèmes, Aix-Marseille Université, 13005, Marseille, France.
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
10
|
Bettinger JS, Friston KJ. Conceptual foundations of physiological regulation incorporating the free energy principle and self-organized criticality. Neurosci Biobehav Rev 2023; 155:105459. [PMID: 37956880 DOI: 10.1016/j.neubiorev.2023.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Bettinger, J. S., K. J. Friston. Conceptual Foundations of Physiological Regulation incorporating the Free Energy Principle & Self-Organized Criticality. NEUROSCI BIOBEHAV REV 23(x) 144-XXX, 2022. Since the late nineteen-nineties, the concept of homeostasis has been contextualized within a broader class of "allostatic" dynamics characterized by a wider-berth of causal factors including social, psychological and environmental entailments; the fundamental nature of integrated brain-body dynamics; plus the role of anticipatory, top-down constraints supplied by intrinsic regulatory models. Many of these evidentiary factors are integral in original descriptions of homeostasis; subsequently integrated; and/or cite more-general operating principles of self-organization. As a result, the concept of allostasis may be generalized to a larger category of variational systems in biology, engineering and physics in terms of advances in complex systems, statistical mechanics and dynamics involving heterogenous (hierarchical/heterarchical, modular) systems like brain-networks and the internal milieu. This paper offers a three-part treatment. 1) interpret "allostasis" to emphasize a variational and relational foundation of physiological stability; 2) adapt the role of allostasis as "stability through change" to include a "return to stability" and 3) reframe the model of homeostasis with a conceptual model of criticality that licenses the upgrade to variational dynamics.
Collapse
Affiliation(s)
- Jesse S Bettinger
- Center for Process Studies, Claremont, CA, United States; The Cobb Institute, Claremont, CA, United States.
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK; Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK; The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| |
Collapse
|
11
|
Villiger D, Trachsel M. With great power comes great vulnerability: an ethical analysis of psychedelics' therapeutic mechanisms proposed by the REBUS hypothesis. JOURNAL OF MEDICAL ETHICS 2023; 49:826-832. [PMID: 37045591 DOI: 10.1136/jme-2022-108816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Psychedelics are experiencing a renaissance in mental healthcare. In recent years, more and more early phase trials on psychedelic-assisted therapy have been conducted, with promising results overall. However, ethical analyses of this rediscovered form of treatment remain rare. The present paper contributes to the ethical inquiry of psychedelic-assisted therapy by analysing the ethical implications of its therapeutic mechanisms proposed by the relaxed beliefs under psychedelics (REBUS) hypothesis. In short, the REBUS hypothesis states that psychedelics make rigid beliefs revisable by increasing the influence of bottom-up input. Put differently, patients become highly suggestible and sensitive to context during a psychedelic session, amplifying therapeutic influence and effects. Due to that, patients are more vulnerable in psychedelic-assisted therapy than in other therapeutic interventions; they lose control during a psychedelic session and become dependent on the therapeutic setting (including the therapist). This enhanced vulnerability is ethically relevant and has been exploited by some therapists in the past. Therefore, patients in current research settings and starting mainstream medical settings need to be well informed about psychedelics' mechanisms and their implications to give valid informed consent to treatment. Furthermore, other security measures are warranted to protect patients from the vulnerability coming with psychedelic-assisted therapy.
Collapse
Affiliation(s)
- Daniel Villiger
- Department of Philosophy, University of Zurich, Zurich, Switzerland
| | - Manuel Trachsel
- Clinical Ethics Unit of University Hospital Basel and Psychiatric University Clinics, Basel, Switzerland
| |
Collapse
|
12
|
Lombardi F, Herrmann HJ, Parrino L, Plenz D, Scarpetta S, Vaudano AE, de Arcangelis L, Shriki O. Beyond pulsed inhibition: Alpha oscillations modulate attenuation and amplification of neural activity in the awake resting state. Cell Rep 2023; 42:113162. [PMID: 37777965 PMCID: PMC10842118 DOI: 10.1016/j.celrep.2023.113162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Alpha oscillations are a distinctive feature of the awake resting state of the human brain. However, their functional role in resting-state neuronal dynamics remains poorly understood. Here we show that, during resting wakefulness, alpha oscillations drive an alternation of attenuation and amplification bouts in neural activity. Our analysis indicates that inhibition is activated in pulses that last for a single alpha cycle and gradually suppress neural activity, while excitation is successively enhanced over a few alpha cycles to amplify neural activity. Furthermore, we show that long-term alpha amplitude fluctuations-the "waxing and waning" phenomenon-are an attenuation-amplification mechanism described by a power-law decay of the activity rate in the "waning" phase. Importantly, we do not observe such dynamics during non-rapid eye movement (NREM) sleep with marginal alpha oscillations. The results suggest that alpha oscillations modulate neural activity not only through pulses of inhibition (pulsed inhibition hypothesis) but also by timely enhancement of excitation (or disinhibition).
Collapse
Affiliation(s)
- Fabrizio Lombardi
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131 Padova, Italy.
| | - Hans J Herrmann
- Departamento de Fisica, Universitade Federal do Ceara, Fortaleza 60451-970, Ceara, Brazil; PMMH, ESPCI, 7 quai St. Bernard, 75005 Paris, France
| | - Liborio Parrino
- Sleep Disorders Center, Department of Neurosciences, University of Parma, 43121 Parma, Italy
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, NIH, Bethesda, MD 20892, USA
| | - Silvia Scarpetta
- Department of Physics, University of Salerno, 84084 Fisciano, Italy; INFN sez, Napoli Gr. Coll, 84084 Fisciano, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, 41125 Modena, Italy; Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lucilla de Arcangelis
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Lincoln 5, 81100 Caserta, Italy.
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-sheva, Israel.
| |
Collapse
|
13
|
Scarpetta S, Morisi N, Mutti C, Azzi N, Trippi I, Ciliento R, Apicella I, Messuti G, Angiolelli M, Lombardi F, Parrino L, Vaudano AE. Criticality of neuronal avalanches in human sleep and their relationship with sleep macro- and micro-architecture. iScience 2023; 26:107840. [PMID: 37766992 PMCID: PMC10520337 DOI: 10.1016/j.isci.2023.107840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Sleep plays a key role in preserving brain function, keeping brain networks in a state that ensures optimal computation. Empirical evidence indicates that this state is consistent with criticality, where scale-free neuronal avalanches emerge. However, the connection between sleep architecture and brain tuning to criticality remains poorly understood. Here, we characterize the critical behavior of avalanches and study their relationship with sleep macro- and micro-architectures, in particular, the cyclic alternating pattern (CAP). We show that avalanches exhibit robust scaling behaviors, with exponents obeying scaling relations consistent with the mean-field directed percolation universality class. We demonstrate that avalanche dynamics is modulated by the NREM-REM cycles and that, within NREM sleep, avalanche occurrence correlates with CAP activation phases-indicating a potential link between CAP and brain tuning to criticality. The results open new perspectives on the collective dynamics underlying CAP function, and on the relationship between sleep architecture, avalanches, and self-organization to criticality.
Collapse
Affiliation(s)
- Silvia Scarpetta
- Department of Physics, University of Salerno, 84084 Fisciano, Italy
- INFN sez. Napoli Gr. Coll. Salerno, 84084 Fisciano, Italy
| | - Niccolò Morisi
- Nephrology, Dialysis and Transplant Unit, University Hospital of Modena, 41121 Modena, Italy
| | - Carlotta Mutti
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Nicoletta Azzi
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Irene Trippi
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Rosario Ciliento
- Department of Neurology, University of Wisconsin, Madison, WI 53705, USA
| | - Ilenia Apicella
- INFN sez. Napoli Gr. Coll. Salerno, 84084 Fisciano, Italy
- Department of Physics, University of Naples “Federico II”, 80126 Napoli, Italy
| | - Giovanni Messuti
- Department of Physics, University of Salerno, 84084 Fisciano, Italy
- INFN sez. Napoli Gr. Coll. Salerno, 84084 Fisciano, Italy
| | - Marianna Angiolelli
- Department of Physics, University of Salerno, 84084 Fisciano, Italy
- INFN sez. Napoli Gr. Coll. Salerno, 84084 Fisciano, Italy
- Engineering Department, University Campus Bio-Medico of Rome, 00128 Roma, Italy
| | - Fabrizio Lombardi
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131 Padova, Italy
| | - Liborio Parrino
- Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, 41125 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
14
|
Biabani N, Birdseye A, Higgins S, Delogu A, Rosenzweig J, Cvetkovic Z, Nesbitt A, Drakatos P, Steier J, Kumari V, O’Regan D, Rosenzweig I. The neurophysiologic landscape of the sleep onset: a systematic review. J Thorac Dis 2023; 15:4530-4543. [PMID: 37691675 PMCID: PMC10482638 DOI: 10.21037/jtd-23-325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023]
Abstract
Background The sleep onset process is an ill-defined complex process of transition from wakefulness to sleep, characterized by progressive modifications at the subjective, behavioural, cognitive, and physiological levels. To this date, there is no international consensus which could aid a principled characterisation of this process for clinical research purposes. The current review aims to systemise the current knowledge about the underlying mechanisms of the natural heterogeneity of this process. Methods In this systematic review, studies investigating the process of the sleep onset from 1970 to 2022 were identified using electronic database searches of PsychINFO, MEDLINE, and Embase. Results A total of 139 studies were included; 110 studies in healthy participants and 29 studies in participants with sleep disorders. Overall, there is a limited consensus across a body of research about what distinct biomarkers of the sleep onset constitute. Only sparse data exists on the physiology, neurophysiology and behavioural mechanisms of the sleep onset, with majority of studies concentrating on the non-rapid eye movement stage 2 (NREM 2) as a potentially better defined and a more reliable time point that separates sleep from the wake, on the sleep wake continuum. Conclusions The neurophysiologic landscape of sleep onset bears a complex pattern associated with a multitude of behavioural and physiological markers and remains poorly understood. The methodological variation and a heterogenous definition of the wake-sleep transition in various studies to date is understandable, given that sleep onset is a process that has fluctuating and ill-defined boundaries. Nonetheless, the principled characterisation of the sleep onset process is needed which will allow for a greater conceptualisation of the mechanisms underlying this process, further influencing the efficacy of current treatments for sleep disorders.
Collapse
Affiliation(s)
- Nazanin Biabani
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Adam Birdseye
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Sean Higgins
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Alessio Delogu
- James Black Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Jan Rosenzweig
- Department of Engineering, King’s College London, London, UK
| | - Zoran Cvetkovic
- Department of Engineering, King’s College London, London, UK
| | - Alexander Nesbitt
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Department of Neurology, Guy’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Panagis Drakatos
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Joerg Steier
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Veena Kumari
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Centre for Cognitive Neuroscience (CCN), College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - David O’Regan
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
González J, Cavelli M, Tort ABL, Torterolo P, Rubido N. Sleep disrupts complex spiking dynamics in the neocortex and hippocampus. PLoS One 2023; 18:e0290146. [PMID: 37590234 PMCID: PMC10434889 DOI: 10.1371/journal.pone.0290146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Neuronal interactions give rise to complex dynamics in cortical networks, often described in terms of the diversity of activity patterns observed in a neural signal. Interestingly, the complexity of spontaneous electroencephalographic signals decreases during slow-wave sleep (SWS); however, the underlying neural mechanisms remain elusive. Here, we analyse in-vivo recordings from neocortical and hippocampal neuronal populations in rats and show that the complexity decrease is due to the emergence of synchronous neuronal DOWN states. Namely, we find that DOWN states during SWS force the population activity to be more recurrent, deterministic, and less random than during REM sleep or wakefulness, which, in turn, leads to less complex field recordings. Importantly, when we exclude DOWN states from the analysis, the recordings during wakefulness and sleep become indistinguishable: the spiking activity in all the states collapses to a common scaling. We complement these results by implementing a critical branching model of the cortex, which shows that inducing DOWN states to only a percentage of neurons is enough to generate a decrease in complexity that replicates SWS.
Collapse
Affiliation(s)
- Joaquín González
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Matias Cavelli
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Adriano B. L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Pablo Torterolo
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Rubido
- University of Aberdeen, King’s College, Institute for Complex Systems and Mathematical Biology, Aberdeen, United Kingdom
- Instituto de Física, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
16
|
Kloucek MB, Machon T, Kajimura S, Royall CP, Masuda N, Turci F. Biases in inverse Ising estimates of near-critical behavior. Phys Rev E 2023; 108:014109. [PMID: 37583208 DOI: 10.1103/physreve.108.014109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 08/17/2023]
Abstract
Inverse Ising inference allows pairwise interactions of complex binary systems to be reconstructed from empirical correlations. Typical estimators used for this inference, such as pseudo-likelihood maximization (PLM), are biased. Using the Sherrington-Kirkpatrick model as a benchmark, we show that these biases are large in critical regimes close to phase boundaries, and they may alter the qualitative interpretation of the inferred model. In particular, we show that the small-sample bias causes models inferred through PLM to appear closer to criticality than one would expect from the data. Data-driven methods to correct this bias are explored and applied to a functional magnetic resonance imaging data set from neuroscience. Our results indicate that additional care should be taken when attributing criticality to real-world data sets.
Collapse
Affiliation(s)
- Maximilian B Kloucek
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Thomas Machon
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Shogo Kajimura
- Faculty of Information and Human Sciences, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - C Patrick Royall
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14260-2900, USA
- Computational and Data-Enabled Science and Engineering Program, State University of New York at Buffalo, Buffalo, New York 14260-5030, USA
| | - Francesco Turci
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
17
|
Gervais C, Boucher LP, Villar GM, Lee U, Duclos C. A scoping review for building a criticality-based conceptual framework of altered states of consciousness. Front Syst Neurosci 2023; 17:1085902. [PMID: 37304151 PMCID: PMC10248073 DOI: 10.3389/fnsys.2023.1085902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
The healthy conscious brain is thought to operate near a critical state, reflecting optimal information processing and high susceptibility to external stimuli. Conversely, deviations from the critical state are hypothesized to give rise to altered states of consciousness (ASC). Measures of criticality could therefore be an effective way of establishing the conscious state of an individual. Furthermore, characterizing the direction of a deviation from criticality may enable the development of treatment strategies for pathological ASC. The aim of this scoping review is to assess the current evidence supporting the criticality hypothesis, and the use of criticality as a conceptual framework for ASC. Using the PRISMA guidelines, Web of Science and PubMed were searched from inception to February 7th 2022 to find articles relating to measures of criticality across ASC. N = 427 independent papers were initially found on the subject. N = 378 were excluded because they were either: not related to criticality; not related to consciousness; not presenting results from a primary study; presenting model data. N = 49 independent papers were included in the present research, separated in 7 sub-categories of ASC: disorders of consciousness (DOC) (n = 5); sleep (n = 13); anesthesia (n = 18); epilepsy (n = 12); psychedelics and shamanic state of consciousness (n = 4); delirium (n = 1); meditative state (n = 2). Each category included articles suggesting a deviation of the critical state. While most studies were only able to identify a deviation from criticality without being certain of its direction, the preliminary consensus arising from the literature is that non-rapid eye movement (NREM) sleep reflects a subcritical state, epileptic seizures reflect a supercritical state, and psychedelics are closer to the critical state than normal consciousness. This scoping review suggests that, though the literature is limited and methodologically inhomogeneous, ASC are characterized by a deviation from criticality, though its direction is not clearly reported in a majority of studies. Criticality could become, with more extensive research, an effective and objective way to characterize ASC, and help identify therapeutic avenues to improve criticality in pathological brain states. Furthermore, we suggest how anesthesia and psychedelics could potentially be used as neuromodulation techniques to restore criticality in DOC.
Collapse
Affiliation(s)
- Charles Gervais
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
| | - Louis-Philippe Boucher
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Guillermo Martinez Villar
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, QC, Canada
| | - UnCheol Lee
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Catherine Duclos
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, QC, Canada
- CIFAR Azrieli Global Scholars Program, Toronto, ON, Canada
| |
Collapse
|
18
|
Neto JP, Spitzner FP, Priesemann V. Sampling effects and measurement overlap can bias the inference of neuronal avalanches. PLoS Comput Biol 2022; 18:e1010678. [PMID: 36445932 PMCID: PMC9733887 DOI: 10.1371/journal.pcbi.1010678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/09/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
To date, it is still impossible to sample the entire mammalian brain with single-neuron precision. This forces one to either use spikes (focusing on few neurons) or to use coarse-sampled activity (averaging over many neurons, e.g. LFP). Naturally, the sampling technique impacts inference about collective properties. Here, we emulate both sampling techniques on a simple spiking model to quantify how they alter observed correlations and signatures of criticality. We describe a general effect: when the inter-electrode distance is small, electrodes sample overlapping regions in space, which increases the correlation between the signals. For coarse-sampled activity, this can produce power-law distributions even for non-critical systems. In contrast, spike recordings do not suffer this particular bias and underlying dynamics can be identified. This may resolve why coarse measures and spikes have produced contradicting results in the past.
Collapse
Affiliation(s)
- Joao Pinheiro Neto
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - F. Paul Spitzner
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
19
|
Willumsen A, Midtgaard J, Jespersen B, Hansen CKK, Lam SN, Hansen S, Kupers R, Fabricius ME, Litman M, Pinborg L, Tascón-Vidarte JD, Sabers A, Roland PE. Local networks from different parts of the human cerebral cortex generate and share the same population dynamic. Cereb Cortex Commun 2022; 3:tgac040. [PMID: 36530950 PMCID: PMC9753090 DOI: 10.1093/texcom/tgac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
A major goal of neuroscience is to reveal mechanisms supporting collaborative actions of neurons in local and larger-scale networks. However, no clear overall principle of operation has emerged despite decades-long experimental efforts. Here, we used an unbiased method to extract and identify the dynamics of local postsynaptic network states contained in the cortical field potential. Field potentials were recorded by depth electrodes targeting a wide selection of cortical regions during spontaneous activities, and sensory, motor, and cognitive experimental tasks. Despite different architectures and different activities, all local cortical networks generated the same type of dynamic confined to one region only of state space. Surprisingly, within this region, state trajectories expanded and contracted continuously during all brain activities and generated a single expansion followed by a contraction in a single trial. This behavior deviates from known attractors and attractor networks. The state-space contractions of particular subsets of brain regions cross-correlated during perceptive, motor, and cognitive tasks. Our results imply that the cortex does not need to change its dynamic to shift between different activities, making task-switching inherent in the dynamic of collective cortical operations. Our results provide a mathematically described general explanation of local and larger scale cortical dynamic.
Collapse
Affiliation(s)
- Alex Willumsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Denmark
| | - Jens Midtgaard
- Department of Neuroscience, Panum Institute, University of Copenhagen, Denmark
| | - Bo Jespersen
- Department of Neurosurgery, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | | | - Salina N Lam
- Department of Neuroscience, Panum Institute, University of Copenhagen, Denmark
| | - Sabine Hansen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Denmark
| | - Ron Kupers
- Department of Neuroscience, Panum Institute, University of Copenhagen, Denmark,Department of Neurosurgery, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Martin E Fabricius
- Department of Clinical Neurophysiology, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Minna Litman
- Epilepsy Clinic, Department of Neurology, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Lars Pinborg
- Epilepsy Clinic, Department of Neurology, Rigshospitalet, University Hospital of Copenhagen, Denmark,Neurobiology Research Unit, Department of Neurology, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | | | - Anne Sabers
- Epilepsy Clinic, Department of Neurology, Rigshospitalet, University Hospital of Copenhagen, Denmark
| | - Per E Roland
- Corresponding author: Per E. Roland, Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
20
|
Rabuffo G, Sorrentino P, Bernard C, Jirsa V. Spontaneous neuronal avalanches as a correlate of access consciousness. Front Psychol 2022; 13:1008407. [PMID: 36337573 PMCID: PMC9634647 DOI: 10.3389/fpsyg.2022.1008407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 09/03/2023] Open
Abstract
Decades of research have advanced our understanding of the biophysical mechanisms underlying consciousness. However, an overarching framework bridging between models of consciousness and the large-scale organization of spontaneous brain activity is still missing. Based on the observation that spontaneous brain activity dynamically switches between epochs of segregation and large-scale integration of information, we hypothesize a brain-state dependence of conscious access, whereby the presence of either segregated or integrated states marks distinct modes of information processing. We first review influential works on the neuronal correlates of consciousness, spontaneous resting-state brain activity and dynamical system theory. Then, we propose a test experiment to validate our hypothesis that conscious access occurs in aperiodic cycles, alternating windows where new incoming information is collected but not experienced, to punctuated short-lived integration events, where conscious access to previously collected content occurs. In particular, we suggest that the integration events correspond to neuronal avalanches, which are collective bursts of neuronal activity ubiquitously observed in electrophysiological recordings. If confirmed, the proposed framework would link the physics of spontaneous cortical dynamics, to the concept of ignition within the global neuronal workspace theory, whereby conscious access manifest itself as a burst of neuronal activity.
Collapse
Affiliation(s)
- Giovanni Rabuffo
- Institut de Neurosciences des Systemes, Aix-Marseille University, Marseille, France
| | | | | | | |
Collapse
|
21
|
Arvin S, Yonehara K, Glud AN. Therapeutic Neuromodulation toward a Critical State May Serve as a General Treatment Strategy. Biomedicines 2022; 10:biomedicines10092317. [PMID: 36140418 PMCID: PMC9496064 DOI: 10.3390/biomedicines10092317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Brain disease has become one of this century’s biggest health challenges, urging the development of novel, more effective treatments. To this end, neuromodulation represents an excellent method to modulate the activity of distinct neuronal regions to alleviate disease. Recently, the medical indications for neuromodulation therapy have expanded through the adoption of the idea that neurological disorders emerge from deficits in systems-level structures, such as brain waves and neural topology. Connections between neuronal regions are thought to fluidly form and dissolve again based on the patterns by which neuronal populations synchronize. Akin to a fire that may spread or die out, the brain’s activity may similarly hyper-synchronize and ignite, such as seizures, or dwindle out and go stale, as in a state of coma. Remarkably, however, the healthy brain remains hedged in between these extremes in a critical state around which neuronal activity maneuvers local and global operational modes. While it has been suggested that perturbations of this criticality could underlie neuropathologies, such as vegetative states, epilepsy, and schizophrenia, a major translational impact is yet to be made. In this hypothesis article, we dissect recent computational findings demonstrating that a neural network’s short- and long-range connections have distinct and tractable roles in sustaining the critical regime. While short-range connections shape the dynamics of neuronal activity, long-range connections determine the scope of the neuronal processes. Thus, to facilitate translational progress, we introduce topological and dynamical system concepts within the framework of criticality and discuss the implications and possibilities for therapeutic neuromodulation guided by topological decompositions.
Collapse
Affiliation(s)
- Simon Arvin
- Center for Experimental Neuroscience—CENSE, Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Danish Research Institute of Translational Neuroscience—DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11 Building A, 8200 Aarhus N, Denmark
- Correspondence: ; Tel.: +45 6083-1275
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience—DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
- Multiscale Sensory Structure Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Andreas Nørgaard Glud
- Center for Experimental Neuroscience—CENSE, Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11 Building A, 8200 Aarhus N, Denmark
| |
Collapse
|
22
|
Beggs JM. Addressing skepticism of the critical brain hypothesis. Front Comput Neurosci 2022; 16:703865. [PMID: 36185712 PMCID: PMC9520604 DOI: 10.3389/fncom.2022.703865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The hypothesis that living neural networks operate near a critical phase transition point has received substantial discussion. This “criticality hypothesis” is potentially important because experiments and theory show that optimal information processing and health are associated with operating near the critical point. Despite the promise of this idea, there have been several objections to it. While earlier objections have been addressed already, the more recent critiques of Touboul and Destexhe have not yet been fully met. The purpose of this paper is to describe their objections and offer responses. Their first objection is that the well-known Brunel model for cortical networks does not display a peak in mutual information near its phase transition, in apparent contradiction to the criticality hypothesis. In response I show that it does have such a peak near the phase transition point, provided it is not strongly driven by random inputs. Their second objection is that even simple models like a coin flip can satisfy multiple criteria of criticality. This suggests that the emergent criticality claimed to exist in cortical networks is just the consequence of a random walk put through a threshold. In response I show that while such processes can produce many signatures criticality, these signatures (1) do not emerge from collective interactions, (2) do not support information processing, and (3) do not have long-range temporal correlations. Because experiments show these three features are consistently present in living neural networks, such random walk models are inadequate. Nevertheless, I conclude that these objections have been valuable for refining research questions and should always be welcomed as a part of the scientific process.
Collapse
Affiliation(s)
- John M. Beggs
- Department of Physics, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
- *Correspondence: John M. Beggs,
| |
Collapse
|
23
|
O'Byrne J, Jerbi K. How critical is brain criticality? Trends Neurosci 2022; 45:820-837. [PMID: 36096888 DOI: 10.1016/j.tins.2022.08.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 10/31/2022]
Abstract
Criticality is the singular state of complex systems poised at the brink of a phase transition between order and randomness. Such systems display remarkable information-processing capabilities, evoking the compelling hypothesis that the brain may itself be critical. This foundational idea is now drawing renewed interest thanks to high-density data and converging cross-disciplinary knowledge. Together, these lines of inquiry have shed light on the intimate link between criticality, computation, and cognition. Here, we review these emerging trends in criticality neuroscience, highlighting new data pertaining to the edge of chaos and near-criticality, and making a case for the distance to criticality as a useful metric for probing cognitive states and mental illness. This unfolding progress in the field contributes to establishing criticality theory as a powerful mechanistic framework for studying emergent function and its efficiency in both biological and artificial neural networks.
Collapse
Affiliation(s)
- Jordan O'Byrne
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada
| | - Karim Jerbi
- Cognitive and Computational Neuroscience Lab, Psychology Department, University of Montreal, Montreal, Quebec, Canada; MILA (Quebec Artificial Intelligence Institute), Montreal, Quebec, Canada; UNIQUE Center (Quebec Neuro-AI Research Center), Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Signorelli CM, Boils JD, Tagliazucchi E, Jarraya B, Deco G. From Brain-Body Function to Conscious Interactions. Neurosci Biobehav Rev 2022; 141:104833. [PMID: 36037978 DOI: 10.1016/j.neubiorev.2022.104833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022]
Abstract
In this review, we discuss empirical results inspiring the introduction of a formal mathematical multilayer model for the biological neuroscience of conscious experience. First, we motivate the discussion through evidence regarding the dynamic brain. Second, we review different brain-body couplings associated with conscious experience and its potential role in driving brain dynamics. Third, we introduce the machinery of multilayer networks to account for several types of interactions in brain-body systems. Then, a multilayer structure consists of two main generalizations: a formal semantic to study biological systems, and an integrative account for several signatures and models of consciousness. Finally, under this framework, we define composition of layers to account for entangled features of brain-body systems related to conscious experience. As such, a multilayer mathematical framework is highly integrative and thus may be more complete than other models. In this short review, we discuss a variety of empirical results inspiring the introduction of a formal mathematical multilayer model for the biological neuroscience of conscious experience.
Collapse
Affiliation(s)
- Camilo Miguel Signorelli
- Department of Computer Science, University of Oxford, Oxford, 7 Parks Rd, OxfordOX1 3QG, United Kingdom; Physiology of Cognition, GIGA-CRC In Vivo Imaging, Allée du 6 Août, 8 (B30), 4000 Sart Tilman, University of Liège, Belgium; Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Joaquín Díaz Boils
- Universidad Internacional de La Rioja, Avda La Paz, 137, Logroño, La Rioja, Spain
| | - Enzo Tagliazucchi
- Physics Department, University of Buenos Aires, Buenos Aires, Argentina
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
25
|
Replay, the default mode network and the cascaded memory systems model. Nat Rev Neurosci 2022; 23:628-640. [PMID: 35970912 DOI: 10.1038/s41583-022-00620-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
The spontaneous replay of patterns of activity related to past experiences and memories is a striking feature of brain activity, as is the coherent activation of sets of brain areas - particularly those comprising the default mode network (DMN) - during rest. We propose that these two phenomena are strongly intertwined and that their potential functions overlap. In the 'cascaded memory systems model' that we outline here, we hypothesize that the DMN forms the backbone for the propagation of replay, mediating interactions between the hippocampus and the neocortex that enable the consolidation of new memories. The DMN may also independently ignite replay cascades, which support reactivation of older memories or high-level semantic representations. We suggest that transient cortical activations, inducing long-range correlations across the neocortex, are a key mechanism supporting a hierarchy of representations that progresses from simple percepts to semantic representations of causes and, finally, to whole episodes.
Collapse
|
26
|
Ivanov VA, Michmizos KP. Astrocytes Learn to Detect and Signal Deviations from Critical Brain Dynamics. Neural Comput 2022; 34:2047-2074. [PMID: 36027803 DOI: 10.1162/neco_a_01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/03/2022] [Indexed: 11/04/2022]
Abstract
Astrocytes are nonneuronal brain cells that were recently shown to actively communicate with neurons and are implicated in memory, learning, and regulation of cognitive states. Interestingly, these information processing functions are also closely linked to the brain's ability to self-organize at a critical phase transition. Investigating the mechanistic link between astrocytes and critical brain dynamics remains beyond the reach of cellular experiments, but it becomes increasingly approachable through computational studies. We developed a biologically plausible computational model of astrocytes to analyze how astrocyte calcium waves can respond to changes in underlying network dynamics. Our results suggest that astrocytes detect synaptic activity and signal directional changes in neuronal network dynamics using the frequency of their calcium waves. We show that this function may be facilitated by receptor scaling plasticity by enabling astrocytes to learn the approximate information content of input synaptic activity. This resulted in a computationally simple, information-theoretic model, which we demonstrate replicating the signaling functionality of the biophysical astrocyte model with receptor scaling. Our findings provide several experimentally testable hypotheses that offer insight into the regulatory role of astrocytes in brain information processing.
Collapse
Affiliation(s)
- Vladimir A Ivanov
- Computational Brain Lab, Department of Computer Science, Rutgers University, Piscataway, NJ 08854, U.S.A.
| | - Konstantinos P Michmizos
- Computational Brain Lab, Department of Computer Science, Rutgers University, Piscataway, NJ 08854, U.S.A.
| |
Collapse
|
27
|
Walter N, Hinterberger T. Self-organized criticality as a framework for consciousness: A review study. Front Psychol 2022; 13:911620. [PMID: 35911009 PMCID: PMC9336647 DOI: 10.3389/fpsyg.2022.911620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
Objective No current model of consciousness is univocally accepted on either theoretical or empirical grounds, and the need for a solid unifying framework is evident. Special attention has been given to the premise that self-organized criticality (SOC) is a fundamental property of neural system. SOC provides a competitive model to describe the physical mechanisms underlying spontaneous brain activity, and thus, critical dynamics were proposed as general gauges of information processing representing a strong candidate for a surrogate measure of consciousness. As SOC could be a neurodynamical framework, which may be able to bring together existing theories and experimental evidence, the purpose of this work was to provide a comprehensive overview of progress of research on SOC in association with consciousness. Methods A comprehensive search of publications on consciousness and SOC published between 1998 and 2021 was conducted. The Web of Science database was searched, and annual number of publications and citations, type of articles, and applied methods were determined. Results A total of 71 publications were identified. The annual number of citations steadily increased over the years. Original articles comprised 50.7% and reviews/theoretical articles 43.6%. Sixteen studies reported on human data and in seven studies data were recorded in animals. Computational models were utilized in n = 12 studies. EcoG data were assessed in n = 4 articles, fMRI in n = 4 studies, and EEG/MEG in n = 10 studies. Notably, different analytical tools were applied in the EEG/MEG studies to assess a surrogate measure of criticality such as the detrended fluctuation analysis, the pair correlation function, parameters from the neuronal avalanche analysis and the spectral exponent. Conclusion Recent studies pointed out agreements of critical dynamics with the current most influencing theories in the field of consciousness research, the global workspace theory and the integrated information theory. Thus, the framework of SOC as a neurodynamical parameter for consciousness seems promising. However, identified experimental work was small in numbers, and a heterogeneity of applied analytical tools as a surrogate measure of criticality was observable, which limits the generalizability of findings.
Collapse
|
28
|
Rocha RP, Koçillari L, Suweis S, De Filippo De Grazia M, de Schotten MT, Zorzi M, Corbetta M. Recovery of neural dynamics criticality in personalized whole-brain models of stroke. Nat Commun 2022; 13:3683. [PMID: 35760787 PMCID: PMC9237050 DOI: 10.1038/s41467-022-30892-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/16/2022] [Indexed: 01/13/2023] Open
Abstract
The critical brain hypothesis states that biological neuronal networks, because of their structural and functional architecture, work near phase transitions for optimal response to internal and external inputs. Criticality thus provides optimal function and behavioral capabilities. We test this hypothesis by examining the influence of brain injury (strokes) on the criticality of neural dynamics estimated at the level of single participants using directly measured individual structural connectomes and whole-brain models. Lesions engender a sub-critical state that recovers over time in parallel with behavior. The improvement of criticality is associated with the re-modeling of specific white-matter connections. We show that personalized whole-brain dynamical models poised at criticality track neural dynamics, alteration post-stroke, and behavior at the level of single participants.
Collapse
Affiliation(s)
- Rodrigo P Rocha
- Departamento de Física, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- Padova Neuroscience Center, Università di Padova, Padova, Italy.
| | - Loren Koçillari
- Padova Neuroscience Center, Università di Padova, Padova, Italy
- Laboratory of Neural Computation, Istituto Italiano di Tecnologia, 38068, Rovereto, Italy
- Dipartimento di Fisica e Astronomia, Università di Padova and INFN, via Marzolo 8, I-35131, Padova, Italy
| | - Samir Suweis
- Padova Neuroscience Center, Università di Padova, Padova, Italy
- Dipartimento di Fisica e Astronomia, Università di Padova and INFN, via Marzolo 8, I-35131, Padova, Italy
| | | | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Marco Zorzi
- IRCCS San Camillo Hospital, Venice, Italy
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, Università di Padova, Padova, Italy
- Dipartimento di Neuroscienze, Università di Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Fondazione Biomedica, Padova, Italy
| |
Collapse
|
29
|
Poel W, Daniels BC, Sosna MMG, Twomey CR, Leblanc SP, Couzin ID, Romanczuk P. Subcritical escape waves in schooling fish. SCIENCE ADVANCES 2022; 8:eabm6385. [PMID: 35731883 PMCID: PMC9217090 DOI: 10.1126/sciadv.abm6385] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Theoretical physics predicts optimal information processing in living systems near transitions (or pseudo-critical points) in their collective dynamics. However, focusing on potential benefits of proximity to a critical point, such as maximal sensitivity to perturbations and fast dissemination of information, commonly disregards possible costs of criticality in the noisy, dynamic environmental contexts of biological systems. Here, we find that startle cascades in fish schools are subcritical (not maximally responsive to environmental cues) and that distance to criticality decreases when perceived risk increases. Considering individuals' costs related to two detection error types, associated to both true and false alarms, we argue that being subcritical, and modulating distance to criticality, can be understood as managing a trade-off between sensitivity and robustness according to the riskiness and noisiness of the environment. Our work emphasizes the need for an individual-based and context-dependent perspective on criticality and collective information processing and motivates future questions about the evolutionary forces that brought about a particular trade-off.
Collapse
Affiliation(s)
- Winnie Poel
- Institute for Theoretical Biology, Department of Biology, Humboldt Universität zu Berlin, D-10099 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, D-10115 Berlin, Germany
| | - Bryan C. Daniels
- School of Complex Adaptive Systems, Arizona State University, Tempe, AZ 85287, USA
| | - Matthew M. G. Sosna
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Colin R. Twomey
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon P. Leblanc
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Blend Labs, San Francisco, CA 94108, USA
| | - Iain D. Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, D-78547 Konstanz, Germany
- Department of Biology, University of Konstanz, D-78547 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78547 Konstanz, Germany
| | - Pawel Romanczuk
- Institute for Theoretical Biology, Department of Biology, Humboldt Universität zu Berlin, D-10099 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, D-10115 Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, D-10587 Berlin, Germany
| |
Collapse
|
30
|
Shorten DP, Priesemann V, Wibral M, Lizier JT. Early lock-in of structured and specialised information flows during neural development. eLife 2022; 11:74651. [PMID: 35286256 PMCID: PMC9064303 DOI: 10.7554/elife.74651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
The brains of many organisms are capable of complicated distributed computation underpinned by a highly advanced information processing capacity. Although substantial progress has been made towards characterising the information flow component of this capacity in mature brains, there is a distinct lack of work characterising its emergence during neural development. This lack of progress has been largely driven by the lack of effective estimators of information processing operations for spiking data. Here, we leverage recent advances in this estimation task in order to quantify the changes in transfer entropy during development. We do so by studying the changes in the intrinsic dynamics of the spontaneous activity of developing dissociated neural cell cultures. We find that the quantity of information flowing across these networks undergoes a dramatic increase across development. Moreover, the spatial structure of these flows exhibits a tendency to lock-in at the point when they arise. We also characterise the flow of information during the crucial periods of population bursts. We find that, during these bursts, nodes tend to undertake specialised computational roles as either transmitters, mediators, or receivers of information, with these roles tending to align with their average spike ordering. Further, we find that these roles are regularly locked-in when the information flows are established. Finally, we compare these results to information flows in a model network developing according to a spike-timing-dependent plasticity learning rule. Similar temporal patterns in the development of information flows were observed in these networks, hinting at the broader generality of these phenomena.
Collapse
Affiliation(s)
- David P Shorten
- Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney, Australia
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Michael Wibral
- Campus Institute for Dynamics of Biological Networks, Georg August University, Göttingen, Germany
| | - Joseph T Lizier
- Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
31
|
Toker D, Pappas I, Lendner JD, Frohlich J, Mateos DM, Muthukumaraswamy S, Carhart-Harris R, Paff M, Vespa PM, Monti MM, Sommer FT, Knight RT, D'Esposito M. Consciousness is supported by near-critical slow cortical electrodynamics. Proc Natl Acad Sci U S A 2022; 119:e2024455119. [PMID: 35145021 PMCID: PMC8851554 DOI: 10.1073/pnas.2024455119] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence suggests that during conscious states, the electrodynamics of the cortex are poised near a critical point or phase transition and that this near-critical behavior supports the vast flow of information through cortical networks during conscious states. Here, we empirically identify a mathematically specific critical point near which waking cortical oscillatory dynamics operate, which is known as the edge-of-chaos critical point, or the boundary between stability and chaos. We do so by applying the recently developed modified 0-1 chaos test to electrocorticography (ECoG) and magnetoencephalography (MEG) recordings from the cortices of humans and macaques across normal waking, generalized seizure, anesthesia, and psychedelic states. Our evidence suggests that cortical information processing is disrupted during unconscious states because of a transition of low-frequency cortical electric oscillations away from this critical point; conversely, we show that psychedelics may increase the information richness of cortical activity by tuning low-frequency cortical oscillations closer to this critical point. Finally, we analyze clinical electroencephalography (EEG) recordings from patients with disorders of consciousness (DOC) and show that assessing the proximity of slow cortical oscillatory electrodynamics to the edge-of-chaos critical point may be useful as an index of consciousness in the clinical setting.
Collapse
Affiliation(s)
- Daniel Toker
- Department of Psychology, University of California, Los Angeles, CA 90095;
| | - Ioannis Pappas
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Department of Psychology, University of California, Berkeley, CA 94704
- Laboratory of Neuro Imaging, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Janna D Lendner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Department of Anesthesiology and Intensive Care, University Medical Center, 72076 Tübingen, Germany
| | - Joel Frohlich
- Department of Psychology, University of California, Los Angeles, CA 90095
| | - Diego M Mateos
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1425 Buenos Aires, Argentina
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, E3202 Paraná, Entre Ríos, Argentina
- Grupo de Análisis de Neuroimágenes, Instituo de Matemática Aplicada del Litoral, S3000 Santa Fe, Argentina
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, 1010 Auckland, New Zealand
| | - Robin Carhart-Harris
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London SW7 2AZ, United Kingdom
- Centre for Psychedelic Research, Department of Psychiatry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michelle Paff
- Department of Neurological Surgery, University of California, Irvine, CA 92697
| | - Paul M Vespa
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, CA 90095
| | - Martin M Monti
- Department of Psychology, University of California, Los Angeles, CA 90095
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, CA 90095
| | - Friedrich T Sommer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA 94704
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Department of Psychology, University of California, Berkeley, CA 94704
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Department of Psychology, University of California, Berkeley, CA 94704
| |
Collapse
|
32
|
Arvin S, Glud AN, Yonehara K. Short- and Long-Range Connections Differentially Modulate the Dynamics and State of Small-World Networks. Front Comput Neurosci 2022; 15:783474. [PMID: 35145389 PMCID: PMC8821822 DOI: 10.3389/fncom.2021.783474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
The human brain contains billions of neurons that flexibly interconnect to support local and global computational spans. As neuronal activity propagates through the neural medium, it approaches a critical state hedged between ordered and disordered system regimes. Recent work demonstrates that this criticality coincides with the small-world topology, a network arrangement that accommodates both local (subcritical) and global (supercritical) system properties. On one hand, operating near criticality is thought to offer several neurocomputational advantages, e.g., high-dynamic range, efficient information capacity, and information transfer fidelity. On the other hand, aberrations from the critical state have been linked to diverse pathologies of the brain, such as post-traumatic epileptiform seizures and disorders of consciousness. Modulation of brain activity, through neuromodulation, presents an attractive mode of treatment to alleviate such neurological disorders, but a tractable neural framework is needed to facilitate clinical progress. Using a variation on the generative small-world model of Watts and Strogatz and Kuramoto's model of coupled oscillators, we show that the topological and dynamical properties of the small-world network are divided into two functional domains based on the range of connectivity, and that these domains play distinct roles in shaping the behavior of the critical state. We demonstrate that short-range network connections shape the dynamics of the system, e.g., its volatility and metastability, whereas long-range connections drive the system state, e.g., a seizure. Together, these findings lend support to combinatorial neuromodulation approaches that synergistically normalize the system dynamic while mobilizing the system state.
Collapse
Affiliation(s)
- Simon Arvin
- Department of Neurosurgery, Center for Experimental Neuroscience – CENSE, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus C, Denmark
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
- *Correspondence: Simon Arvin
| | - Andreas Nørgaard Glud
- Department of Neurosurgery, Center for Experimental Neuroscience – CENSE, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus C, Denmark
| | - Keisuke Yonehara
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, Denmark
- Multiscale Sensory Structure Laboratory, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Keisuke Yonehara
| |
Collapse
|
33
|
Xin Y, Bai T, Zhang T, Chen Y, Wang K, Yu S, Liu N, Tian Y. Electroconvulsive therapy modulates critical brain dynamics in major depressive disorder patients. Brain Stimul 2022; 15:214-225. [PMID: 34954084 DOI: 10.1016/j.brs.2021.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is widely considered as an effective and fast-acting option for treating patients with major depressive disorder (MDD). However, the neural basis underlying this powerful therapy remains uncertain. Recent studies have suggested that the healthy brain may operate near a critical state, which may reflect a balance between neuronal excitation and inhibition. OBJECTIVE In the present study, we investigated whether there are any changes regarding criticality in MDD and, if so, whether ECT can reverse them. Critical dynamics analyses were performed on resting-state functional magnetic resonance imaging (rs-fMRI) data collected from 39 MDD patients and 38 healthy controls (HCs). RESULTS We found that compared with HCs, MDD patients, especially those who responded positively to ECT, tended to have smaller average avalanch sizes and lower branching ratios, suggesting a sub-critical state, at both the whole-brain and functional network levels. Importantly, ECT effectively corrected such anomalies, accompanied by enhanced degree centrality and functional connectivity of high-degree nodes located in the networks including the default-mode and the frontoparietal networks. CONCLUSION These results indicate that ECT can modulate large-scale brain dynamics of MDD patients to be closer to criticality. Our study sheds new light on the pathology of MDD and the network mechanism by which ECT influences treatment.
Collapse
Affiliation(s)
- Yumeng Xin
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China
| | - Ting Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yang Chen
- Anhui Mental Health Center, Hefei, 230022, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230031, China; The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shan Yu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230031, China.
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230031, China.
| |
Collapse
|
34
|
Villiger D. How Psychedelic-Assisted Treatment Works in the Bayesian Brain. Front Psychiatry 2022; 13:812180. [PMID: 35360137 PMCID: PMC8963812 DOI: 10.3389/fpsyt.2022.812180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Psychedelics are experiencing a renaissance in clinical research. In recent years, an increasing number of studies on psychedelic-assisted treatment have been conducted. So far, the results are promising, suggesting that this new (or rather, rediscovered) form of therapy has great potential. One particular reason for that appears to be the synergistic combination of the pharmacological and psychotherapeutic interventions in psychedelic-assisted treatment. But how exactly do these two interventions complement each other? This paper provides the first account of the interaction between pharmacological and psychological effects in psychedelic-assisted treatment. Building on the relaxed beliefs under psychedelics (REBUS) hypothesis of Carhart-Harris and Friston and the contextual model of Wampold, it argues that psychedelics amplify the common factors and thereby the remedial effects of psychotherapy. More precisely, psychedelics are assumed to attenuate the precision of high-level predictions, making them more revisable by bottom-up input. Psychotherapy constitutes an important source of such input. At best, it signalizes a safe and supportive environment (cf. setting) and induces remedial expectations (cf. set). During treatment, these signals should become incorporated when high-level predictions are revised: a process that is hypothesized to occur as a matter of course in psychotherapy but to get reinforced and accelerated under psychedelics. Ultimately, these revisions should lead to a relief of symptoms.
Collapse
Affiliation(s)
- Daniel Villiger
- Department of Psychosomatics and Psychotherapy, Psychiatric University Hospital Basel, University of Basel, Basel, Switzerland.,Institute of Philosophy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Bansal K, Garcia JO, Lauharatanahirun N, Muldoon SF, Sajda P, Vettel JM. Scale-specific dynamics of high-amplitude bursts in EEG capture behaviorally meaningful variability. Neuroimage 2021; 241:118425. [PMID: 34303795 DOI: 10.1016/j.neuroimage.2021.118425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022] Open
Abstract
Cascading high-amplitude bursts in neural activity, termed avalanches, are thought to provide insight into the complex spatially distributed interactions in neural systems. In human neuroimaging, for example, avalanches occurring during resting-state show scale-invariant dynamics, supporting the hypothesis that the brain operates near a critical point that enables long range spatial communication. In fact, it has been suggested that such scale-invariant dynamics, characterized by a power-law distribution in these avalanches, are universal in neural systems and emerge through a common mechanism. While the analysis of avalanches and subsequent criticality is increasingly seen as a framework for using complex systems theory to understand brain function, it is unclear how the framework would account for the omnipresent cognitive variability, whether across individuals or tasks. To address this, we analyzed avalanches in the EEG activity of healthy humans during rest as well as two distinct task conditions that varied in cognitive demands and produced behavioral measures unique to each individual. In both rest and task conditions we observed that avalanche dynamics demonstrate scale-invariant characteristics, but differ in their specific features, demonstrating individual variability. Using a new metric we call normalized engagement, which estimates the likelihood for a brain region to produce high-amplitude bursts, we also investigated regional features of avalanche dynamics. Normalized engagement showed not only the expected individual and task dependent variability, but also scale-specificity that correlated with individual behavior. Our results suggest that the study of avalanches in human brain activity provides a tool to assess cognitive variability. Our findings expand our understanding of avalanche features and are supportive of the emerging theoretical idea that the dynamics of an active human brain operate close to a critical-like region and not a singular critical-state.
Collapse
Affiliation(s)
- Kanika Bansal
- Human Research and Engineering Directorate, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Javier O Garcia
- Human Research and Engineering Directorate, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Nina Lauharatanahirun
- Department of Biomedical Engineering and Department of Biobehavioral Health, Pennsylvania State University, State College, PA 16802, USA
| | - Sarah F Muldoon
- Mathematics Department, CDSE Program, and Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Data Science Institute, Columbia University, New York, NY 10027, USA
| | - Jean M Vettel
- Human Research and Engineering Directorate, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
36
|
Fekete T, Hinrichs H, Sitt JD, Heinze HJ, Shriki O. Multiscale criticality measures as general-purpose gauges of proper brain function. Sci Rep 2021; 11:14441. [PMID: 34262121 PMCID: PMC8280148 DOI: 10.1038/s41598-021-93880-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
The brain is universally regarded as a system for processing information. If so, any behavioral or cognitive dysfunction should lend itself to depiction in terms of information processing deficiencies. Information is characterized by recursive, hierarchical complexity. The brain accommodates this complexity by a hierarchy of large/slow and small/fast spatiotemporal loops of activity. Thus, successful information processing hinges upon tightly regulating the spatiotemporal makeup of activity, to optimally match the underlying multiscale delay structure of such hierarchical networks. Reduced capacity for information processing will then be expressed as deviance from this requisite multiscale character of spatiotemporal activity. This deviance is captured by a general family of multiscale criticality measures (MsCr). MsCr measures reflect the behavior of conventional criticality measures (such as the branching parameter) across temporal scale. We applied MsCr to MEG and EEG data in several telling degraded information processing scenarios. Consistently with our previous modeling work, MsCr measures systematically varied with information processing capacity: MsCr fingerprints showed deviance in the four states of compromised information processing examined in this study, disorders of consciousness, mild cognitive impairment, schizophrenia and even during pre-ictal activity. MsCr measures might thus be able to serve as general gauges of information processing capacity and, therefore, as normative measures of brain health.
Collapse
Affiliation(s)
- Tomer Fekete
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jacobo Diego Sitt
- INSERM, U 1127, Paris, France
- Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hans-Jochen Heinze
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Computer Science, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
37
|
Characterization of the Functional Dynamics in the Neonatal Brain during REM and NREM Sleep States by means of Microstate Analysis. Brain Topogr 2021; 34:555-567. [PMID: 34258668 PMCID: PMC8384814 DOI: 10.1007/s10548-021-00861-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
Neonates spend most of their life sleeping. During sleep, their brain experiences fast changes in its functional organization. Microstate analysis permits to capture the rapid dynamical changes occurring in the functional organization of the brain by representing the changing spatio-temporal features of the electroencephalogram (EEG) as a sequence of short-lasting scalp topographies—the microstates. In this study, we modeled the ongoing neonatal EEG into sequences of a limited number of microstates and investigated whether the extracted microstate features are altered in REM and NREM sleep (usually known as active and quiet sleep states—AS and QS—in the newborn) and depend on the EEG frequency band. 19-channel EEG recordings from 60 full-term healthy infants were analyzed using a modified version of the k-means clustering algorithm. The results show that ~ 70% of the variance in the datasets can be described using 7 dominant microstate templates. The mean duration and mean occurrence of the dominant microstates were significantly different in the two sleep states. Microstate syntax analysis demonstrated that the microstate sequences characterizing AS and QS had specific non-casual structures that differed in the two sleep states. Microstate analysis of the neonatal EEG in specific frequency bands showed a clear dependence of the explained variance on frequency. Overall, our findings demonstrate that (1) the spatio-temporal dynamics of the neonatal EEG can be described by non-casual sequences of a limited number of microstate templates; (2) the brain dynamics described by these microstate templates depends on frequency; (3) the features of the microstate sequences can well differentiate the physiological conditions characterizing AS and QS.
Collapse
|
38
|
Rué-Queralt J, Stevner A, Tagliazucchi E, Laufs H, Kringelbach ML, Deco G, Atasoy S. Decoding brain states on the intrinsic manifold of human brain dynamics across wakefulness and sleep. Commun Biol 2021; 4:854. [PMID: 34244598 PMCID: PMC8270946 DOI: 10.1038/s42003-021-02369-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Current state-of-the-art functional magnetic resonance imaging (fMRI) offers remarkable imaging quality and resolution, yet, the intrinsic dimensionality of brain dynamics in different states (wakefulness, light and deep sleep) remains unknown. Here we present a method to reveal the low dimensional intrinsic manifold underlying human brain dynamics, which is invariant of the high dimensional spatio-temporal representation of the neuroimaging technology. By applying this intrinsic manifold framework to fMRI data acquired in wakefulness and sleep, we reveal the nonlinear differences between wakefulness and three different sleep stages, and successfully decode these different brain states with a mean accuracy across participants of 96%. Remarkably, a further group analysis shows that the intrinsic manifolds of all participants share a common topology. Overall, our results reveal the intrinsic manifold underlying the spatiotemporal dynamics of brain activity and demonstrate how this manifold enables the decoding of different brain states such as wakefulness and various sleep stages.
Collapse
Affiliation(s)
- Joan Rué-Queralt
- grid.5612.00000 0001 2172 2676Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Angus Stevner
- grid.4991.50000 0004 1936 8948Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK ,grid.7048.b0000 0001 1956 2722Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Enzo Tagliazucchi
- grid.7345.50000 0001 0056 1981Instituto de Física de Buenos Aires and Physics Deparment (University of Buenos Aires), Buenos Aires, Argentina
| | - Helmut Laufs
- grid.7839.50000 0004 1936 9721Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt am Main, Germany ,grid.9764.c0000 0001 2153 9986Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Morten L. Kringelbach
- grid.4991.50000 0004 1936 8948Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK ,grid.7048.b0000 0001 1956 2722Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- grid.5612.00000 0001 2172 2676Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain ,grid.419524.f0000 0001 0041 5028Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ,grid.1002.30000 0004 1936 7857School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Selen Atasoy
- grid.4991.50000 0004 1936 8948Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK ,grid.7048.b0000 0001 1956 2722Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| |
Collapse
|
39
|
Shiromani PJ, Blanco-Centurion C, Vidal-Ortiz A. Mapping Network Activity in Sleep. Front Neurosci 2021; 15:646468. [PMID: 33828453 PMCID: PMC8019804 DOI: 10.3389/fnins.2021.646468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/04/2021] [Indexed: 11/22/2022] Open
Abstract
It was in the influenza pandemic of 1918 that von Economo identified specific brain regions regulating sleep and wake. Since then researchers have used a variety of tools to determine how the brain shifts between states of consciousness. In every enterprise new tools have validated existing data, corrected errors and made new discoveries to advance science. The brain is a challenge but new tools can disentangle the brain network. We summarize the newest tool, a miniature microscope, that provides unprecedented view of activity of glia and neurons in freely behaving mice. With this tool we have observed that the activity of a majority of GABA and MCH neurons in the lateral hypothalamus is heavily biased toward sleep. We suggest that miniscope data identifies activity at the cellular level in normal versus diseased brains, and also in response to specific hypnotics. Shifts in activity in small networks across the brain will help identify point of criticality that switches the brain from wake to sleep.
Collapse
Affiliation(s)
- Priyattam J Shiromani
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States.,Department of Psychiatry and Biobehavioral Science, Medical University of South Carolina, Charleston, SC, United States
| | - Carlos Blanco-Centurion
- Department of Psychiatry and Biobehavioral Science, Medical University of South Carolina, Charleston, SC, United States
| | | |
Collapse
|
40
|
Hagemann A, Wilting J, Samimizad B, Mormann F, Priesemann V. Assessing criticality in pre-seizure single-neuron activity of human epileptic cortex. PLoS Comput Biol 2021; 17:e1008773. [PMID: 33684101 PMCID: PMC7971851 DOI: 10.1371/journal.pcbi.1008773] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/18/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
Epileptic seizures are characterized by abnormal and excessive neural activity, where cortical network dynamics seem to become unstable. However, most of the time, during seizure-free periods, cortex of epilepsy patients shows perfectly stable dynamics. This raises the question of how recurring instability can arise in the light of this stable default state. In this work, we examine two potential scenarios of seizure generation: (i) epileptic cortical areas might generally operate closer to instability, which would make epilepsy patients generally more susceptible to seizures, or (ii) epileptic cortical areas might drift systematically towards instability before seizure onset. We analyzed single-unit spike recordings from both the epileptogenic (focal) and the nonfocal cortical hemispheres of 20 epilepsy patients. We quantified the distance to instability in the framework of criticality, using a novel estimator, which enables an unbiased inference from a small set of recorded neurons. Surprisingly, we found no evidence for either scenario: Neither did focal areas generally operate closer to instability, nor were seizures preceded by a drift towards instability. In fact, our results from both pre-seizure and seizure-free intervals suggest that despite epilepsy, human cortex operates in the stable, slightly subcritical regime, just like cortex of other healthy mammalians.
Collapse
Affiliation(s)
- Annika Hagemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Jens Wilting
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Bita Samimizad
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Viola Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN) Göttingen, Germany
| |
Collapse
|
41
|
Wilting J, Priesemann V. Between Perfectly Critical and Fully Irregular: A Reverberating Model Captures and Predicts Cortical Spike Propagation. Cereb Cortex 2020; 29:2759-2770. [PMID: 31008508 PMCID: PMC6519697 DOI: 10.1093/cercor/bhz049] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/20/2019] [Indexed: 12/11/2022] Open
Abstract
Knowledge about the collective dynamics of cortical spiking is very informative about the underlying coding principles. However, even most basic properties are not known with certainty, because their assessment is hampered by spatial subsampling, i.e., the limitation that only a tiny fraction of all neurons can be recorded simultaneously with millisecond precision. Building on a novel, subsampling-invariant estimator, we fit and carefully validate a minimal model for cortical spike propagation. The model interpolates between two prominent states: asynchronous and critical. We find neither of them in cortical spike recordings across various species, but instead identify a narrow "reverberating" regime. This approach enables us to predict yet unknown properties from very short recordings and for every circuit individually, including responses to minimal perturbations, intrinsic network timescales, and the strength of external input compared to recurrent activation "thereby informing about the underlying coding principles for each circuit, area, state and task.
Collapse
Affiliation(s)
- J Wilting
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faß berg 17, Göttingen, Germany
| | - V Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Am Faß berg 17, Göttingen, Germany.,Bernstein-Center for Computational Neuroscience, Göttingen, Germany
| |
Collapse
|
42
|
Ma Z, Liu H, Komiyama T, Wessel R. Stability of motor cortex network states during learning-associated neural reorganizations. J Neurophysiol 2020; 124:1327-1342. [PMID: 32937084 DOI: 10.1152/jn.00061.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A substantial reorganization of neural activity and neuron-to-movement relationship in motor cortical circuits accompanies the emergence of reproducible movement patterns during motor learning. Little is known about how this tempest of neural activity restructuring impacts the stability of network states in recurrent cortical circuits. To investigate this issue, we reanalyzed data in which we recorded for 14 days via population calcium imaging the activity of the same neural populations of pyramidal neurons in layer 2/3 and layer 5 of forelimb motor and premotor cortex in mice during the daily learning of a lever-press task. We found that motor cortex network states remained stable with respect to the critical network state during the extensive reorganization of both neural population activity and its relation to lever movement throughout learning. Specifically, layer 2/3 cortical circuits unceasingly displayed robust evidence for operating at the critical network state, a regime that maximizes information capacity and transmission and provides a balance between network robustness and flexibility. In contrast, layer 5 circuits operated away from the critical network state for all 14 days of recording and learning. In conclusion, this result indicates that the wide-ranging malleability of synapses, neurons, and neural connectivity during learning operates within the constraint of a stable and layer-specific network state regarding dynamic criticality, and suggests that different cortical layers operate under distinct constraints because of their specialized goals.NEW & NOTEWORTHY The neural activity reorganizes throughout motor learning, but how this reorganization impacts the stability of network states is unclear. We used two-photon calcium imaging to investigate how the network states in layer 2/3 and layer 5 of forelimb motor and premotor cortex are modulated by motor learning. We show that motor cortex network states are layer-specific and constant regarding criticality during neural activity reorganization, and suggests that layer-specific constraints could be motivated by different functions.
Collapse
Affiliation(s)
- Zhengyu Ma
- Department of Physics, Washington University in St. Louis, Saint Louis, Missouri
| | - Haixin Liu
- Neurobiology Section and Department of Neuroscience, University of California San Diego, La Jolla, California
| | - Takaki Komiyama
- Neurobiology Section and Department of Neuroscience, University of California San Diego, La Jolla, California
| | - Ralf Wessel
- Department of Physics, Washington University in St. Louis, Saint Louis, Missouri
| |
Collapse
|
43
|
Zimmern V. Why Brain Criticality Is Clinically Relevant: A Scoping Review. Front Neural Circuits 2020; 14:54. [PMID: 32982698 PMCID: PMC7479292 DOI: 10.3389/fncir.2020.00054] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
The past 25 years have seen a strong increase in the number of publications related to criticality in different areas of neuroscience. The potential of criticality to explain various brain properties, including optimal information processing, has made it an increasingly exciting area of investigation for neuroscientists. Recent reviews on this topic, sometimes termed brain criticality, make brief mention of clinical applications of these findings to several neurological disorders such as epilepsy, neurodegenerative disease, and neonatal hypoxia. Other clinicallyrelevant domains - including anesthesia, sleep medicine, developmental-behavioral pediatrics, and psychiatry - are seldom discussed in review papers of brain criticality. Thorough assessments of these application areas and their relevance for clinicians have also yet to be published. In this scoping review, studies of brain criticality involving human data of all ages are evaluated for their current and future clinical relevance. To make the results of these studies understandable to a more clinical audience, a review of the key concepts behind criticality (e.g., phase transitions, long-range temporal correlation, self-organized criticality, power laws, branching processes) precedes the discussion of human clinical studies. Open questions and forthcoming areas of investigation are also considered.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
44
|
Time-dependent branching processes: a model of oscillating neuronal avalanches. Sci Rep 2020; 10:13678. [PMID: 32792658 PMCID: PMC7426838 DOI: 10.1038/s41598-020-69705-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/15/2020] [Indexed: 11/08/2022] Open
Abstract
Recently, neuronal avalanches have been observed to display oscillations, a phenomenon regarded as the co-existence of a scale-free behaviour (the avalanches close to criticality) and scale-dependent dynamics (the oscillations). Ordinary continuous-time branching processes with constant extinction and branching rates are commonly used as models of neuronal activity, yet they lack any such time-dependence. In the present work, we extend a basic branching process by allowing the extinction rate to oscillate in time as a new model to describe cortical dynamics. By means of a perturbative field theory, we derive relevant observables in closed form. We support our findings by quantitative comparison to numerics and qualitative comparison to available experimental results.
Collapse
|
45
|
Temporal Signatures of Criticality in Human Cortical Excitability as Probed by Early Somatosensory Responses. J Neurosci 2020; 40:6572-6583. [PMID: 32719161 DOI: 10.1523/jneurosci.0241-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/05/2020] [Accepted: 06/19/2020] [Indexed: 11/21/2022] Open
Abstract
Brain responses vary considerably from moment to moment, even to identical sensory stimuli. This has been attributed to changes in instantaneous neuronal states determining the system's excitability. Yet the spatiotemporal organization of these dynamics remains poorly understood. Here we test whether variability in stimulus-evoked activity can be interpreted within the framework of criticality, which postulates dynamics of neural systems to be tuned toward the phase transition between stability and instability as is reflected in scale-free fluctuations in spontaneous neural activity. Using a novel noninvasive approach in 33 male human participants, we tracked instantaneous cortical excitability by inferring the magnitude of excitatory postsynaptic currents from the N20 component of the somatosensory evoked potential. Fluctuations of cortical excitability demonstrated long-range temporal dependencies decaying according to a power law across trials, a hallmark of systems at critical states. As these dynamics covaried with changes in prestimulus oscillatory activity in the alpha band (8-13 Hz), we establish a mechanistic link between ongoing and evoked activity through cortical excitability and argue that the co-emergence of common temporal power laws may indeed originate from neural networks poised close to a critical state. In contrast, no signatures of criticality were found in subcortical or peripheral nerve activity. Thus, criticality may represent a parsimonious organizing principle of variability in stimulus-related brain processes on a cortical level, possibly reflecting a delicate equilibrium between robustness and flexibility of neural responses to external stimuli.SIGNIFICANCE STATEMENT Variability of neural responses in primary sensory areas is puzzling, as it is detrimental to the exact mapping between stimulus features and neural activity. However, such variability can be beneficial for information processing in neural networks if it is of a specific nature, namely, if dynamics are poised at a so-called critical state characterized by a scale-free spatiotemporal structure. Here, we demonstrate the existence of a link between signatures of criticality in ongoing and evoked activity through cortical excitability, which fills the long-standing gap between two major directions of research on neural variability: the impact of instantaneous brain states on stimulus processing on the one hand and the scale-free organization of spatiotemporal network dynamics of spontaneous activity on the other.
Collapse
|
46
|
Thomas CW, Guillaumin MCC, McKillop LE, Achermann P, Vyazovskiy VV. Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. eLife 2020; 9:e54148. [PMID: 32614324 PMCID: PMC7332296 DOI: 10.7554/elife.54148] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define 'Process S', a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5-4 Hz) during sleep. The notion of sleep as a local, activity-dependent process suggests that activity history must be integrated to determine the dynamics of global Process S. Here, we developed novel mathematical models of Process S based on cortical activity recorded in freely behaving mice, describing local Process S as a function of the deviation of neuronal firing rates from a locally defined set-point, independent of global sleep-wake state. Averaging locally derived Processes S and their rate parameters yielded values resembling those obtained from EEG SWA and global vigilance states. We conclude that local Process S dynamics reflects neuronal activity integrated over time, and global Process S reflects local processes integrated over space.
Collapse
Affiliation(s)
- Christopher W Thomas
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | | | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of PsychiatryZurichSwitzerland
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
47
|
Zorick T, Landers J, Leuchter A, Mandelkern MA. EEG multifractal analysis correlates with cognitive testing scores and clinical staging in mild cognitive impairment. J Clin Neurosci 2020; 76:195-200. [PMID: 32307299 DOI: 10.1016/j.jocn.2020.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/02/2020] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease and mild cognitive impairment are increasingly prevalent global health concerns in aging industrialized societies. There are only limited non-invasive biomarkers for the cognitive and functional impairment associated with dementia. Multifractal analysis of EEG has recently been proposed as having the potential to be an improved method of quantitative EEG analysis compared to existing techniques (e.g., spectral analysis). We utilized an existing database of a study of healthy elderly patients (N = 20) who were assessed with cognitive testing (Folstein Mini Mental Status Exam; MMSE) and resting state EEG (4 leads). Each subject's EEG was separated into two 30 s tracings for training and testing a statistical model against the MMSE scores. We compared multifractal detrended fluctuation analysis (MF-DFA) against Fourier Transform (FT) in the ability to produce an accurate classification and regression trees estimator for the testing EEG segments. The MF-DFA-based statistical model MMSE estimation strongly correlated with the actual MMSE when applied to the test EEG parameter dataset, whereas the corresponding FT-based model did not. Using a standardized cutoff value for MMSE-based clinical staging, the MF-DFA-based statistical model was both sensitive and specific for clinical staging of both mild Alzheimer's disease and mild cognitive impairment. MF-DFA shows promise as a method of quantitative EEG analysis to accurately estimate cognition in Alzheimer's disease.
Collapse
Affiliation(s)
- Todd Zorick
- Dept. of Psychiatry, Harbor-UCLA Medical Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, United States; Department of Psychiatry and Biobehvioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, United States.
| | | | - Andrew Leuchter
- Department of Psychiatry and Biobehvioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, United States
| | - Mark A Mandelkern
- Greater Los Angeles VA Dept. of Nuclear Imaging, University of California, Irvine, United States; Dept. of Physics, University of California, Irvine, United States
| |
Collapse
|
48
|
Jannesari M, Saeedi A, Zare M, Ortiz-Mantilla S, Plenz D, Benasich AA. Stability of neuronal avalanches and long-range temporal correlations during the first year of life in human infants. Brain Struct Funct 2020; 225:1169-1183. [PMID: 32095901 PMCID: PMC7166209 DOI: 10.1007/s00429-019-02014-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/26/2019] [Indexed: 11/27/2022]
Abstract
During infancy, the human brain rapidly expands in size and complexity as neural networks mature and new information is incorporated at an accelerating pace. Recently, it was shown that single-electrode EEG in preterms at birth exhibits scale-invariant intermittent bursts. Yet, it is currently not known whether the normal infant brain, in particular, the cortex, maintains a distinct dynamical state during development that is characterized by scale-invariant spatial as well as temporal aspects. Here we employ dense-array EEG recordings acquired from the same infants at 6 and 12 months of age to characterize brain activity during an auditory odd-ball task. We show that suprathreshold events organize as spatiotemporal clusters whose size and duration are power-law distributed, the hallmark of neuronal avalanches. Time series of local suprathreshold EEG events display significant long-range temporal correlations (LRTCs). No differences were found between 6 and 12 months, demonstrating stability of avalanche dynamics and LRTCs during the first year after birth. These findings demonstrate that the infant brain is characterized by distinct spatiotemporal dynamical aspects that are in line with expectations of a critical cortical state. We suggest that critical state dynamics, which theory and experiments have shown to be beneficial for numerous aspects of information processing, are maintained by the infant brain to process an increasingly complex environment during development.
Collapse
Affiliation(s)
- Mostafa Jannesari
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), 70 Lavasani Avenue, Tehran, 19395, Iran
| | - Alireza Saeedi
- Department of Physiology of Cognitive Processes, Max-Planck-Institute for Biological Cybernetics, 72076, Tübingen, Germany
| | - Marzieh Zare
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), 70 Lavasani Avenue, Tehran, 19395, Iran.
| | - Silvia Ortiz-Mantilla
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, 07102, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, Laboratory of Systems Neuroscience, National Institute of Mental Health, Porter Neuroscience Research Center, MSC 3735, Bethesda, MD, 20892, USA
| | - April A Benasich
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, 07102, USA
| |
Collapse
|
49
|
The scale-invariant, temporal profile of neuronal avalanches in relation to cortical γ-oscillations. Sci Rep 2019; 9:16403. [PMID: 31712632 PMCID: PMC6848117 DOI: 10.1038/s41598-019-52326-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/14/2019] [Indexed: 11/08/2022] Open
Abstract
Activity cascades are found in many complex systems. In the cortex, they arise in the form of neuronal avalanches that capture ongoing and evoked neuronal activities at many spatial and temporal scales. The scale-invariant nature of avalanches suggests that the brain is in a critical state, yet predictions from critical theory on the temporal unfolding of avalanches have yet to be confirmed in vivo. Here we show in awake nonhuman primates that the temporal profile of avalanches follows a symmetrical, inverted parabola spanning up to hundreds of milliseconds. This parabola constrains how avalanches initiate locally, extend spatially and shrink as they evolve in time. Importantly, parabolas of different durations can be collapsed with a scaling exponent close to 2 supporting critical generational models of neuronal avalanches. Spontaneously emerging, transient γ-oscillations coexist with and modulate these avalanche parabolas thereby providing a temporal segmentation to inherently scale-invariant, critical dynamics. Our results identify avalanches and oscillations as dual principles in the temporal organization of brain activity.
Collapse
|
50
|
Skilling QM, Ognjanovski N, Aton SJ, Zochowski M. Critical Dynamics Mediate Learning of New Distributed Memory Representations in Neuronal Networks. ENTROPY 2019; 21:1043. [PMCID: PMC7514347 DOI: 10.3390/e21111043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 02/01/2025]
Abstract
We explore the possible role of network dynamics near a critical point in the storage of new information in silico and in vivo, and show that learning and memory may rely on neuronal network features mediated by the vicinity of criticality. Using a mean-field, attractor-based model, we show that new information can be consolidated into attractors through state-based learning in a dynamical regime associated with maximal susceptibility at the critical point. Then, we predict that the subsequent consolidation process results in a shift from critical to sub-critical dynamics to fully encapsulate the new information. We go on to corroborate these findings using analysis of rodent hippocampal CA1 activity during contextual fear memory (CFM) consolidation. We show that the dynamical state of the CA1 network is inherently poised near criticality, but the network also undergoes a shift towards sub-critical dynamics due to successful consolidation of the CFM. Based on these findings, we propose that dynamical features associated with criticality may be universally necessary for storing new memories.
Collapse
Affiliation(s)
- Quinton M. Skilling
- Biophysics Program, University of Michigan, 930 N University Ave., Ann Arbor, MI 48109, USA;
| | - Nicolette Ognjanovski
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N University Ave., Ann Arbor, MI 48109, USA; (N.O.) (S.J.A.)
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 1105 N University Ave., Ann Arbor, MI 48109, USA; (N.O.) (S.J.A.)
| | - Michal Zochowski
- Biophysics Program, University of Michigan, 930 N University Ave., Ann Arbor, MI 48109, USA;
- Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109, USA
| |
Collapse
|