1
|
Li L, Wang S, Fu S, Chen Z, Wang P, Zhao Y. Human ATP-binding proteins: Structural features, functional diversity, and pharmacotherapeutic potential in disease: A review. Int J Biol Macromol 2025; 308:142303. [PMID: 40118416 DOI: 10.1016/j.ijbiomac.2025.142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
ATP-binding proteins (ABPs) form diverse and essential protein families across living organisms. Early life forms likely relied on simple chemical reactions for energy, but with the emergence of ABPs and their evolving functions, organisms became capable of more efficient energy storage and utilization, which drove the complexity of metabolic and life processes. By binding and hydrolyzing ATP through conserved structural motifs such as the Walker motifs, ABPs play critical roles in material transport, signal transduction, cellular structure maintenance, motility, and cell cycle regulation. Dysfunctions arising from mutations, deletions, or misregulation of ABPs are linked to a variety of human diseases, including cancer, neurodegenerative disorders, and cardiovascular diseases. The growing recognition of ABPs' significance in disease progression highlights their relevance not only in basic biology but also in clinical applications, particularly as biomarkers and therapeutic targets. This review provides a comprehensive overview of human ABPs, detailing their structural and functional roles, their involvement in disease mechanisms, and the latest advances in understanding their clinical relevance. Additionally, it identifies current research gaps and offers new perspectives for future investigations and therapeutic strategies.
Collapse
Affiliation(s)
- Letong Li
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, PR China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Shanshan Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Zhen Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Chen HX, Ma YZ, Xie PP, Huang JY, Li LQ, Zhang W, Zhu Y, Zhuang SM, Lin YF. Micropeptide MPM regulates cardiomyocyte proliferation and heart growth via the AKT pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119820. [PMID: 39163918 DOI: 10.1016/j.bbamcr.2024.119820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
The role of micropeptide in cardiomyocyte proliferation remains unknown. We found that MPM (micropeptide in mitochondria) was highly expressed in cardiomyocytes. Compared to MPM+/+ mice, MPM knockout (MPM-/-) mice exhibited reduction in left ventricular (LV) mass, myocardial thickness and LV fractional shortening. RNA-sequencing analysis in H9c2, a rat cardiomyocyte cell line, identified downregulation of cell cycle-promoting genes as the most significant alteration in MPM-silencing cells. Consistently, gain- and loss-of-function analyses in H9c2 cells revealed that cardiomyocyte proliferation was repressed by silencing MPM but was promoted by overexpressing MPM. Moreover, the cardiomyocytes in the hearts of MPM-/- mice displayed reduced proliferation rates. Mechanism investigations disclosed that MPM is crucial for AKT activation in cardiomyocytes. We also identified an interaction between MPM and PTPMT1, and found that silencing PTPMT1 attenuated the effect of MPM in activating the AKT pathway, whereas inhibition of the AKT pathway abrogated the role of MPM in promoting cardiomyocyte proliferation. Collectively, these results indicate that MPM may promote cardiomyocyte proliferation and thus heart growth by interacting with PTPMT1 to activate the AKT pathway. Our findings identify the novel function and regulatory network of MPM and highlight the importance of micropeptides in cardiomyocyte proliferation and heart growth.
Collapse
Affiliation(s)
- Hua-Xing Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yan-Zhen Ma
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Peng-Peng Xie
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jie-Yi Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lan-Qi Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wei Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ying Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Yi-Fang Lin
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, PR China.
| |
Collapse
|
3
|
Zhao Y, Schubert H, Blakely A, Forbush B, Smith MD, Rinehart J, Cao E. Structural bases for Na +-Cl - cotransporter inhibition by thiazide diuretic drugs and activation by kinases. Nat Commun 2024; 15:7006. [PMID: 39143061 PMCID: PMC11324901 DOI: 10.1038/s41467-024-51381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC) drives salt reabsorption in the kidney and plays a decisive role in balancing electrolytes and blood pressure. Thiazide and thiazide-like diuretics inhibit NCC-mediated renal salt retention and have been cornerstones for treating hypertension and edema since the 1950s. Here we determine NCC co-structures individually complexed with the thiazide drug hydrochlorothiazide, and two thiazide-like drugs chlorthalidone and indapamide, revealing that they fit into an orthosteric site and occlude the NCC ion translocation pathway. Aberrant NCC activation by the WNKs-SPAK kinase cascade underlies Familial Hyperkalemic Hypertension, but it remains unknown whether/how phosphorylation transforms the NCC structure to accelerate ion translocation. We show that an intracellular amino-terminal motif of NCC, once phosphorylated, associates with the carboxyl-terminal domain, and together, they interact with the transmembrane domain. These interactions suggest a phosphorylation-dependent allosteric network that directly influences NCC ion translocation.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Heidi Schubert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alan Blakely
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Micholas Dean Smith
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, New Haven, CT, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Gao Y, Wei C, Luo L, Tang Y, Yu Y, Li Y, Xing J, Pan X. Membrane-assisted tariquidar access and binding mechanisms of human ATP-binding cassette transporter P-glycoprotein. Front Mol Biosci 2024; 11:1364494. [PMID: 38560519 PMCID: PMC10979361 DOI: 10.3389/fmolb.2024.1364494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
The human multidrug transporter P-glycoprotein (P-gp) is physiologically essential and of key relevance to biomedicine. Recent structural studies have shed light on the mode of inhibition of the third-generation inhibitors for human P-gp, but the molecular mechanism by which these inhibitors enter the transmembrane sites remains poorly understood. In this study, we utilized all-atom molecular dynamics (MD) simulations to characterize human P-gp dynamics under a potent inhibitor, tariquidar, bound condition, as well as the atomic-level binding pathways in an explicit membrane/water environment. Extensive unbiased simulations show that human P-gp remains relatively stable in tariquidar-free and bound states, while exhibiting a high dynamic binding mode at either the drug-binding pocket or the regulatory site. Free energy estimations by partial nudged elastic band (PNEB) simulations and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method identify two energetically favorable binding pathways originating from the cytoplasmic gate with an extended tariquidar conformation. Interestingly, free tariquidar in the lipid membrane predominantly adopts extended conformations similar to those observed at the regulatory site. These results suggest that membrane lipids may preconfigure tariquidar into an active ligand conformation for efficient binding to the regulatory site. However, due to its conformational plasticity, tariquidar ultimately moves toward the drug-binding pocket in both pathways, explaining how it acts as a substrate at low concentrations. Our molecular findings propose a membrane-assisted mechanism for the access and binding of the third-generation inhibitors to the binding sites of human P-gp, and offer deeper insights into the molecule design of more potent inhibitors against P-gp-mediated drug resistance.
Collapse
Affiliation(s)
- Yingjie Gao
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Caiyan Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lanxin Luo
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Tang
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yongzhen Yu
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianchao Pan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Irfan A, Faisal S, Ahmad S, Saif MJ, Zahoor AF, Khan SG, Javid J, Al-Hussain SA, Muhammed MT, Zaki MEA. An Exploration of the Inhibitory Mechanism of Rationally Screened Benzofuran-1,3,4-Oxadiazoles and-1,2,4-Triazoles as Inhibitors of NS5B RdRp Hepatitis C Virus through Pharmacoinformatic Approaches. Biomedicines 2023; 11:3085. [PMID: 38002085 PMCID: PMC10669698 DOI: 10.3390/biomedicines11113085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Benzofuran, 1,3,4-oxadiazole, and 1,2,4-triazole are privileged heterocyclic moieties that display the most promising and wide spectrum of biological activities against a wide variety of diseases. In the current study, benzofuran-1,3,4-oxadiazole BF1-BF7 and benzofuran-1,2,4-triazole compounds BF8-BF15 were tested against HCV NS5B RNA-dependent RNA polymerase (RdRp) utilizing structure-based screening via a computer-aided drug design (CADD) approach. A molecular docking approach was applied to evaluate the binding potential of benzofuran-appended 1,3,4-oxadiazole and 1,2,4-triazole BF1-BF15 molecules. Benzofuran-1,3,4-oxadiazole scaffolds BF1-BF7 showed lesser binding affinities (-12.63 to -14.04 Kcal/mol) than benzofuran-1,2,4-triazole scaffolds BF8-BF15 (-14.11 to -16.09 Kcal/mol) against the HCV NS5B enzyme. Molecular docking studies revealed the excellent binding affinity scores exhibited by benzofuran-1,2,4-triazole structural motifs BF-9 (-16.09 Kcal/mol), BF-12 (-15.75 Kcal/mol), and BF-13 (-15.82 Kcal/mol), respectively, which were comparatively better than benzofuran-based HCV NS5B inhibitors' standard reference drug Nesbuvir (-15.42 Kcal/mol). A molecular dynamics simulation assay was also conducted to obtain valuable insights about the enzyme-compounds interaction profile and structural stability, which indicated the strong intermolecular energies of the BF-9+NS5B complex and the BF-12+NS5B complex as per the MM-PBSA method, while the BF-12+NS5B complex was the most stable system as per the MM-GBSA calculation. The drug-likeness and ADMET studies of all the benzofuran-1,2,4-triazole derivatives BF8-BF15 revealed that these compounds possessed good medicinal chemistry profiles in agreement with all the evaluated parameters for being drugs. The molecular docking affinity scores, MM-PBSA/MM-GBSA and MD-simulation stability analysis, drug-likeness profiling, and ADMET study assessment indicated that N-4-fluorophenyl-S-linked benzofuran-1,2,4-triazole BF-12 could be a future promising anti-HCV NS5B RdRp inhibitor therapeutic drug candidate that has a structural agreement with the Nesbuvir standard reference drug.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (A.F.Z.)
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University Peshawar, Peshawar 25000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut P.O. Box 36, Lebanon
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (A.F.Z.)
| | - Samreen Gul Khan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (A.F.Z.)
| | - Jamila Javid
- Department of Chemistry, University of Sialkot, Sialkot 51040, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta 32260, Turkey
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia
| |
Collapse
|
6
|
Aguirre T, Dornan GL, Hostachy S, Neuenschwander M, Seyffarth C, Haucke V, Schütz A, von Kries JP, Fiedler D. An unconventional gatekeeper mutation sensitizes inositol hexakisphosphate kinases to an allosteric inhibitor. eLife 2023; 12:RP88982. [PMID: 37843983 PMCID: PMC10578927 DOI: 10.7554/elife.88982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Inositol hexakisphosphate kinases (IP6Ks) are emerging as relevant pharmacological targets because a multitude of disease-related phenotypes has been associated with their function. While the development of potent IP6K inhibitors is gaining momentum, a pharmacological tool to distinguish the mammalian isozymes is still lacking. Here, we implemented an analog-sensitive approach for IP6Ks and performed a high-throughput screen to identify suitable lead compounds. The most promising hit, FMP-201300, exhibited high potency and selectivity toward the unique valine gatekeeper mutants of IP6K1 and IP6K2, compared to the respective wild-type (WT) kinases. Biochemical validation experiments revealed an allosteric mechanism of action that was corroborated by hydrogen deuterium exchange mass spectrometry measurements. The latter analysis suggested that displacement of the αC helix, caused by the gatekeeper mutation, facilitates the binding of FMP-201300 to an allosteric pocket adjacent to the ATP-binding site. FMP-201300 therefore serves as a valuable springboard for the further development of compounds that can selectively target the three mammalian IP6Ks; either as analog-sensitive kinase inhibitors or as an allosteric lead compound for the WT kinases.
Collapse
Affiliation(s)
- Tim Aguirre
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für Chemie, Humboldt-Universität zu BerlinBerlinGermany
| | - Gillian L Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | | | - Carola Seyffarth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Anja Schütz
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
| | | | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
- Institut für Chemie, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
7
|
Hautke A, Ebbinghaus S. The emerging role of ATP as a cosolute for biomolecular processes. Biol Chem 2023; 404:897-908. [PMID: 37656203 DOI: 10.1515/hsz-2023-0202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
ATP is an important small molecule that appears at outstandingly high concentration within the cellular medium. Apart from its use as a source of energy and a metabolite, there is increasing evidence for important functions as a cosolute for biomolecular processes. Owned to its solubilizing kosmotropic triphosphate and hydrophobic adenine moieties, ATP is a versatile cosolute that can interact with biomolecules in various ways. We here use three models to categorize these interactions and apply them to review recent studies. We focus on the impact of ATP on biomolecular solubility, folding stability and phase transitions. This leads us to possible implications and therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander Hautke
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
- Lehrstuhl für Biophysikalische Chemie and Research Center Chemical Sciences and Sustainability, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Simon Ebbinghaus
- Institut für Physikalische und Theoretische Chemie, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
- Lehrstuhl für Biophysikalische Chemie and Research Center Chemical Sciences and Sustainability, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| |
Collapse
|
8
|
Abstract
Riboswitches are conserved functional domains in mRNA that almost exclusively exist in bacteria. They regulate the biosynthesis and transport of amino acids and essential metabolites such as coenzymes, nucleobases, and their derivatives by specifically binding small molecules. Due to their ability to precisely discriminate between different cognate molecules as well as their common existence in bacteria, riboswitches have become potential antibacterial drug targets that could deliver urgently needed antibiotics with novel mechanisms of action. In this work, we report the recognition mechanisms of four oxidization products (XAN, AZA, UAC, and HPA) generated during purine degradation by an RNA motif termed the NMT1 riboswitch. Specifically, we investigated the physical interactions between the riboswitch and the oxidized metabolites by computing the changes in the free energy on mutating key nucleobases in the ligand binding pocket of the riboswitch. We discovered that the electrostatic interactions are central to ligand discrimination by this riboswitch. The relative binding free energies of the mutations further indicated that some of the mutations can also strengthen the binding affinities of the ligands (AZA, UAC, and HPA). These mechanistic details are also potentially relevant in the design of novel compounds targeting riboswitches.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
9
|
Suwara J, Radzikowska-Cieciura E, Chworos A, Pawlowska R. The ATP-dependent Pathways and Human Diseases. Curr Med Chem 2023; 30:1232-1255. [PMID: 35319356 DOI: 10.2174/0929867329666220322104552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
Adenosine triphosphate (ATP) is one of the most important molecules of life, present both inside the cells and extracellularly. It is an essential building block for nucleic acids biosynthesis and crucial intracellular energy storage. However, one of the most interesting functions of ATP is the role of a signaling molecule. Numerous studies indicate the involvement of ATP-dependent pathways in maintaining the proper functioning of individual tissues and organs. Herein, the latest data indicating the ATP function in the network of intra- and extracellular signaling pathways including purinergic signaling, MAP kinase pathway, mTOR and calcium signaling are collected. The main ATP-dependent processes maintaining the proper functioning of the nervous, cardiovascular and immune systems, as well as skin and bones, are summarized. The disturbances in the ATP amount, its cellular localization, or interaction with target elements may induce pathological changes in signaling pathways leading to the development of serious diseases. The impact of an ATP imbalance on the development of dangerous health dysfunctions such as neurodegeneration diseases, cardiovascular diseases (CVDs), diabetes mellitus, obesity, cancers and immune pathogenesis are discussed here.
Collapse
Affiliation(s)
- Justyna Suwara
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
10
|
Anderson ML, McDonald Esstman S. In vitro particle-associated uridyltransferase activity of the rotavirus VP1 polymerase. Virology 2022; 577:24-31. [PMID: 36257129 PMCID: PMC10728782 DOI: 10.1016/j.virol.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Rotaviruses are 11-segmented, double-stranded RNA (dsRNA) viruses with a unique intra-particle RNA synthesis mechanism. During genome replication, the RNA-dependent RNA polymerase (VP1) performs minus-strand RNA (-ssRNA) synthesis on positive-strand RNA (+ssRNA) templates to create dsRNA segments. Recombinant VP1 catalyzes -ssRNA synthesis using substrate NTPs in vitro, but only when the VP2 core shell protein or virus-like particles made of VP2 and VP6 (2/6-VLPs) are included in the reaction. The dsRNA product can be labeled using [α32P]-UTP and separated from the input +ssRNA template by polyacrylamide gel electrophoresis. Here, we report the generation of [α32P]-labeled rotavirus +ssRNA templates in reactions that lacked non-radiolabeled NTPs but contained catalytically-active VP1, 2/6-VLPs, and [α32P]-UTP. Non-radiolabeled UTP competed with [α32P]-UTP to decrease product levels, whereas CTP and GTP had little effect. Interesting, ATP stimulated [α32P]-labeled product production. These results suggest that rotavirus VP1 transferred [α32P]-UMP onto viral + ssRNA in vitro via a particle-associated uridyltransferase activity.
Collapse
|
11
|
Rickard MM, Luo H, De Lio A, Gruebele M, Pogorelov TV. Impact of the Cellular Environment on Adenosine Triphosphate Conformations. J Phys Chem Lett 2022; 13:9809-9814. [PMID: 36228115 PMCID: PMC10077521 DOI: 10.1021/acs.jpclett.2c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cytoplasm is an environment crowded by macromolecules and filled with metabolites and ions. Recent experimental and computational studies have addressed how this environment affects protein stability, folding kinetics, and protein-protein and protein-nucleic acid interactions, though its impact on metabolites remains largely unknown. Here we show how a simulated cytoplasm affects the conformation of adenosine triphosphate (ATP), a key energy source and regulatory metabolite present at high concentrations in cells. Analysis of our all-atom model of a small volume of the Escherichia coli cytoplasm when contrasted with ATP modeled in vitro or resolved with protein structures deposited in the Protein Data Bank reveals that ATP molecules bound to proteins in cell form specific pitched conformations that are not observed at significant concentrations in the other environments. We hypothesize that these interactions evolved to fulfill functional roles when ATP interacts with protein surfaces.
Collapse
Affiliation(s)
- Meredith M. Rickard
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Haolin Luo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Ashley De Lio
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
12
|
Identification and Inhibition of the Druggable Allosteric Site of SARS-CoV-2 NSP10/NSP16 Methyltransferase through Computational Approaches. Molecules 2022; 27:molecules27165241. [PMID: 36014480 PMCID: PMC9416396 DOI: 10.3390/molecules27165241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022] Open
Abstract
Since its emergence in early 2019, the respiratory infectious virus, SARS-CoV-2, has ravaged the health of millions of people globally and has affected almost every sphere of life. Many efforts are being made to combat the COVID-19 pandemic’s emerging and recurrent waves caused by its evolving and more infectious variants. As a result, novel and unexpected targets for SARS-CoV-2 have been considered for drug discovery. 2′-O-Methyltransferase (nsp10/nsp16) is a significant and appealing target in the SARS-CoV-2 life cycle because it protects viral RNA from the host degradative enzymes via a cap formation process. In this work, we propose prospective allosteric inhibitors that target the allosteric site, SARS-CoV-2 MTase. Four drug libraries containing ~119,483 compounds were screened against the allosteric site of SARS-CoV-2 MTase identified in our research. The identified best compounds exhibited robust molecular interactions and alloscore-score rankings with the allosteric site of SARS-CoV-2 MTase. Moreover, to further assess the dynamic stability of these compounds (CHEMBL2229121, ZINC000009464451, SPECS AK-91811684151, NCI-ID = 715319), a 100 ns molecular dynamics simulation, along with its holo-form, was performed to provide insights on the dynamic nature of these allosteric inhibitors at the allosteric site of the SARS-CoV-2 MTase. Additionally, investigations of MM-GBSA binding free energies revealed a good perspective for these allosteric inhibitor–enzyme complexes, indicating their robust antagonistic action on SARS-CoV-2 (nsp10/nsp16) methyltransferase. We conclude that these allosteric repressive agents should be further evaluated through investigational assessments in order to combat the proliferation of SARS-CoV-2.
Collapse
|
13
|
Allosteric pluripotency: challenges and opportunities. Biochem J 2022; 479:825-838. [PMID: 35403669 DOI: 10.1042/bcj20210528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Allosteric pluripotency arises when the functional response of an allosteric receptor to an allosteric stimulus depends on additional allosteric modulators. Here, we discuss allosteric pluripotency as observed in the prototypical Protein Kinase A (PKA) as well as in other signaling systems, from typical multidomain signaling proteins to bacterial enzymes. We identify key drivers of pluripotent allostery and illustrate how hypothesizing allosteric pluripotency may solve apparent discrepancies currently present in the literature regarding the dual nature of known allosteric modulators. We also outline the implications of allosteric pluripotency for cellular signaling and allosteric drug design, and analyze the challenges and opportunities opened by the pluripotent nature of allostery.
Collapse
|
14
|
Fontecilla-Camps JC. The Complex Roles of Adenosine Triphosphate in Bioenergetics. Chembiochem 2022; 23:e202200064. [PMID: 35353443 DOI: 10.1002/cbic.202200064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Indexed: 11/09/2022]
Abstract
ATP is generally defined as the "energy currency" of the cell. Its phosphoanhydride P-O bonds are often considered to be "high energy" linkages that release free energy when broken, and its hydrolysis is described as "strongly exergonic". However, breaking bonds cannot release energy and ATP hydrolysis in motor and active transport proteins is not "strongly exergonic". So, the relevance of ATP resides elsewhere. As important as the nucleotide are the proteins that undergo functionally relevant conformational changes upon both ATP binding and release of ADP and inorganic phosphate. ATP phosphorylates proteins for signaling, active transport, and substrates in condensation reactions. The ensuing dephosphorylation has different consequences in each case. In signaling and active transport the phosphate group is hydrolyzed whereas in condensation reactions the phosphoryl fragment acts as a dehydrating agent. As it will be discussed in this article, ATP does much more than simply contribute free energy to biological processes.
Collapse
|
15
|
Abstract
With several marketed drugs, allosteric inhibition of kinases has translated to pharmacological effects and clinical benefits comparable to those from orthosteric inhibition. However, despite much effort over more than 20 years, the number of kinase targets associated with FDA-approved allosteric drugs is limited, suggesting the challenges in identifying and validating allosteric inhibitors. Here we review the principles of allosteric inhibition, summarize the discovery of allosteric MEK1/2 and BCR-ABL1 inhibitors, and discuss the approaches to screening and demonstrating the functional activity of allosteric pocket ligands.
Collapse
Affiliation(s)
- Yue Pan
- Relay Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02139, United States
| | - Mary M Mader
- Relay Therapeutics, 399 Binney Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Pei H, Guo W, Peng Y, Xiong H, Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev 2022; 42:1607-1660. [PMID: 35312190 DOI: 10.1002/med.21886] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The key proteins involved in transcriptional regulation play convergent roles in cellular homeostasis, and their dysfunction mediates aberrant gene expressions that underline the hallmarks of tumorigenesis. As tumor progression is dependent on such abnormal regulation of transcription, it is important to discover novel chemical entities as antitumor drugs that target key tumor-associated proteins involved in transcriptional regulation. Despite most key proteins (especially transcription factors) involved in transcriptional regulation are historically recognized as undruggable targets, multiple targeting approaches at diverse levels of transcriptional regulation, such as epigenetic intervention, inhibition of DNA-binding of transcriptional factors, and inhibition of the protein-protein interactions (PPIs), have been established in preclinically or clinically studies. In addition, several new approaches have recently been described, such as targeting proteasomal degradation and eliciting synthetic lethality. This review will emphasize on accentuating these developing therapeutic approaches and provide a thorough conspectus of the drug development to target key proteins involved in transcriptional regulation and their impact on future oncotherapy.
Collapse
Affiliation(s)
- Haixiang Pei
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
17
|
Cytochrome c Oxidase Inhibition by ATP Decreases Mitochondrial ROS Production. Cells 2022; 11:cells11060992. [PMID: 35326443 PMCID: PMC8946758 DOI: 10.3390/cells11060992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
This study addresses the eventual consequence of cytochrome c oxidase (CytOx) inhibition by ATP at high ATP/ADP ratio in isolated rat heart mitochondria. Earlier, it has been demonstrated that the mechanism of allosteric ATP inhibition of CytOx is one of the key regulations of mitochondrial functions. It is relevant that aiming to maintain a high ATP/ADP ratio for the measurement of CytOx activity effectuating the enzymatic inhibition as well as mitochondrial respiration, optimal concentration of mitochondria is critically important. Likewise, only at this concentration, were the differences in ΔΨm and ROS concentrations measured under various conditions significant. Moreover, when CytOx activity was inhibited in the presence of ATP, mitochondrial respiration and ΔΨm both remained static, while the ROS production was markedly decreased. Consubstantial results were found when the electron transport chain was inhibited by antimycin A, letting only CytOx remain functional to support the energy production. This seems to corroborate that the decrease in mitochondrial ROS production is solely the effect of ATP binding to CytOx which results in static respiration as well as membrane potential.
Collapse
|
18
|
Zha J, Li M, Kong R, Lu S, Zhang J. Explaining and Predicting Allostery with Allosteric Database and Modern Analytical Techniques. J Mol Biol 2022; 434:167481. [DOI: 10.1016/j.jmb.2022.167481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/17/2022]
|
19
|
Qiu Y, Wang Y, Chai Z, Ni D, Li X, Pu J, Chen J, Zhang J, Lu S, Lv C, Ji M. Targeting RAS phosphorylation in cancer therapy: Mechanisms and modulators. Acta Pharm Sin B 2021; 11:3433-3446. [PMID: 34900528 PMCID: PMC8642438 DOI: 10.1016/j.apsb.2021.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
RAS, a member of the small GTPase family, functions as a binary switch by shifting between inactive GDP-loaded and active GTP-loaded state. RAS gain-of-function mutations are one of the leading causes in human oncogenesis, accounting for ∼19% of the global cancer burden. As a well-recognized target in malignancy, RAS has been intensively studied in the past decades. Despite the sustained efforts, many failures occurred in the earlier exploration and resulted in an ‘undruggable’ feature of RAS proteins. Phosphorylation at several residues has been recently determined as regulators for wild-type and mutated RAS proteins. Therefore, the development of RAS inhibitors directly targeting the RAS mutants or towards upstream regulatory kinases supplies a novel direction for tackling the anti-RAS difficulties. A better understanding of RAS phosphorylation can contribute to future therapeutic strategies. In this review, we comprehensively summarized the current advances in RAS phosphorylation and provided mechanistic insights into the signaling transduction of associated pathways. Importantly, the preclinical and clinical success in developing anti-RAS drugs targeting the upstream kinases and potential directions of harnessing allostery to target RAS phosphorylation sites were also discussed.
Collapse
Key Words
- ABL, Abelson
- APC, adenomatous polyposis coli
- Allostery
- CK1, casein kinase 1
- CML, chronic myeloid leukemia
- ER, endoplasmic reticulum
- GAPs, GTPase-activating proteins
- GEFs, guanine nucleotide exchange-factors
- GSK3, glycogen synthase kinase 3
- HVR, hypervariable region
- IP3R, inositol trisphosphate receptors
- LRP6, lipoprotein-receptor-related protein 6
- OMM, outer mitochondrial membrane
- PI3K, phosphatidylinositol 3-kinase
- PKC, protein kinase C
- PPIs, protein−protein interactions
- Phosphorylation
- Protein kinases
- RAS
- RIN1, RAB-interacting protein 1
- SHP2, SRC homology 2 domain containing phosphatase 2
- SOS, Son of Sevenless
- STK19, serine/threonine-protein kinase 19
- TKIs, tyrosine kinase inhibitors
- Undruggable
Collapse
Affiliation(s)
- Yuran Qiu
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuanhao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xinyi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200120, China
| | - Jie Chen
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Corresponding authors.
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Corresponding authors.
| | - Chuan Lv
- Department of Plastic Surgery, Changhai Hospital, Naval Military Medical University, Shanghai 200438, China
- Corresponding authors.
| | - Mingfei Ji
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
- Corresponding authors.
| |
Collapse
|
20
|
Datt M. Interplay of substrate polymorphism and conformational plasticity of Plasmodium tyrosyl-tRNA synthetase. Comput Biol Chem 2021; 95:107582. [PMID: 34571426 DOI: 10.1016/j.compbiolchem.2021.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 11/18/2022]
Abstract
Aminoacyl-tRNA synthetases are an indispensable component of ribosomal protein translational machinery and Plasmodium Tyrosyl-tRNA synthetase (PfTyrRS) is a validated drug target. This manuscript illustrates the dynamic conformational landscape of PfTyrRS in the context of substrate binding. Molecular dynamics simulations of PfTyrRS in the presence and absence of ligand show conformational heterogeneity for both the protein and the bound ligand. Diverse conformations for the evolutionarily conserved ATP binding motif (KMSKS) have been observed in both apo- and holo PfTyrRS. Further, the presented attributes of the tyrosyl-adenylate conformational sub-states in situ along with their implications on the strength of intermolecular interactions would be a pertinent benchmark for molecular design studies. In addition, an analysis of the ligand hydration pattern foregrounds the structurally conserved water-mediated inter-molecular interactions. The quantitative assessment of the conformational landscape, based on the fluctuations of the distance between the ligand binding pockets, of apo-PfTyrRS and holo-PfTyrRS highlights the nature of diversity in conformational sampling for the two cases. Evidently, the holo-PfTyrRS adopts a rather compact conformation compared to the apo-PfTyrRS. An intriguing asymmetry in the dynamics of the two monomers is contextualized with the functional asymmetry of the symmetrically dimeric PfTyrRS. Importantly, the network of non-bonded contacts in the apo- and holo- simulated ensembles has been analyzed. The graph-theoretic analysis-based novel insights concerning the nature of information flow as a function of ligation state would prove valuable in understanding PfTyrRS functions. The results presented here contend that understanding allostery in PfTyrRS is essential to astutely design structure-based inhibitors.
Collapse
Affiliation(s)
- Manish Datt
- Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat - 380009, India.
| |
Collapse
|
21
|
Lu S, He X, Yang Z, Chai Z, Zhou S, Wang J, Rehman AU, Ni D, Pu J, Sun J, Zhang J. Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat Commun 2021; 12:4721. [PMID: 34354057 PMCID: PMC8342441 DOI: 10.1038/s41467-021-25020-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the most common proteins targeted by approved drugs. A complete mechanistic elucidation of large-scale conformational transitions underlying the activation mechanisms of GPCRs is of critical importance for therapeutic drug development. Here, we apply a combined computational and experimental framework integrating extensive molecular dynamics simulations, Markov state models, site-directed mutagenesis, and conformational biosensors to investigate the conformational landscape of the angiotensin II (AngII) type 1 receptor (AT1 receptor) - a prototypical class A GPCR-activation. Our findings suggest a synergistic transition mechanism for AT1 receptor activation. A key intermediate state is identified in the activation pathway, which possesses a cryptic binding site within the intracellular region of the receptor. Mutation of this cryptic site prevents activation of the downstream G protein signaling and β-arrestin-mediated pathways by the endogenous AngII octapeptide agonist, suggesting an allosteric regulatory mechanism. Together, these findings provide a deeper understanding of AT1 receptor activation at an atomic level and suggest avenues for the design of allosteric AT1 receptor modulators with a broad range of applications in GPCR biology, biophysics, and medicinal chemistry.
Collapse
Affiliation(s)
- Shaoyong Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Xinheng He
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shuhua Zhou
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Junyan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Duan Ni
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jinpeng Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China.
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
22
|
Qiu Y, Yin X, Li X, Wang Y, Fu Q, Huang R, Lu S. Untangling Dual-Targeting Therapeutic Mechanism of Epidermal Growth Factor Receptor (EGFR) Based on Reversed Allosteric Communication. Pharmaceutics 2021; 13:747. [PMID: 34070173 PMCID: PMC8158526 DOI: 10.3390/pharmaceutics13050747] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Dual-targeting therapeutics by coadministration of allosteric and orthosteric drugs is drawing increased attention as a revolutionary strategy for overcoming the drug-resistance problems. It was further observed that the occupation of orthosteric sites by therapeutics agents has the potential to enhance allosteric ligand binding, which leads to improved potency of allosteric drugs. Epidermal growth factor receptor (EGFR), as one of the most critical anti-cancer targets belonging to the receptor tyrosine kinase family, represents a quintessential example. It was revealed that osimertinib, an ATP-competitive covalent EGFR inhibitor, remarkably enhanced the affinity of a recently developed allosteric inhibitor JBJ-04-125-02 for EGFRL858R/T790M. Here, we utilized extensive large-scale molecular dynamics simulations and the reversed allosteric communication to untangle the detailed molecular underpinning, in which occupation of osimertinib at the orthosteric site altered the overall conformational ensemble of EGFR mutant and reshaped the allosteric site via long-distance signaling. A unique intermediate state resembling the active conformation was identified, which was further stabilized by osimertinib loading. Based on the allosteric communication pathway, we predicted a novel allosteric site positioned around K867, E868, H893, and K960 within the intermediate state. Its correlation with the orthosteric site was validated by both structural and energetic analysis, and its low sequence conservation indicated the potential for selective targeting across the human kinome. Together, these findings not only provided a mechanistic basis for future clinical application of the dual-targeting therapeutics, but also explored an innovative perception of allosteric inhibition of tyrosine kinase signaling.
Collapse
Affiliation(s)
- Yuran Qiu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.Q.); (X.L.); (Y.W.)
| | - Xiaolan Yin
- Department of Radiotherapy, Changhai Hospital (Hongkou District), Naval Medical University, Shanghai 200081, China;
| | - Xinyi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.Q.); (X.L.); (Y.W.)
| | - Yuanhao Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.Q.); (X.L.); (Y.W.)
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Renhua Huang
- Department of Radiation, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (Y.Q.); (X.L.); (Y.W.)
| |
Collapse
|
23
|
Li M, Rehman AU, Liu Y, Chen K, Lu S. Dual roles of ATP-binding site in protein kinases: Orthosteric inhibition and allosteric regulation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 124:87-119. [PMID: 33632471 DOI: 10.1016/bs.apcsb.2020.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinases use ATP to phosphorylate other proteins. Phosphorylation (p) universally orchestrates a fine-tuned network modulating a multitude of biological processes. Moreover, the start of networks, ATP-binding site, has been recognized dual roles to impact protein kinases function: (i) orthosteric inhibition, via being blocked to interference ATP occupying and (ii) allosteric regulation, via being altered first to induce further conformational changes. The above two terminologies are widely used in drug design, which has acquired quite a significant progress in the protein kinases field over the past 2 decades. Most small molecular inhibitors directly compete with ATP to implement orthosteric inhibition, still exhibiting irreplaceable and promising therapeutic effects. Additionally, numerous inhibitors can paradoxically lead protein kinases to hyperphosphorylation, even activation, indicative of the allosteric regulation role of the ATP-binding site. Here, we review the quintessential examples that apply for the dual roles in diverse ways. Our work provides an insight into the molecular mechanisms under the dual roles and will be promisingly instructive for future drug development.
Collapse
Affiliation(s)
- Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ashfaq Ur Rehman
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Centre, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Kai Chen
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, China.
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; Medicinal Chemistry and Bioinformatics Centre, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Affiliation(s)
- Yilin He
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jinkun Xu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofei Wu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Long Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
25
|
Tripathi RKP, Ayyannan SR. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Chem Biol Drug Des 2020; 97:721-773. [PMID: 33191603 DOI: 10.1111/cbdd.13807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The drug discovery panorama is cluttered with promising therapeutic targets that have been deserted because of inadequate authentication and screening failures. Molecular targets formerly tagged as "undruggable" are nowadays being more cautiously cross-examined, and whilst they stay intriguing, numerous targets are emerging more accessible. Protein tyrosine phosphatases (PTPs) excellently exemplifies a class of molecular targets that have transpired as druggable, with several small molecules and antibodies recently turned available for further development. In this respect, SHP2, a PTP, has emerged as one of the potential targets in the current pharmacological research, particularly for cancer, due to its critical role in various signalling pathways. Recently, few molecules with excellent potency have entered clinical trials, but none could reach the clinic. Consequently, search for novel, non-toxic, and specific SHP2 inhibitors are on purview. In this review, general aspects of SHP2 including its structure and mechanistic role in carcinogenesis have been presented. It also sheds light on the development of novel molecular architectures belonging to diverse chemical classes that have been proposed as SHP2-specific inhibitors along with their structure-activity relationships (SARs), stemming from chemical, mechanism-based and computer-aided studies reported since January 2015 to July 2020 (excluding patents), focusing on their potency and selectivity. The encyclopedic facts and discussions presented herein will hopefully facilitate researchers to design new ligands with better efficacy and selectivity against SHP2.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, India.,Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
26
|
Making NSCLC Crystal Clear: How Kinase Structures Revolutionized Lung Cancer Treatment. CRYSTALS 2020. [DOI: 10.3390/cryst10090725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The parallel advances of different scientific fields provide a contemporary scenario where collaboration is not a differential, but actually a requirement. In this context, crystallography has had a major contribution on the medical sciences, providing a “face” for targets of diseases that previously were known solely by name or sequence. Worldwide, cancer still leads the number of annual deaths, with 9.6 million associated deaths, with a major contribution from lung cancer and its 1.7 million deaths. Since the relationship between cancer and kinases was unraveled, these proteins have been extensively explored and became associated with drugs that later attained blockbuster status. Crystallographic structures of kinases related to lung cancer and their developed and marketed drugs provided insight on their conformation in the absence or presence of small molecules. Notwithstanding, these structures were also of service once the initially highly successful drugs started to lose their effectiveness in the emergence of mutations. This review focuses on a subclassification of lung cancer, non-small cell lung cancer (NSCLC), and major oncogenic driver mutations in kinases, and how crystallographic structures can be used, not only to provide awareness of the function and inhibition of these mutations, but also how these structures can be used in further computational studies aiming at addressing these novel mutations in the field of personalized medicine.
Collapse
|
27
|
Bhat AS, Dustin Schaeffer R, Kinch L, Medvedev KE, Grishin NV. Recent advances suggest increased influence of selective pressure in allostery. Curr Opin Struct Biol 2020; 62:183-188. [PMID: 32302874 DOI: 10.1016/j.sbi.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
Allosteric regulation of protein functions is ubiquitous in organismal biology, but the principles governing its evolution are not well understood. Here we discuss recent studies supporting the large-scale existence of latent allostery in ancestor proteins of superfamilies. As suggested, the evolution of allostery could be driven by the need for specificity in paralogs of slow evolving protein complexes with conserved active sites. The same slow evolution is displayed by purifying selection exhibited in allosteric proteins with somatic mutations involved in cancer, where disease-associated mutations are enriched in both orthosteric and allosteric sites. Consequently, disease-associated variants can be used to identify druggable allosteric sites that are specific for paralogs in protein superfamilies with otherwise similar functions.
Collapse
Affiliation(s)
- Archana S Bhat
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Richard Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Lisa Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Kirill E Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States.
| |
Collapse
|
28
|
Chen J, Wang X, Pang L, Zhang JZH, Zhu T. Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Nucleic Acids Res 2020; 47:6618-6631. [PMID: 31173143 PMCID: PMC6649850 DOI: 10.1093/nar/gkz499] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Riboswitches can regulate gene expression by direct and specific interactions with ligands and have recently attracted interest as potential drug targets for antibacterial. In this work, molecular dynamics (MD) simulations, free energy perturbation (FEP) and molecular mechanics generalized Born surface area (MM-GBSA) methods were integrated to probe the effect of mutations on the binding of ligands to guanine riboswitch (GR). The results not only show that binding free energies predicted by FEP and MM-GBSA obtain an excellent correlation, but also indicate that mutations involved in the current study can strengthen the binding affinity of ligands GR. Residue-based free energy decomposition was applied to compute ligand-nucleotide interactions and the results suggest that mutations highly affect interactions of ligands with key nucleotides U22, U51 and C74. Dynamics analyses based on MD trajectories indicate that mutations not only regulate the structural flexibility but also change the internal motion modes of GR, especially for the structures J12, J23 and J31, which implies that the aptamer domain activity of GR is extremely plastic and thus readily tunable by nucleotide mutations. This study is expected to provide useful molecular basis and dynamics information for the understanding of the function of GR and possibility as potential drug targets for antibacterial.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Xingyu Wang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Tong Zhu
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
29
|
Emergence of allosteric drug-resistance mutations: new challenges for allosteric drug discovery. Drug Discov Today 2019; 25:177-184. [PMID: 31634592 DOI: 10.1016/j.drudis.2019.10.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/28/2019] [Accepted: 10/11/2019] [Indexed: 01/31/2023]
Abstract
Allosteric drugs have several significant advantages over traditional orthosteric drugs, encompassing higher selectivity and lower toxicity. Although allosteric drugs have potential advantages as therapeutic agents to treat human diseases, allosteric drug-resistance mutations still occur, rendering these drugs ineffective. Here, we review the emergence of allosteric drug-resistance mutations with an emphasis on examples covering clinically important therapeutic targets, including Breakpoint cluster region-Abelson tyrosine kinase (Bcr-Abl), Akt kinase [also called Protein Kinase B (PKB)], isocitrate dehydrogenase (IDH), MAPK/ERK kinase (MEK), and SRC homology 2 domain-containing phosphatase 2 (SHP2). We also discuss challenges associated with tackling allosteric drug resistance and the possible strategies to overcome this issue.
Collapse
|
30
|
Lu S, He X, Ni D, Zhang J. Allosteric Modulator Discovery: From Serendipity to Structure-Based Design. J Med Chem 2019; 62:6405-6421. [PMID: 30817889 DOI: 10.1021/acs.jmedchem.8b01749] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Xinheng He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
31
|
Lu S, Shen Q, Zhang J. Allosteric Methods and Their Applications: Facilitating the Discovery of Allosteric Drugs and the Investigation of Allosteric Mechanisms. Acc Chem Res 2019; 52:492-500. [PMID: 30688063 DOI: 10.1021/acs.accounts.8b00570] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Allostery, or allosteric regulation, is the phenomenon in which protein functional activity is altered by the binding of an effector at an allosteric site that is topographically distinct from the orthosteric, active site. As one of the most direct and efficient ways to regulate protein function, allostery has played a fundamental role in innumerable biological processes of all living organisms, including enzyme catalysis, signal transduction, cell metabolism, and gene transcription. It is thus considered as "the second secret of life". The abnormality of allosteric communication networks between allosteric and orthosteric sites is associated with the pathogenesis of human diseases. Allosteric modulators, by attaching to structurally diverse allosteric sites, offer the potential for differential selectivity and improved safety compared with orthosteric drugs that bind to conserved orthosteric sites. Harnessing allostery has thus been regarded as a novel strategy for drug discovery. Despite much progress having been made in the repertoire of allostery since the turn of the millennium, the identification of allosteric drugs for therapeutic targets and the elucidation of allosteric mechanisms still present substantial challenges. These challenges are derived from the difficulties in the identification of allosteric sites and mutations, the assessment of allosteric protein-modulator interactions, the screening of allosteric modulators, and the elucidation of allosteric mechanisms in biological systems. To address these issues, we have developed a panel of allosteric services for specific allosteric applications over the past decade, including (i) the creation of the Allosteric Database, with the aim of providing comprehensive allosteric information such as allosteric proteins, modulators, sites, pathways, etc., (ii) the construction of the ASBench benchmark of high-quality allosteric sites for the development of computational methods for predicting allosteric sites, (iii) the development of Allosite and AllositePro for the prediction of the location of allosteric sites in proteins, (iv) the development of the Alloscore scoring function for the evaluation of allosteric protein-modulator interactions, (v) the development of Allosterome for evolutionary analysis of query allosteric sites/modulators within the human proteome, (vi) the development of AlloDriver for the prediction of allosteric mutagenesis, and (vii) the development of AlloFinder for the virtual screening of allosteric modulators and the investigation of allosteric mechanisms. Importantly, we have validated computationally predicted allosteric sites, mutations, and modulators in the real cases of sirtuin 6, casein kinase 2α, phosphodiesterase 10A, and signal transduction and activation of transcription 3. Furthermore, our developed allosteric methods have been widely exploited by other users around the world for allosteric research. Therefore, these allosteric services are expected to expedite the discovery of allosteric drugs and the investigation of allosteric mechanisms.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Qiancheng Shen
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| |
Collapse
|
32
|
Bai J, Gao Y, Chen L, Yin Q, Lou F, Wang Z, Xu Z, Zhou H, Li Q, Cai W, Sun Y, Niu L, Wang H, Wei Z, Lu S, Zhou A, Zhang J, Wang H. Identification of a natural inhibitor of methionine adenosyltransferase 2A regulating one-carbon metabolism in keratinocytes. EBioMedicine 2018; 39:575-590. [PMID: 30591370 PMCID: PMC6355826 DOI: 10.1016/j.ebiom.2018.12.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Background Psoriasis is a common chronic inflammatory skin disease which lacks effective strategies for the treatment. Natural compounds with biological activities are good tools to identify new targets with therapeutic potentials. Acetyl-11-keto-β-boswellic acid (AKBA) is the most bioactive ingredient of boswellic acids, a group of compounds with anti-inflammatory and anti-cancer properties. Target identification of AKBA and metabolomics analysis of psoriasis helped to elucidate the molecular mechanism underlying its effect, and provide new target(s) to treat the disease. Methods To explore the targets and molecular mechanism of AKBA, we performed affinity purification, metabolomics analysis of HaCaT cells treated with AKBA, and epidermis of imiquimod (IMQ) induced mouse model of psoriasis and psoriasis patients. Findings AKBA directly interacts with methionine adenosyltransferase 2A (MAT2A), inhibited its enzyme activity, decreased level of S-adenosylmethionine (SAM) and SAM/SAH ratio, and reprogrammed one‑carbon metabolism in HaCaT cells. Untargeted metabolomics of epidermis showed one‑carbon metabolism was activated in psoriasis patients. Topical use of AKBA improved inflammatory phenotype of IMQ induced psoriasis-like mouse model. Molecular docking and site-directed mutagenesis revealed AKBA bound to an allosteric site at the interface of MAT2A dimer. Interpretation Our study extends the molecular mechanism of AKBA by revealing a new interacting protein MAT2A. And this leads us to find out the dysregulated one‑carbon metabolism in psoriasis, which indicates the therapeutic potential of AKBA in psoriasis. Fund The National Natural Science Foundation, the National Program on Key Basic Research Project, the Shanghai Municipal Commission, the Leading Academic Discipline Project of the Shanghai Municipal Education Commission.
Collapse
Affiliation(s)
- Jing Bai
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Yuanyuan Gao
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Linjiao Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qianqian Yin
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Fangzhou Lou
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zhikai Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zhenyao Xu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Hong Zhou
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Qun Li
- Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Cai
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Yang Sun
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Liman Niu
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Hong Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zhenquan Wei
- Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiwu Zhou
- Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Wang
- Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai Institute of Immunology, Shanghai 200025, China.
| |
Collapse
|
33
|
Wang L, Zheng G, Liu X, Ni D, He X, Cheng J, Lu S. Molecular dynamics simulations provide insights into the origin of gleevec's selectivity toward human tyrosine kinases. J Biomol Struct Dyn 2018; 37:2733-2744. [PMID: 30052122 DOI: 10.1080/07391102.2018.1496139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein kinases are critical drug targets against cancer. Since the discovery of Gleevec, a specific inhibitor of Abl kinase, the capability of this drug to distinguish between Abl and other tyrosine kinases, such as Src, has been intensely investigated but the origin of Gleevec's selectivity to Abl against Src is less studied. Here, we performed molecular dynamics (MD) simulations, dynamical cross-correlation matrices (DCCM), dynamical network analysis, and binding free energy calculations to explore Gleevec's selectivity based on the crystal structures of Abl, Src, and their common ancestors (ANC-AS) and the two constructed mutation systems (AS→Abl and AS→Src). MD simulations revealed that the conformation of the phosphate-binding loop (P-loop) was altered significantly in the AS→Abl system. DCCM results unraveled that mutations increased anticorrelated motions in the AS→Abl system. Community network analysis suggested that the P-loop established special contacts in the AS→Abl system that are devoid in the AS→Src system. The binding free energy calculations unveiled that the affinity of Gleevec to AS→Abl increased to near the Abl level, whereas its affinity to AS→Src decreased to near the Src level. Analysis of individual residue contributions showed that the differences were located mainly at the P-loop. This study is valuable for understanding the sensitivity of Gleevec to human tyrosine kinases. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lulu Wang
- a Department of Critical Care Medicine , Binzhou Medical University Hospital , Binzhou , Shandong , China
| | - Guodong Zheng
- b Department of VIP clinic , Changhai Hospital, Naval Military Medical University , Shanghai , China
| | - Xianxian Liu
- c Department of Infectious Diseases , Binzhou Medical University Hospital , Binzhou , Shandong , China
| | - Duan Ni
- d Department of Pathophysiology Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Xinheng He
- d Department of Pathophysiology Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| | - Jinying Cheng
- c Department of Infectious Diseases , Binzhou Medical University Hospital , Binzhou , Shandong , China
| | - Shaoyong Lu
- d Department of Pathophysiology Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education , Shanghai Jiao Tong University, School of Medicine , Shanghai , China
| |
Collapse
|
34
|
Chen J, Wang J, Pang L, Zhu W. Inhibiting mechanism of small molecule toward the p53-MDM2 interaction: A molecular dynamic exploration. Chem Biol Drug Des 2018; 92:1763-1777. [DOI: 10.1111/cbdd.13345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/01/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Jianzhong Chen
- School of Science; Shandong Jiaotong University; Jinan China
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Jinan Wang
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Laixue Pang
- School of Science; Shandong Jiaotong University; Jinan China
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; Drug Discovery and Design Center; Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| |
Collapse
|
35
|
Li S, Jang H, Zhang J, Nussinov R. Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling. Structure 2018; 26:513-525.e2. [PMID: 29429878 PMCID: PMC8183739 DOI: 10.1016/j.str.2018.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 01/12/2018] [Indexed: 12/30/2022]
Abstract
K-Ras4B preferentially activates Raf-1. The high-affinity interaction of Ras-binding domain (RBD) of Raf with Ras was solved, but the relative position of Raf's cysteine-rich domain (CRD) in the Ras/Raf complex at the membrane and key question of exactly how it affects Raf signaling are daunting. We show that CRD stably binds anionic membranes inserting a positively charged loop into the amphipathic interface. Importantly, when in complex with Ras/RBD, covalently connected CRD presents the same membrane interaction mechanism, with CRD locating at the space between the RBD and membrane. To date, CRD's role was viewed in terms of stabilizing Raf-membrane interaction. Our observations argue for a key role in reducing Ras/RBD fluctuations at the membrane, thereby increasing Ras/RBD affinity. Even without K-Ras, via CRD, Raf-1 can recruit to the membrane; however, by reducing the Ras/RBD fluctuations and enhancing Ras/RBD affinity at the membrane, CRD promotes Raf's activation and MAPK signaling over other pathways.
Collapse
Affiliation(s)
- Shuai Li
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
36
|
Kim BH, Pereverzev A, Zhu S, Tong AOM, Dixon SJ, Chidiac P. Extracellular nucleotides enhance agonist potency at the parathyroid hormone 1 receptor. Cell Signal 2018; 46:103-112. [PMID: 29501726 DOI: 10.1016/j.cellsig.2018.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/27/2022]
Abstract
Parathyroid hormone (PTH) activates the PTH/PTH-related peptide receptor (PTH1R) on osteoblasts and other target cells. Mechanical stimulation of cells, including osteoblasts, causes release of nucleotides such as ATP into the extracellular fluid. In addition to its role as an energy source, ATP serves as an agonist at P2 receptors and an allosteric regulator of many proteins. We investigated the effects of concentrations of extracellular ATP, comparable to those that activate low affinity P2X7 receptors, on PTH1R signaling. Cyclic AMP levels were monitored in real-time using a bioluminescence reporter and β-arrestin recruitment to PTH1R was followed using a complementation-based luminescence assay. ATP markedly enhanced cyclic AMP and β-arrestin signaling as well as downstream activation of CREB. CMP - a nucleotide that lacks a high energy bond and does not activate P2 receptors - mimicked this effect of ATP. Moreover, potentiation was not inhibited by P2 receptor antagonists, including a specific blocker of P2X7. Thus, nucleotide-induced potentiation of signaling pathways was independent of P2 receptor signaling. ATP and CMP reduced the concentration of PTH (1-34) required to produce a half-maximal cyclic AMP or β-arrestin response, with no evident change in maximal receptor activity. Increased potency was similarly apparent with PTH1R agonists PTH (1-14) and PTH-related peptide (1-34). These observations suggest that extracellular nucleotides increase agonist affinity, efficacy or both, and are consistent with modulation of signaling at the level of the receptor or a closely associated protein. Taken together, our findings establish that ATP enhances PTH1R signaling through a heretofore unrecognized allosteric mechanism.
Collapse
Affiliation(s)
- Brandon H Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada
| | - Alexey Pereverzev
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Shuying Zhu
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Abby Oi Man Tong
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada; Dentistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Bone and Joint Institute, The University of Western Ontario, London, Canada; Department of Biology, Faculty of Science, The University of Western Ontario, London, Canada.
| |
Collapse
|
37
|
Lu S, Ji M, Ni D, Zhang J. Discovery of hidden allosteric sites as novel targets for allosteric drug design. Drug Discov Today 2018; 23:359-365. [DOI: 10.1016/j.drudis.2017.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
|
38
|
Abstract
An orthosteric site is commonly viewed as the primary, functionally binding pocket on a receptor. Signal molecules, endogenous agonists, and substrates are recognized by and bind to the orthosteric site of a specific target, resulting in a biological effect. A malfunctioning active site on a crucial receptor has been confirmed as the culprit that causes many metabolic disturbances, neurologic disorders, and genetic diseases. A competitive inhibitor that has a stronger binding affinity can outcompete an orthosteric ligand. An allosteric site, which is nonoverlapping and topographically distinct from the active pocket, can emerge as a potential regulatory site on the protein surface. An allosteric modulator interacts with a specific binding site, affecting the atoms of nearby residues, thus eliciting a series of conformational changes in the residues at the active site through propagation pathways. Allosteric regulation can potentiate or inhibit function instead of blocking it, and this is a promising strategy for drug design. In this chapter, we describe the tools and protocols for allosteric site analysis and allosteric ligand design.
Collapse
Affiliation(s)
- Kun Song
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Su J, Liu X, Zhang S, Yan F, Zhang Q, Chen J. A theoretical insight into selectivity of inhibitors toward two domains of bromodomain-containing protein 4 using molecular dynamics simulations. Chem Biol Drug Des 2017; 91:828-840. [DOI: 10.1111/cbdd.13148] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/22/2017] [Accepted: 11/01/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Jing Su
- School of Physics and Electronics; Shandong Normal University; Jinan China
| | - Xinguo Liu
- School of Physics and Electronics; Shandong Normal University; Jinan China
| | - Shaolong Zhang
- School of Physics and Electronics; Shandong Normal University; Jinan China
| | - Fangfang Yan
- School of Physics and Electronics; Shandong Normal University; Jinan China
| | - Qinggang Zhang
- School of Physics and Electronics; Shandong Normal University; Jinan China
| | - Jianzhong Chen
- School of Science; Shandong Jiaotong University; Jinan China
| |
Collapse
|
40
|
Molecular Dynamics Simulations and Dynamic Network Analysis Reveal the Allosteric Unbinding of Monobody to H-Ras Triggered by R135K Mutation. Int J Mol Sci 2017; 18:ijms18112249. [PMID: 29072601 PMCID: PMC5713219 DOI: 10.3390/ijms18112249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/13/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation. Ras mutations have been associated with a broad spectrum of human cancers and thus targeting Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1 allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics (MD) simulations and dynamic network analysis, we explored the molecular mechanism for the unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD simulations revealed that the overall structures of the two complexes did not change significantly, but the H-Ras–NS1 interface underwent significant conformational alteration in the mutant Binding free energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss of binding of NS1 were identified. Importantly, the allosteric networks for these important residues were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras.
Collapse
|
41
|
A genome-wide structure-based survey of nucleotide binding proteins in M. tuberculosis. Sci Rep 2017; 7:12489. [PMID: 28970579 PMCID: PMC5624866 DOI: 10.1038/s41598-017-12471-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023] Open
Abstract
Nucleoside tri-phosphates (NTP) form an important class of small molecule ligands that participate in, and are essential to a large number of biological processes. Here, we seek to identify the NTP binding proteome (NTPome) in M. tuberculosis (M.tb), a deadly pathogen. Identifying the NTPome is useful not only for gaining functional insights of the individual proteins but also for identifying useful drug targets. From an earlier study, we had structural models of M.tb at a proteome scale from which a set of 13,858 small molecule binding pockets were identified. We use a set of NTP binding sub-structural motifs derived from a previous study and scan the M.tb pocketome, and find that 1,768 proteins or 43% of the proteome can theoretically bind NTP ligands. Using an experimental proteomics approach involving dye-ligand affinity chromatography, we confirm NTP binding to 47 different proteins, of which 4 are hypothetical proteins. Our analysis also provides the precise list of binding site residues in each case, and the probable ligand binding pose. As the list includes a number of known and potential drug targets, the identification of NTP binding can directly facilitate structure-based drug design of these targets.
Collapse
|
42
|
Ji M, Zheng G, Li X, Zhang Z, Jv G, Wang X, Wang J. Computational dissection of allosteric inhibition of the SH2 domain of Bcr-Abl kinase by the monobody inhibitor AS25. J Mol Model 2017; 23:183. [DOI: 10.1007/s00894-017-3353-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/19/2017] [Indexed: 11/30/2022]
|
43
|
Su J, Liu X, Zhang S, Yan F, Zhang Q, Chen J. A computational insight into binding modes of inhibitors XD29, XD35, and XD28 to bromodomain-containing protein 4 based on molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:1212-1224. [DOI: 10.1080/07391102.2017.1317666] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jing Su
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Fangfang Yan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| |
Collapse
|
44
|
Wang J, Yao X, Huang J. New tricks for human farnesyltransferase inhibitor: cancer and beyond. MEDCHEMCOMM 2017; 8:841-854. [PMID: 30108801 PMCID: PMC6072492 DOI: 10.1039/c7md00030h] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Human protein farnesyltransferase (FTase) catalyzes the addition of a C15-farnesyl lipid group to the cysteine residue located in the COOH-terminal tetrapeptide motif of a variety of important substrate proteins, including well-known Ras protein superfamily. The farnesylation of Ras protein is required both for its normal physiological function, and for the transforming capacity of its oncogenic mutants. Over the last several decades, FTase inhibitors (FTIs) were developed to disrupt the farnesylation of oncogenic Ras as anti-cancer agents, and some of them have entered cancer clinical investigation. On the other hand, some substrates of FTase were demonstrated to be related with other human diseases, including Hutchinson-Gilford progeria syndrome, chronic hepatitis D, and cardiovascular diseases. In this review, we summarize the roles of FTase in malignant transformation, proliferation, apoptosis, angiogenesis, and metastasis of tumor cells, and the recently anticancer clinical research advances of FTIs. The therapeutic prospect of FTIs on several other human diseases is also discussed.
Collapse
Affiliation(s)
- Jingyuan Wang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design , School of Pharmacy , East China University of Science and Technology , 130 Mei Long Road , Shanghai 200237 , China . ; Tel: (+86)21 64253681
| |
Collapse
|
45
|
Dong CL, Guo FC, Xue J. Computational insights into HER3 gatekeeper T768I resistance mutation to bosutinib in HER3-related breast cancer. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1901-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Chen J. Functional roles of magnesium binding to extracellular signal-regulated kinase 2 explored by molecular dynamics simulations and principal component analysis. J Biomol Struct Dyn 2017; 36:351-361. [PMID: 28030988 DOI: 10.1080/07391102.2016.1277783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular dynamics (MD) simulations coupled with principal component (PC) analysis were carried out to study functional roles of Mg2+ binding to extracellular signal-regulated kinase 2 (ERK2). The results suggest that Mg2+ binding heavily decreases eigenvalue of the first principal component and totally inhibits motion strength of ERK2, which favors stabilization of ERK2 structure. Binding free energy predictions indicate that Mg2+ binding produces an important effect on binding ability of adenosine triphosphate (ATP) to ERK2 and strengthens the ATP binding. The calculations of residue-based free energy decomposition show that lack of Mg2+ weakens interactions between the hydrophobic rings of ATP and five residues I29, V37, A50, L105, and L154. Hydrogen bond analyses also prove that Mg2+ binding increases occupancies of hydrogen bonds formed between ATP and residues K52, Q103, D104, and M106. We expect that this study can provide a significant theoretical hint for designs of anticancer drugs targeting ERK2.
Collapse
Affiliation(s)
- Jianzhong Chen
- a School of Science, Shandong Jiaotong University , Jinan 250357 , China
| |
Collapse
|
47
|
Chen J, Wang J, Zhu W. Mutation L1196M-induced conformational changes and the drug resistant mechanism of anaplastic lymphoma kinase studied by free energy perturbation and umbrella sampling. Phys Chem Chem Phys 2017; 19:30239-30248. [DOI: 10.1039/c7cp05418a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Anaplastic lymphoma kinase (ALK) has been regarded as a promising drug target in the treatment of tumors and the mutation L1196M induces different levels of drug resistance toward the existing inhibitors.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University
- Jinan
- China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences
- Shanghai
- China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
48
|
Mou L, Cui T, Liu W, Zhang H, Cai Z, Lu S, Gao G. Microsecond molecular dynamics simulations provide insight into the ATP-competitive inhibitor-induced allosteric protection of Akt kinase phosphorylation. Chem Biol Drug Des 2016; 89:723-731. [PMID: 27797456 DOI: 10.1111/cbdd.12895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/02/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
Akt is a serine/threonine protein kinase, a critical mediator of growth factor-induced survival in key cellular pathways. Allosteric signaling between protein intramolecular domains requires long-range communication mediated by hotspot residues, often triggered by ligand binding. Here, based on extensive 3 μs explicit solvent molecular dynamics (MD) simulations of Akt1 kinase domain in the unbound (apo) and ATP-competitive inhibitor, GDC-0068-bound states, we propose a molecular mechanism for allosteric regulation of Akt1 kinase phosphorylation by GDC-0068 binding to the ATP-binding site. MD simulations revealed that the apo Akt1 is flexible with two disengaged N- and C-lobes, equilibrated between the open and closed conformations. GDC-0068 occupancy of the ATP-binding site shifts the conformational equilibrium of Akt1 from the open conformation toward the closed conformation and stabilizes the closed state. This effect enables allosteric signal propagation from the GDC-0068 to the phosphorylated T308 (pT308) in the activation loop and restrains phosphatase access to pT308, thereby protecting the pT308 in the GDC-0068-bound Akt1. Importantly, functional hotspots involved in the allosteric communication from the GDC-0068 to the pT308 are identified. Our analysis of GDC-0068-induced allosteric protection of Akt kinase phosphorylation yields important new insights into the molecular mechanism of allosteric regulation of Akt kinase activity.
Collapse
Affiliation(s)
- Linkai Mou
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Tongwei Cui
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Weiguang Liu
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Hong Zhang
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhanxiu Cai
- Department of Electrical and Computer Engineering, College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China
| | - Shaoyong Lu
- Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guojun Gao
- Department of Urology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
49
|
Sato T, Ohnuki J, Takano M. Dielectric Allostery of Protein: Response of Myosin to ATP Binding. J Phys Chem B 2016; 120:13047-13055. [PMID: 28030954 DOI: 10.1021/acs.jpcb.6b10003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein uses allostery to execute biological function. The physical mechanism underlying the allostery has long been studied, with the focus on the mechanical response by ligand binding. Here, we highlight the electrostatic response, presenting an idea of "dielectric allostery". We conducted molecular dynamics simulations of myosin, a motor protein with allostery, and analyzed the response to ATP binding which is a crucial step in force-generating function, forcing myosin to unbind from the actin filament. We found that the net negative charge of ATP causes a large-scale, anisotropic dielectric response in myosin, altering the electrostatic potential in the distant actin-binding region and accordingly retracting a positively charged actin-binding loop. A large-scale rearrangement of electrostatic bond network was found to occur upon ATP binding. Since proteins are dielectric and ligands are charged/polar in general, the dielectric allostery might underlie a wide spectrum of functions by proteins.
Collapse
Affiliation(s)
- Takato Sato
- Department of Pure and Applied Physics, Waseda University , Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Jun Ohnuki
- Department of Pure and Applied Physics, Waseda University , Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics, Waseda University , Okubo 3-4-1, Shinjuku-Ku, Tokyo 169-8555, Japan
| |
Collapse
|
50
|
Chen J. Clarifying binding difference of ATP and ADP to extracellular signal-regulated kinase 2 by using molecular dynamics simulations. Chem Biol Drug Des 2016; 89:548-558. [PMID: 27696674 DOI: 10.1111/cbdd.12877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/03/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
Abstract
Extracellular signal-regulated kinase 2 is a promising target for designs and development of anticancer drugs. Molecular dynamics simulations and molecular mechanics Poisson-Boltzmann method were applied to study binding difference of ADP and ATP to extracellular signal-regulated kinase 2. The results prove that the binding ability of ATP to extracellular signal-regulated kinase 2 is stronger than that of ADP. Principal component analysis performed by using molecular dynamics trajectories suggests that binding of ADP and ATP to extracellular signal-regulated kinase 2 change motion directions of two helices α1 and α2. Residue-based free energy decomposition method was adopted to calculate contributions of separate residues to associations of ADP and ATP with extracellular signal-regulated kinase 2. The results show that ADP and ATP produce strong CH-π interactions with five residues Ile29, Val37, Ala50, Leu105, and Leu154. In addition, five hydrogen bonding interactions of ADP and ATP with residues Lys52, Gln103, Asp104, and Met106 also stabilize bindings of ADP and ATP to extracellular signal-regulated kinase 2. Overall, the CH-π interactions of ATP with five residues Ile29, Val37, Ala50, Leu105, and Leu154 are stronger than ADP. This study is expected to contribute a significant theoretical hint for designs of anticancer drugs targeting extracellular signal-regulated kinase 2.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|