1
|
Tress ML. The rapid degradation of translated upstream regions points to an inefficient translation initiation process. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625198. [PMID: 39651291 PMCID: PMC11623489 DOI: 10.1101/2024.11.25.625198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Large-scale experimental analyses find ever more abundant evidence of translation from start codons upstream of the canonical start site. This translation either generates entirely new proteins (from novel upstream open reading frames) or produces isoforms with extended N-terminals when the novel start codon is in frame Most extended N-terminals are likely to just add a disordered region to the canonical protein isoform, but some may also block the recognition of the signal peptide causing the isoform to accumulate in the incorrect cellular compartment. This analysis finds evidence that upstream translations that would interfere with signal peptides are detected in expected quantities in ribosome profiling experiments, but that the equivalent N-terminally extended protein isoforms are significantly reduced in multiple proteomics experiments. This suggests that these isoforms are likely to be degraded shortly after translation by the ubiquitination pathway, thus preventing the build up of potentially harmful proteins with hydrophobic regions in the cytoplasm. In addition, this is further evidence that most of the transcripts translated from upstream start sites are the result of an inefficient translation initiation process. This has implications for the annotation of proteins given the huge numbers of upstream translations that are being detected in large-scale experiments.
Collapse
|
2
|
Rao J, Wang X, Chen X, Liu Y, Jiang J, Wang Z. Multi-omics analysis reveals that Cas13d contributes to PI3K-AKT signaling and facilitates cell proliferation via PFKFB4 upregulation. Gene 2024; 927:148760. [PMID: 38992762 DOI: 10.1016/j.gene.2024.148760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
The CRISPR-Cas system is a powerful gene editing technology, the clinical application of which is currently constrained due to safety concerns. A substantial body of safety research concerning Cas9 exists; however, scant attention has been directed toward investigating the safety profile of the emergent Cas13 system, which confers RNA editing capabilities. In particular, uncertainties persist regarding the potential cellular impacts of Cas13d in the absence of reliance on a cleavage effect. In this study, we conducted an initial exploration of the effects of Cas13d on HeLa cells. Total RNA and protein samples were extracted after transfection with a Cas13d-expressing plasmid construct, followed by transcriptomic and proteomic sequencing. Differential gene expression analysis identified 94 upregulated and 847 downregulated genes, while differential protein expression analysis identified 185 upregulated and 231 downregulated proteins. Subsequently, enrichment analysis was conducted on the transcriptome and proteome sequencing data, revealing that the PI3K-Akt signaling pathway is a common term. After intersecting the differentially expressed genes enriched in the PI3K-Akt signaling pathway with all the differentially expressed proteins, it was found that the expression of the related regulatory gene PFKFB4 was upregulated. Moreover, western blot analysis demonstrated that Cas13d can mediate PI3K-Akt signaling upregulation through overexpression of PFKFB4. CCK-8 assay, colony formation, and EdU experiments showed that Cas13d can promote cell proliferation. Our data demonstrate, for the first time, that Cas13d significantly impacts the transcriptomic and proteomic profiles, and proliferation phenotype, of HeLa cells, thus offering novel insights into safety considerations regarding gene editing systems.
Collapse
Affiliation(s)
- Jin Rao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xuefu Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiangyu Chen
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yudi Liu
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Junfeng Jiang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China; Histology and Embryology Department, Naval Medical University, Shanghai, China.
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
3
|
Schlusser N, González A, Pandey M, Zavolan M. Current limitations in predicting mRNA translation with deep learning models. Genome Biol 2024; 25:227. [PMID: 39164757 PMCID: PMC11337900 DOI: 10.1186/s13059-024-03369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND The design of nucleotide sequences with defined properties is a long-standing problem in bioengineering. An important application is protein expression, be it in the context of research or the production of mRNA vaccines. The rate of protein synthesis depends on the 5' untranslated region (5'UTR) of the mRNAs, and recently, deep learning models were proposed to predict the translation output of mRNAs from the 5'UTR sequence. At the same time, large data sets of endogenous and reporter mRNA translation have become available. RESULTS In this study, we use complementary data obtained in two different cell types to assess the accuracy and generality of currently available models for predicting translational output. We find that while performing well on the data sets on which they were trained, deep learning models do not generalize well to other data sets, in particular of endogenous mRNAs, which differ in many properties from reporter constructs. CONCLUSIONS These differences limit the ability of deep learning models to uncover mechanisms of translation control and to predict the impact of genetic variation. We suggest directions that combine high-throughput measurements and machine learning to unravel mechanisms of translation control and improve construct design.
Collapse
Affiliation(s)
- Niels Schlusser
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| | - Asier González
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Muskan Pandey
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
- Current address: Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Mihaela Zavolan
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland.
| |
Collapse
|
4
|
Rodriguez JM, Abascal F, Cerdán-Vélez D, Gómez LM, Vázquez J, Tress ML. Evidence for widespread translation of 5' untranslated regions. Nucleic Acids Res 2024; 52:8112-8126. [PMID: 38953162 DOI: 10.1093/nar/gkae571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Ribosome profiling experiments support the translation of a range of novel human open reading frames. By contrast, most peptides from large-scale proteomics experiments derive from just one source, 5' untranslated regions. Across the human genome we find evidence for 192 translated upstream regions, most of which would produce protein isoforms with extended N-terminal ends. Almost all of these N-terminal extensions are from highly abundant genes, which suggests that the novel regions we detect are just the tip of the iceberg. These upstream regions have characteristics that are not typical of coding exons. Their GC-content is remarkably high, even higher than 5' regions in other genes, and a large majority have non-canonical start codons. Although some novel upstream regions have cross-species conservation - five have orthologues in invertebrates for example - the reading frames of two thirds are not conserved beyond simians. These non-conserved regions also have no evidence of purifying selection, which suggests that much of this translation is not functional. In addition, non-conserved upstream regions have significantly more peptides in cancer cell lines than would be expected, a strong indication that an aberrant or noisy translation initiation process may play an important role in translation from upstream regions.
Collapse
Affiliation(s)
- Jose Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA. UK
| | - Daniel Cerdán-Vélez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Laura Martínez Gómez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| |
Collapse
|
5
|
Zhou F, Bocetti JM, Hou M, Qin D, Hinnebusch AG, Lorsch JR. Transcriptome-wide analysis of the function of Ded1 in translation preinitiation complex assembly in a reconstituted in vitro system. eLife 2024; 13:RP93255. [PMID: 38573742 PMCID: PMC10994665 DOI: 10.7554/elife.93255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
We have developed a deep sequencing-based approach, Rec-Seq, that allows simultaneous monitoring of ribosomal 48S preinitiation complex (PIC) formation on every mRNA in the translatome in an in vitro reconstituted system. Rec-Seq isolates key early steps in translation initiation in the absence of all other cellular components and processes. Using this approach, we show that the DEAD-box ATPase Ded1 promotes 48S PIC formation on the start codons of >1000 native mRNAs, most of which have long, structured 5'-untranslated regions (5'UTRs). Remarkably, initiation measured in Rec-Seq was enhanced by Ded1 for most mRNAs previously shown to be highly Ded1-dependent by ribosome profiling of ded1 mutants in vivo, demonstrating that the core translation functions of the factor are recapitulated in the purified system. Our data do not support a model in which Ded1acts by reducing initiation at alternative start codons in 5'UTRs and instead indicate it functions by directly promoting mRNA recruitment to the 43S PIC and scanning to locate the main start codon. We also provide evidence that eIF4A, another essential DEAD-box initiation factor, is required for efficient PIC assembly on almost all mRNAs, regardless of their structural complexity, in contrast to the preferential stimulation by Ded1 of initiation on mRNAs with long, structured 5'UTRs.
Collapse
Affiliation(s)
- Fujun Zhou
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Julie M Bocetti
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Meizhen Hou
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Daoming Qin
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Alan G Hinnebusch
- Section on Nutrient Control of Gene Expression, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Jon R Lorsch
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| |
Collapse
|
6
|
Zhou F, Bocetti JM, Hou M, Qin D, Hinnebusch AG, Lorsch JR. Transcriptome-wide analysis of the function of Ded1 in translation preinitiation complex assembly in a reconstituted in vitro system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562452. [PMID: 37986768 PMCID: PMC10659408 DOI: 10.1101/2023.10.16.562452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
We have developed a deep sequencing-based approach, Rec-Seq, that allows simultaneous monitoring of ribosomal 48S pre-initiation complex (PIC) formation on every mRNA in the translatome in an in vitro reconstituted system. Rec-Seq isolates key early steps in translation initiation in the absence of all other cellular components and processes. Using this approach we show that the DEAD-box ATPase Ded1 promotes 48S PIC formation on the start codons of >1000 native mRNAs, most of which have long, structured 5'-untranslated regions (5'UTRs). Remarkably, initiation measured in Rec-Seq was enhanced by Ded1 for most mRNAs previously shown to be highly Ded1-dependent by ribosome profiling of ded1 mutants in vivo, demonstrating that the core translation functions of the factor are recapitulated in the purified system. Our data do not support a model in which Ded1acts by reducing initiation at alternative start codons in 5'UTRs and instead indicate it functions by directly promoting mRNA recruitment to the 43S PIC and scanning to locate the main start codon. We also provide evidence that eIF4A, another essential DEAD-box initiation factor, is required for efficient PIC assembly on almost all mRNAs, regardless of their structural complexity, in contrast to the preferential stimulation by Ded1 of initiation on mRNAs with long, structured 5'UTRs.
Collapse
Affiliation(s)
- Fujun Zhou
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Julie M Bocetti
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Meizhen Hou
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Daoming Qin
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Section on Nutrient Control of Gene Expression, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Alan G Hinnebusch
- Section on Nutrient Control of Gene Expression, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Jon R Lorsch
- Section on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
7
|
Cosenza G, Martin P, Garro G, Gallo D, Auzino B, Ciampolini R, Pauciullo A. A novel allelic donkey β-lactogobulin I protein isoform generated by a non-AUG translation initiation codon is associated with a nonsynonymous SNP. J Dairy Sci 2023; 106:4158-4170. [PMID: 37080792 DOI: 10.3168/jds.2022-22598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/17/2022] [Indexed: 04/22/2023]
Abstract
β-Lactoglobulin I (β-LG I) is one of the most important whey proteins in donkey milk. However, to our knowledge, there has been no study focusing on the full nucleotide sequences of this gene (BLG I). Current investigation of donkey BLG I gene is very limited with only 2 variants (A and B) characterized so far at the protein level. Recently, a new β-LG I variant, with a significantly higher mass (+1,915 Da) than known variants has been detected. In this study, we report the whole nucleotide sequence of the BLG I gene from 2 donkeys, whose milk samples are characterized by the β-LG I SDS-PAGE band with a normal electrophoretic mobility (18,514.25 Da, β-LG I B1 form) the first, and by the presence of a unique β-LG I band with a higher electrophoretic mobility (20,428.5 Da, β-LG I D form) the latter. A high genetic variability was found all over the 2 sequenced BLG I alleles. In particular, 16 polymorphic sites were found in introns, one in the 5' flanking region, 3 SNPs in the 5' untranslated region and one SNP in the coding region (g.458G > A) located at the 40th nucleotide of exon 2 and responsible for the AA substitutions p.Asp28 > Asn in the mature protein. Two SNPs (g.920-922CAC > TGT and g.1871G/A) were genotyped in 93 donkeys of 2 Italian breeds (60 Ragusana and 33 Amiatina, respectively) and the overall frequencies of g.920-922CAC and g.1871A were 0.3065 and 0.043, respectively. Only the rare allele g.1871A was observed to be associated with the slower migrating β-LG I. Considering this genetic diversity and those found in the database, it was possible to deduce at least 5 different alleles (BLG I A, B, B1, C, D) responsible for 4 potential β-LG I translations. Among these alleles, B1 and D are those characterized in the present research, with the D allele of real novel identification. Haplotype data analysis suggests an evolutionary pathway of donkey BLG I gene and a possible phylogenetic map is proposed. Analyses of mRNA secondary structure showed relevant changes in the structures, as consequence of the g.1871G > A polymorphism, that might be responsible for the recognition of an alternative initiation site providing an additional signal peptide. The extension of 19 AA sequence to the mature protein, corresponding to the canonical signal peptide with an additional alanine residue, is sufficient to provide the observed molecular weight of the slower migrating β-LG I encoded by the BLG I D allele.
Collapse
Affiliation(s)
- G Cosenza
- Department of Agricultural Sciences, University of Naples "Federico II," 80055 Portici (Na), Italy.
| | - P Martin
- Université Paris-Saclay, INRAE, MICALIS Institute, PAPPSO, 78350 Jouy-en-Josas, France
| | - G Garro
- Department of Agricultural Sciences, University of Naples "Federico II," 80055 Portici (Na), Italy
| | - D Gallo
- Department of Agricultural Sciences, University of Naples "Federico II," 80055 Portici (Na), Italy
| | - B Auzino
- Department of Veterinary Science, University of Pisa, 56100, Italy
| | - R Ciampolini
- Department of Veterinary Science, University of Pisa, 56100, Italy.
| | - A Pauciullo
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy
| |
Collapse
|
8
|
Luo X, Maciaszek JL, Thompson BA, Leong HS, Dixon K, Sousa S, Anderson M, Roberts ME, Lee K, Spurdle AB, Mensenkamp AR, Brannan T, Pardo C, Zhang L, Pesaran T, Wei S, Fasaye GA, Kesserwan C, Shirts BH, Davis JL, Oliveira C, Plon SE, Schrader KA, Karam R. Optimising clinical care through CDH1-specific germline variant curation: improvement of clinical assertions and updated curation guidelines. J Med Genet 2022; 60:568-575. [PMID: 36600593 DOI: 10.1136/jmg-2022-108807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Germline pathogenic variants in CDH1 are associated with increased risk of diffuse gastric cancer and lobular breast cancer. Risk reduction strategies include consideration of prophylactic surgery, thereby making accurate interpretation of germline CDH1 variants critical for physicians deciding on these procedures. The Clinical Genome Resource (ClinGen) CDH1 Variant Curation Expert Panel (VCEP) developed specifications for CDH1 variant curation with a goal to resolve variants of uncertain significance (VUS) and with ClinVar conflicting interpretations and continues to update these specifications. METHODS CDH1 variant classification specifications were modified based on updated genetic testing clinical criteria, new recommendations from ClinGen and expert knowledge from ongoing CDH1 variant curations. The CDH1 VCEP reviewed 273 variants using updated CDH1 specifications and incorporated published and unpublished data provided by diagnostic laboratories. RESULTS Updated CDH1-specific interpretation guidelines include 11 major modifications since the initial specifications from 2018. Using the refined guidelines, 97% (36 of 37) of variants with ClinVar conflicting interpretations were resolved to benign, likely benign, likely pathogenic or pathogenic, and 35% (15 of 43) of VUS were resolved to benign or likely benign. Overall, 88% (239 of 273) of curated variants had non-VUS classifications. To date, variants classified as pathogenic are either nonsense, frameshift, splicing, or affecting the translation initiation codon, and the only missense variants classified as pathogenic or likely pathogenic have been shown to affect splicing. CONCLUSIONS The development and evolution of CDH1-specific criteria by the expert panel resulted in decreased uncertain and conflicting interpretations of variants in this clinically actionable gene, which can ultimately lead to more effective clinical management recommendations.
Collapse
Affiliation(s)
- Xi Luo
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Jamie L Maciaszek
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bryony A Thompson
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Huei San Leong
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Katherine Dixon
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sónia Sousa
- Instituto de Investigação e Inovação em Saúde - (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology - (IPATIMUP), University of Porto, Porto, Portugal
| | | | | | - Kristy Lee
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Liying Zhang
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | - Sainan Wei
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Grace-Ann Fasaye
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Brian H Shirts
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jeremy L Davis
- Surgical Oncology Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Carla Oliveira
- Instituto de Investigação e Inovação em Saúde - (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology - (IPATIMUP), University of Porto, Porto, Portugal.,Department of Pathology, University of Porto, Porto, Portugal
| | - Sharon E Plon
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Kasmintan A Schrader
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada.,Hereditary Cancer Program, BC Cancer, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
9
|
Gleason AC, Ghadge G, Sonobe Y, Roos RP. Kozak Similarity Score Algorithm Identifies Alternative Translation Initiation Codons Implicated in Cancers. Int J Mol Sci 2022; 23:ijms231810564. [PMID: 36142475 PMCID: PMC9506484 DOI: 10.3390/ijms231810564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Ribosome profiling and mass spectroscopy have identified canonical and noncanonical translation initiation codons (TICs) that are upstream of the main translation initiation site and used to translate oncogenic proteins. There have previously been conflicting reports about the patterns of nucleotides that surround noncanonical TICs. Here, we use a Kozak Similarity Score algorithm to find that nearly all of these TICs have flanking nucleotides closely matching the Kozak sequence. Remarkably, the nucleotides flanking alternative noncanonical TICs are frequently closer to the Kozak sequence than the nucleotides flanking TICs used to translate the gene’s main protein. Of note, the 5′ untranslated region (5‘UTR) of cancer-associated genes with an upstream TIC tend to be significantly longer than the same region in genes not associated with cancer. The presence of a longer-than-typical 5′UTR increases the likelihood of ribosome binding to upstream noncanonical TICs, and may be a distinguishing feature of a number of genes overexpressed in cancer. Noncanonical TICs that are located in the 5′UTR, although thought by some to be disadvantageous and suppressed by evolution, may translate oncogenic proteins because of their flanking nucleotides.
Collapse
|
10
|
Niederer RO, Rojas-Duran MF, Zinshteyn B, Gilbert WV. Direct analysis of ribosome targeting illuminates thousand-fold regulation of translation initiation. Cell Syst 2022; 13:256-264.e3. [PMID: 35041803 PMCID: PMC8930539 DOI: 10.1016/j.cels.2021.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
Translational control shapes the proteome in normal and pathophysiological conditions. Current high-throughput approaches reveal large differences in mRNA-specific translation activity but cannot identify the causative mRNA features. We developed direct analysis of ribosome targeting (DART) and used it to dissect regulatory elements within 5' untranslated regions that confer 1,000-fold differences in ribosome recruitment in biochemically accessible cell lysates. Using DART, we determined a functional role for most alternative 5' UTR isoforms expressed in yeast, revealed a general mode of increased translation via direct binding to a core translation factor, and identified numerous translational control elements including C-rich silencers that are sufficient to repress translation both in vitro and in vivo. DART enables systematic assessment of the translational regulatory potential of 5' UTR variants, whether native or disease-associated, and will facilitate engineering of mRNAs for optimized protein production in various systems.
Collapse
Affiliation(s)
- Rachel O Niederer
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Maria F Rojas-Duran
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Boris Zinshteyn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
11
|
Neumann T, Tuller T. Modeling the ribosomal small subunit dynamic in Saccharomyces cerevisiae based on TCP-seq data. Nucleic Acids Res 2022; 50:1297-1316. [PMID: 35100399 PMCID: PMC8860609 DOI: 10.1093/nar/gkac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Translation Complex Profile Sequencing (TCP-seq), a protocol that was developed and implemented on Saccharomyces cerevisiae, provides the footprints of the small subunit (SSU) of the ribosome (with additional factors) across the entire transcriptome of the analyzed organism. In this study, based on the TCP-seq data, we developed for the first-time a predictive model of the SSU density and analyzed the effect of transcript features on the dynamics of the SSU scan in the 5′UTR. Among others, our model is based on novel tools for detecting complex statistical relations tailored to TCP-seq. We quantitatively estimated the effect of several important features, including the context of the upstream AUG, the upstream ORF length and the mRNA folding strength. Specifically, we suggest that around 50% of the variance related to the read counts (RC) distribution near a start codon can be attributed to the AUG context score. We provide the first large scale direct quantitative evidence that shows that indeed AUG context affects the small sub-unit movement. In addition, we suggest that strong folding may cause the detachment of the SSU from the mRNA. We also identified a number of novel sequence motifs that can affect the SSU scan; some of these motifs affect transcription factors and RNA binding proteins. The results presented in this study provide a better understanding of the biophysical aspects related to the SSU scan along the 5′UTR and of translation initiation in S. cerevisiae, a fundamental step toward a comprehensive modeling of initiation.
Collapse
Affiliation(s)
- Tamar Neumann
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Dong J, Hinnebusch AG. uS5/Rps2 residues at the 40S ribosome entry channel enhance initiation at suboptimal start codons in vivo. Genetics 2022; 220:iyab176. [PMID: 34791232 PMCID: PMC8733449 DOI: 10.1093/genetics/iyab176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 11/12/2022] Open
Abstract
The eukaryotic 43S pre-initiation complex (PIC) containing Met-tRNAiMet in a ternary complex (TC) with eIF2-GTP scans the mRNA leader for an AUG codon in favorable "Kozak" context. AUG recognition triggers rearrangement of the PIC from an open conformation to a closed state with more tightly bound Met-tRNAiMet. Yeast ribosomal protein uS5/Rps2 is located at the mRNA entry channel of the 40S subunit in the vicinity of mRNA nucleotides downstream from the AUG codon or rRNA residues that communicate with the decoding center, but its participation in start codon recognition was unknown. We found that nonlethal substitutions of conserved Rps2 residues in the entry channel reduce bulk translation initiation and increase discrimination against poor initiation codons. A subset of these substitutions suppress initiation at near-cognate UUG start codons in a yeast mutant with elevated UUG initiation, and also increase discrimination against AUG codons in suboptimal Kozak context, thus resembling previously described substitutions in uS3/Rps3 at the 40S entry channel or initiation factors eIF1 and eIF1A. In contrast, other Rps2 substitutions selectively discriminate against either near-cognate UUG codons, or poor Kozak context of an AUG or UUG start codon. These findings suggest that different Rps2 residues are involved in distinct mechanisms involved in discriminating against different features of poor initiation sites in vivo.
Collapse
Affiliation(s)
- Jinsheng Dong
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Bahiri Elitzur S, Cohen-Kupiec R, Yacobi D, Fine L, Apt B, Diament A, Tuller T. Prokaryotic rRNA-mRNA interactions are involved in all translation steps and shape bacterial transcripts. RNA Biol 2021; 18:684-698. [PMID: 34586043 DOI: 10.1080/15476286.2021.1978767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The well-established Shine-Dalgarno model suggests that translation initiation in bacteria is regulated via base-pairing between ribosomal RNA (rRNA) and mRNA. We used novel computational analyses and modelling of 823 bacterial genomes coupled with experiments to demonstrate that rRNA-mRNA interactions are diverse and regulate all translation steps from pre-initiation to termination. Previous research has reported the significant influence of rRNA-mRNA interactions, mainly in the initiation phase of translation. The results reported in this paper suggest that, in addition to the rRNA-mRNA interactions near the start codon that trigger initiation in bacteria, rRNA-mRNA interactions affect all sub-stages of the translation process (pre-initiation, initiation, elongation, termination). As these interactions dictate translation efficiency, they serve as an evolutionary driving force for shaping transcripts in bacteria while considering trade-offs between the effects of different interactions across different transcript regions on translation efficacy and efficiency. We observed selection for strong interactions in regions where such interactions are likely to enhance initiation, regulate early elongation, and ensure translation termination fidelity. We discovered selection against strong interactions and for intermediate interactions in coding regions and presented evidence that these patterns maximize elongation efficiency while also enhancing initiation. These finding are relevant to all biomedical disciplines due to the centrality of the translation process and the effect of rRNA-mRNA interactions on transcript evolution.
Collapse
Affiliation(s)
| | | | - Dana Yacobi
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Larissa Fine
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Apt
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Alon Diament
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Xu C, Zhang J. Mammalian Alternative Translation Initiation Is Mostly Nonadaptive. Mol Biol Evol 2021; 37:2015-2028. [PMID: 32145028 DOI: 10.1093/molbev/msaa063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Alternative translation initiation (ATLI) refers to the existence of multiple translation initiation sites per gene and is a widespread phenomenon in eukaryotes. ATLI is commonly assumed to be advantageous through creating proteome diversity or regulating protein synthesis. We here propose an alternative hypothesis that ATLI arises primarily from nonadaptive initiation errors presumably due to the limited ability of ribosomes to distinguish sequence motifs truly signaling translation initiation from similar sequences. Our hypothesis, but not the adaptive hypothesis, predicts a series of global patterns of ATLI, all of which are confirmed at the genomic scale by quantitative translation initiation sequencing in multiple human and mouse cell lines and tissues. Similarly, although many codons differing from AUG by one nucleotide can serve as start codons, our analysis suggests that using non-AUG start codons is mostly disadvantageous. These and other findings strongly suggest that ATLI predominantly results from molecular error, requiring a major revision of our understanding of the precision and regulation of translation initiation.
Collapse
Affiliation(s)
- Chuan Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
15
|
Gaikwad S, Ghobakhlou F, Young DJ, Visweswaraiah J, Zhang H, Hinnebusch AG. Reprogramming of translation in yeast cells impaired for ribosome recycling favors short, efficiently translated mRNAs. eLife 2021; 10:e64283. [PMID: 33764298 PMCID: PMC7993997 DOI: 10.7554/elife.64283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, 43S preinitiation complex (PIC) formation is a rate-determining step of translation. Ribosome recycling following translation termination produces free 40S subunits for re-assembly of 43S PICs. Yeast mutants lacking orthologs of mammalian eIF2D (Tma64), and either MCT-1 (Tma20) or DENR (Tma22), are broadly impaired for 40S recycling; however, it was unknown whether this defect alters the translational efficiencies (TEs) of particular mRNAs. Here, we conducted ribosome profiling of a yeast tma64∆/tma20∆ double mutant and observed a marked reprogramming of translation, wherein the TEs of the most efficiently translated ('strong') mRNAs increase, while those of 'weak' mRNAs generally decline. Remarkably, similar reprogramming was seen on reducing 43S PIC assembly by inducing phosphorylation of eIF2α or by decreasing total 40S subunit levels by depleting Rps26. Our findings suggest that strong mRNAs outcompete weak mRNAs in response to 43S PIC limitation achieved in various ways, in accordance with previous mathematical modeling.
Collapse
Affiliation(s)
- Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Fardin Ghobakhlou
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - David J Young
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Jyothsna Visweswaraiah
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Hongen Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
16
|
Thakur A, Gaikwad S, Vijjamarri AK, Hinnebusch AG. eIF2α interactions with mRNA control accurate start codon selection by the translation preinitiation complex. Nucleic Acids Res 2020; 48:10280-10296. [PMID: 32955564 DOI: 10.1093/nar/gkaa761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
In translation initiation, AUG recognition triggers rearrangement of the 48S preinitiation complex (PIC) from an open conformation to a closed state with more tightly-bound Met-tRNAi. Cryo-EM structures have revealed interactions unique to the closed complex between arginines R55/R57 of eIF2α with mRNA, including the -3 nucleotide of the 'Kozak' context. We found that R55/R57 substitutions reduced recognition of a UUG start codon at HIS4 in Sui- cells (Ssu- phenotype); and in vitro, R55G-R57E accelerated dissociation of the eIF2·GTP·Met-tRNAi ternary complex (TC) from reconstituted PICs with a UUG start codon, indicating destabilization of the closed complex. R55/R57 substitutions also decreased usage of poor-context AUGs in SUI1 and GCN4 mRNAs in vivo. In contrast, eIF2α-R53 interacts with the rRNA backbone only in the open complex, and the R53E substitution enhanced initiation at a UUG codon (Sui- phenotype) and poor-context AUGs, while reducing the rate of TC loading (Gcd- phenotype) in vivo. Consistently, R53E slowed TC binding to the PIC while decreasing TC dissociation at UUG codons in vitro, indicating destabilization of the open complex. Thus, distinct interactions of eIF2α with rRNA or mRNA stabilize first the open, and then closed, conformation of the PIC to influence the accuracy of initiation in vivo.
Collapse
Affiliation(s)
- Anil Thakur
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.,Regional Centre for Biotechnology, 3rd milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Anil K Vijjamarri
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
18
|
Computational discovery and modeling of novel gene expression rules encoded in the mRNA. Biochem Soc Trans 2020; 48:1519-1528. [PMID: 32662820 DOI: 10.1042/bst20191048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
The transcript is populated with numerous overlapping codes that regulate all steps of gene expression. Deciphering these codes is very challenging due to the large number of variables involved, the non-modular nature of the codes, biases and limitations in current experimental approaches, our limited knowledge in gene expression regulation across the tree of life, and other factors. In recent years, it has been shown that computational modeling and algorithms can significantly accelerate the discovery of novel gene expression codes. Here, we briefly summarize the latest developments and different approaches in the field.
Collapse
|
19
|
Diament A, Weiner I, Shahar N, Landman S, Feldman Y, Atar S, Avitan M, Schweitzer S, Yacoby I, Tuller T. ChimeraUGEM: unsupervised gene expression modeling in any given organism. Bioinformatics 2020; 35:3365-3371. [PMID: 30715207 DOI: 10.1093/bioinformatics/btz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/07/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023] Open
Abstract
MOTIVATION Regulation of the amount of protein that is synthesized from genes has proved to be a serious challenge in terms of analysis and prediction, and in terms of engineering and optimization, due to the large diversity in expression machinery across species. RESULTS To address this challenge, we developed a methodology and a software tool (ChimeraUGEM) for predicting gene expression as well as adapting the coding sequence of a target gene to any host organism. We demonstrate these methods by predicting protein levels in seven organisms, in seven human tissues, and by increasing in vivo the expression of a synthetic gene up to 26-fold in the single-cell green alga Chlamydomonas reinhardtii. The underlying model is designed to capture sequence patterns and regulatory signals with minimal prior knowledge on the host organism and can be applied to a multitude of species and applications. AVAILABILITY AND IMPLEMENTATION Source code (MATLAB, C) and binaries are freely available for download for non-commercial use at http://www.cs.tau.ac.il/~tamirtul/ChimeraUGEM/, and supported on macOS, Linux and Windows. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alon Diament
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel
| | - Iddo Weiner
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel.,School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Noam Shahar
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Shira Landman
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Yael Feldman
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Shimshi Atar
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel
| | - Meital Avitan
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel.,School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Shira Schweitzer
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv, Israel.,The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Biochemical characteristics of the chondrocyte-enriched SNORC protein and its transcriptional regulation by SOX9. Sci Rep 2020; 10:7790. [PMID: 32385306 PMCID: PMC7210984 DOI: 10.1038/s41598-020-64640-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/16/2020] [Indexed: 11/08/2022] Open
Abstract
Snorc (Small NOvel Rich in Cartilage) has been identified as a chondrocyte-specific gene in the mouse. Yet little is known about the SNORC protein biochemical properties, and mechanistically how the gene is regulated transcriptionally in a tissue-specific manner. The goals of the present study were to shed light on those important aspects. The chondrocyte nature of Snorc expression was confirmed in mouse and rat tissues, in differentiated (day 7) ATDC5, and in RCS cells where it was constitutive. Topological mapping and biochemical analysis brought experimental evidences that SNORC is a type I protein carrying a chondroitin sulfate (CS) attached to serine 44. The anomalous migration of SNORC on SDS-PAGE was due to its primary polypeptide features, suggesting no additional post-translational modifications apart from the CS glycosaminoglycan. A highly conserved SOX9-binding enhancer located in intron 1 was necessary to drive transcription of Snorc in the mouse, rat, and human. The enhancer was active independently of orientation and whether located in a heterologous promoter or intron. Crispr-mediated inactivation of the enhancer in RCS cells caused reduction of Snorc. Transgenic mice carrying the intronic multimerized enhancer drove high expression of a βGeo reporter in chondrocytes, but not in the hypertrophic zone. Altogether these data confirmed the chondrocyte-specific nature of Snorc and revealed dependency on the intronic enhancer binding of SOX9 for transcription.
Collapse
|
21
|
Abstract
Messenger RNAs (mRNAs) consist of a coding region (open reading frame (ORF)) and two untranslated regions (UTRs), 5'UTR and 3'UTR. Ribosomes travel along the coding region, translating nucleotide triplets (called codons) to a chain of amino acids. The coding region was long believed to mainly encode the amino acid content of proteins, whereas regulatory signals reside in the UTRs and in other genomic regions. However, in recent years we have learned that the ORF is expansively populated with various regulatory signals, or codes, which are related to all gene expression steps and additional intracellular aspects. In this paper, we review the current knowledge related to overlapping codes inside the coding regions, such as the influence of synonymous codon usage on translation speed (and, in turn, the effect of translation speed on protein folding), ribosomal frameshifting, mRNA stability, methylation, splicing, transcription and more. All these codes come together and overlap in the ORF sequence, ensuring production of the right protein at the right time.
Collapse
Affiliation(s)
- Shaked Bergman
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
22
|
Khalique A, Mattijssen S, Haddad AF, Chaudhry S, Maraia RJ. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genet 2020; 16:e1008330. [PMID: 32324744 PMCID: PMC7200024 DOI: 10.1371/journal.pgen.1008330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 05/05/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022] Open
Abstract
The tRNA isopentenyltransferases (IPTases), which add an isopentenyl group to N6 of A37 (i6A37) of certain tRNAs, are among a minority of enzymes that modify cytosolic and mitochondrial tRNAs. Pathogenic mutations to the human IPTase, TRIT1, that decrease i6A37 levels, cause mitochondrial insufficiency that leads to neurodevelopmental disease. We show that TRIT1 encodes an amino-terminal mitochondrial targeting sequence (MTS) that directs mitochondrial import and modification of mitochondrial-tRNAs. Full understanding of IPTase function must consider the tRNAs selected for modification, which vary among species, and in their cytosol and mitochondria. Selection is principally via recognition of the tRNA A36-A37-A38 sequence. An exception is unmodified tRNATrpCCA-A37-A38 in Saccharomyces cerevisiae, whereas tRNATrpCCA is readily modified in Schizosaccharomyces pombe, indicating variable IPTase recognition systems and suggesting that additional exceptions may account for some of the tRNA-i6A37 paucity in higher eukaryotes. Yet TRIT1 had not been characterized for restrictive type substrate-specific recognition. We used i6A37-dependent tRNA-mediated suppression and i6A37-sensitive northern blotting to examine IPTase activities in S. pombe and S. cerevisiae lacking endogenous IPTases on a diversity of tRNA-A36-A37-A38 substrates. Point mutations to the TRIT1 MTS that decrease human mitochondrial import, decrease modification of mitochondrial but not cytosolic tRNAs in both yeasts. TRIT1 exhibits clear substrate-specific restriction against a cytosolic-tRNATrpCCA-A37-A38. Additional data suggest that position 32 of tRNATrpCCA is a conditional determinant for substrate-specific i6A37 modification by the restrictive IPTases, Mod5 and TRIT1. The cumulative biochemical and phylogenetic sequence analyses provide new insights into IPTase activities and determinants of tRNA-i6A37 profiles in cytosol and mitochondria.
Collapse
Affiliation(s)
- Abdul Khalique
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sandy Mattijssen
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander F. Haddad
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shereen Chaudhry
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
- Commissioned Corps, United States Public Health Service, Rockville, Maryland, United States of America
| |
Collapse
|
23
|
Zhou F, Zhang H, Kulkarni SD, Lorsch JR, Hinnebusch AG. eIF1 discriminates against suboptimal initiation sites to prevent excessive uORF translation genome-wide. RNA (NEW YORK, N.Y.) 2020; 26:419-438. [PMID: 31915290 PMCID: PMC7075259 DOI: 10.1261/rna.073536.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/06/2020] [Indexed: 05/22/2023]
Abstract
The translation preinitiation complex (PIC) scans the mRNA for an AUG codon in a favorable context. Previous findings suggest that the factor eIF1 discriminates against non-AUG start codons by impeding full accommodation of Met-tRNAi in the P site of the 40S ribosomal subunit, necessitating eIF1 dissociation for start codon selection. Consistent with this, yeast eIF1 substitutions that weaken its binding to the PIC increase initiation at UUG codons on a mutant his4 mRNA and particular synthetic mRNA reporters; and also at the AUG start codon of the mRNA for eIF1 itself owing to its poor Kozak context. It was not known however whether such eIF1 mutants increase initiation at suboptimal start codons genome-wide. By ribosome profiling, we show that the eIF1-L96P variant confers increased translation of numerous upstream open reading frames (uORFs) initiating with either near-cognate codons (NCCs) or AUGs in poor context. The increased uORF translation is frequently associated with the reduced translation of the downstream main coding sequences (CDS). Initiation is also elevated at certain NCCs initiating amino-terminal extensions, including those that direct mitochondrial localization of the GRS1 and ALA1 products, and at a small set of main CDS AUG codons with especially poor context, including that of eIF1 itself. Thus, eIF1 acts throughout the yeast translatome to discriminate against NCC start codons and AUGs in poor context; and impairing this function enhances the repressive effects of uORFs on CDS translation and alters the ratios of protein isoforms translated from near-cognate versus AUG start codons.
Collapse
Affiliation(s)
- Fujun Zhou
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hongen Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Shardul D Kulkarni
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jon R Lorsch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
24
|
De Nijs Y, De Maeseneire SL, Soetaert WK. 5' untranslated regions: the next regulatory sequence in yeast synthetic biology. Biol Rev Camb Philos Soc 2019; 95:517-529. [PMID: 31863552 DOI: 10.1111/brv.12575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 01/10/2023]
Abstract
When developing industrial biotechnology processes, Saccharomyces cerevisiae (baker's yeast or brewer's yeast) is a popular choice as a microbial host. Many tools have been developed in the fields of synthetic biology and metabolic engineering to introduce heterologous pathways and tune their expression in yeast. Such tools mainly focus on controlling transcription, whereas post-transcriptional regulation is often overlooked. Herein we discuss regulatory elements found in the 5' untranslated region (UTR) and their influence on protein synthesis. We provide not only an overall picture, but also a set of design rules on how to engineer a 5' UTR. The reader is also referred to currently available models that allow gene expression to be tuned predictably using different 5' UTRs.
Collapse
Affiliation(s)
- Yatti De Nijs
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sofie L De Maeseneire
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Wim K Soetaert
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
25
|
Kulkarni SD, Zhou F, Sen ND, Zhang H, Hinnebusch AG, Lorsch JR. Temperature-dependent regulation of upstream open reading frame translation in S. cerevisiae. BMC Biol 2019; 17:101. [PMID: 31810458 PMCID: PMC6898956 DOI: 10.1186/s12915-019-0718-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Translation of an mRNA in eukaryotes starts at an AUG codon in most cases, but near-cognate codons (NCCs) such as UUG, ACG, and AUU can also be used as start sites at low levels in Saccharomyces cerevisiae. Initiation from NCCs or AUGs in the 5'-untranslated regions (UTRs) of mRNAs can lead to translation of upstream open reading frames (uORFs) that might regulate expression of the main ORF (mORF). Although there is some circumstantial evidence that the translation of uORFs can be affected by environmental conditions, little is known about how it is affected by changes in growth temperature. RESULTS Using reporter assays, we found that changes in growth temperature can affect translation from NCC start sites in yeast cells, suggesting the possibility that gene expression could be regulated by temperature by altering use of different uORF start codons. Using ribosome profiling, we provide evidence that growth temperature regulates the efficiency of translation of nearly 200 uORFs in S. cerevisiae. Of these uORFs, most that start with an AUG codon have increased translational efficiency at 37 °C relative to 30 °C and decreased efficiency at 20 °C. For translationally regulated uORFs starting with NCCs, we did not observe a general trend for the direction of regulation as a function of temperature, suggesting mRNA-specific features can determine the mode of temperature-dependent regulation. Consistent with this conclusion, the position of the uORFs in the 5'-leader relative to the 5'-cap and the start codon of the main ORF correlates with the direction of temperature-dependent regulation of uORF translation. We have identified several novel cases in which changes in uORF translation are inversely correlated with changes in the translational efficiency of the downstream main ORF. Our data suggest that translation of these mRNAs is subject to temperature-dependent, uORF-mediated regulation. CONCLUSIONS Our data suggest that alterations in the translation of specific uORFs by temperature can regulate gene expression in S. cerevisiae.
Collapse
Affiliation(s)
- Shardul D Kulkarni
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Neelam Dabas Sen
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Present Address: School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hongen Zhang
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Petersen SD, Zhang J, Lee JS, Jakociunas T, Grav LM, Kildegaard HF, Keasling JD, Jensen MK. Modular 5'-UTR hexamers for context-independent tuning of protein expression in eukaryotes. Nucleic Acids Res 2019; 46:e127. [PMID: 30124898 PMCID: PMC6265478 DOI: 10.1093/nar/gky734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/01/2018] [Indexed: 11/25/2022] Open
Abstract
Functional characterization of regulatory DNA elements in broad genetic contexts is a prerequisite for forward engineering of biological systems. Translation initiation site (TIS) sequences are attractive to use for regulating gene activity and metabolic pathway fluxes because the genetic changes are minimal. However, limited knowledge is available on tuning gene outputs by varying TISs in different genetic and environmental contexts. Here, we created TIS hexamer libraries in baker’s yeast Saccharomyces cerevisiae directly 5′ end of a reporter gene in various promoter contexts and measured gene activity distributions for each library. Next, selected TIS sequences, resulted in almost 10-fold changes in reporter outputs, were experimentally characterized in various environmental and genetic contexts in both yeast and mammalian cells. From our analyses, we observed strong linear correlations (R2 = 0.75–0.98) between all pairwise combinations of TIS order and gene activity. Finally, our analysis enabled the identification of a TIS with almost 50% stronger output than a commonly used TIS for protein expression in mammalian cells, and selected TISs were also used to tune gene activities in yeast at a metabolic branch point in order to prototype fitness and carotenoid production landscapes. Taken together, the characterized TISs support reliable context-independent forward engineering of translation initiation in eukaryotes.
Collapse
Affiliation(s)
- Søren D Petersen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jae S Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tadas Jakociunas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lise M Grav
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Helene F Kildegaard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.,Joint BioEnergy Institute, Emeryville, CA 94608, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.,Department of Bioengineering, University of California, Berkeley, CA 94720, USA.,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen 518055, China
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Volkova OA, Kondrakhin YV, Kashapov TA, Sharipov RN. Comparative analysis of protein-coding and long non-coding transcripts based on RNA sequence features. J Bioinform Comput Biol 2019; 16:1840013. [PMID: 29739305 DOI: 10.1142/s0219720018400139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
RNA plays an important role in the intracellular cell life and in the organism in general. Besides the well-established protein coding RNAs (messenger RNAs, mRNAs), long non-coding RNAs (lncRNAs) have gained the attention of recent researchers. Although lncRNAs have been classified as non-coding, some authors reported the presence of corresponding sequences in ribosome profiling data (Ribo-seq). Ribo-seq technology is a powerful experimental tool utilized to characterize RNA translation in cell with focus on initiation (harringtonine, lactimidomycin) and elongation (cycloheximide). By exploiting translation starts obtained from the Ribo-seq experiment, we developed a novel position weight matrix model for the prediction of translation starts. This model allowed us to achieve 96% accuracy of discrimination between human mRNAs and lncRNAs. When the same model was used for the prediction of putative ORFs in RNAs, we discovered that the majority of lncRNAs contained only small ORFs ([Formula: see text][Formula: see text]nt) in contrast to mRNAs.
Collapse
Affiliation(s)
- Oxana A Volkova
- * Laboratory of Gene Engineering, The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Prosp. Acad. Lavrentyeva, 10, Novosibirsk 630090, Russia
| | - Yury V Kondrakhin
- † Laboratory of Bioinformatics, Institute of Computational Technologies, The Siberian Branch of the Russian Academy of Sciences, Ul. Acad. Rzhanova, 6, Novosibirsk 630090, Russia.,‡ BIOSOFT.RU, Ltd, Ul. Russkaya, 41/1 Novosibirsk 630058, Russia
| | - Timur A Kashapov
- ‡ BIOSOFT.RU, Ltd, Ul. Russkaya, 41/1 Novosibirsk 630058, Russia
| | - Ruslan N Sharipov
- ‡ BIOSOFT.RU, Ltd, Ul. Russkaya, 41/1 Novosibirsk 630058, Russia.,§ Novosibirsk State University, Ul. Pirogova, 2, Novosibirsk 630090, Russia
| |
Collapse
|
28
|
Shahar N, Weiner I, Stotsky L, Tuller T, Yacoby I. Prediction and large-scale analysis of primary operons in plastids reveals unique genetic features in the evolution of chloroplasts. Nucleic Acids Res 2019; 47:3344-3352. [PMID: 30828719 PMCID: PMC6468310 DOI: 10.1093/nar/gkz151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/14/2022] Open
Abstract
While bacterial operons have been thoroughly studied, few analyses of chloroplast operons exist, limiting the ability to study fundamental elements of these structures and utilize them for synthetic biology. Here, we describe the creation of a plastome-specific operon database (link provided below) achieved by combining experimental tools and predictive modeling. Using a Reverse-Transcription-PCR based method and published data, we determined the transcription-state of 213 gene pairs from four plastomes of evolutionary distinct organisms. By analyzing sequence-based features computed for our dataset, we were able to highlight fundamental characteristics differentiating between operon pairs and non-operon pairs. These include an interesting tendency toward maintaining similar messenger RNA-folding profiles in operon gene pairs, a feature that failed to yield any informative separation in cyanobacteria, suggesting that it catches unique traits of operon gene expression, which have evolved post-endosymbiosis. Subsequently, we used this feature set to train a random-forest classifier for operon prediction. As our results demonstrate the ability of our predictor to obtain accurate (84%) and robust predictions on unlabeled datasets, we proceeded to building operon maps for 2018 sequenced plastids. Our database may now present new opportunities for promoting metabolic engineering and synthetic biology in chloroplasts.
Collapse
Affiliation(s)
- Noam Shahar
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Iddo Weiner
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lior Stotsky
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
29
|
Ding W, Cheng J, Guo D, Mao L, Li J, Lu L, Zhang Y, Yang J, Jiang H. Engineering the 5' UTR-Mediated Regulation of Protein Abundance in Yeast Using Nucleotide Sequence Activity Relationships. ACS Synth Biol 2018; 7:2709-2714. [PMID: 30525473 DOI: 10.1021/acssynbio.8b00127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 5' untranslated region (5'UTR) plays a key role in post-transcriptional regulation, but interaction between nucleotides and directed evolution of 5'UTRs as synthetic regulatory elements remain unclear. By constructing a library of synthesized random 5'UTRs of 24 nucleotides in Saccharomyces cerevisiae, we observed strong epistatic interactions among bases from different positions in the 5'UTR. Taking into account these base interactions, we constructed a mathematical model to predict protein abundance with a precision of R2 = 0.60. On the basis of this model, we developed an approach to engineer 5'UTRs according to nucleotide sequence activity relationships (NuSAR), in which 5'UTRs were engineered stepwise through repeated cycles of backbone design, directed screening, and model reconstruction. After three rounds of NuSAR, the predictive accuracy of our model was improved to R2 = 0.71, and a strong 5'UTR was obtained with 5-fold higher protein abundance than the starting 5'UTR. Our findings provide new insights into the mechanism of 5'UTR regulation and contribute to a new translational elements engineering approach in synthetic biology.
Collapse
Affiliation(s)
- Wentao Ding
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dan Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ling Mao
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingwei Li
- Laboratory of Mathematics for Nonlinear Science, Shanghai Key Laboratory for Contemporary Applied Mathematics, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Lina Lu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yunxin Zhang
- Laboratory of Mathematics for Nonlinear Science, Shanghai Key Laboratory for Contemporary Applied Mathematics, Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Jiangke Yang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
30
|
Llácer JL, Hussain T, Saini AK, Nanda JS, Kaur S, Gordiyenko Y, Kumar R, Hinnebusch AG, Lorsch JR, Ramakrishnan V. Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition. eLife 2018; 7:e39273. [PMID: 30475211 PMCID: PMC6298780 DOI: 10.7554/elife.39273] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
In eukaryotic translation initiation, AUG recognition of the mRNA requires accommodation of Met-tRNAi in a 'PIN' state, which is antagonized by the factor eIF1. eIF5 is a GTPase activating protein (GAP) of eIF2 that additionally promotes stringent AUG selection, but the molecular basis of its dual function was unknown. We present a cryo-electron microscopy (cryo-EM) reconstruction of a yeast 48S pre-initiation complex (PIC), at an overall resolution of 3.0 Å, featuring the N-terminal domain (NTD) of eIF5 bound to the 40S subunit at the location vacated by eIF1. eIF5 interacts with and allows a more accommodated orientation of Met-tRNAi. Substitutions of eIF5 residues involved in the eIF5-NTD/tRNAi interaction influenced initiation at near-cognate UUG codonsin vivo, and the closed/open PIC conformation in vitro, consistent with direct stabilization of the codon:anticodon duplex by the wild-type eIF5-NTD. The present structure reveals the basis for a key role of eIF5 in start-codon selection.
Collapse
Affiliation(s)
- Jose Luis Llácer
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Instituto de Biomedicina de Valencia (IBV-CSIC)ValenciaSpain
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia
| | - Adesh K Saini
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | - Jagpreet Singh Nanda
- Laboratory on the Mechanism and Regulation of Protein SynthesisEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Sukhvir Kaur
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | | | - Rakesh Kumar
- Shoolini University of Biotechnology and Management SciencesHimachal PradeshIndia
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and DevelopmentEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein SynthesisEunice K Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - V Ramakrishnan
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
31
|
Levin D, Tuller T. Genome-Scale Analysis of Perturbations in Translation Elongation Based on a Computational Model. Sci Rep 2018; 8:16191. [PMID: 30385856 PMCID: PMC6212587 DOI: 10.1038/s41598-018-34496-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Perturbations play an important role both in engineered systems and cellular processes. Thus, understanding their effect on protein synthesis should contribute to all biomedical disciplines. Here we describe the first genome-scale analysis of perturbations in translation-related factors in S. cerevisiae. To this end, we used simulations based on a computational model that takes into consideration the fundamental stochastic and bio-physical nature of translation. We found that the initiation rate has a key role in determining the sensitivity to perturbations. For low initiation rates, the first codons of the coding region dominate the sensitivity, which is highly correlated with the ratio between initiation rate and mean elongation rate (r = −0.95), with the open reading frame (ORF) length (r = 0.6) and with protein abundance (r = 0.45). For high initiation rates (that may rise, for example, due to cellular growth), the sensitivity of a gene is dominated by all internal codons and is correlated with the decoding rate. We found that various central intracellular functions are associated with the sensitivity: for example, both genes that are sensitive and genes that are robust to perturbations are over-represented in the group of genes related to translation regulation; this may suggest that robustness to perturbations is a trait that undergoes evolutionary selection in relation to the function of the encoded protein. We believe that the reported results, due to their quantitative value and genome-wide perspective, should contribute to disciplines such as synthetic biology, functional genomics, comparative genomics and molecular evolution.
Collapse
Affiliation(s)
- Doron Levin
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, 69978, Israel. .,The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel.
| |
Collapse
|
32
|
Abou Tayoun AN, Pesaran T, DiStefano MT, Oza A, Rehm HL, Biesecker LG, Harrison SM. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat 2018; 39:1517-1524. [PMID: 30192042 DOI: 10.1002/humu.23626] [Citation(s) in RCA: 540] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/15/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022]
Abstract
The 2015 ACMG/AMP sequence variant interpretation guideline provided a framework for classifying variants based on several benign and pathogenic evidence criteria, including a pathogenic criterion (PVS1) for predicted loss of function variants. However, the guideline did not elaborate on specific considerations for the different types of loss of function variants, nor did it provide decision-making pathways assimilating information about variant type, its location, or any additional evidence for the likelihood of a true null effect. Furthermore, this guideline did not take into account the relative strengths for each evidence type and the final outcome of their combinations with respect to PVS1 strength. Finally, criteria specifying the genes for which PVS1 can be applied are still missing. Here, as part of the ClinGen Sequence Variant Interpretation (SVI) Workgroup's goal of refining ACMG/AMP criteria, we provide recommendations for applying the PVS1 criterion using detailed guidance addressing the above-mentioned gaps. Evaluation of the refined criterion by seven disease-specific groups using heterogeneous types of loss of function variants (n = 56) showed 89% agreement with the new recommendation, while discrepancies in six variants (11%) were appropriately due to disease-specific refinements. Our recommendations will facilitate consistent and accurate interpretation of predicted loss of function variants.
Collapse
Affiliation(s)
- Ahmad N Abou Tayoun
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | | - Marina T DiStefano
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Andrea Oza
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Heidi L Rehm
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Steven M Harrison
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | | |
Collapse
|
33
|
Fervers P, Fervers F, Makałowski W, Jąkalski M. Life cycle adapted upstream open reading frames (uORFs) in Trypanosoma congolense: A post-transcriptional approach to accurate gene regulation. PLoS One 2018; 13:e0201461. [PMID: 30092050 PMCID: PMC6084854 DOI: 10.1371/journal.pone.0201461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/15/2018] [Indexed: 11/18/2022] Open
Abstract
The presented work explores the regulatory influence of upstream open reading frames (uORFs) on gene expression in Trypanosoma congolense. More than 31,000 uORFs in total were identified and characterized here. We found evidence for the uORFs’ appearance in the transcriptome to be correlated with proteomic expression data, clearly indicating their repressive potential in T. congolense, which has to rely on post-transcriptional gene expression regulation due to its unique genomic organization. Our data show that uORF’s translation repressive potential does not only correlate with elemental sequence features such as length, position and quantity, but involves more subtle components, in particular the codon and amino acid profiles. This corresponds with the popular mechanistic model of a ribosome shedding initiation factors during the translation of a uORF, which can prevent reinitiation at the downstream start codon of the actual protein-coding sequence, due to the former extensive consumption of crucial translation components. We suggest that uORFs with uncommon codon and amino acid usage can slow down the translation elongation process in T. congolense, systematically deplete the limited factors, and restrict downstream reinitiation, setting up a bottleneck for subsequent translation of the protein-coding sequence. Additionally we conclude that uORFs dynamically influence the T. congolense life cycle. We found evidence that transition to epimastigote form could be supported by gain of uORFs due to alternative trans-splicing, which down-regulate housekeeping genes’ expression and render the trypanosome in a metabolically reduced state of endurance.
Collapse
Affiliation(s)
- Philipp Fervers
- University of Münster, Faculty of Medicine, Institute of Bioinformatics, Münster, Germany
| | - Florian Fervers
- Karlsruhe Institute of Technology, Department of Informatics, Karlsruhe, Germany
| | - Wojciech Makałowski
- University of Münster, Faculty of Medicine, Institute of Bioinformatics, Münster, Germany
- * E-mail: (MJ); (WM)
| | - Marcin Jąkalski
- University of Münster, Faculty of Medicine, Institute of Bioinformatics, Münster, Germany
- * E-mail: (MJ); (WM)
| |
Collapse
|
34
|
Zarai Y, Margaliot M, Sontag ED, Tuller T. Controllability Analysis and Control Synthesis for the Ribosome Flow Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1351-1364. [PMID: 28541906 PMCID: PMC5778923 DOI: 10.1109/tcbb.2017.2707420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ribosomal density along different parts of the coding regions of the mRNA molecule affects various fundamental intracellular phenomena including: protein production rates, global ribosome allocation and organismal fitness, ribosomal drop off, co-translational protein folding, mRNA degradation, and more. Thus, regulating translation in order to obtain a desired ribosomal profile along the mRNA molecule is an important biological problem. We study this problem by using a dynamical model for mRNA translation, called the ribosome flow model (RFM). In the RFM, the mRNA molecule is modeled as an ordered chain of $n$ sites. The RFM includes $n$ state-variables describing the ribosomal density profile along the mRNA molecule, and the transition rates from each site to the next are controlled by $n+1$ positive constants. To study the problem of controlling the density profile, we consider some or all of the transition rates as time-varying controls. We consider the following problem: given an initial and a desired ribosomal density profile in the RFM, determine the time-varying values of the transition rates that steer the system to the desired density profile, if they exist. More specifically, we consider two control problems. In the first, all transition rates can be regulated separately, and the goal is to steer the ribosomal density profile and the protein production rate from a given initial value to a desired value. In the second problem, one or more transition rates are jointly regulated by a single scalar control, and the goal is to steer the production rate to a desired value within a certain set of feasible values. In the first case, we show that the system is controllable, i.e., the control is powerful enough to steer the system to any desired value in finite time, and provide simple closed-form expressions for constant positive control functions (or transition rates) that asymptotically steer the system to the desired value. In the second case, we show that the system is controllable, and provide a simple algorithm for determining the constant positive control value that asymptotically steers the system to the desired value. We discuss some of the biological implications of these results.
Collapse
|
35
|
Shaham G, Tuller T. Genome scale analysis of Escherichia coli with a comprehensive prokaryotic sequence-based biophysical model of translation initiation and elongation. DNA Res 2018; 25:195-205. [PMID: 29161365 PMCID: PMC6012489 DOI: 10.1093/dnares/dsx049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/04/2017] [Indexed: 11/17/2022] Open
Abstract
Translation initiation in prokaryotes is affected by the mRNA folding and interaction of the ribosome binding site with the ribosomal RNA. The elongation rate is affected, among other factors, by the local biophysical properties of the coding regions, the decoding rates of different codons, and the interactions among ribosomes. Currently, there is no comprehensive biophysical model of translation that enables the prediction of mRNA translation dynamics based only on the transcript sequence and while considering all of these fundamental aspects of translation. In this study, we provide, for the first time, a computational simulative biophysical model of both translation initiation and elongation with all aspects mentioned above. We demonstrate our model performance and advantages focusing on Escherichia coli genes. We further show that the model enables prediction of translation rate, protein levels, and ribosome densities. In addition, our model enables quantifying the effect of silent mutations on translation rate in different parts of the transcript, the relative effect of mutations on translation initiation and elongation, and the effect of mutations on ribosome traffic jams. Thus, unlike previous models, the proposed one provides comprehensive information, facilitating future research in disciplines such as molecular evolution, synthetic biology, and functional genomics. A toolkit to estimate translation dynamics of transcripts is available at: https://www.cs.tau.ac.il/∼tamirtul/transim.
Collapse
Affiliation(s)
- Gilad Shaham
- Department of Biomedical Engineering, The Engineering Faculty, Tel Aviv University, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Engineering Faculty, Tel Aviv University, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
36
|
Decoene T, Peters G, De Maeseneire SL, De Mey M. Toward Predictable 5'UTRs in Saccharomyces cerevisiae: Development of a yUTR Calculator. ACS Synth Biol 2018; 7:622-634. [PMID: 29366325 DOI: 10.1021/acssynbio.7b00366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fine-tuning biosynthetic pathways is crucial for the development of economic feasible microbial cell factories. Therefore, the use of computational models able to predictably design regulatory sequences for pathway engineering proves to be a valuable tool, especially for modifying genes at the translational level. In this study we developed a computational approach for the de novo design of 5'-untranslated regions (5'UTRs) in Saccharomyces cerevisiae with a predictive outcome on translation initiation rate. On the basis of existing data, a partial least-squares (PLS) regression model was trained and showed good performance on predicting protein abundances of an independent test set. This model was further used for the construction of a "yUTR calculator" that can design 5'UTR sequences with a diverse range of desired translation efficiencies. The predictive power of our yUTR calculator was confirmed in vivo by different representative case studies. As such, these results show the great potential of data driven approaches for reliable pathway engineering in S. cerevisiae.
Collapse
Affiliation(s)
- Thomas Decoene
- Centre
for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Gert Peters
- Centre
for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Sofie L. De Maeseneire
- Centre
for Industrial Biotechnology and Biocatalysis, Ghent University, Coupure
links 653, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
37
|
Martin-Marcos P, Zhou F, Karunasiri C, Zhang F, Dong J, Nanda J, Kulkarni SD, Sen ND, Tamame M, Zeschnigk M, Lorsch JR, Hinnebusch AG. eIF1A residues implicated in cancer stabilize translation preinitiation complexes and favor suboptimal initiation sites in yeast. eLife 2017; 6:31250. [PMID: 29206102 PMCID: PMC5756025 DOI: 10.7554/elife.31250] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
The translation pre-initiation complex (PIC) scans the mRNA for an AUG codon in favorable context, and AUG recognition stabilizes a closed PIC conformation. The unstructured N-terminal tail (NTT) of yeast eIF1A deploys five basic residues to contact tRNAi, mRNA, or 18S rRNA exclusively in the closed state. Interestingly, EIF1AX mutations altering the human eIF1A NTT are associated with uveal melanoma (UM). We found that substituting all five basic residues, and seven UM-associated substitutions, in yeast eIF1A suppresses initiation at near-cognate UUG codons and AUGs in poor context. Ribosome profiling of NTT substitution R13P reveals heightened discrimination against unfavorable AUG context genome-wide. Both R13P and K16D substitutions destabilize the closed complex at UUG codons in reconstituted PICs. Thus, electrostatic interactions involving the eIF1A NTT stabilize the closed conformation and promote utilization of suboptimal start codons. We predict UM-associated mutations alter human gene expression by increasing discrimination against poor initiation sites.
Collapse
Affiliation(s)
- Pilar Martin-Marcos
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States.,Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Charm Karunasiri
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Jagpreet Nanda
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Shardul D Kulkarni
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Neelam Dabas Sen
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Mercedes Tamame
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca, Salamanca, Spain
| | - Michael Zeschnigk
- Institute of Human Genetics, University Duisburg-Essen, Essen, Germany.,Eye Cancer Research Group, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Jon R Lorsch
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
38
|
Na CH, Barbhuiya MA, Kim MS, Verbruggen S, Eacker SM, Pletnikova O, Troncoso JC, Halushka MK, Menschaert G, Overall CM, Pandey A. Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini. Genome Res 2017; 28:25-36. [PMID: 29162641 PMCID: PMC5749180 DOI: 10.1101/gr.226050.117] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 12/29/2022]
Abstract
Translation initiation generally occurs at AUG codons in eukaryotes, although it has been shown that non-AUG or noncanonical translation initiation can also occur. However, the evidence for noncanonical translation initiation sites (TISs) is largely indirect and based on ribosome profiling (Ribo-seq) studies. Here, using a strategy specifically designed to enrich N termini of proteins, we demonstrate that many human proteins are translated at noncanonical TISs. The large majority of TISs that mapped to 5′ untranslated regions were noncanonical and led to N-terminal extension of annotated proteins or translation of upstream small open reading frames (uORF). It has been controversial whether the amino acid corresponding to the start codon is incorporated at the TIS or methionine is still incorporated. We found that methionine was incorporated at almost all noncanonical TISs identified in this study. Comparison of the TISs determined through mass spectrometry with ribosome profiling data revealed that about two-thirds of the novel annotations were indeed supported by the available ribosome profiling data. Sequence conservation across species and a higher abundance of noncanonical TISs than canonical ones in some cases suggests that the noncanonical TISs can have biological functions. Overall, this study provides evidence of protein translation initiation at noncanonical TISs and argues that further studies are required for elucidation of functional implications of such noncanonical translation initiation.
Collapse
Affiliation(s)
- Chan Hyun Na
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Mustafa A Barbhuiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Min-Sik Kim
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, 446-701 Korea
| | - Steven Verbruggen
- Lab of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modeling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Stephen M Eacker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Gerben Menschaert
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, 446-701 Korea
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
39
|
Ribone PA, Capella M, Arce AL, Chan RL. A uORF Represses the Transcription Factor AtHB1 in Aerial Tissues to Avoid a Deleterious Phenotype. PLANT PHYSIOLOGY 2017; 175:1238-1253. [PMID: 28956754 PMCID: PMC5664479 DOI: 10.1104/pp.17.01060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/25/2017] [Indexed: 05/19/2023]
Abstract
AtHB1 is an Arabidopsis (Arabidopsis thaliana) homeodomain-leucine zipper transcription factor that participates in hypocotyl elongation under short-day conditions. Here, we show that its expression is posttranscriptionally regulated by an upstream open reading frame (uORF) located in its 5' untranslated region. This uORF encodes a highly conserved peptide (CPuORF) that is present in varied monocot and dicot species. The Arabidopsis uORF and its maize (Zea mays) homolog repressed the translation of the main open reading frame in cis, independent of the sequence of the latter. Published ribosome footprinting results and the analysis of a frame-shifted uORF, in which the repression capability was lost, indicated that the uORF causes ribosome stalling. The regulation exerted by the CPuORF was tissue specific and did not act in the absence of light. Moreover, a photosynthetic signal is needed for the CPuORF action, since plants with uncoupled chloroplasts did not show uORF-dependent repression. Plants transformed with the native AtHB1 promoter driving AtHB1 expression did not show differential phenotypes, whereas those transformed with a construct in which the uORF was mutated exhibited serrated leaves, compact rosettes, and, most significantly, short nondehiscent anthers and siliques containing fewer or no seeds. Thus, we propose that the uncontrolled expression of AtHB1 is deleterious for the plant and, hence, finely repressed by a translational mechanism.
Collapse
Affiliation(s)
- Pamela A Ribone
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Científico Tecnológico Consejo Nacional de Investigaciones Científicas y Técnicas Santa Fe, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Matías Capella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Científico Tecnológico Consejo Nacional de Investigaciones Científicas y Técnicas Santa Fe, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Agustín L Arce
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Científico Tecnológico Consejo Nacional de Investigaciones Científicas y Técnicas Santa Fe, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Científico Tecnológico Consejo Nacional de Investigaciones Científicas y Técnicas Santa Fe, Paraje El Pozo, 3000 Santa Fe, Argentina
| |
Collapse
|
40
|
Abstract
MOTIVATION Translation initiation is a key step in the regulation of gene expression. In addition to the annotated translation initiation sites (TISs), the translation process may also start at multiple alternative TISs (including both AUG and non-AUG codons), which makes it challenging to predict TISs and study the underlying regulatory mechanisms. Meanwhile, the advent of several high-throughput sequencing techniques for profiling initiating ribosomes at single-nucleotide resolution, e.g. GTI-seq and QTI-seq, provides abundant data for systematically studying the general principles of translation initiation and the development of computational method for TIS identification. METHODS We have developed a deep learning-based framework, named TITER, for accurately predicting TISs on a genome-wide scale based on QTI-seq data. TITER extracts the sequence features of translation initiation from the surrounding sequence contexts of TISs using a hybrid neural network and further integrates the prior preference of TIS codon composition into a unified prediction framework. RESULTS Extensive tests demonstrated that TITER can greatly outperform the state-of-the-art prediction methods in identifying TISs. In addition, TITER was able to identify important sequence signatures for individual types of TIS codons, including a Kozak-sequence-like motif for AUG start codon. Furthermore, the TITER prediction score can be related to the strength of translation initiation in various biological scenarios, including the repressive effect of the upstream open reading frames on gene expression and the mutational effects influencing translation initiation efficiency. AVAILABILITY AND IMPLEMENTATION TITER is available as an open-source software and can be downloaded from https://github.com/zhangsaithu/titer . CONTACT lzhang20@mail.tsinghua.edu.cn or zengjy321@tsinghua.edu.cn. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sai Zhang
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Hailin Hu
- School of Medicine, Tsinghua University, Beijing, China
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
- MOE Key Lab of Bioinformatics and Bioinformatics Division, TNLIST/Department of Computer Science and Technology, Tsinghua University, Beijing, China
- Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Lei Zhang
- School of Medicine, Tsinghua University, Beijing, China
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
41
|
Abstract
The elucidation of the genetic code remains among the most influential discoveries in biology. While innumerable studies have validated the general universality of the code and its value in predicting and analyzing protein coding sequences, established and emerging work has also suggested that full genome decryption may benefit from a greater consideration of a codon's neighborhood within an mRNA than has been broadly applied. This Review examines the evidence for context cues in translation, with a focus on several recent studies that reveal broad roles for mRNA context in programming translation start sites, the rate of translation elongation, and stop codon identity.
Collapse
|
42
|
Absolute Quantification of Protein and mRNA Abundances Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast. Cell Syst 2017; 4:495-504.e5. [PMID: 28365149 DOI: 10.1016/j.cels.2017.03.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/31/2017] [Accepted: 03/01/2017] [Indexed: 11/22/2022]
Abstract
Protein synthesis is the most energy-consuming process in a proliferating cell, and understanding what controls protein abundances represents a key question in biology and biotechnology. We quantified absolute abundances of 5,354 mRNAs and 2,198 proteins in Saccharomyces cerevisiae under ten environmental conditions and protein turnover for 1,384 proteins under a reference condition. The overall correlation between mRNA and protein abundances across all conditions was low (0.46), but for differentially expressed proteins (n = 202), the median mRNA-protein correlation was 0.88. We used these data to model translation efficiencies and found that they vary more than 400-fold between genes. Non-linear regression analysis detected that mRNA abundance and translation elongation were the dominant factors controlling protein synthesis, explaining 61% and 15% of its variance. Metabolic flux balance analysis further showed that only mitochondrial fluxes were positively associated with changes at the transcript level. The present dataset represents a crucial expansion to the current resources for future studies on yeast physiology.
Collapse
|
43
|
Whole exome sequencing in the differential diagnosis of Diamond-Blackfan anemia: Clinical and molecular study of three patients with novel RPL5 and mosaic RPS19 mutations. Blood Cells Mol Dis 2017; 64:38-44. [PMID: 28376382 PMCID: PMC7129236 DOI: 10.1016/j.bcmd.2017.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/04/2017] [Accepted: 03/05/2017] [Indexed: 11/20/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital disorder presenting remarkable phenotypic overlap with other inherited bone marrow failure syndromes, making differential diagnosis challenging and its confirmation often reached with great delay. By whole exome sequencing, we unraveled the presence of pathogenic variants affecting genes already known to be involved in DBA pathogenesis (RPL5 and RPS19) in three patients with otherwise uncertain clinical diagnosis, and provided new insights on DBA genotype-phenotype correlations. Remarkably, the RPL5 c.482del frameshift mutation has never been reported before, whereas the RPS19 c.3G>T missense mutation, although previously described in a 2-month-old DBA patient without malformations and refractory to steroid therapy, was detected here in the mosaic state in different bodily tissues for the first time in DBA patients.
Collapse
|
44
|
Zafrir Z, Tuller T. Unsupervised detection of regulatory gene expression information in different genomic regions enables gene expression ranking. BMC Bioinformatics 2017; 18:77. [PMID: 28143396 PMCID: PMC5286865 DOI: 10.1186/s12859-017-1497-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/27/2017] [Indexed: 12/30/2022] Open
Abstract
Background The regulation of all gene expression steps (e.g., Transcription, RNA processing, Translation, and mRNA Degradation) is known to be primarily encoded in different parts of genes and in genomic regions in proximity to genes (e.g., promoters, untranslated regions, coding regions, introns, etc.). However, the entire gene expression codes and the genomic regions where they are encoded are still unknown. Results Here, we employ an unsupervised approach to estimate the concentration of gene expression codes in different non-coding parts of genes and transcripts, such as introns and untranslated regions, focusing on three model organisms (Escherichia coli, Saccharomyces cerevisiae, and Schizosaccharomyces pombe). Our analyses support the conjecture that regions adjacent to the beginning and end of ORFs and the beginning and end of introns tend to include higher concentration of gene expression information relatively to regions further away. In addition, we report the exact regions with elevated concentration of gene expression codes. Furthermore, we demonstrate that the concentration of these codes in different genetic regions is correlated with the expression levels of the corresponding genes, and with splicing efficiency measurements and meiotic stage gene expression measurements in S. cerevisiae. Conclusion We suggest that these discoveries improve our understanding of gene expression regulation and evolution; they can also be used for developing improved models of genome/gene evolution and for engineering gene expression in various biotechnological and synthetic biology applications. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1497-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zohar Zafrir
- Department of Biomedical Engineering, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel. .,Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv, 6997801, Israel.
| |
Collapse
|
45
|
Saxena P, Bojar D, Fussenegger M. Design of Synthetic Promoters for Gene Circuits in Mammalian Cells. Methods Mol Biol 2017; 1651:263-273. [PMID: 28801913 DOI: 10.1007/978-1-4939-7223-4_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthetic biology, the synthesis of engineering and biology, has rapidly matured and has dramatically increased the complexity of artificial gene circuits in recent years. The deployment of intricate synthetic gene circuits in mammalian cells requires the establishment of very precise and orthogonal control of transgene expression. In this chapter, we describe methods of modulating the expression of transgenes at the transcriptional level. Using cAMP-response element-binding protein (CREB)-dependent promoters as examples, a tool for the precise tuning of gene expression by using different core promoters and by varying the binding affinity of transcription factor operator sites is described.
Collapse
Affiliation(s)
- Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Daniel Bojar
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland. .,Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland.
| |
Collapse
|
46
|
Raveh A, Margaliot M, Sontag ED, Tuller T. A model for competition for ribosomes in the cell. J R Soc Interface 2016; 13:rsif.2015.1062. [PMID: 26962028 DOI: 10.1098/rsif.2015.1062] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A single mammalian cell includes an order of 10(4)-10(5) mRNA molecules and as many as 10(5)-10(6) ribosomes. Large-scale simultaneous mRNA translation induces correlations between the mRNA molecules, as they all compete for the finite pool of available ribosomes. This has important implications for the cell's functioning and evolution. Developing a better understanding of the intricate correlations between these simultaneous processes, rather than focusing on the translation of a single isolated transcript, should help in gaining a better understanding of mRNA translation regulation and the way elongation rates affect organismal fitness. A model of simultaneous translation is specifically important when dealing with highly expressed genes, as these consume more resources. In addition, such a model can lead to more accurate predictions that are needed in the interconnection of translational modules in synthetic biology. We develop and analyse a general dynamical model for large-scale simultaneous mRNA translation and competition for ribosomes. This is based on combining several ribosome flow models (RFMs) interconnected via a pool of free ribosomes. We use this model to explore the interactions between the various mRNA molecules and ribosomes at steady state. We show that the compound system always converges to a steady state and that it always entrains or phase locks to periodically time-varying transition rates in any of the mRNA molecules. We then study the effect of changing the transition rates in one mRNA molecule on the steady-state translation rates of the other mRNAs that results from the competition for ribosomes. We show that increasing any of the codon translation rates in a specific mRNA molecule yields a local effect, an increase in the translation rate of this mRNA, and also a global effect, the translation rates in the other mRNA molecules all increase or all decrease. These results suggest that the effect of codon decoding rates of endogenous and heterologous mRNAs on protein production is more complicated than previously thought. In addition, we show that increasing the length of an mRNA molecule decreases the production rate of all the mRNAs.
Collapse
Affiliation(s)
- Alon Raveh
- School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Michael Margaliot
- School of Electrical Engineering and the Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Eduardo D Sontag
- Department of Mathematics and the Center for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Tamir Tuller
- Department of Biomedical Engineering and the Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
47
|
RNA Structural Determinants of Optimal Codons Revealed by MAGE-Seq. Cell Syst 2016; 3:563-571.e6. [PMID: 28009265 DOI: 10.1016/j.cels.2016.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 05/25/2016] [Accepted: 11/08/2016] [Indexed: 01/30/2023]
Abstract
Synonymous codon choices at the beginning of genes optimize 5' RNA structures for enhanced translation initiation, but less is known about mechanisms that drive codon optimization downstream within the gene. To understand what determines codon choices across a gene, we generated 12,726 in situ codon mutants in the Escherichia coli essential gene infA and measured their fitness by combining multiplex automated genome engineering mutagenesis with amplicon deep sequencing (MAGE-seq). Correlating predicted 5' RNA structure with fitness revealed that codons even far from the start of the gene are deleterious if they disrupt the native 5' RNA conformation. These long-range structural interactions generate context-dependent rules that constrain codon choices beyond intrinsic codon preferences. Genome-wide RNA folding predictions confirm that natural codon choices far from the start codon are optimized in part to prevent disruption of native structures near the 5' UTR. Our results shed light on natural codon distributions and should improve engineering of gene expression for synthetic biology applications.
Collapse
|
48
|
Gehrmann T, Pelkmans JF, Lugones LG, Wösten HAB, Abeel T, Reinders MJT. Schizophyllum commune has an extensive and functional alternative splicing repertoire. Sci Rep 2016; 6:33640. [PMID: 27659065 PMCID: PMC5034255 DOI: 10.1038/srep33640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/31/2016] [Indexed: 01/01/2023] Open
Abstract
Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically.
Collapse
Affiliation(s)
- Thies Gehrmann
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Zuid-Holland 2628 CD, The Netherlands
| | - Jordi F. Pelkmans
- Microbiology, Department of Biology, Utrecht University, Utrecht, Utrecht 3585 CH, The Netherlands
| | - Luis G. Lugones
- Microbiology, Department of Biology, Utrecht University, Utrecht, Utrecht 3585 CH, The Netherlands
| | - Han A. B. Wösten
- Microbiology, Department of Biology, Utrecht University, Utrecht, Utrecht 3585 CH, The Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Zuid-Holland 2628 CD, The Netherlands
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts MA02142, United States of America
| | - Marcel J. T. Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Zuid-Holland 2628 CD, The Netherlands
| |
Collapse
|
49
|
Zur H, Tuller T. Predictive biophysical modeling and understanding of the dynamics of mRNA translation and its evolution. Nucleic Acids Res 2016; 44:9031-9049. [PMID: 27591251 PMCID: PMC5100582 DOI: 10.1093/nar/gkw764] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022] Open
Abstract
mRNA translation is the fundamental process of decoding the information encoded in mRNA molecules by the ribosome for the synthesis of proteins. The centrality of this process in various biomedical disciplines such as cell biology, evolution and biotechnology, encouraged the development of dozens of mathematical and computational models of translation in recent years. These models aimed at capturing various biophysical aspects of the process. The objective of this review is to survey these models, focusing on those based and/or validated on real large-scale genomic data. We consider aspects such as the complexity of the models, the biophysical aspects they regard and the predictions they may provide. Furthermore, we survey the central systems biology discoveries reported on their basis. This review demonstrates the fundamental advantages of employing computational biophysical translation models in general, and discusses the relative advantages of the different approaches and the challenges in the field.
Collapse
Affiliation(s)
- Hadas Zur
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv 69978, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
50
|
Interference in transcription of overexpressed genes by promoter-proximal downstream sequences. Sci Rep 2016; 6:30735. [PMID: 27485701 PMCID: PMC4971500 DOI: 10.1038/srep30735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022] Open
Abstract
Despite a high sequence homology among four human RNAi-effectors Argonaute proteins and their coding sequences, the efficiency of ectopic overexpression of AGO3 and AGO4 coding sequences in human cells is greatly reduced as compared to AGO1 and AGO2. While investigating this phenomenon, we documented the existence of previously uncharacterized mechanism of gene expression regulation, which is manifested in greatly varying basal transcription levels from the RNApolII promoters depending on the promoter-proximal downstream sequences. Specifically, we show that distinct overexpression of Argonaute coding sequences cannot be explained by mRNA degradation in the cytoplasm or nucleus, and exhibits on transcriptional level. Furthermore, the first 1000–2000 nt located immediately downstream the promoter had the most critical influence on ectopic gene overexpression. The transcription inhibiting effect, associated with those downstream sequences, subsided with increasing distance to the promoter and positively correlated with promoter strength. We hypothesize that the same mechanism, which we named promoter proximal inhibition (PPI), could generally contribute to basal transcription levels of genes, and could be mainly responsible for the essence of difficult-to-express recombinant proteins. Finally, our data reveal that expression of recombinant proteins in human cells can be greatly enhanced by using more permissive promoter adjacent downstream sequences.
Collapse
|