1
|
Sahayasheela VJ, Ooga M, Kumagai T, Sugiyama H. Z-DNA at the crossroads: untangling its role in genome dynamics. Trends Biochem Sci 2025; 50:267-279. [PMID: 39875265 DOI: 10.1016/j.tibs.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
DNA can fold into noncanonical left-handed Z-DNA conformation beyond the right-handed B-DNA. While its crystal structure was discovered nearly four decades ago, it was predominantly considered a structural curiosity. Recent evidence suggests that Z-DNA formation occurs in nuclear and mitochondrial DNA (mtDNA), with significant biological implications. However, our understanding of its roles remains in its infancy, primarily due to a lack of study tools. In this review we summarize the structure and function of Z-DNA within the genome while addressing the difficulties associated with identifying and investigating its role(s). We then critically evaluate several intracellular factors that can modulate and regulate Z-DNA. Additionally, we discuss the recent technological and methodological advances that may overcome the challenges and enhance our understanding of Z-DNA.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 160-8582, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Mitsuharu Ooga
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiyacho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Kudriavskii VV, Goncharov AO, Eremeev AV, Ruchko ES, Veselovsky VA, Klimina KM, Bogomazova AN, Lagarkova MA, Moshkovskii SA, Kliuchnikova AA. RNA Editing by ADAR Adenosine Deaminases in the Cell Models of CAG Repeat Expansion Diseases: Significant Effect of Differentiation from Stem Cells into Brain Organoids in the Absence of Substantial Influence of CAG Repeats on the Level of Editing. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1474-1489. [PMID: 39245456 DOI: 10.1134/s0006297924080078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Expansion of CAG repeats in certain genes is a known cause of several neurodegenerative diseases, but exact mechanism behind this is not yet fully understood. It is believed that the double-stranded RNA regions formed by CAG repeats could be harmful to the cell. This study aimed to test the hypothesis that these RNA regions might potentially interfere with ADAR RNA editing enzymes, leading to the reduced A-to-I editing of RNA and activation of the interferon response. We studied induced pluripotent stem cells (iPSCs) derived from the patients with Huntington's disease or ataxia type 17, as well as midbrain organoids developed from these cells. A targeted panel for next-generation sequencing was used to assess editing in the specific RNA regions. Differentiation of iPSCs into brain organoids led to increase in the ADAR2 gene expression and decrease in the expression of protein inhibitors of RNA editing. As a result, there was increase in the editing of specific ADAR2 substrates, which allowed identification of differential substrates of ADAR isoforms. However, comparison of the pathology and control groups did not show differences in the editing levels among the iPSCs. Additionally, brain organoids with 42-46 CAG repeats did not exhibit global changes. On the other hand, brain organoids with the highest number of CAG repeats in the huntingtin gene (76) showed significant decrease in the level of RNA editing of specific transcripts, potentially involving ADAR1. Notably, editing of the long non-coding RNA PWAR5 was nearly absent in this sample. It could be stated in conclusion that in most cultures with repeat expansion, the hypothesized effect on RNA editing was not confirmed.
Collapse
Affiliation(s)
- Viacheslav V Kudriavskii
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Anton O Goncharov
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Artem V Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Evgenii S Ruchko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Vladimir A Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ksenia M Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Sergei A Moshkovskii
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Max Planck Institute for Interdisciplinary Research, Göttingen, 37077, Germany.
| | - Anna A Kliuchnikova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| |
Collapse
|
3
|
Bansal A, Kaushik S, Kukreti S. Non-canonical DNA structures: Diversity and disease association. Front Genet 2022; 13:959258. [PMID: 36134025 PMCID: PMC9483843 DOI: 10.3389/fgene.2022.959258] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
A complete understanding of DNA double-helical structure discovered by James Watson and Francis Crick in 1953, unveil the importance and significance of DNA. For the last seven decades, this has been a leading light in the course of the development of modern biology and biomedical science. Apart from the predominant B-form, experimental shreds of evidence have revealed the existence of a sequence-dependent structural diversity, unusual non-canonical structures like hairpin, cruciform, Z-DNA, multistranded structures such as DNA triplex, G-quadruplex, i-motif forms, etc. The diversity in the DNA structure depends on various factors such as base sequence, ions, superhelical stress, and ligands. In response to these various factors, the polymorphism of DNA regulates various genes via different processes like replication, transcription, translation, and recombination. However, altered levels of gene expression are associated with many human genetic diseases including neurological disorders and cancer. These non-B-DNA structures are expected to play a key role in determining genetic stability, DNA damage and repair etc. The present review is a modest attempt to summarize the available literature, illustrating the occurrence of non-canonical structures at the molecular level in response to the environment and interaction with ligands and proteins. This would provide an insight to understand the biological functions of these unusual DNA structures and their recognition as potential therapeutic targets for diverse genetic diseases.
Collapse
Affiliation(s)
- Aparna Bansal
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Shikha Kaushik
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- Department of Chemistry, Rajdhani College, University of Delhi, New Delhi, India
| | - Shrikant Kukreti
- Nucleic Acid Research Lab, Department of Chemistry, University of Delhi, Delhi, India
- *Correspondence: Shrikant Kukreti,
| |
Collapse
|
4
|
Bhanjadeo MM, Nial PS, Sathyaseelan C, Singh AK, Dutta J, Rathinavelan T, Subudhi U. Biophysical interaction between lanthanum chloride and (CG) n or (GC) n repeats: A reversible B-to-Z DNA transition. Int J Biol Macromol 2022; 216:698-709. [PMID: 35809677 DOI: 10.1016/j.ijbiomac.2022.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 11/24/2022]
Abstract
The transition from right-handed to left-handed DNA is not only acts as the controlling factor for switching gene expression but also has equal importance in designing nanomechanical devices. The (CG)n and (GC)n repeat sequences are well known model molecules to study B-Z transition in the presence of higher concentration of monovalent cations. In this communication, we report a cyclic transition in (CG)6 DNA using millimolar concentration of trivalent lanthanide salt LaCl3. The controlled and reversible transition was seen in (CG)12, and (GC)12 DNA employing CD spectroscopy. While LaCl3 failed to induce B-Z transition in shorter oligonucleotides such as (CG)3 and (GC)3, a smooth B-Z transition was recorded for (CG)6, (CG)12 and (GC)12 sequences. Interestingly, the phenomenon was reversible (Z-B transition) with addition of EDTA. Particularly, two rounds of cyclic transition (B-Z-B-Z-B) have been noticed in (CG)6 DNA in presence of LaCl3 and EDTA which strongly suggest that B-Z transition is reversible in short repeat sequences. Thermal melting and annealing behaviour of B-DNA are reversible while the thermal melting of LaCl3-induced Z-DNA is irreversible which suggest a stronger binding of LaCl3 to the phosphate backbone of Z-DNA. This was further supported by isothermal titration calorimetric study. Molecular dynamics (MD) simulation indicates that the mode of binding of La3+ (of LaCl3) with d(CG)8.d(CG)8 is through the minor groove, wherein, 3 out of 11 La3+ bridge the anionic oxygens of the complementary strands. Such a tight coordination of La3+ with the anionic oxygens at the minor groove surface may be the reason for the experimentally observed irreversibility of LaCl3-induced Z-DNA seen in longer DNA fragments. Thus, these results indicate LaCl3 can easily be adopted as an inducer of left-handed DNA in other short oligonucleotides sequences to facilitate the understanding of the molecular mechanism of B-Z transition.
Collapse
Affiliation(s)
- Madhabi M Bhanjadeo
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Partha S Nial
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Chakkarai Sathyaseelan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi Campus, Telangana 502285, India
| | - Ajit K Singh
- Structural Biology Laboratory, DBT-Institute of Life Sciences, Bhubaneswar 751023, India; Department of Pharmacology, University of Vermont College of Medicine, Burlington 05405, USA
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education & Research, Bhubaneswar 752050, India; Homi Bhaba National Institute, Mumbai 400094, India
| | | | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Construction of ssDNA-Attached LR-Chimera Involving Z-DNA for ZBP1 Binding Analysis. Molecules 2022; 27:molecules27123706. [PMID: 35744832 PMCID: PMC9230395 DOI: 10.3390/molecules27123706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
The binding of proteins to Z-DNA is hard to analyze, especially for short non-modified DNA, because it is easily transferred to B-DNA. Here, by the hybridization of a larger circular single-stranded DNA (ssDNA) with a smaller one, an LR-chimera (involving a left-handed part and a right-handed one) with an ssDNA loop is produced. The circular ssDNAs are prepared by the hybridization of two ssDNA fragments to form two nicks, followed by nick sealing with T4 DNA ligase. No splint (a scaffold DNA for circularizing ssDNA) is required, and no polymeric byproducts are produced. The ssDNA loop on the LR-chimera can be used to attach it with other molecules by hybridization with another ssDNA. The gel shift binding assay with Z-DNA specific binding antibody (Z22) or Z-DNA binding protein 1 (ZBP1) shows that stable Z-DNA can form under physiological ionic conditions even when the extra ssDNA part is present. Concretely, a 5'-terminal biotin-modified DNA oligonucleotide complementary to the ssDNA loop on the LR-chimera is used to attach it on the surface of a biosensor inlaid with streptavidin molecules, and the binding constant of ZBP1 with Z-DNA is analyzed by BLI (bio-layer interferometry). This approach is convenient for quantitatively analyzing the binding dynamics of Z-DNA with other molecules.
Collapse
|
6
|
Patro LPP, Rathinavelan T. STRIDER: Steric hindrance and metal coordination identifier. Comput Biol Chem 2022; 98:107686. [DOI: 10.1016/j.compbiolchem.2022.107686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/03/2022]
|
7
|
Li L, Zhang Y, Ma W, Chen H, Liu M, An R, Cheng B, Liang X. Nonalternating purine pyrimidine sequences can form stable left-handed DNA duplex by strong topological constraint. Nucleic Acids Res 2021; 50:684-696. [PMID: 34967416 PMCID: PMC8789069 DOI: 10.1093/nar/gkab1283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 11/14/2022] Open
Abstract
In vivo, left-handed DNA duplex (usually refers to Z-DNA) is mainly formed in the region of DNA with alternating purine pyrimidine (APP) sequence and plays significant biological roles. It is well known that d(CG)n sequence can form Z-DNA most easily under negative supercoil conditions, but its essence has not been well clarified. The study on sequence dependence of Z-DNA stability is very difficult without modification or inducers. Here, by the strong topological constraint caused by hybridization of two complementary short circular ssDNAs, left-handed duplex part was generated for various sequences, and their characteristics were investigated by using gel-shift after binding to specific proteins, CD and Tm analysis, and restriction enzyme cleavage. Under the strong topological constraint, non-APP sequences can also form left-handed DNA duplex as stable as that of APP sequences. As compared with non-APP sequences, the thermal stability difference for APP sequences between Z-form and B-form is smaller, which may be the reason that Z-DNA forms preferentially for APP ones. This result can help us to understand why nature selected APP sequences to regulate gene expression by transient Z-DNA formation, as well as why polymer with chirality can usually form both duplexes with left- or right-handed helix.
Collapse
Affiliation(s)
- Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yaping Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wanzhi Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengqin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Bingxiao Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
8
|
Ajjugal Y, Rathinavelan T. Conformational distortions induced by periodically recurring A…A in d(CAG).d(CAG) provide stereochemical rationale for the trapping of MSH2.MSH3 in polyQ disorders. Comput Struct Biotechnol J 2021; 19:4447-4455. [PMID: 34471491 PMCID: PMC8379282 DOI: 10.1016/j.csbj.2021.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
CAG repeat instability causes a number of neurodegenerative disorders. The unusual hairpin stem structure formed by the CAG repeats in DNA traps the human mismatch repair MSH2.MSH3 (Mutsβ) complex. To understand the mechanism behind the abnormal binding of Mutsβ with the imperfect hairpin stem structure formed by CAG repeats, molecular dynamics simulations have been carried out for Mutsβ-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 (1 A…A mismatch) and Mutsβ-d(CAG)5.d(CAG)5 (5 mismatches, wherein, A…A occurs periodically) complexes. The interaction of MSH3 residue Tyr245 at the minor groove side of A…A, an essential interaction responsible for the recognition by Mutsβ, are retained in both the cases. Nevertheless, the periodic unwinding caused by the nonisostericity of A…A with the flanking canonical base pairs in d(CAG)5.d(CAG)5 distorts the regular B-form geometry. Such an unwinding exposes one of the A…A mismatches (that interacts with Tyr245) at the major groove side and also facilitates the on and off hydrogen bonding interaction with Lys546 sidechain (MSH2-domain-IV). In contrast, kinking of the DNA towards the major groove in Mutsβ-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 doesn’t facilitate such an exposure of the bases at the major groove. Further, the unwinding of the helix in d(CAG)5.d(CAG)5 enhances the tighter binding between MSH2-domain-I and d(CAG)5.d(CAG)5 at the major groove side as well as between MSH3-domain-I and MSH3-domain-IV. Markedly, such enhanced interactions are absent in Mutsβ-d(CAG)2(CAG)(CAG)2.d(CTG)2(CAG)(CTG)2 that has a single A…A mismatch. Thus, the above-mentioned enhancement in intra- and inter- molecular interactions in Mutsβ-d(CAG)5.d(CAG)5 provide the stereochemical rationale for the trapping of Mutsβ in CAG repeat expansion disorders.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502285, India
| | | |
Collapse
|
9
|
Ajjugal Y, Kolimi N, Rathinavelan T. Secondary structural choice of DNA and RNA associated with CGG/CCG trinucleotide repeat expansion rationalizes the RNA misprocessing in FXTAS. Sci Rep 2021; 11:8163. [PMID: 33854084 PMCID: PMC8046799 DOI: 10.1038/s41598-021-87097-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
CGG tandem repeat expansion in the 5'-untranslated region of the fragile X mental retardation-1 (FMR1) gene leads to unusual nucleic acid conformations, hence causing genetic instabilities. We show that the number of G…G (in CGG repeat) or C…C (in CCG repeat) mismatches (other than A…T, T…A, C…G and G…C canonical base pairs) dictates the secondary structural choice of the sense and antisense strands of the FMR1 gene and their corresponding transcripts in fragile X-associated tremor/ataxia syndrome (FXTAS). The circular dichroism (CD) spectra and electrophoretic mobility shift assay (EMSA) reveal that CGG DNA (sense strand of the FMR1 gene) and its transcript favor a quadruplex structure. CD, EMSA and molecular dynamics (MD) simulations also show that more than four C…C mismatches cannot be accommodated in the RNA duplex consisting of the CCG repeat (antisense transcript); instead, it favors an i-motif conformational intermediate. Such a preference for unusual secondary structures provides a convincing justification for the RNA foci formation due to the sequestration of RNA-binding proteins to the bidirectional transcripts and the repeat-associated non-AUG translation that are observed in FXTAS. The results presented here also suggest that small molecule modulators that can destabilize FMR1 CGG DNA and RNA quadruplex structures could be promising candidates for treating FXTAS.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | - Narendar Kolimi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | | |
Collapse
|
10
|
Ajjugal Y, Tomar K, Rao DK, Rathinavelan T. Spontaneous and frequent conformational dynamics induced by A…A mismatch in d(CAA)·d(TAG) duplex. Sci Rep 2021; 11:3689. [PMID: 33574412 PMCID: PMC7878774 DOI: 10.1038/s41598-021-82669-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 01/20/2021] [Indexed: 01/20/2023] Open
Abstract
Base pair mismatches in DNA can erroneously be incorporated during replication, recombination, etc. Here, the influence of A…A mismatch in the context of 5′CAA·5′TAG sequence is explored using molecular dynamics (MD) simulation, umbrella sampling MD, circular dichroism (CD), microscale thermophoresis (MST) and NMR techniques. MD simulations reveal that the A…A mismatch experiences several transient events such as base flipping, base extrusion, etc. facilitating B–Z junction formation. A…A mismatch may assume such conformational transitions to circumvent the effect of nonisostericity with the flanking canonical base pairs so as to get accommodated in the DNA. CD and 1D proton NMR experiments further reveal that the extent of B–Z junction increases when the number of A…A mismatch in d(CAA)·d(T(A/T)G) increases (1–5). CD titration studies of d(CAA)·d(TAG)n=5 with the hZαADAR1 show the passive binding between the two, wherein, the binding of protein commences with B–Z junction recognition. Umbrella sampling simulation indicates that the mismatch samples anti…+ syn/+ syn…anti, anti…anti & + syn…+ syn glycosyl conformations. The concomitant spontaneous transitions are: a variety of hydrogen bonding patterns, stacking and minor or major groove extrahelical movements (with and without the engagement of hydrogen bonds) involving the mismatch adenines. These transitions frequently happen in anti…anti conformational region compared with the other three regions as revealed from the lifetime of these states. Further, 2D-NOESY experiments indicate that the number of cross-peaks diminishes with the increasing number of A…A mismatches implicating its dynamic nature. The spontaneous extrahelical movement seen in A…A mismatch may be a key pre-trapping event in the mismatch repair due to the accessibility of the base(s) to the sophisticated mismatch repair machinery.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy District, Telangana State, 502285, India
| | - Kripi Tomar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy District, Telangana State, 502285, India
| | - D Krishna Rao
- Tata Institute of Fundamental Research, 36/P, Gopanpally Mandal, Ranga Reddy District, Hyderabad, Telangana State, 500107, India
| | - Thenmalarchelvi Rathinavelan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy District, Telangana State, 502285, India.
| |
Collapse
|
11
|
Ajjugal Y, Rathinavelan T. Sequence dependent influence of an A…A mismatch in a DNA duplex: An insight into the recognition by hZα ADAR1 protein. J Struct Biol 2020; 213:107678. [PMID: 33307177 DOI: 10.1016/j.jsb.2020.107678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/29/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Base pair mismatches can erroneously be incorporated in the DNA. An adenine pairing with another adenine is one of the eight possible mismatches. The atomistic insights about the structure and dynamics of an A…A mismatch in a DNA (unbound form) is not yet accessible to any experimental technique. Earlier molecular dynamics (MD) simulations have shown that A…A mismatch in the midst of 5'CAG/3'GAC, 5'GAC/3'CAG and 5'CAA/3'GAT (underline represents the mismatch) are highly dynamic in nature. By employing MD simulation, the influence of an A…A mismatch in the midst of 5'GAA/3'CAT, 5'GAG/3'CAC, 5'AAC/3'TAG, 5'AAG/3'TAC, 5'TAA/3'AAT, 5'TAT/3'AAA and 5'AAT/3'TAA sequences have been investigated here. The results indicate that irrespective of the flanking sequences, the mismatch samples a variety of transient conformations, including a B-Z junction. Further, circular dichroism studies have been carried out to explore the ability of these sequences to bind with hZαADAR1 which specifically recognizes B-Z junction/Z-DNA. The results indicate that hZαADAR1 could not lead to a complete B to Z transition in the above sequences. Notably, a complete transition to Z-form has been reported earlier for 5'GAC/3'CAG upon titrating with hZαADAR1. Intriguingly, 5'AAC/3'TAG, 5'AAG/3'TAC and 5'GAA/3'CAT exhibit a B-Z junction formation rather than a complete transition to Z-form, similar to the situation of 5'CAA/3'GAT. These indicate that although A…A mismatch could induce a local B-Z junction transiently, hZαADAR1 requires the presence of a G…C/C…G base pair adjacent to the A…A mismatch for the binding. Additionally, the extent of B-Z junction has enhanced upon binding with hZαADAR1 in the presence of the A…A mismatch (specifically when CG, CA, AC, GA and AG steps occur), but not in the presence of the canonical base pairs. These confirm the inclination of A…A mismatch towards the B-Z junction.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi Campus, Telangana State 502285, India
| | - Thenmalarchelvi Rathinavelan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi Campus, Telangana State 502285, India.
| |
Collapse
|
12
|
Proukakis C. Somatic mutations in neurodegeneration: An update. Neurobiol Dis 2020; 144:105021. [PMID: 32712267 DOI: 10.1016/j.nbd.2020.105021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mosaicism, the presence of genomic differences between cells due to post-zygotic somatic mutations, is widespread in the human body, including within the brain. A role for this in neurodegenerative diseases has long been hypothesised, and technical developments are now allowing the question to be addressed in detail. The rapidly accumulating evidence is discussed in this review, with a focus on recent developments. Somatic mutations of numerous types may occur, including single nucleotide variants (SNVs), copy number variants (CNVs), and retrotransposon insertions. They could act as initiators or risk factors, especially if they arise in development, although they could also result from the disease process, potentially contributing to progression. In common sporadic neurodegenerative disorders, relevant mutations have been reported in synucleinopathies, comprising somatic gains of SNCA in Parkinson's disease and multiple system atrophy, and in Alzheimer's disease, where a novel recombination mechanism leading to somatic variants of APP, as well as an excess of somatic SNVs affecting tau phosphorylation, have been reported. In Mendelian repeat expansion disorders, mosaicism due to somatic instability, first detected 25 years ago, has come to the forefront. Brain somatic SNVs occur in DNA repair disorders, and there is evidence for a role of several ALS genes in DNA repair. While numerous challenges, and need for further validation, remain, this new, or perhaps rediscovered, area of research has the potential to transform our understanding of neurodegeneration.
Collapse
Affiliation(s)
- Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
13
|
Qamar AZ, Asefifeyzabadi N, Taki M, Naphade S, Ellerby LM, Shamsi MH. Characterization and application of fluidic properties of trinucleotide repeat sequences by wax-on-plastic microfluidics. J Mater Chem B 2020; 8:743-751. [PMID: 31894829 DOI: 10.1039/c9tb02208b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trinucleotide repeat (TNR) sequences introduce sequence-directed flexibility in the genomic makeup of all living species leading to unique non-canonical structure formation. In humans, the expansions of TNR sequences are responsible for almost 24 neurodegenerative and neuromuscular diseases because their unique structures disrupt cell functions. The biophysical studies of these sequences affect their electrophoretic mobility and spectroscopic signatures. Here, we demonstrate a novel strategy to characterize and discriminate the TNR sequences by monitoring their capillary flow in the absence of an external driving force using wax-on-plastic microchannels. The wax-on-plastic microfluidic system translates the sequence-directed flexibility of TNR into differential flow dynamics. Several variables were used to characterize sequences including concentration, single- vs. double-stranded samples, type of repeat sequence, length of the repeat sequence, presence of mismatches in duplex, and presence of metal ion. All these variables were found to influence the flow velocities of TNR sequences as these factors directly affect the structural flexibility of TNR at the molecular level. An overall trend was observed as the higher flexibility in the TNR structure leads to lower capillary flow. After testing samples derived from relevant cells harboring expanded TNR sequences, it is concluded that this approach may transform into a reagent-free and pump-free biosensing platform to detect microsatellite expansion diseases.
Collapse
Affiliation(s)
- Ahmad Zaman Qamar
- Department of Chemistry & Biochemistry, Southern Illinois University at Carbondale, 1245 Lincoln Dr, Carbondale, IL 62901, USA.
| | - Narges Asefifeyzabadi
- Department of Chemistry & Biochemistry, Southern Illinois University at Carbondale, 1245 Lincoln Dr, Carbondale, IL 62901, USA.
| | - Motahareh Taki
- Department of Chemistry & Biochemistry, Southern Illinois University at Carbondale, 1245 Lincoln Dr, Carbondale, IL 62901, USA.
| | - Swati Naphade
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Mohtashim Hassan Shamsi
- Department of Chemistry & Biochemistry, Southern Illinois University at Carbondale, 1245 Lincoln Dr, Carbondale, IL 62901, USA.
| |
Collapse
|
14
|
Alptekin D, Pazarcı P, Bereketoğlu MA, Erkoç MA, Ilgaz NS, Lüleyap Ü. Huntington hastalığı tanısı almış hastalarda ve ailelerinde CAG trinükleotid tekrar sayılarının fragman analizi ile tespiti. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.461390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Flower M, Lomeikaite V, Ciosi M, Cumming S, Morales F, Lo K, Hensman Moss D, Jones L, Holmans P, Monckton DG, Tabrizi SJ. MSH3 modifies somatic instability and disease severity in Huntington's and myotonic dystrophy type 1. Brain 2019; 142:awz115. [PMID: 31216018 PMCID: PMC6598626 DOI: 10.1093/brain/awz115] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/31/2019] [Accepted: 02/27/2019] [Indexed: 12/22/2022] Open
Abstract
The mismatch repair gene MSH3 has been implicated as a genetic modifier of the CAG·CTG repeat expansion disorders Huntington's disease and myotonic dystrophy type 1. A recent Huntington's disease genome-wide association study found rs557874766, an imputed single nucleotide polymorphism located within a polymorphic 9 bp tandem repeat in MSH3/DHFR, as the variant most significantly associated with progression in Huntington's disease. Using Illumina sequencing in Huntington's disease and myotonic dystrophy type 1 subjects, we show that rs557874766 is an alignment artefact, the minor allele for which corresponds to a three-repeat allele in MSH3 exon 1 that is associated with a reduced rate of somatic CAG·CTG expansion (P = 0.004) and delayed disease onset (P = 0.003) in both Huntington's disease and myotonic dystrophy type 1, and slower progression (P = 3.86 × 10-7) in Huntington's disease. RNA-Seq of whole blood in the Huntington's disease subjects found that repeat variants are associated with MSH3 and DHFR expression. A transcriptome-wide association study in the Huntington's disease cohort found increased MSH3 and DHFR expression are associated with disease progression. These results suggest that variation in the MSH3 exon 1 repeat region influences somatic expansion and disease phenotype in Huntington's disease and myotonic dystrophy type 1, and suggests a common DNA repair mechanism operates in both repeat expansion diseases.
Collapse
Affiliation(s)
- Michael Flower
- Department of Neurodegenerative Disease and Dementia Research Institute, UCL, UK
| | - Vilija Lomeikaite
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | - Marc Ciosi
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | - Sarah Cumming
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | - Fernando Morales
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Kitty Lo
- School of Mathematics and Statistics, University of Sydney, Australia
| | - Davina Hensman Moss
- Department of Neurodegenerative Disease and Dementia Research Institute, UCL, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease and Dementia Research Institute, UCL, UK
| |
Collapse
|
16
|
Ravichandran S, Subramani VK, Kim KK. Z-DNA in the genome: from structure to disease. Biophys Rev 2019; 11:383-387. [PMID: 31119604 DOI: 10.1007/s12551-019-00534-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
The scope of studies investigating the architecture of genomic DNA has progressed steadily since the elucidation of the structure of B-DNA. In recent years, several non-canonical DNA structures including Z-DNA, G-quadruplexes, H-DNA, cruciform DNA, and i-motifs have been reported to form in genomic DNA and are closely related to the evolution and development of disease. The ability of these structures to form in genomic DNA indicates that they might have important cellular roles and are therefore retained during evolution. Understanding the impact of the formation of these secondary structures on cellular processes can enable identification of new targets for therapeutics. In this review, we report the state of understanding of Z-DNA structure and formation and their implication in disease. Finally, we state our perspective on the potential of Z-DNA as a therapeutic target.
Collapse
Affiliation(s)
- Subramaniyam Ravichandran
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Vinod Kumar Subramani
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea.
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
| |
Collapse
|
17
|
Abstract
Diseases such as Huntington's disease and certain spinocerebellar ataxias are caused by the expansion of genomic cytosine-adenine-guanine (CAG) trinucleotide repeats beyond a specific threshold. These diseases are all characterised by neurological symptoms and central neurodegeneration, but our understanding of how expanded repeats drive neuronal loss is incomplete. Recent human genetic evidence implicates DNA repair pathways, especially mismatch repair, in modifying the onset and progression of CAG repeat diseases. Repair pathways might operate directly on repeat sequences by licensing or inhibiting repeat expansion in neurons. Alternatively, or in addition, because many of the genes containing pathogenic CAG repeats encode proteins that themselves have roles in the DNA damage response, it is possible that repeat expansions impair specific DNA repair pathways. DNA damage could then accrue in neurons, leading to further expansion at repeat loci, thus setting up a vicious cycle of pathology. In this review, we consider DNA damage and repair pathways in postmitotic neurons in the context of disease-causing CAG repeats. Investigating and understanding these pathways, which are clearly relevant in promoting and ameliorating disease in humans, is a research priority, as they are known to modify disease and therefore constitute prevalidated drug targets.
Collapse
Affiliation(s)
- Thomas H Massey
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Lesley Jones
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, CF24 4HQ, UK
| |
Collapse
|
18
|
Kolimi N, Ajjugal Y, Rathinavelan T. A B-Z junction induced by an A … A mismatch in GAC repeats in the gene for cartilage oligomeric matrix protein promotes binding with the hZα ADAR1 protein. J Biol Chem 2017; 292:18732-18746. [PMID: 28924040 PMCID: PMC5704460 DOI: 10.1074/jbc.m117.796235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
GAC repeat expansion from five to seven in the exonic region of the gene for cartilage oligomeric matrix protein (COMP) leads to pseudoachondroplasia, a skeletal abnormality. However, the molecular mechanism by which GAC expansions in the COMP gene lead to skeletal dysplasias is poorly understood. Here we used molecular dynamics simulations, which indicate that an A … A mismatch in a d(GAC)6·d(GAC)6 duplex induces negative supercoiling, leading to a local B-to-Z DNA transition. This transition facilitates the binding of d(GAC)7·d(GAC)7 with the Zα-binding domain of human adenosine deaminase acting on RNA 1 (ADAR1, hZαADAR1), as confirmed by CD, NMR, and microscale thermophoresis studies. The CD results indicated that hZαADAR1 recognizes the zigzag backbone of d(GAC)7·d(GAC)7 at the B-Z junction and subsequently converts it into Z-DNA via the so-called passive mechanism. Molecular dynamics simulations carried out for the modeled hZαADAR1-d(GAC)6d(GAC)6 complex confirmed the retention of previously reported important interactions between the two molecules. These findings suggest that hZαADAR1 binding with the GAC hairpin stem in COMP can lead to a non-genetic, RNA editing-mediated substitution in COMP that may then play a crucial role in the development of pseudoachondroplasia.
Collapse
Affiliation(s)
- Narendar Kolimi
- From the Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502285, India
| | - Yogeeshwar Ajjugal
- From the Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502285, India
| | - Thenmalarchelvi Rathinavelan
- From the Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502285, India
| |
Collapse
|
19
|
Pan F, Man VH, Roland C, Sagui C. Structure and Dynamics of DNA and RNA Double Helices of CAG and GAC Trinucleotide Repeats. Biophys J 2017; 113:19-36. [PMID: 28700917 DOI: 10.1016/j.bpj.2017.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
CAG trinucleotide repeats are known to cause 10 late-onset progressive neurodegenerative disorders as the repeats expand beyond a threshold, whereas GAC repeats are associated with skeletal dysplasias and expand from the normal five to a maximum of seven repeats. The TR secondary structure is believed to play a role in CAG expansions. We have carried out free energy and molecular dynamics studies to determine the preferred conformations of the A-A noncanonical pairs in (CAG)n and (GAC)n trinucleotide repeats (n = 1, 4) and the consequent changes in the overall structure of the RNA and DNA duplexes. We find that the global free energy minimum corresponds to A-A pairs stacked inside the core of the helix with anti-anti conformations in RNA and (high-anti)-(high-anti) conformations in DNA. The next minimum corresponds to anti-syn conformations, whereas syn-syn conformations are higher in energy. Transition rates of the A-A conformations are higher for RNA than DNA. Mechanisms for these various transitions are identified. Additional structural and dynamical aspects of the helical conformations are explored, with a focus on contrasting CAG and GAC duplexes. The neutralizing ion distribution around the noncanonical pairs is described.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|
20
|
Patro LPP, Kumar A, Kolimi N, Rathinavelan T. 3D-NuS: A Web Server for Automated Modeling and Visualization of Non-Canonical 3-Dimensional Nucleic Acid Structures. J Mol Biol 2017; 429:2438-2448. [PMID: 28652006 DOI: 10.1016/j.jmb.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
Abstract
The inherent conformational flexibility of nucleic acids facilitates the formation of a range of conformations such as duplex, triplex, quadruplex, etc. that play crucial roles in biological processes. Elucidation of the influence of non-canonical base pair mismatches on DNA/RNA structures at different sequence contexts to understand the mismatch repair, misregulation of alternative splicing mechanisms and the sequence-dependent effect of RNA-DNA hybrid in relevance to antisense strategy demand their three-dimensional structural information. Furthermore, structural insights about nucleic acid triplexes, which are generally not tractable to structure determination by X-ray crystallography or NMR techniques, are essential to establish their biological function(s). A web server, namely 3D-NuS (http://iith.ac.in/3dnus/), has been developed to generate energy-minimized models of 80 different types of triplexes, 64 types of G-quadruplexes, left-handed Z-DNA/RNA duplexes, and RNA-DNA hybrid duplex along with inter- and intramolecular DNA or RNA duplexes comprising a variety of mismatches and their chimeric forms for any user-defined sequence and length. It also generates an ensemble of conformations corresponding to the modeled structure. These structures may serve as good starting models for docking proteins and small molecules with nucleic acids, NMR structure determination, cryo-electron microscope modeling, DNA/RNA nanotechnology applications and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- L Ponoop Prasad Patro
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502285, India
| | - Abhishek Kumar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502285, India
| | - Narendar Kolimi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State 502285, India
| | | |
Collapse
|
21
|
Goldsmith G, Rathinavelan T, Yathindra N. Selective Preference of Parallel DNA Triplexes Is Due to the Disruption of Hoogsteen Hydrogen Bonds Caused by the Severe Nonisostericity between the G*GC and T*AT Triplets. PLoS One 2016; 11:e0152102. [PMID: 27010368 PMCID: PMC4807104 DOI: 10.1371/journal.pone.0152102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
Implications of DNA, RNA and RNA.DNA hybrid triplexes in diverse biological functions, diseases and therapeutic applications call for a thorough understanding of their structure-function relationships. Despite exhaustive studies mechanistic rationale for the discriminatory preference of parallel DNA triplexes with G*GC & T*AT triplets still remains elusive. Here, we show that the highest nonisostericity between the G*GC & T*AT triplets imposes extensive stereochemical rearrangements contributing to context dependent triplex destabilisation through selective disruption of Hoogsteen scheme of hydrogen bonds. MD simulations of nineteen DNA triplexes with an assortment of sequence milieu reveal for the first time fresh insights into the nature and extent of destabilization from a single (non-overlapping), double (overlapping) and multiple pairs of nonisosteric base triplets (NIBTs). It is found that a solitary pair of NIBTs, feasible either at a G*GC/T*AT or T*AT/G*GC triplex junction, does not impinge significantly on triplex stability. But two overlapping pairs of NIBTs resulting from either a T*AT or a G*GC interruption disrupt Hoogsteen pair to a noncanonical mismatch destabilizing the triplex by ~10 to 14 kcal/mol, implying that their frequent incidence in multiples, especially, in short sequences could even hinder triplex formation. The results provide (i) an unambiguous and generalised mechanistic rationale for the discriminatory trait of parallel triplexes, including those studied experimentally (ii) clarity for the prevalence of antiparallel triplexes and (iii) comprehensive perspectives on the sequence dependent influence of nonisosteric base triplets useful in the rational design of TFO's against potential triplex target sites.
Collapse
Affiliation(s)
- Gunaseelan Goldsmith
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
- Manipal University, Manipal, India
| | | | - Narayanarao Yathindra
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
| |
Collapse
|