1
|
Arai T, Ota K, Funato T, Tsuchiya K, Aoyagi T, Aoi S. Interlimb coordination is not strictly controlled during walking. Commun Biol 2024; 7:1152. [PMID: 39304734 DOI: 10.1038/s42003-024-06843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
In human walking, the left and right legs move alternately, half a stride out of phase with each other. Although various parameters, such as stride frequency and length, vary with walking speed, the antiphase relationship remains unchanged. In contrast, during walking in left-right asymmetric situations, the relative phase shifts from the antiphase condition to compensate for the asymmetry. Interlimb coordination is important for adaptive walking and we expect that interlimb coordination is strictly controlled during walking. However, the control mechanism remains unclear. In the present study, we derived a quantity that models the control of interlimb coordination during walking using two coupled oscillators based on the phase reduction theory and Bayesian inference method. The results were not what we expected. Specifically, we found that the relative phase is not actively controlled until the deviation from the antiphase condition exceeds a certain threshold. In other words, the control of interlimb coordination has a dead zone like that in the case of the steering wheel of an automobile. It is conjectured that such forgoing of control enhances energy efficiency and maneuverability. Our discovery of the dead zone in the control of interlimb coordination provides useful insight for understanding gait control in humans.
Collapse
Affiliation(s)
- Takahiro Arai
- Center for Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology, Yokohama, 236-0001, Japan
| | - Kaiichiro Ota
- Cybozu, Inc., 2-7-1 Nihombashi, Chuo-ku, Tokyo, 103-6027, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Choufugaoka, Choufu, Tokyo, 182-8585, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Toshio Aoyagi
- Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinya Aoi
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, The University of Osaka, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
| |
Collapse
|
2
|
Molkov YI, Yu G, Ausborn J, Bouvier J, Danner SM, Rybak IA. Sensory feedback and central neuronal interactions in mouse locomotion. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240207. [PMID: 39169962 PMCID: PMC11335407 DOI: 10.1098/rsos.240207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024]
Abstract
Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyse a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behaviour to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA30303, USA
| | - Guoning Yu
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA30303, USA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay91400, France
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| |
Collapse
|
3
|
Molkov YI, Yu G, Ausborn J, Bouvier J, Danner SM, Rybak IA. Sensory Feedback and Central Neuronal Interactions in Mouse Locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564886. [PMID: 37961258 PMCID: PMC10634960 DOI: 10.1101/2023.10.31.564886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyze a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behavior to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Guoning Yu
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
4
|
Kohler M, Röhrbein F, Knoll A, Albu-Schäffer A, Jörntell H. The Bcm rule allows a spinal cord model to learn rhythmic movements. BIOLOGICAL CYBERNETICS 2023; 117:275-284. [PMID: 37594531 PMCID: PMC10600281 DOI: 10.1007/s00422-023-00970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Currently, it is accepted that animal locomotion is controlled by a central pattern generator in the spinal cord. Experiments and models show that rhythm generating neurons and genetically determined network properties could sustain oscillatory output activity suitable for locomotion. However, current central pattern generator models do not explain how a spinal cord circuitry, which has the same basic genetic plan across species, can adapt to control the different biomechanical properties and locomotion patterns existing in these species. Here we demonstrate that rhythmic and alternating movements in pendulum models can be learned by a monolayer spinal cord circuitry model using the Bienenstock-Cooper-Munro learning rule, which has been previously proposed to explain learning in the visual cortex. These results provide an alternative theory to central pattern generator models, because rhythm generating neurons and genetically defined connectivity are not required in our model. Though our results are not in contradiction to current models, as existing neural mechanism and structures, not used in our model, can be expected to facilitate the kind of learning demonstrated here. Therefore, our model could be used to augment existing models.
Collapse
Affiliation(s)
- Matthias Kohler
- Department of Informatics, Technical University of Munich, Boltzmannstraße 3, 85748, Garching, Bavaria, Germany.
| | - Florian Röhrbein
- Department of Computer Science, Chemnitz University of Technology, Straße der Nationen 62, 09111, Chemnitz, Saxony, Germany
| | - Alois Knoll
- Department of Informatics, Technical University of Munich, Boltzmannstraße 3, 85748, Garching, Bavaria, Germany
| | - Alin Albu-Schäffer
- Department of Informatics, Technical University of Munich, Boltzmannstraße 3, 85748, Garching, Bavaria, Germany
- Institute of Robotics and Mechatronics, German Aerospace Center, Münchener Straße 20, 82234, Weßling, Bavaria, Germany
| | - Henrik Jörntell
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, 22184, Lund, Scania, Sweden
| |
Collapse
|
5
|
Zhang H, Shevtsova NA, Deska-Gauthier D, Mackay C, Dougherty KJ, Danner SM, Zhang Y, Rybak IA. The role of V3 neurons in speed-dependent interlimb coordination during locomotion in mice. eLife 2022; 11:e73424. [PMID: 35476640 PMCID: PMC9045817 DOI: 10.7554/elife.73424] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/14/2022] [Indexed: 11/17/2022] Open
Abstract
Speed-dependent interlimb coordination allows animals to maintain stable locomotion under different circumstances. The V3 neurons are known to be involved in interlimb coordination. We previously modeled the locomotor spinal circuitry controlling interlimb coordination (Danner et al., 2017). This model included the local V3 neurons that mediate mutual excitation between left and right rhythm generators (RGs). Here, our focus was on V3 neurons involved in ascending long propriospinal interactions (aLPNs). Using retrograde tracing, we revealed a subpopulation of lumbar V3 aLPNs with contralateral cervical projections. V3OFF mice, in which all V3 neurons were silenced, had a significantly reduced maximal locomotor speed, were unable to move using stable trot, gallop, or bound, and predominantly used a lateral-sequence walk. To reproduce this data and understand the functional roles of V3 aLPNs, we extended our previous model by incorporating diagonal V3 aLPNs mediating inputs from each lumbar RG to the contralateral cervical RG. The extended model reproduces our experimental results and suggests that locally projecting V3 neurons, mediating left-right interactions within lumbar and cervical cords, promote left-right synchronization necessary for gallop and bound, whereas the V3 aLPNs promote synchronization between diagonal fore and hind RGs necessary for trot. The model proposes the organization of spinal circuits available for future experimental testing.
Collapse
Affiliation(s)
- Han Zhang
- Department of Medical Neuroscience, Brain Repair Centre, Faculty of Medicine, Dalhousie UniversityHalifaxCanada
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Dylan Deska-Gauthier
- Department of Medical Neuroscience, Brain Repair Centre, Faculty of Medicine, Dalhousie UniversityHalifaxCanada
| | - Colin Mackay
- Department of Medical Neuroscience, Brain Repair Centre, Faculty of Medicine, Dalhousie UniversityHalifaxCanada
| | - Kimberly J Dougherty
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Simon M Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| | - Ying Zhang
- Department of Medical Neuroscience, Brain Repair Centre, Faculty of Medicine, Dalhousie UniversityHalifaxCanada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel UniversityPhiladelphiaUnited States
| |
Collapse
|
6
|
Kim Y, Aoi S, Fujiki S, Danner SM, Markin SN, Ausborn J, Rybak IA, Yanagihara D, Senda K, Tsuchiya K. Contribution of Afferent Feedback to Adaptive Hindlimb Walking in Cats: A Neuromusculoskeletal Modeling Study. Front Bioeng Biotechnol 2022; 10:825149. [PMID: 35464733 PMCID: PMC9023865 DOI: 10.3389/fbioe.2022.825149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022] Open
Abstract
Mammalian locomotion is generated by central pattern generators (CPGs) in the spinal cord, which produce alternating flexor and extensor activities controlling the locomotor movements of each limb. Afferent feedback signals from the limbs are integrated by the CPGs to provide adaptive control of locomotion. Responses of CPG-generated neural activity to afferent feedback stimulation have been previously studied during fictive locomotion in immobilized cats. Yet, locomotion in awake, behaving animals involves dynamic interactions between central neuronal circuits, afferent feedback, musculoskeletal system, and environment. To study these complex interactions, we developed a model simulating interactions between a half-center CPG and the musculoskeletal system of a cat hindlimb. Then, we analyzed the role of afferent feedback in the locomotor adaptation from a dynamic viewpoint using the methods of dynamical systems theory and nullcline analysis. Our model reproduced limb movements during regular cat walking as well as adaptive changes of these movements when the foot steps into a hole. The model generates important insights into the mechanism for adaptive locomotion resulting from dynamic interactions between the CPG-based neural circuits, the musculoskeletal system, and the environment.
Collapse
Affiliation(s)
- Yongi Kim
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Kyoto, Japan
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Kyoto, Japan
- *Correspondence: Shinya Aoi,
| | - Soichiro Fujiki
- Department of Physiology, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Sergey N. Markin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Dai Yanagihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kei Senda
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Kyoto, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto Daigaku-Katsura, Kyoto, Japan
| |
Collapse
|
7
|
Guo L, Zhang N, Simpson JH. Descending neurons coordinate anterior grooming behavior in Drosophila. Curr Biol 2022; 32:823-833.e4. [PMID: 35120659 DOI: 10.1016/j.cub.2021.12.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/20/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023]
Abstract
The brain coordinates the movements that constitute behavior, but how descending neurons convey the myriad of commands required to activate the motor neurons of the limbs in the right order and combinations to produce those movements is not well understood. For anterior grooming behavior in the fly, we show that its component head sweeps and leg rubs can be initiated separately, or as a set, by different descending neurons. Head sweeps and leg rubs are mutually exclusive movements of the front legs that normally alternate, and we show that circuits in the ventral nerve cord as well as in the brain can resolve competing commands. Finally, the left and right legs must work together to remove debris. The coordination for leg rubs can be achieved by unilateral activation of a single descending neuron, while a similar manipulation of a different descending neuron decouples the legs to produce single-sided head sweeps. Taken together, these results demonstrate that distinct descending neurons orchestrate the complex alternation between the movements that make up anterior grooming.
Collapse
Affiliation(s)
- Li Guo
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Neil Zhang
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
8
|
Baruzzi V, Lodi M, Storace M, Shilnikov A. Towards more biologically plausible central-pattern-generator models. Phys Rev E 2021; 104:064405. [PMID: 35030894 DOI: 10.1103/physreve.104.064405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Central pattern generators (CPGs) are relatively small neural networks that play a fundamental role in the control of animal locomotion. In this paper we define a method for the systematic design of CPG models able to exhibit biologically plausible gait transitions by implementing short-term synaptic plasticity mechanisms. As a case study, we focus on a simple CPG for quadruped locomotion. By applying the proposed method, three of four standard quadruped gaits were correctly reproduced by the obtained CPG model, not only in terms of the alternating sequence of the limbs but also in terms of frequency, duty cycle, and phase lags.
Collapse
Affiliation(s)
- V Baruzzi
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy
| | - M Lodi
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy
| | - M Storace
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy
| | - A Shilnikov
- Neuroscience Institute and Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
9
|
Baruzzi V, Lodi M, Storace M, Shilnikov A. Generalized half-center oscillators with short-term synaptic plasticity. Phys Rev E 2021; 102:032406. [PMID: 33075913 DOI: 10.1103/physreve.102.032406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/24/2020] [Indexed: 11/07/2022]
Abstract
How can we develop simple yet realistic models of the small neural circuits known as central pattern generators (CPGs), which contribute to generate complex multiphase locomotion in living animals? In this paper we introduce a new model (with design criteria) of a generalized half-center oscillator, (pools of) neurons reciprocally coupled by fast/slow inhibitory and excitatory synapses, to produce either alternating bursting or other rhythmic patterns, characterized by different phase lags, depending on the sensory or other external input. We also show how to calibrate its parameters, based on both physiological and functional criteria and on bifurcation analysis. This model accounts for short-term neuromodulation in a biophysically plausible way and is a building block to develop more realistic and functionally accurate CPG models. Examples and counterexamples are used to point out the generality and effectiveness of our design approach.
Collapse
Affiliation(s)
- V Baruzzi
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy
| | - M Lodi
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy
| | - M Storace
- Department of Electrical, Electronics and Telecommunication Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy
| | - A Shilnikov
- Department of Mathematics and Statistics, Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
10
|
Computational Modeling of Spinal Locomotor Circuitry in the Age of Molecular Genetics. Int J Mol Sci 2021; 22:ijms22136835. [PMID: 34202085 PMCID: PMC8267724 DOI: 10.3390/ijms22136835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal circuits in the spinal cord are essential for the control of locomotion. They integrate supraspinal commands and afferent feedback signals to produce coordinated rhythmic muscle activations necessary for stable locomotion. For several decades, computational modeling has complemented experimental studies by providing a mechanistic rationale for experimental observations and by deriving experimentally testable predictions. This symbiotic relationship between experimental and computational approaches has resulted in numerous fundamental insights. With recent advances in molecular and genetic methods, it has become possible to manipulate specific constituent elements of the spinal circuitry and relate them to locomotor behavior. This has led to computational modeling studies investigating mechanisms at the level of genetically defined neuronal populations and their interactions. We review literature on the spinal locomotor circuitry from a computational perspective. By reviewing examples leading up to and in the age of molecular genetics, we demonstrate the importance of computational modeling and its interactions with experiments. Moving forward, neuromechanical models with neuronal circuitry modeled at the level of genetically defined neuronal populations will be required to further unravel the mechanisms by which neuronal interactions lead to locomotor behavior.
Collapse
|
11
|
Webster-Wood VA, Gill JP, Thomas PJ, Chiel HJ. Control for multifunctionality: bioinspired control based on feeding in Aplysia californica. BIOLOGICAL CYBERNETICS 2020; 114:557-588. [PMID: 33301053 PMCID: PMC8543386 DOI: 10.1007/s00422-020-00851-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Animals exhibit remarkable feats of behavioral flexibility and multifunctional control that remain challenging for robotic systems. The neural and morphological basis of multifunctionality in animals can provide a source of bioinspiration for robotic controllers. However, many existing approaches to modeling biological neural networks rely on computationally expensive models and tend to focus solely on the nervous system, often neglecting the biomechanics of the periphery. As a consequence, while these models are excellent tools for neuroscience, they fail to predict functional behavior in real time, which is a critical capability for robotic control. To meet the need for real-time multifunctional control, we have developed a hybrid Boolean model framework capable of modeling neural bursting activity and simple biomechanics at speeds faster than real time. Using this approach, we present a multifunctional model of Aplysia californica feeding that qualitatively reproduces three key feeding behaviors (biting, swallowing, and rejection), demonstrates behavioral switching in response to external sensory cues, and incorporates both known neural connectivity and a simple bioinspired mechanical model of the feeding apparatus. We demonstrate that the model can be used for formulating testable hypotheses and discuss the implications of this approach for robotic control and neuroscience.
Collapse
Affiliation(s)
- Victoria A Webster-Wood
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
| | - Jeffrey P Gill
- Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106-7080, USA
| | - Peter J Thomas
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4901, USA
- Department of Biology, Department of Cognitive Science, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4901, USA
- Department of Electrical Computer and Systems Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106-4901, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106-7080, USA
- Department of Neurosciences, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106-7080, USA
- Department of Biomedical Engineering, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH, 44106-7080, USA
| |
Collapse
|
12
|
Latash EM, Lecomte CG, Danner SM, Frigon A, Rybak IA, Molkov YI. On the Organization of the Locomotor CPG: Insights From Split-Belt Locomotion and Mathematical Modeling. Front Neurosci 2020; 14:598888. [PMID: 33177987 PMCID: PMC7596699 DOI: 10.3389/fnins.2020.598888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Rhythmic limb movements during locomotion are controlled by central pattern generator (CPG) circuits located in the spinal cord. It is considered that these circuits are composed of individual rhythm generators (RGs) for each limb interacting with each other through multiple commissural and long propriospinal circuits. The organization and operation of each RG are not fully understood, and different competing theories exist about interactions between its flexor and extensor components, as well as about left-right commissural interactions between the RGs. The central idea of circuit organization proposed in this study is that with an increase of excitatory input to each RG (or an increase in locomotor speed) the rhythmogenic mechanism of the RGs changes from "flexor-driven" rhythmicity to a "classical half-center" mechanism. We test this hypothesis using our experimental data on changes in duration of stance and swing phases in the intact and spinal cats walking on the ground or tied-belt treadmills (symmetric conditions) or split-belt treadmills with different left and right belt speeds (asymmetric conditions). We compare these experimental data with the results of mathematical modeling, in which simulated CPG circuits operate in similar symmetric and asymmetric conditions with matching or differing control drives to the left and right RGs. The obtained results support the proposed concept of state-dependent changes in RG operation and specific commissural interactions between the RGs. The performed simulations and mathematical analysis of model operation under different conditions provide new insights into CPG network organization and limb coordination during locomotion.
Collapse
Affiliation(s)
- Elizaveta M. Latash
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, United States
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Yaroslav I. Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, United States
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
13
|
Fujiki S, Aoi S, Tsuchiya K, Danner SM, Rybak IA, Yanagihara D. Phase-Dependent Response to Afferent Stimulation During Fictive Locomotion: A Computational Modeling Study. Front Neurosci 2019; 13:1288. [PMID: 31849596 PMCID: PMC6896512 DOI: 10.3389/fnins.2019.01288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Central pattern generators (CPGs) in the spinal cord generate rhythmic neural activity and control locomotion in vertebrates. These CPGs operate under the control of sensory feedback that affects the generated locomotor pattern and adapt it to the animal's biomechanics and environment. Studies of the effects of afferent stimulation on fictive locomotion in immobilized cats have shown that brief stimulation of peripheral nerves can reset the ongoing locomotor rhythm. Depending on the phase of stimulation and the stimulated nerve, the applied stimulation can either shorten or prolong the current locomotor phase and the locomotor cycle. Here, we used a mathematical model of a half-center CPG to investigate the phase-dependent effects of brief stimulation applied to CPG on the CPG-generated locomotor oscillations. The CPG in the model consisted of two half-centers mutually inhibiting each other. The rhythmic activity in each half-center was based on a slowly inactivating, persistent sodium current. Brief stimulation was applied to CPG half-centers in different phases of the locomotor cycle to produce phase-dependent changes in CPG activity. The model reproduced several results from experiments on the effect of afferent stimulation of fictive locomotion in cats. The mechanisms of locomotor rhythm resetting under different conditions were analyzed using dynamic systems theory methods.
Collapse
Affiliation(s)
- Soichiro Fujiki
- Department of Physiology and Biological Information, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Simon M Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Dai Yanagihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Wittman S, Abdala AP, Rubin JE. Reduced computational modelling of Kölliker-Fuse contributions to breathing patterns in Rett syndrome. J Physiol 2019; 597:2651-2672. [PMID: 30908648 DOI: 10.1113/jp277592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Reduced computational models are used to test effects of loss of inhibition to the Kölliker-Fuse nucleus (KFn). Three reduced computational models that simulate eupnoeic and vagotomized respiratory rhythms are considered. All models exhibit the emergence of respiratory perturbations associated with Rett syndrome as inhibition to the KFn is diminished. Simulations suggest that application of 5-HT1A agonists can mitigate the respiratory pathology. The three models can be distinguished and tested based on their predictions about connections and dynamics within the respiratory circuit and about effects of perturbations on certain respiratory neuron populations. ABSTRACT Rett syndrome (RTT) is a developmental disorder that can lead to respiratory disturbances featuring prolonged apnoeas of variable durations. Determining the mechanisms underlying these effects at the level of respiratory neural circuits would have significant implications for treatment efforts and would also enhance our understanding of respiratory rhythm generation and control. While experimental studies have suggested possible factors contributing to the respiratory patterns of RTT, we take a novel computational approach to the investigation of RTT, which allows for direct manipulation of selected system parameters and testing of specific hypotheses. Specifically, we present three reduced computational models, developed using an established framework, all of which successfully simulate respiratory outputs across eupnoeic and vagotomized conditions. All three models show that loss of inhibition to the Kölliker-Fuse nucleus reproduces the key respiratory alterations associated with RTT and, as suggested experimentally, that effects of 5-HT1A agonists on the respiratory neural circuit suffice to alleviate this respiratory pathology. Each of the models makes distinct predictions regarding the neuronal populations and interactions underlying these effects, suggesting natural directions for future experimental testing.
Collapse
Affiliation(s)
- Samuel Wittman
- Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA, 15260, USA
| | - Ana Paula Abdala
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA, 15260, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
15
|
Aoi S, Ohashi T, Bamba R, Fujiki S, Tamura D, Funato T, Senda K, Ivanenko Y, Tsuchiya K. Neuromusculoskeletal model that walks and runs across a speed range with a few motor control parameter changes based on the muscle synergy hypothesis. Sci Rep 2019; 9:369. [PMID: 30674970 PMCID: PMC6344546 DOI: 10.1038/s41598-018-37460-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/07/2018] [Indexed: 01/14/2023] Open
Abstract
Humans walk and run, as well as change their gait speed, through the control of their complicated and redundant musculoskeletal system. These gaits exhibit different locomotor behaviors, such as a double-stance phase in walking and flight phase in running. The complex and redundant nature of the musculoskeletal system and the wide variation in locomotion characteristics lead us to imagine that the motor control strategies for these gaits, which remain unclear, are extremely complex and differ from one another. It has been previously proposed that muscle activations may be generated by linearly combining a small set of basic pulses produced by central pattern generators (muscle synergy hypothesis). This control scheme is simple and thought to be shared between walking and running at different speeds. Demonstrating that this control scheme can generate walking and running and change the speed is critical, as bipedal locomotion is dynamically challenging. Here, we provide such a demonstration by using a motor control model with 69 parameters developed based on the muscle synergy hypothesis. Specifically, we show that it produces both walking and running of a human musculoskeletal model by changing only seven key motor control parameters. Furthermore, we show that the model can walk and run at different speeds by changing only the same seven parameters based on the desired speed. These findings will improve our understanding of human motor control in locomotion and provide guiding principles for the control design of wearable exoskeletons and prostheses.
Collapse
Affiliation(s)
- Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | - Tomohiro Ohashi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Ryoko Bamba
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Soichiro Fujiki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Daiki Tamura
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Choufugaoka, Choufu-shi, Tokyo, 182-8585, Japan
| | - Kei Senda
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, 00179, Rome, Italy
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| |
Collapse
|
16
|
Fujiki S, Aoi S, Funato T, Sato Y, Tsuchiya K, Yanagihara D. Adaptive hindlimb split-belt treadmill walking in rats by controlling basic muscle activation patterns via phase resetting. Sci Rep 2018; 8:17341. [PMID: 30478405 PMCID: PMC6255885 DOI: 10.1038/s41598-018-35714-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
To investigate the adaptive locomotion mechanism in animals, a split-belt treadmill has been used, which has two parallel belts to produce left–right symmetric and asymmetric environments for walking. Spinal cats walking on the treadmill have suggested the contribution of the spinal cord and associated peripheral nervous system to the adaptive locomotion. Physiological studies have shown that phase resetting of locomotor commands involving a phase shift occurs depending on the types of sensory nerves and stimulation timing, and that muscle activation patterns during walking are represented by a linear combination of a few numbers of basic temporal patterns despite the complexity of the activation patterns. Our working hypothesis was that resetting the onset timings of basic temporal patterns based on the sensory information from the leg, especially extension of hip flexors, contributes to adaptive locomotion on the split-belt treadmill. Our hypothesis was examined by conducting forward dynamic simulations using a neuromusculoskeletal model of a rat walking on a split-belt treadmill with its hindlimbs and by comparing the simulated motions with the measured motions of rats.
Collapse
Affiliation(s)
- Soichiro Fujiki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Shinya Aoi
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan
| | - Yota Sato
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan
| | - Kazuo Tsuchiya
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Dai Yanagihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
17
|
Duysens J, Forner-Cordero A. Walking with perturbations: a guide for biped humans and robots. BIOINSPIRATION & BIOMIMETICS 2018; 13:061001. [PMID: 30109860 DOI: 10.1088/1748-3190/aada54] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper provides an update on the neural control of bipedal walking in relation to bioinspired models and robots. It is argued that most current models or robots are based on the construct of a symmetrical central pattern generator (CPG). However, new evidence suggests that CPG functioning is basically asymmetrical with its flexor half linked more tightly to the rhythm generator. The stability of bipedal gait, which is an important problem for robots and biological systems, is also addressed. While it is not possible to determine how biological biped systems guarantee stability, robot solutions can be useful to propose new hypotheses for biology. In the second part of this review, the focus is on gait perturbations, which is an important topic in robotics in view of the frequent falls of robots when faced with perturbations. From the human physiology it is known that the initial reaction often consists of a brief interruption followed by an adequate response. For instance, the successful recovery from a trip is achieved using some basic reactions (termed elevating and lowering strategies), that depend on the phase of the step cycle of the trip occurrence. Reactions to stepping unexpectedly in a hole depend on comparing expected and real feedback. Implementation of these ideas in models and robotics starts to emerge, with the most advanced robots being able to learn how to fall safely and how to deal with complicated disturbances such as provided by walking on a split-belt.
Collapse
Affiliation(s)
- Jacques Duysens
- Biomechatronics Lab., Mechatronics Department, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2231, Cidade Universitária 05508-030, São Paulo-SP, Brasil. Department of Kinesiology, FaBeR, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
18
|
Ferrario A, Merrison-Hort R, Soffe SR, Li WC, Borisyuk R. Bifurcations of Limit Cycles in a Reduced Model of the Xenopus Tadpole Central Pattern Generator. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2018; 8:10. [PMID: 30022326 PMCID: PMC6051957 DOI: 10.1186/s13408-018-0065-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/29/2018] [Indexed: 06/01/2023]
Abstract
We present the study of a minimal microcircuit controlling locomotion in two-day-old Xenopus tadpoles. During swimming, neurons in the spinal central pattern generator (CPG) generate anti-phase oscillations between left and right half-centres. Experimental recordings show that the same CPG neurons can also generate transient bouts of long-lasting in-phase oscillations between left-right centres. These synchronous episodes are rarely recorded and have no identified behavioural purpose. However, metamorphosing tadpoles require both anti-phase and in-phase oscillations for swimming locomotion. Previous models have shown the ability to generate biologically realistic patterns of synchrony and swimming oscillations in tadpoles, but a mathematical description of how these oscillations appear is still missing. We define a simplified model that incorporates the key operating principles of tadpole locomotion. The model generates the various outputs seen in experimental recordings, including swimming and synchrony. To study the model, we perform detailed one- and two-parameter bifurcation analysis. This reveals the critical boundaries that separate different dynamical regimes and demonstrates the existence of parameter regions of bi-stable swimming and synchrony. We show that swimming is stable in a significantly larger range of parameters, and can be initiated more robustly, than synchrony. Our results can explain the appearance of long-lasting synchrony bouts seen in experiments at the start of a swimming episode.
Collapse
Affiliation(s)
- Andrea Ferrario
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - Robert Merrison-Hort
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| | - Stephen R. Soffe
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Wen-Chang Li
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Roman Borisyuk
- School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth, UK
| |
Collapse
|
19
|
Gastrocnemius fascicle and achilles tendon length at the end of the eccentric phase in a single and multiple countermovement hop. J Electromyogr Kinesiol 2018; 38:175-181. [DOI: 10.1016/j.jelekin.2017.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/08/2017] [Accepted: 12/21/2017] [Indexed: 01/23/2023] Open
|
20
|
Ausborn J, Snyder AC, Shevtsova NA, Rybak IA, Rubin JE. State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG. J Neurophysiol 2018; 119:96-117. [PMID: 28978767 PMCID: PMC5866471 DOI: 10.1152/jn.00550.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 01/15/2023] Open
Abstract
The spinal locomotor central pattern generator (CPG) generates rhythmic activity with alternating flexion and extension phases. This rhythmic pattern is likely to result from inhibitory interactions between neural populations representing flexor and extensor half-centers. However, it is unclear whether the flexor-extensor CPG has a quasi-symmetric organization with both half-centers critically involved in rhythm generation, features an asymmetric organization with flexor-driven rhythmogenesis, or comprises a pair of intrinsically rhythmic half-centers. There are experimental data that support each of the above concepts but appear to be inconsistent with the others. In this theoretical/modeling study, we present and analyze a CPG model architecture that can operate in different regimes consistent with the above three concepts depending on conditions, which are defined by external excitatory drives to CPG half-centers. We show that control of frequency and phase durations within each regime depends on network dynamics, defined by the regime-dependent expression of the half-centers' intrinsic rhythmic capabilities and the operating phase transition mechanisms (escape vs. release). Our study suggests state dependency in locomotor CPG operation and proposes explanations for seemingly contradictory experimental data. NEW & NOTEWORTHY Our theoretical/modeling study focuses on the analysis of locomotor central pattern generators (CPGs) composed of conditionally bursting half-centers coupled with reciprocal inhibition and receiving independent external drives. We show that this CPG framework can operate in several regimes consistent with seemingly contradictory experimental data. In each regime, we study how intrinsic dynamics and phase-switching mechanisms control oscillation frequency and phase durations. Our results provide insights into the organization of spinal circuits controlling locomotion.
Collapse
Affiliation(s)
- Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Abigail C Snyder
- Department of Mathematics, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Danner SM, Shevtsova NA, Frigon A, Rybak IA. Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. eLife 2017; 6:e31050. [PMID: 29165245 PMCID: PMC5726855 DOI: 10.7554/elife.31050] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/21/2017] [Indexed: 01/27/2023] Open
Abstract
Interactions between cervical and lumbar spinal circuits are mediated by long propriospinal neurons (LPNs). Ablation of descending LPNs in mice disturbs left-right coordination at high speeds without affecting fore-hind alternation. We developed a computational model of spinal circuits consisting of four rhythm generators coupled by commissural interneurons (CINs), providing left-right interactions, and LPNs, mediating homolateral and diagonal interactions. The proposed CIN and diagonal LPN connections contribute to speed-dependent gait transition from walk, to trot, and then to gallop and bound; the homolateral LPN connections ensure fore-hind alternation in all gaits. The model reproduces speed-dependent gait expression in intact and genetically transformed mice and the disruption of hindlimb coordination following ablation of descending LPNs. Inputs to CINs and LPNs can affect interlimb coordination and change gait independent of speed. We suggest that these interneurons represent the main targets for supraspinal and sensory afferent signals adjusting gait.
Collapse
Affiliation(s)
- Simon M Danner
- Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaUnited States
| | - Natalia A Shevtsova
- Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaUnited States
| | - Alain Frigon
- Department of Pharmacology-PhysiologyUniversité de SherbrookeSherbrookeCanada
| | - Ilya A Rybak
- Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaUnited States
| |
Collapse
|
22
|
Danner SM, Wilshin SD, Shevtsova NA, Rybak IA. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds. J Physiol 2016; 594:6947-6967. [PMID: 27633893 DOI: 10.1113/jp272787] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/13/2016] [Indexed: 12/29/2022] Open
Abstract
KEY POINTS Quadrupeds express different gaits depending on speed of locomotion. Central pattern generators (one per limb) within the spinal cord generate locomotor oscillations and control limb movements. Neural interactions between these generators define interlimb coordination and gait. We present a computational model of spinal circuits representing four rhythm generators with left-right excitatory and inhibitory commissural and fore-hind inhibitory interactions within the cord. Increasing brainstem drive to all rhythm generators and excitatory commissural interneurons induces an increasing frequency of locomotor oscillations accompanied by speed-dependent gait changes from walk to trot and to gallop and bound. The model closely reproduces and suggests explanations for multiple experimental data, including speed-dependent gait transitions in intact mice and changes in gait expression in mutants lacking certain types of commissural interneurons. The model suggests the possible circuit organization in the spinal cord and proposes predictions that can be tested experimentally. ABSTRACT As speed of locomotion is increasing, most quadrupeds, including mice, demonstrate sequential gait transitions from walk to trot and to gallop and bound. The neural mechanisms underlying these transitions are poorly understood. We propose that the speed-dependent expression of different gaits results from speed-dependent changes in the interactions between spinal circuits controlling different limbs and interlimb coordination. As a result, the expression of each gait depends on (1) left-right interactions within the spinal cord mediated by different commissural interneurons (CINs), (2) fore-hind interactions on each side of the spinal cord and (3) brainstem drives to rhythm-generating circuits and CIN pathways. We developed a computational model of spinal circuits consisting of four rhythm generators (RGs) with bilateral left-right interactions mediated by V0 CINs (V0D and V0V sub-types) providing left-right alternation, and conditional V3 CINs promoting left-right synchronization. Fore and hind RGs mutually inhibited each other. We demonstrate that linearly increasing excitatory drives to the RGs and V3 CINs can produce a progressive increase in the locomotor speed accompanied by sequential changes of gaits from walk to trot and to gallop and bound. The model closely reproduces and suggests explanations for the speed-dependent gait expression observed in vivo in intact mice and in mutants lacking V0V or all V0 CINs. Specifically, trot is not expressed after removal of V0V CINs, and only bound is expressed after removal of all V0 CINs. The model provides important insights into the organization of spinal circuits and neural control of locomotion.
Collapse
Affiliation(s)
- Simon M Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Simon D Wilshin
- Structure and Motion Laboratory, The Royal Veterinary College, University of London, London, UK
| | - Natalia A Shevtsova
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
23
|
Shevtsova NA, Rybak IA. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling. J Physiol 2016; 594:6117-6131. [PMID: 27292055 DOI: 10.1113/jp272437] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/07/2016] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Alternation of flexor and extensor activity in the mammalian spinal cord is mediated by two classes of genetically identified inhibitory interneurons, V1 and V2b. The V1 interneurons are essential for high-speed locomotor activity. They secure flexor-extensor alternations in the intact cord but lose this function after hemisection, suggesting that they are activated by inputs from the contralateral side of the cord. The V2b interneurons are involved in flexor-extensor alternations in both intact cord and hemicords. We used a computational model of the spinal network, simulating the left and right rhythm-generating circuits interacting via several commissural pathways, and extended this model by incorporating V1 and V2b neuron populations involved in flexor-extensor interactions on each cord side. The model reproduces multiple experimental data on selective silencing and activation of V1 and/or V2b neurons and proposes the organization of their connectivity providing flexor-extensor alternation in the spinal cord. ABSTRACT Alternating flexor and extensor activity represents the fundamental property underlying many motor behaviours including locomotion. During locomotion this alternation appears to arise in rhythm-generating circuits and transpires at all levels of the spinal cord including motoneurons. Recent studies in vitro and in vivo have shown that flexor-extensor alternation during locomotion involves two classes of genetically identified, inhibitory interneurons: V1 and V2b. Particularly, in the isolated mouse spinal cord, abrogation of neurotransmission derived by both V1 and V2b interneurons resulted in flexor-extensor synchronization, whereas selective inactivation of only one of these neuron types did not abolish flexor-extensor alternation. After hemisection, inactivation of only V2b interneurons led to the flexor-extensor synchronization, while inactivation of V1 interneurons did not affect flexor-extensor alternation. Moreover, optogenetic activation of V2b interneurons suppressed extensor-related activity, while similar activation of V1 interneurons suppressed both flexor and extensor oscillations. Here, we address these issues using the previously published computational model of spinal circuitry simulating bilateral interactions between left and right rhythm-generating circuits. In the present study, we incorporate V1 and V2b neuron populations on both sides of the cord to make them critically involved in flexor-extensor interactions. The model reproduces multiple experimental data on the effects of hemisection and selective silencing or activation of V1 and V2b neurons and suggests connectivity profiles of these neurons and their specific roles in left-right (V1) and flexor-extensor (both V2b and V1) interactions in the spinal cord that can be tested experimentally.
Collapse
Affiliation(s)
- Natalia A Shevtsova
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Bacak BJ, Kim T, Smith JC, Rubin JE, Rybak IA. Mixed-mode oscillations and population bursting in the pre-Bötzinger complex. eLife 2016; 5:e13403. [PMID: 26974345 PMCID: PMC4846382 DOI: 10.7554/elife.13403] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/11/2016] [Indexed: 11/17/2022] Open
Abstract
This study focuses on computational and theoretical investigations of neuronal activity arising in the pre-Bötzinger complex (pre-BötC), a medullary region generating the inspiratory phase of breathing in mammals. A progressive increase of neuronal excitability in medullary slices containing the pre-BötC produces mixed-mode oscillations (MMOs) characterized by large amplitude population bursts alternating with a series of small amplitude bursts. Using two different computational models, we demonstrate that MMOs emerge within a heterogeneous excitatory neural network because of progressive neuronal recruitment and synchronization. The MMO pattern depends on the distributed neuronal excitability, the density and weights of network interconnections, and the cellular properties underlying endogenous bursting. Critically, the latter should provide a reduction of spiking frequency within neuronal bursts with increasing burst frequency and a dependence of the after-burst recovery period on burst amplitude. Our study highlights a novel mechanism by which heterogeneity naturally leads to complex dynamics in rhythmic neuronal populations. DOI:http://dx.doi.org/10.7554/eLife.13403.001 Each breath we take removes carbon dioxide from the body and exchanges it for oxygen. A structure called the brainstem, which connects the brain with the spinal cord, generates the breathing rhythm and controls its rate. While this process normally occurs automatically, we can also control our breathing voluntarily, such as when singing or speaking. Within the brainstem, a group of neurons in the area known as the pre-Bötzinger complex is responsible for ensuring that an animal breathes in at regular intervals. Recordings of the electrical activity from slices of brainstem show that pre-Bötzinger neurons display rhythmic activity with characteristic patterns called “mixed-mode oscillations”. These rhythms consist of bursts of strong activity (“large amplitude bursts”), essential for triggering regular breathing, separated by a series of bursts of weak activity (“small amplitude bursts”). However, it is not clear how mixed-mode oscillations arise. Bacak, Kim et al. now provide insights into this process by developing two computational models of the pre-Bötzinger complex. The first model consists of a diverse population of 100 neurons joined by a relatively small number of weak connections to form a network. The second model is a simplified version of the first, consisting of just three neurons. By manipulating the properties of the simulated networks, and analysing the data mathematically, Bacak, Kim et al. identify the properties of the neurons that allow them to generate mixed-mode oscillations and thus rhythmic breathing. The models suggest that mixed-mode oscillations result from the synchronization of many neurons with different levels of activity (excitability). Neurons with low excitability have low bursting frequencies, but generate strong activity and recruit other neurons, ultimately producing large amplitude bursts that cause breathing. Many parts of the nervous system are also made up of networks of neurons with diverse excitability. A challenge for future studies is thus to investigate whether other networks of neurons similar to the pre-Bötzinger complex generate rhythms that control other repetitive actions, such as walking and chewing. DOI:http://dx.doi.org/10.7554/eLife.13403.002
Collapse
Affiliation(s)
- Bartholomew J Bacak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| | - Taegyo Kim
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, United States
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| |
Collapse
|
25
|
Organization of the Mammalian Locomotor CPG: Review of Computational Model and Circuit Architectures Based on Genetically Identified Spinal Interneurons(1,2,3). eNeuro 2015; 2:eN-REV-0069-15. [PMID: 26478909 PMCID: PMC4603253 DOI: 10.1523/eneuro.0069-15.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/25/2015] [Accepted: 08/29/2015] [Indexed: 12/05/2022] Open
Abstract
The organization of neural circuits that form the locomotor central pattern generator (CPG) and provide flexor–extensor and left–right coordination of neuronal activity remains largely unknown. However, significant progress has been made in the molecular/genetic identification of several types of spinal interneurons, including V0 (V0D and V0V subtypes), V1, V2a, V2b, V3, and Shox2, among others. The possible functional roles of these interneurons can be suggested from changes in the locomotor pattern generated in mutant mice lacking particular neuron types. Computational modeling of spinal circuits may complement these studies by bringing together data from different experimental studies and proposing the possible connectivity of these interneurons that may define rhythm generation, flexor–extensor interactions on each side of the cord, and commissural interactions between left and right circuits. This review focuses on the analysis of potential architectures of spinal circuits that can reproduce recent results and suggest common explanations for a series of experimental data on genetically identified spinal interneurons, including the consequences of their genetic ablation, and provides important insights into the organization of the spinal CPG and neural control of locomotion.
Collapse
|