1
|
Song J, Kurgan L. Two decades of advances in sequence-based prediction of MoRFs, disorder-to-order transitioning binding regions. Expert Rev Proteomics 2025; 22:1-9. [PMID: 39789785 DOI: 10.1080/14789450.2025.2451715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Molecular recognition features (MoRFs) are regions in protein sequences that undergo induced folding upon binding partner molecules. MoRFs are common in nature and can be predicted from sequences based on their distinctive sequence signatures. AREAS COVERED We overview 20 years of progress in the sequence-based prediction of MoRFs which resulted in the development of 25 predictors of MoRFs that interact with proteins, peptides, and lipids. These methods range from simple discriminant analysis to sophisticated deep transformer networks that use protein language models. They generate relatively accurate predictions as evidenced by the results of a recently published community-driven assessment. EXPERT OPINION MoRFs prediction is a mature field of research that is poised to continue at a steady pace in the foreseeable future. We anticipate further expansion of the scope of MoRF predictions to additional partner molecules, such as nucleic acids, and continued use of recent machine learning advances. Other future efforts should concentrate on improving availability of MoRF predictions by releasing, maintaining, and popularizing web servers and by depositing MoRF predictions to large databases of protein structure and function predictions. Furthermore, accurate MoRF predictions should be coupled with the equally accurate prediction and modeling of the resulting structures of complexes.
Collapse
Affiliation(s)
- Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC, Australia
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
2
|
Zhang F, Kurgan L. Evaluation of predictions of disordered binding regions in the CAID2 experiment. Comput Struct Biotechnol J 2024; 27:78-88. [PMID: 39811792 PMCID: PMC11732247 DOI: 10.1016/j.csbj.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
A large portion of the Intrinsically Disordered Regions (IDRs) in protein sequences interact with proteins, nucleic acids, and other types of ligands. Correspondingly, dozens of sequence-based predictors of binding IDRs were developed. A recently completed second community-based Critical Assessments of protein Intrinsic Disorder prediction (CAID2) evaluated 32 predictors of binding IDRs. However, CAID2 considered a rather narrow scenario by testing on 78 proteins with binding IDRs and not differentiating between different ligands, in spite that virtually all predictors target IDRs that interact with specific types of ligands. In that scenario, several intrinsic disorder predictors predict binding IDRs with accuracy equivalent to the best predictors of binding IDRs since large majority of IDRs in the 78 test proteins are binding. We substantially extended the CAID2's evaluation by using the entire CAID2 dataset of 348 proteins and considering several arguably more practical scenarios. We assessed whether predictors accurately differentiate binding IDRs from other types of IDRs and how they perform when predicting IDRs that interact with different ligand types. We found that intrinsic disorder predictors cannot accurately identify binding IDRs among other disordered regions, majority of the predictors of binding IDRs are ligand type agnostic (i.e., they cross predict binding in IDRs that interact with ligands that they do not cover), and only a handful of predictors of binding IDRs perform relatively well and generate reasonably low amounts of cross predictions. We also suggest a number of future research directions that would move this active field of research forward.
Collapse
Affiliation(s)
- Fuhao Zhang
- College of Information Engineering, Northwest A & F University, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
3
|
Bayarsaikhan B, Zsidó BZ, Börzsei R, Hetényi C. Efficient Refinement of Complex Structures of Flexible Histone Peptides Using Post-Docking Molecular Dynamics Protocols. Int J Mol Sci 2024; 25:5945. [PMID: 38892133 PMCID: PMC11172440 DOI: 10.3390/ijms25115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Histones are keys to many epigenetic events and their complexes have therapeutic and diagnostic importance. The determination of the structures of histone complexes is fundamental in the design of new drugs. Computational molecular docking is widely used for the prediction of target-ligand complexes. Large, linear peptides like the tail regions of histones are challenging ligands for docking due to their large conformational flexibility, extensive hydration, and weak interactions with the shallow binding pockets of their reader proteins. Thus, fast docking methods often fail to produce complex structures of such peptide ligands at a level appropriate for drug design. To address this challenge, and improve the structural quality of the docked complexes, post-docking refinement has been applied using various molecular dynamics (MD) approaches. However, a final consensus has not been reached on the desired MD refinement protocol. In this present study, MD refinement strategies were systematically explored on a set of problematic complexes of histone peptide ligands with relatively large errors in their docked geometries. Six protocols were compared that differ in their MD simulation parameters. In all cases, pre-MD hydration of the complex interface regions was applied to avoid the unwanted presence of empty cavities. The best-performing protocol achieved a median of 32% improvement over the docked structures in terms of the change in root mean squared deviations from the experimental references. The influence of structural factors and explicit hydration on the performance of post-docking MD refinements are also discussed to help with their implementation in future methods and applications.
Collapse
Affiliation(s)
- Bayartsetseg Bayarsaikhan
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
| | - Rita Börzsei
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.B.); (B.Z.Z.); (R.B.)
- National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
4
|
Christoffer C, Harini K, Archit G, Kihara D. Assembly of Protein Complexes in and on the Membrane with Predicted Spatial Arrangement Constraints. J Mol Biol 2024; 436:168486. [PMID: 38336197 PMCID: PMC10942765 DOI: 10.1016/j.jmb.2024.168486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Membrane proteins play crucial roles in various cellular processes, and their interactions with other proteins in and on the membrane are essential for their proper functioning. While an increasing number of structures of more membrane proteins are being determined, the available structure data is still sparse. To gain insights into the mechanisms of membrane protein complexes, computational docking methods are necessary due to the challenge of experimental determination. Here, we introduce Mem-LZerD, a rigid-body membrane docking algorithm designed to take advantage of modern membrane modeling and protein docking techniques to facilitate the docking of membrane protein complexes. Mem-LZerD is based on the LZerD protein docking algorithm, which has been constantly among the top servers in many rounds of CAPRI protein docking assessment. By employing a combination of geometric hashing, newly constrained by the predicted membrane height and tilt angle, and model scoring accounting for the energy of membrane insertion, we demonstrate the capability of Mem-LZerD to model diverse membrane protein-protein complexes. Mem-LZerD successfully performed unbound docking on 13 of 21 (61.9%) transmembrane complexes in an established benchmark, more than shown by previous approaches. It was additionally tested on new datasets of 44 transmembrane complexes and 92 peripheral membrane protein complexes, of which it successfully modeled 35 (79.5%) and 15 (16.3%) complexes respectively. When non-blind orientations of peripheral targets were included, the number of successes increased to 54 (58.7%). We further demonstrate that Mem-LZerD produces complex models which are suitable for molecular dynamics simulation. Mem-LZerD is made available at https://lzerd.kiharalab.org.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kannan Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Gupta Archit
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Zhang Y, Wang X, Zhang Z, Huang Y, Kihara D. Assessment of Protein-Protein Docking Models Using Deep Learning. Methods Mol Biol 2024; 2780:149-162. [PMID: 38987469 DOI: 10.1007/978-1-0716-3985-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Protein-protein interactions are involved in almost all processes in a living cell and determine the biological functions of proteins. To obtain mechanistic understandings of protein-protein interactions, the tertiary structures of protein complexes have been determined by biophysical experimental methods, such as X-ray crystallography and cryogenic electron microscopy. However, as experimental methods are costly in resources, many computational methods have been developed that model protein complex structures. One of the difficulties in computational protein complex modeling (protein docking) is to select the most accurate models among many models that are usually generated by a docking method. This article reviews advances in protein docking model assessment methods, focusing on recent developments that apply deep learning to several network architectures.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Zicong Zhang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Yunhan Huang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Patel KN, Chavda D, Manna M. Molecular Docking of Intrinsically Disordered Proteins: Challenges and Strategies. Methods Mol Biol 2024; 2780:165-201. [PMID: 38987470 DOI: 10.1007/978-1-0716-3985-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Intrinsically disordered proteins (IDPs) are a novel class of proteins that have established a significant importance and attention within a very short period of time. These proteins are essentially characterized by their inherent structural disorder, encoded mainly by their amino acid sequences. The profound abundance of IDPs and intrinsically disordered regions (IDRs) in the biological world delineates their deep-rooted functionality. IDPs and IDRs convey such extensive functionality through their unique dynamic nature, which enables them to carry out huge number of multifaceted biomolecular interactions and make them "interaction hub" of the cellular systems. Additionally, with such widespread functions, their misfunctioning is also intimately associated with multiple diseases. Thus, understanding the dynamic heterogeneity of various IDPs along with their interactions with respective binding partners is an important field with immense potentials in biomolecular research. In this context, molecular docking-based computational approaches have proven to be remarkable in case of ordered proteins. Molecular docking methods essentially model the biomolecular interactions in both structural and energetic terms and use this information to characterize the putative interactions between the two participant molecules. However, direct applications of the conventional docking methods to study IDPs are largely limited by their structural heterogeneity and demands for unique IDP-centric strategies. Thus, in this chapter, we have presented an overview of current methodologies for successful docking operations involving IDPs and IDRs. These specialized methods majorly include the ensemble-based and fragment-based approaches with their own benefits and limitations. More recently, artificial intelligence and machine learning-assisted approaches are also used to significantly reduce the complexity and computational burden associated with various docking applications. Thus, this chapter aims to provide a comprehensive summary of major challenges and recent advancements of molecular docking approaches in the IDP field for their better utilization and greater applicability.Asp (D).
Collapse
Affiliation(s)
- Keyur N Patel
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dhruvil Chavda
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
7
|
Choi S, Son SH, Kim MY, Na I, Uversky VN, Kim CG. Improved prediction of protein-protein interactions by a modified strategy using three conventional docking software in combination. Int J Biol Macromol 2023; 252:126526. [PMID: 37633550 DOI: 10.1016/j.ijbiomac.2023.126526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Proteins play a crucial role in many biological processes, where their interaction with other proteins are integral. Abnormal protein-protein interactions (PPIs) have been linked to various diseases including cancer, and thus targeting PPIs holds promise for drug development. However, experimental confirmation of the peculiarities of PPIs is challenging due to their dynamic and transient nature. As a complement to experimental technologies, multiple computational molecular docking (MD) methods have been developed to predict the structures of protein-protein complexes and their dynamics, still requiring further improvements in several issues. Here, we report an improved MD method, namely three-software docking (3SD), by employing three popular protein-peptide docking software (CABS-dock, HPEPDOCK, and HADDOCK) in combination to ensure constant quality for most targets. We validated our 3SD performance in known protein-peptide interactions (PpIs). We also enhanced MD performance in proteins having intrinsically disordered regions (IDRs) by applying the modified 3SD strategy, the three-software docking after removing random coiled IDR (3SD-RR), to the comparable crystal PpI structures. At the end, we applied 3SD-RR to the AlphaFold2-predicted receptors, yielding an efficient prediction of PpI pose with high relevance to the experimental data regardless of the presence of IDRs or the availability of receptor structures. Our study provides an improved solution to the challenges in studying PPIs through computational docking and has the potential to contribute to PPIs-targeted drug discovery. SIGNIFICANCE STATEMENT: Protein-protein interactions (PPIs) are integral to life, and abnormal PPIs are associated with diseases such as cancer. Studying protein-peptide interactions (PpIs) is challenging due to their dynamic and transient nature. Here we developed improved docking methods (3SD and 3SD-RR) to predict the PpI poses, ensuring constant quality in most targets and also addressing issues like intrinsically disordered regions (IDRs) and artificial intelligence-predicted structures. Our study provides an improved solution to the challenges in studying PpIs through computational docking and has the potential to contribute to PPIs-targeted drug discovery.
Collapse
Affiliation(s)
- Sungwoo Choi
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Insung Na
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida; Tampa, FL 33612, USA.
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; CGK Biopharma Co. Ltd., 222 Wangshipri-ro, Sungdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
8
|
Christoffer C, Harini K, Archit G, Kihara D. Assembly of Protein Complexes In and On the Membrane with Predicted Spatial Arrangement Constraints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563303. [PMID: 37961264 PMCID: PMC10634698 DOI: 10.1101/2023.10.20.563303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Membrane proteins play crucial roles in various cellular processes, and their interactions with other proteins in and on the membrane are essential for their proper functioning. While an increasing number of structures of more membrane proteins are being determined, the available structure data is still sparse. To gain insights into the mechanisms of membrane protein complexes, computational docking methods are necessary due to the challenge of experimental determination. Here, we introduce Mem-LZerD, a rigid-body membrane docking algorithm designed to take advantage of modern membrane modeling and protein docking techniques to facilitate the docking of membrane protein complexes. Mem-LZerD is based on the LZerD protein docking algorithm, which has been constantly among the top servers in many rounds of CAPRI protein docking assessment. By employing a combination of geometric hashing, newly constrained by the predicted membrane height and tilt angle, and model scoring accounting for the energy of membrane insertion, we demonstrate the capability of Mem-LZerD to model diverse membrane protein-protein complexes. Mem-LZerD successfully performed unbound docking on 13 of 21 (61.9%) transmembrane complexes in an established benchmark, more than shown by previous approaches. It was additionally tested on new datasets of 44 transmembrane complexes and 92 peripheral membrane protein complexes, of which it successfully modeled 35 (79.5%) and 15 (16.3%) complexes respectively. When non-blind orientations of peripheral targets were included, the number of successes increased to 54 (58.7%). We further demonstrate that Mem-LZerD produces complex models which are suitable for molecular dynamics simulation. Mem-LZerD is made available at https://lzerd.kiharalab.org.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Kannan Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Gupta Archit
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
9
|
Zsidó BZ, Bayarsaikhan B, Börzsei R, Hetényi C. Construction of Histone-Protein Complex Structures by Peptide Growing. Int J Mol Sci 2023; 24:13831. [PMID: 37762134 PMCID: PMC10530865 DOI: 10.3390/ijms241813831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structures of histone complexes are master keys to epigenetics. Linear histone peptide tails often bind to shallow pockets of reader proteins via weak interactions, rendering their structure determination challenging. In the present study, a new protocol, PepGrow, is introduced. PepGrow uses docked histone fragments as seeds and grows the full peptide tails in the reader-binding pocket, producing atomic-resolution structures of histone-reader complexes. PepGrow is able to handle the flexibility of histone peptides, and it is demonstrated to be more efficient than linking pre-docked peptide fragments. The new protocol combines the advantages of popular program packages and allows fast generation of solution structures. AutoDock, a force-field-based program, is used to supply the docked peptide fragments used as structural seeds, and the building algorithm of Modeller is adopted and tested as a peptide growing engine. The performance of PepGrow is compared to ten other docking methods, and it is concluded that in situ growing of a ligand from a seed is a viable strategy for the production of complex structures of histone peptides at atomic resolution.
Collapse
Affiliation(s)
| | | | | | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Út 12, 7624 Pécs, Hungary; (B.Z.Z.); (B.B.); (R.B.)
| |
Collapse
|
10
|
Christoffer C, Kihara D. Modeling protein-nucleic acid complexes with extremely large conformational changes using Flex-LZerD. Proteomics 2023; 23:e2200322. [PMID: 36529945 PMCID: PMC10448949 DOI: 10.1002/pmic.202200322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Proteins and nucleic acids are key components in many processes in living cells, and interactions between proteins and nucleic acids are often crucial pathway components. In many cases, large flexibility of proteins as they interact with nucleic acids is key to their function. To understand the mechanisms of these processes, it is necessary to consider the 3D atomic structures of such protein-nucleic acid complexes. When such structures are not yet experimentally determined, protein docking can be used to computationally generate useful structure models. However, such docking has long had the limitation that the consideration of flexibility is usually limited to small movements or to small structures. We previously developed a method of flexible protein docking which could model ordered proteins which undergo large-scale conformational changes, which we also showed was compatible with nucleic acids. Here, we elaborate on the ability of that pipeline, Flex-LZerD, to model specifically interactions between proteins and nucleic acids, and demonstrate that Flex-LZerD can model more interactions and types of conformational change than previously shown.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Rojas BE, Iglesias AA. Integrating multiple regulations on enzyme activity: the case of phospho enolpyruvate carboxykinases. AOB PLANTS 2023; 15:plad053. [PMID: 37608926 PMCID: PMC10441589 DOI: 10.1093/aobpla/plad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spectrometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehensive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evidence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the challenges in integrating all available data into functional biochemical models.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
12
|
Computational prediction of disordered binding regions. Comput Struct Biotechnol J 2023; 21:1487-1497. [PMID: 36851914 PMCID: PMC9957716 DOI: 10.1016/j.csbj.2023.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
One of the key features of intrinsically disordered regions (IDRs) is their ability to interact with a broad range of partner molecules. Multiple types of interacting IDRs were identified including molecular recognition fragments (MoRFs), short linear sequence motifs (SLiMs), and protein-, nucleic acids- and lipid-binding regions. Prediction of binding IDRs in protein sequences is gaining momentum in recent years. We survey 38 predictors of binding IDRs that target interactions with a diverse set of partners, such as peptides, proteins, RNA, DNA and lipids. We offer a historical perspective and highlight key events that fueled efforts to develop these methods. These tools rely on a diverse range of predictive architectures that include scoring functions, regular expressions, traditional and deep machine learning and meta-models. Recent efforts focus on the development of deep neural network-based architectures and extending coverage to RNA, DNA and lipid-binding IDRs. We analyze availability of these methods and show that providing implementations and webservers results in much higher rates of citations/use. We also make several recommendations to take advantage of modern deep network architectures, develop tools that bundle predictions of multiple and different types of binding IDRs, and work on algorithms that model structures of the resulting complexes.
Collapse
|
13
|
Harini K, Christoffer C, Gromiha MM, Kihara D. Pairwise and Multi-chain Protein Docking Enhanced Using LZerD Web Server. Methods Mol Biol 2023; 2690:355-373. [PMID: 37450159 PMCID: PMC10561630 DOI: 10.1007/978-1-0716-3327-4_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Interactions of proteins with other macromolecules have important structural and functional roles in the basic processes of living cells. To understand and elucidate the mechanisms of interactions, it is important to know the 3D structures of the complexes. Proteomes contain numerous protein-protein complexes, for which experimentally determined structures often do not exist. Computational techniques can be a practical alternative to obtain useful complex structure models. Here, we present a web server that provides access to the LZerD and Multi-LZerD protein docking tools, which can perform both pairwise and multi-chain docking. The web server is user-friendly, with options to visualize the distribution and structures of binding poses of top-scoring models. The LZerD web server is available at https://lzerd.kiharalab.org . This chapter dictates the algorithm and step-by-step procedure to model the monomeric structures with AttentiveDist, and also provides the detail of pairwise LZerD docking, and multi-LZerD. This also provided case studies for each of the three modules.
Collapse
Affiliation(s)
- Kannan Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
14
|
Christoffer C, Kihara D. Domain-Based Protein Docking with Extremely Large Conformational Changes. J Mol Biol 2022; 434:167820. [PMID: 36089054 PMCID: PMC9992458 DOI: 10.1016/j.jmb.2022.167820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Proteins are key components in many processes in living cells, and physical interactions with other proteins and nucleic acids often form key parts of their functions. In many cases, large flexibility of proteins as they interact is key to their function. To understand the mechanisms of these processes, it is necessary to consider the 3D structures of such protein complexes. When such structures are not yet experimentally determined, protein docking has long been present to computationally generate useful structure models. However, protein docking has long had the limitation that the consideration of flexibility is usually limited to very small movements or very small structures. Methods have been developed which handle minor flexibility via normal mode or other structure sampling, but new methods are required to model ordered proteins which undergo large-scale conformational changes to elucidate their function at the molecular level. Here, we present Flex-LZerD, a framework for docking such complexes. Via partial assembly multidomain docking and an iterative normal mode analysis admitting curvilinear motions, we demonstrate the ability to model the assembly of a variety of protein-protein and protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
15
|
Chang L, Mondal A, Perez A. Towards rational computational peptide design. FRONTIERS IN BIOINFORMATICS 2022; 2:1046493. [PMID: 36338806 PMCID: PMC9634169 DOI: 10.3389/fbinf.2022.1046493] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Peptides are prevalent in biology, mediating as many as 40% of protein-protein interactions, and involved in other cellular functions such as transport and signaling. Their ability to bind with high specificity make them promising therapeutical agents with intermediate properties between small molecules and large biologics. Beyond their biological role, peptides can be programmed to self-assembly, and they are already being used for functions as diverse as oligonuclotide delivery, tissue regeneration or as drugs. However, the transient nature of their interactions has limited the number of structures and knowledge of binding affinities available-and their flexible nature has limited the success of computational pipelines that predict the structures and affinities of these molecules. Fortunately, recent advances in experimental and computational pipelines are creating new opportunities for this field. We are starting to see promising predictions of complex structures, thermodynamic and kinetic properties. We believe in the following years this will lead to robust rational peptide design pipelines with success similar to those applied for small molecule drug discovery.
Collapse
Affiliation(s)
- Liwei Chang
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- Quantum Theory Project, University of Florida, Gainesville, FL, United States
| | - Arup Mondal
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- Quantum Theory Project, University of Florida, Gainesville, FL, United States
| | - Alberto Perez
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- Quantum Theory Project, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Park HM, Park Y, Berani U, Bang E, Vankerschaver J, Van Messem A, De Neve W, Shim H. In silico optimization of RNA-protein interactions for CRISPR-Cas13-based antimicrobials. Biol Direct 2022; 17:27. [PMID: 36207756 PMCID: PMC9547417 DOI: 10.1186/s13062-022-00339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
RNA–protein interactions are crucial for diverse biological processes. In prokaryotes, RNA–protein interactions enable adaptive immunity through CRISPR-Cas systems. These defence systems utilize CRISPR RNA (crRNA) templates acquired from past infections to destroy foreign genetic elements through crRNA-mediated nuclease activities of Cas proteins. Thanks to the programmability and specificity of CRISPR-Cas systems, CRISPR-based antimicrobials have the potential to be repurposed as new types of antibiotics. Unlike traditional antibiotics, these CRISPR-based antimicrobials can be designed to target specific bacteria and minimize detrimental effects on the human microbiome during antibacterial therapy. In this study, we explore the potential of CRISPR-based antimicrobials by optimizing the RNA–protein interactions of crRNAs and Cas13 proteins. CRISPR-Cas13 systems are unique as they degrade specific foreign RNAs using the crRNA template, which leads to non-specific RNase activities and cell cycle arrest. We show that a high proportion of the Cas13 systems have no colocalized CRISPR arrays, and the lack of direct association between crRNAs and Cas proteins may result in suboptimal RNA–protein interactions in the current tools. Here, we investigate the RNA–protein interactions of the Cas13-based systems by curating the validation dataset of Cas13 protein and CRISPR repeat pairs that are experimentally validated to interact, and the candidate dataset of CRISPR repeats that reside on the same genome as the currently known Cas13 proteins. To find optimal CRISPR-Cas13 interactions, we first validate the 3-D structure prediction of crRNAs based on their experimental structures. Next, we test a number of RNA–protein interaction programs to optimize the in silico docking of crRNAs with the Cas13 proteins. From this optimized pipeline, we find a number of candidate crRNAs that have comparable or better in silico docking with the Cas13 proteins of the current tools. This study fully automatizes the in silico optimization of RNA–protein interactions as an efficient preliminary step for designing effective CRISPR-Cas13-based antimicrobials.
Collapse
Affiliation(s)
- Ho-Min Park
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea.,Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Yunseol Park
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea
| | - Urta Berani
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea
| | - Eunkyu Bang
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea
| | - Joris Vankerschaver
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | | - Wesley De Neve
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea.,Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Hyunjin Shim
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea.
| |
Collapse
|
17
|
Verburgt J, Zhang Z, Kihara D. Multi-level analysis of intrinsically disordered protein docking methods. Methods 2022; 204:55-63. [PMID: 35609776 PMCID: PMC9701586 DOI: 10.1016/j.ymeth.2022.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/29/2022] Open
Abstract
Intrinsically Disordered Proteins (IDPs) are a class of proteins in which at least some region of the protein does not possess any stable structure in solution in the physiological condition but may adopt an ordered structure upon binding to a globular receptor. These IDP-receptor complexes are thus subject to protein complex modeling in which computational techniques are applied to accurately reproduce the IDP ligand-receptor interactions. This often exists in the form of protein docking, in which the 3D structures of both the subunits are known, but the position of the ligand relative to the receptor is not. Here, we evaluate the performance of three IDP-receptor modeling tools with metrics that characterize the IDP-receptor interface at various resolutions. We show that all three methods are able to properly identify the general binding site, as identified by lower resolution metrics, but begin to struggle with higher resolution metrics that capture biophysical interactions.
Collapse
Affiliation(s)
- Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Zicong Zhang
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA,Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA,Corresponding Author
| |
Collapse
|
18
|
Matching protein surface structural patches for high-resolution blind peptide docking. Proc Natl Acad Sci U S A 2022; 119:e2121153119. [PMID: 35482919 PMCID: PMC9170164 DOI: 10.1073/pnas.2121153119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Modeling interactions between short peptides and their receptors is a challenging docking problem due to the peptide flexibility, resulting in a formidable sampling problem of peptide conformation in addition to its orientation. Alternatively, the peptide can be viewed as a piece that complements the receptor monomer structure. Here, we show that the peptide conformation can be determined based on the receptor backbone only and sampled using local structural motifs found in solved protein monomers and interfaces, independent of sequence similarity. This approach outperforms current peptide docking protocols and promotes new directions for peptide interface design. Peptide docking can be perceived as a subproblem of protein–protein docking. However, due to the short length and flexible nature of peptides, many do not adopt one defined conformation prior to binding. Therefore, to tackle a peptide docking problem, not only the relative orientation, but also the bound conformation of the peptide needs to be modeled. Traditional peptide-centered approaches use information about peptide sequences to generate representative conformer ensembles, which can then be rigid-body docked to the receptor. Alternatively, one may look at this problem from the viewpoint of the receptor, namely, that the protein surface defines the peptide-bound conformation. Here, we present PatchMAN (Patch-Motif AligNments), a global peptide-docking approach that uses structural motifs to map the receptor surface with backbone scaffolds extracted from protein structures. On a nonredundant set of protein–peptide complexes, starting from free receptor structures, PatchMAN successfully models and identifies near-native peptide–protein complexes in 58%/84% within 2.5 Å/5 Å interface backbone RMSD, with corresponding sampling in 81%/100% of the cases, outperforming other approaches. PatchMAN leverages the observation that structural units of peptides with their binding pocket can be found not only within interfaces, but also within monomers. We show that the bound peptide conformation is sampled based on the structural context of the receptor only, without taking into account any sequence information. Beyond peptide docking, this approach opens exciting new avenues to study principles of peptide–protein association, and to the design of new peptide binders. PatchMAN is available as a server at https://furmanlab.cs.huji.ac.il/patchman/.
Collapse
|
19
|
Delaunay M, Ha-Duong T. Computational Tools and Strategies to Develop Peptide-Based Inhibitors of Protein-Protein Interactions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2405:205-230. [PMID: 35298816 DOI: 10.1007/978-1-0716-1855-4_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions play crucial and subtle roles in many biological processes and modifications of their fine mechanisms generally result in severe diseases. Peptide derivatives are very promising therapeutic agents for modulating protein-protein associations with sizes and specificities between those of small compounds and antibodies. For the same reasons, rational design of peptide-based inhibitors naturally borrows and combines computational methods from both protein-ligand and protein-protein research fields. In this chapter, we aim to provide an overview of computational tools and approaches used for identifying and optimizing peptides that target protein-protein interfaces with high affinity and specificity. We hope that this review will help to implement appropriate in silico strategies for peptide-based drug design that builds on available information for the systems of interest.
Collapse
Affiliation(s)
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France.
| |
Collapse
|
20
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
21
|
Christoffer C, Bharadwaj V, Luu R, Kihara D. LZerD Protein-Protein Docking Webserver Enhanced With de novo Structure Prediction. Front Mol Biosci 2021; 8:724947. [PMID: 34466411 PMCID: PMC8403062 DOI: 10.3389/fmolb.2021.724947] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/21/2021] [Indexed: 01/25/2023] Open
Abstract
Protein-protein docking is a useful tool for modeling the structures of protein complexes that have yet to be experimentally determined. Understanding the structures of protein complexes is a key component for formulating hypotheses in biophysics regarding the functional mechanisms of complexes. Protein-protein docking is an established technique for cases where the structures of the subunits have been determined. While the number of known structures deposited in the Protein Data Bank is increasing, there are still many cases where the structures of individual proteins that users want to dock are not determined yet. Here, we have integrated the AttentiveDist method for protein structure prediction into our LZerD webserver for protein-protein docking, which enables users to simply submit protein sequences and obtain full-complex atomic models, without having to supply any structure themselves. We have further extended the LZerD docking interface with a symmetrical homodimer mode. The LZerD server is available at https://lzerd.kiharalab.org/.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Vijay Bharadwaj
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Ryan Luu
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, United States.,Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
22
|
Christoffer C, Chen S, Bharadwaj V, Aderinwale T, Kumar V, Hormati M, Kihara D. LZerD webserver for pairwise and multiple protein-protein docking. Nucleic Acids Res 2021; 49:W359-W365. [PMID: 33963854 PMCID: PMC8262708 DOI: 10.1093/nar/gkab336] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Protein complexes are involved in many important processes in living cells. To understand the mechanisms of these processes, it is necessary to solve the 3D structures of the protein complexes. When protein complex structures have not yet been determined by experiment, protein-protein docking tools can be used to computationally model the structures of these complexes. Here, we present a webserver which provides access to LZerD and Multi-LZerD protein docking tools. The protocol provided by the server have performed consistently among the top in the CAPRI blind evaluation. LZerD docks pairs of structures, while Multi-LZerD can dock three or more structures simultaneously. LZerD uses a soft protein surface representation with 3D Zernike descriptors and explores the binding pose space using geometric hashing. Multi-LZerD performs multi-chain docking by combining pairwise solutions by LZerD. Both methods output full-atom docked models of the input proteins. Users can also input distance constraints between interacting or non-interacting residues as well as residues that locate at the interface or far from the interface. The webserver is equipped with a user-friendly panel that visualizes the distribution and structures of binding poses of top scoring models. The LZerD webserver is available at https://lzerd.kiharalab.org.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Siyang Chen
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Vijay Bharadwaj
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Vidhur Kumar
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Matin Hormati
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.,Department of Biological Sciences, Purdue University, West Lafayette IN, 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
23
|
Clerc I, Sagar A, Barducci A, Sibille N, Bernadó P, Cortés J. The diversity of molecular interactions involving intrinsically disordered proteins: A molecular modeling perspective. Comput Struct Biotechnol J 2021; 19:3817-3828. [PMID: 34285781 PMCID: PMC8273358 DOI: 10.1016/j.csbj.2021.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Intrinsically Disordered Proteins and Regions (IDPs/IDRs) are key components of a multitude of biological processes. Conformational malleability enables IDPs/IDRs to perform very specialized functions that cannot be accomplished by globular proteins. The functional role for most of these proteins is related to the recognition of other biomolecules to regulate biological processes or as a part of signaling pathways. Depending on the extent of disorder, the number of interacting sites and the type of partner, very different architectures for the resulting assemblies are possible. More recently, molecular condensates with liquid-like properties composed of multiple copies of IDPs and nucleic acids have been proven to regulate key processes in eukaryotic cells. The structural and kinetic details of disordered biomolecular complexes are difficult to unveil experimentally due to their inherent conformational heterogeneity. Computational approaches, alone or in combination with experimental data, have emerged as unavoidable tools to understand the functional mechanisms of this elusive type of assemblies. The level of description used, all-atom or coarse-grained, strongly depends on the size of the molecular systems and on the timescale of the investigated mechanism. In this mini-review, we describe the most relevant architectures found for molecular interactions involving IDPs/IDRs and the computational strategies applied for their investigation.
Collapse
Affiliation(s)
- Ilinka Clerc
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Amin Sagar
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Alessandro Barducci
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
24
|
Wang X, Flannery ST, Kihara D. Protein Docking Model Evaluation by Graph Neural Networks. Front Mol Biosci 2021; 8:647915. [PMID: 34113650 PMCID: PMC8185212 DOI: 10.3389/fmolb.2021.647915] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Physical interactions of proteins play key functional roles in many important cellular processes. To understand molecular mechanisms of such functions, it is crucial to determine the structure of protein complexes. To complement experimental approaches, which usually take a considerable amount of time and resources, various computational methods have been developed for predicting the structures of protein complexes. In computational modeling, one of the challenges is to identify near-native structures from a large pool of generated models. Here, we developed a deep learning-based approach named Graph Neural Network-based DOcking decoy eValuation scorE (GNN-DOVE). To evaluate a protein docking model, GNN-DOVE extracts the interface area and represents it as a graph. The chemical properties of atoms and the inter-atom distances are used as features of nodes and edges in the graph, respectively. GNN-DOVE was trained, validated, and tested on docking models in the Dockground database and further tested on a combined dataset of Dockground and ZDOCK benchmark as well as a CAPRI scoring dataset. GNN-DOVE performed better than existing methods, including DOVE, which is our previous development that uses a convolutional neural network on voxelized structure models.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Sean T. Flannery
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
25
|
Aderinwale T, Christoffer CW, Sarkar D, Alnabati E, Kihara D. Computational structure modeling for diverse categories of macromolecular interactions. Curr Opin Struct Biol 2020; 64:1-8. [PMID: 32599506 PMCID: PMC7665979 DOI: 10.1016/j.sbi.2020.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 01/23/2023]
Abstract
Computational protein-protein docking is one of the most intensively studied topics in structural bioinformatics. The field has made substantial progress through over three decades of development. The development began with methods for rigid-body docking of two proteins, which have now been extended in different directions to cover the various macromolecular interactions observed in a cell. Here, we overview the recent developments of the variations of docking methods, including multiple protein docking, peptide-protein docking, and disordered protein docking methods.
Collapse
Affiliation(s)
- Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Eman Alnabati
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
26
|
Wang X, Terashi G, Christoffer CW, Zhu M, Kihara D. Protein docking model evaluation by 3D deep convolutional neural networks. Bioinformatics 2020; 36:2113-2118. [PMID: 31746961 DOI: 10.1093/bioinformatics/btz870] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/25/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Many important cellular processes involve physical interactions of proteins. Therefore, determining protein quaternary structures provide critical insights for understanding molecular mechanisms of functions of the complexes. To complement experimental methods, many computational methods have been developed to predict structures of protein complexes. One of the challenges in computational protein complex structure prediction is to identify near-native models from a large pool of generated models. RESULTS We developed a convolutional deep neural network-based approach named DOcking decoy selection with Voxel-based deep neural nEtwork (DOVE) for evaluating protein docking models. To evaluate a protein docking model, DOVE scans the protein-protein interface of the model with a 3D voxel and considers atomic interaction types and their energetic contributions as input features applied to the neural network. The deep learning models were trained and validated on docking models available in the ZDock and DockGround databases. Among the different combinations of features tested, almost all outperformed existing scoring functions. AVAILABILITY AND IMPLEMENTATION Codes available at http://github.com/kiharalab/DOVE, http://kiharalab.org/dove/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Mengmeng Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
27
|
Khramushin A, Marcu O, Alam N, Shimony O, Padhorny D, Brini E, Dill KA, Vajda S, Kozakov D, Schueler-Furman O. Modeling beta-sheet peptide-protein interactions: Rosetta FlexPepDock in CAPRI rounds 38-45. Proteins 2020; 88:1037-1049. [PMID: 31891416 PMCID: PMC7539656 DOI: 10.1002/prot.25871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023]
Abstract
Peptide-protein docking is challenging due to the considerable conformational freedom of the peptide. CAPRI rounds 38-45 included two peptide-protein interactions, both characterized by a peptide forming an additional beta strand of a beta sheet in the receptor. Using the Rosetta FlexPepDock peptide docking protocol we generated top-performing, high-accuracy models for targets 134 and 135, involving an interaction between a peptide derived from L-MAG with DLC8. In addition, we were able to generate the only medium-accuracy models for a particularly challenging target, T121. In contrast to the classical peptide-mediated interaction, in which receptor side chains contact both peptide backbone and side chains, beta-sheet complementation involves a major contribution to binding by hydrogen bonds between main chain atoms. To establish how binding affinity and specificity are established in this special class of peptide-protein interactions, we extracted PeptiDBeta, a benchmark of solved structures of different protein domains that are bound by peptides via beta-sheet complementation, and tested our protocol for global peptide-docking PIPER-FlexPepDock on this dataset. We find that the beta-strand part of the peptide is sufficient to generate approximate and even high resolution models of many interactions, but inclusion of adjacent motif residues often provides additional information necessary to achieve high resolution model quality.
Collapse
Affiliation(s)
- Alisa Khramushin
- Department of Microbiologyand Molecular Genetics, Institute
for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University,
Jerusalem, Israel
| | - Orly Marcu
- Department of Microbiologyand Molecular Genetics, Institute
for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University,
Jerusalem, Israel
| | - Nawsad Alam
- Department of Microbiologyand Molecular Genetics, Institute
for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University,
Jerusalem, Israel
| | - Orly Shimony
- Department of Microbiologyand Molecular Genetics, Institute
for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University,
Jerusalem, Israel
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony
Brook University, New York, New York
- Laufer Center for Physical and Quantitative Biology, Stony
Brook University, New York, New York
| | - Emiliano Brini
- Laufer Center for Physical and Quantitative Biology, Stony
Brook University, New York, New York
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, Stony
Brook University, New York, New York
- Department of Physics and Astronomy, Stony Brook
University, New York, New York
- Department of Chemistry, Stony Brook University, New York,
New York
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University,
Boston, Massachusetts
- Department of Chemistry, Boston University, Boston,
Massachusetts
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony
Brook University, New York, New York
- Laufer Center for Physical and Quantitative Biology, Stony
Brook University, New York, New York
| | - Ora Schueler-Furman
- Department of Microbiologyand Molecular Genetics, Institute
for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University,
Jerusalem, Israel
| |
Collapse
|
28
|
Zhang Y, Sanner MF. AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes. Bioinformatics 2020; 35:5121-5127. [PMID: 31161213 DOI: 10.1093/bioinformatics/btz459] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/09/2019] [Accepted: 05/29/2019] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs. RESULTS Here we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to predict the protein-peptide complex. We show that it outperforms leading peptide docking methods on two protein-peptide datasets commonly used for benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these datasets, ADCP reliably docked a set of protein-peptide complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated protein-protein interactions and interactions with disordered proteins. AVAILABILITY AND IMPLEMENTATION ADCP is distributed under the LGPL 2.0 open source license and is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuqi Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michel F Sanner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
29
|
Bafna D, Ban F, Rennie PS, Singh K, Cherkasov A. Computer-Aided Ligand Discovery for Estrogen Receptor Alpha. Int J Mol Sci 2020; 21:E4193. [PMID: 32545494 PMCID: PMC7352601 DOI: 10.3390/ijms21124193] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BCa) is one of the most predominantly diagnosed cancers in women. Notably, 70% of BCa diagnoses are Estrogen Receptor α positive (ERα+) making it a critical therapeutic target. With that, the two subtypes of ER, ERα and ERβ, have contrasting effects on BCa cells. While ERα promotes cancerous activities, ERβ isoform exhibits inhibitory effects on the same. ER-directed small molecule drug discovery for BCa has provided the FDA approved drugs tamoxifen, toremifene, raloxifene and fulvestrant that all bind to the estrogen binding site of the receptor. These ER-directed inhibitors are non-selective in nature and may eventually induce resistance in BCa cells as well as increase the risk of endometrial cancer development. Thus, there is an urgent need to develop novel drugs with alternative ERα targeting mechanisms that can overcome the limitations of conventional anti-ERα therapies. Several functional sites on ERα, such as Activation Function-2 (AF2), DNA binding domain (DBD), and F-domain, have been recently considered as potential targets in the context of drug research and discovery. In this review, we summarize methods of computer-aided drug design (CADD) that have been employed to analyze and explore potential targetable sites on ERα, discuss recent advancement of ERα inhibitor development, and highlight the potential opportunities and challenges of future ERα-directed drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (D.B.); (F.B.); (P.S.R.); (K.S.)
| |
Collapse
|
30
|
Roel-Touris J, Bonvin AM. Coarse-grained (hybrid) integrative modeling of biomolecular interactions. Comput Struct Biotechnol J 2020; 18:1182-1190. [PMID: 32514329 PMCID: PMC7264466 DOI: 10.1016/j.csbj.2020.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022] Open
Abstract
The computational modeling field has vastly evolved over the past decades. The early developments of simplified protein systems represented a stepping stone towards establishing more efficient approaches to sample intricated conformational landscapes. Downscaling the level of resolution of biomolecules to coarser representations allows for studying protein structure, dynamics and interactions that are not accessible by classical atomistic approaches. The combination of different resolutions, namely hybrid modeling, has also been proved as an alternative when mixed levels of details are required. In this review, we provide an overview of coarse-grained/hybrid models focusing on their applicability in the modeling of biomolecular interactions. We give a detailed list of ready-to-use modeling software for studying biomolecular interactions allowing various levels of coarse-graining and provide examples of complexes determined by integrative coarse-grained/hybrid approaches in combination with experimental information.
Collapse
|
31
|
Abstract
Modeling the tertiary structure of protein-protein interaction complex has been well studied over many years, especially in the case where the structures of both binding partners are roughly the same before and after binding. However, the assembly of complexes with less-ordered partners is a much harder problem, and modeling even small amounts of flexibility can pose a challenge. In an extreme case, where one of the binding partners is intrinsically disordered before binding, we have previously shown that by initially disregarding the coupling between windows of these intrinsically disordered proteins (IDPs), we can reliably assemble complexes involving IDPs up to at least 69 residues long. Here, we detail the use of the IDP-LZerD package and protocol.
Collapse
|
32
|
Kumari A, Somvanshi P, Grover A. Ameliorating amyloid aggregation through osmolytes as a probable therapeutic molecule against Alzheimer's disease and type 2 diabetes. RSC Adv 2020; 10:12166-12182. [PMID: 35497581 PMCID: PMC9050657 DOI: 10.1039/d0ra00429d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/16/2020] [Indexed: 01/31/2023] Open
Abstract
Large numbers of neurological and metabolic disorders occurring in humans are induced by the aberrant growth of aggregated or misfolded proteins.
Collapse
Affiliation(s)
- Anchala Kumari
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi-110070
- India
- School of Biotechnology
| | - Pallavi Somvanshi
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi-110070
- India
| | - Abhinav Grover
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi-110067
- India
| |
Collapse
|
33
|
Lensink MF, Brysbaert G, Nadzirin N, Velankar S, Chaleil RAG, Gerguri T, Bates PA, Laine E, Carbone A, Grudinin S, Kong R, Liu RR, Xu XM, Shi H, Chang S, Eisenstein M, Karczynska A, Czaplewski C, Lubecka E, Lipska A, Krupa P, Mozolewska M, Golon Ł, Samsonov S, Liwo A, Crivelli S, Pagès G, Karasikov M, Kadukova M, Yan Y, Huang SY, Rosell M, Rodríguez-Lumbreras LA, Romero-Durana M, Díaz-Bueno L, Fernandez-Recio J, Christoffer C, Terashi G, Shin WH, Aderinwale T, Subraman SRMV, Kihara D, Kozakov D, Vajda S, Porter K, Padhorny D, Desta I, Beglov D, Ignatov M, Kotelnikov S, Moal IH, Ritchie DW, de Beauchêne IC, Maigret B, Devignes MD, Echartea MER, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Cao Y, Shen Y, Baek M, Park T, Woo H, Seok C, Braitbard M, Bitton L, Scheidman-Duhovny D, Dapkūnas J, Olechnovič K, Venclovas Č, Kundrotas PJ, Belkin S, Chakravarty D, Badal VD, Vakser IA, Vreven T, Vangaveti S, Borrman T, Weng Z, Guest JD, Gowthaman R, Pierce BG, Xu X, Duan R, Qiu L, Hou J, Merideth BR, Ma Z, Cheng J, Zou X, Koukos PI, Roel-Touris J, Ambrosetti F, Geng C, Schaarschmidt J, Trellet ME, Melquiond ASJ, Xue L, et alLensink MF, Brysbaert G, Nadzirin N, Velankar S, Chaleil RAG, Gerguri T, Bates PA, Laine E, Carbone A, Grudinin S, Kong R, Liu RR, Xu XM, Shi H, Chang S, Eisenstein M, Karczynska A, Czaplewski C, Lubecka E, Lipska A, Krupa P, Mozolewska M, Golon Ł, Samsonov S, Liwo A, Crivelli S, Pagès G, Karasikov M, Kadukova M, Yan Y, Huang SY, Rosell M, Rodríguez-Lumbreras LA, Romero-Durana M, Díaz-Bueno L, Fernandez-Recio J, Christoffer C, Terashi G, Shin WH, Aderinwale T, Subraman SRMV, Kihara D, Kozakov D, Vajda S, Porter K, Padhorny D, Desta I, Beglov D, Ignatov M, Kotelnikov S, Moal IH, Ritchie DW, de Beauchêne IC, Maigret B, Devignes MD, Echartea MER, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Cao Y, Shen Y, Baek M, Park T, Woo H, Seok C, Braitbard M, Bitton L, Scheidman-Duhovny D, Dapkūnas J, Olechnovič K, Venclovas Č, Kundrotas PJ, Belkin S, Chakravarty D, Badal VD, Vakser IA, Vreven T, Vangaveti S, Borrman T, Weng Z, Guest JD, Gowthaman R, Pierce BG, Xu X, Duan R, Qiu L, Hou J, Merideth BR, Ma Z, Cheng J, Zou X, Koukos PI, Roel-Touris J, Ambrosetti F, Geng C, Schaarschmidt J, Trellet ME, Melquiond ASJ, Xue L, Jiménez-García B, van Noort CW, Honorato RV, Bonvin AMJJ, Wodak SJ. Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment. Proteins 2019; 87:1200-1221. [PMID: 31612567 PMCID: PMC7274794 DOI: 10.1002/prot.25838] [Show More Authors] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022]
Abstract
We present the results for CAPRI Round 46, the third joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo-oligomers and 6 heterocomplexes. Eight of the homo-oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher-order assemblies. These were more difficult to model, as their prediction mainly involved "ab-initio" docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance "gap" was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template-based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.
Collapse
Affiliation(s)
- Marc F. Lensink
- University of Lille, CNRS UMR8576 UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Guillaume Brysbaert
- University of Lille, CNRS UMR8576 UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nurul Nadzirin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Tereza Gerguri
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Paul A. Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Elodie Laine
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, Paris, France
| | - Alessandra Carbone
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Sergei Grudinin
- Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Ran-Ran Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xi-Ming Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Emilia Lubecka
- Institute of Informatics, Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, Gdańsk, Poland
| | | | - Paweł Krupa
- Polish Academy of Sciences, Institute of Physics, Warsaw, Poland
| | | | - Łukasz Golon
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| | | | - Guillaume Pagès
- Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
| | | | - Maria Kadukova
- Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mireia Rosell
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), Logroño, Spain
| | - Luis A. Rodríguez-Lumbreras
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), Logroño, Spain
| | | | | | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV-CSIC), Logroño, Spain
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Woong-Hee Shin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | | | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | - Dima Kozakov
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Department of Chemistry, Boston University, Boston, Massachusetts
| | - Kathryn Porter
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Dzmitry Padhorny
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Israel Desta
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Dmitri Beglov
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Mikhail Ignatov
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Sergey Kotelnikov
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russia
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
| | - Iain H. Moal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | - Didier Barradas-Bautista
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Zhen Cao
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University of Naples “Parthenope”, Napoli, Italy
| | - Yue Cao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Minkyung Baek
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Merav Braitbard
- Department of Biological Chemistry, Institute of Live Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lirane Bitton
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dina Scheidman-Duhovny
- Department of Biological Chemistry, Institute of Live Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Petras J. Kundrotas
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Saveliy Belkin
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Devlina Chakravarty
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Varsha D. Badal
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Ilya A. Vakser
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Thom Vreven
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sweta Vangaveti
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Tyler Borrman
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Johnathan D. Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Rui Duan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jie Hou
- Department of Computer Science, University of Missouri, Columbia, Missouri
| | - Benjamin Ryan Merideth
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia, Missouri
| | - Zhiwei Ma
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia, Missouri
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia, Missouri
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Panagiotis I. Koukos
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jorge Roel-Touris
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Francesco Ambrosetti
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Cunliang Geng
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jörg Schaarschmidt
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mikael E. Trellet
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Adrien S. J. Melquiond
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Li Xue
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Brian Jiménez-García
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Charlotte W. van Noort
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rodrigo V. Honorato
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Alexandre M. J. J. Bonvin
- Computational Structural Biology Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
34
|
Katuwawala A, Oldfield CJ, Kurgan L. Accuracy of protein-level disorder predictions. Brief Bioinform 2019; 21:1509-1522. [DOI: 10.1093/bib/bbz100] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/22/2019] [Accepted: 07/15/2019] [Indexed: 01/15/2023] Open
Abstract
Abstract
Experimental annotations of intrinsic disorder are available for 0.1% of 147 000 000 of currently sequenced proteins. Over 60 sequence-based disorder predictors were developed to help bridge this gap. Current benchmarks of these methods assess predictive performance on datasets of proteins; however, predictions are often interpreted for individual proteins. We demonstrate that the protein-level predictive performance varies substantially from the dataset-level benchmarks. Thus, we perform first-of-its-kind protein-level assessment for 13 popular disorder predictors using 6200 disorder-annotated proteins. We show that the protein-level distributions are substantially skewed toward high predictive quality while having long tails of poor predictions. Consequently, between 57% and 75% proteins secure higher predictive performance than the currently used dataset-level assessment suggests, but as many as 30% of proteins that are located in the long tails suffer low predictive performance. These proteins typically have relatively high amounts of disorder, in contrast to the mostly structured proteins that are predicted accurately by all 13 methods. Interestingly, each predictor provides the most accurate results for some number of proteins, while the best-performing at the dataset-level method is in fact the best for only about 30% of proteins. Moreover, the majority of proteins are predicted more accurately than the dataset-level performance of the most accurate tool by at least four disorder predictors. While these results suggests that disorder predictors outperform their current benchmark performance for the majority of proteins and that they complement each other, novel tools that accurately identify the hard-to-predict proteins and that make accurate predictions for these proteins are needed.
Collapse
Affiliation(s)
- Akila Katuwawala
- Department of Computer Science, Virginia Commonwealth University, USA
- Department of Computer Science, Virginia Commonwealth University, USA
| | - Christopher J Oldfield
- Department of Computer Science, Virginia Commonwealth University, USA
- Department of Computer Science, Virginia Commonwealth University, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, USA
- Department of Computer Science, Virginia Commonwealth University, USA
| |
Collapse
|
35
|
Soler D, Westermaier Y, Soliva R. Extensive benchmark of rDock as a peptide-protein docking tool. J Comput Aided Mol Des 2019; 33:613-626. [DOI: 10.1007/s10822-019-00212-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
|
36
|
Gondelaud F, Ricard‐Blum S. Structures and interactions of syndecans. FEBS J 2019; 286:2994-3007. [DOI: 10.1111/febs.14828] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Frank Gondelaud
- ICBMS UMR 5246 CNRS – University Lyon 1 Univ Lyon Villeurbanne France
| | | |
Collapse
|
37
|
|
38
|
Aryal UK, Ding Z, Hedrick V, Sobreira TJP, Kihara D, Sherman LA. Analysis of Protein Complexes in the Unicellular Cyanobacterium Cyanothece ATCC 51142. J Proteome Res 2018; 17:3628-3643. [PMID: 30216071 DOI: 10.1021/acs.jproteome.8b00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The unicellular cyanobacterium Cyanothece ATCC 51142 is capable of oxygenic photosynthesis and biological N2 fixation (BNF), a process highly sensitive to oxygen. Previous work has focused on determining protein expression levels under different growth conditions. A major gap of our knowledge is an understanding on how these expressed proteins are assembled into complexes and organized into metabolic pathways, an area that has not been thoroughly investigated. Here, we combined size-exclusion chromatography (SEC) with label-free quantitative mass spectrometry (MS) and bioinformatics to characterize many protein complexes from Cyanothece 51142 cells grown under a 12 h light-dark cycle. We identified 1386 proteins in duplicate biological replicates, and 64% of those proteins were identified as putative complexes. Pairwise computational prediction of protein-protein interaction (PPI) identified 74 822 putative interactions, of which 2337 interactions were highly correlated with published protein coexpressions. Many sequential glycolytic and TCA cycle enzymes were identified as putative complexes. We also identified many membrane complexes that contain cytoplasmic domains. Subunits of NDH-1 complex eluted in a fraction with an approximate mass of ∼669 kDa, and subunits composition revealed coexistence of distinct forms of NDH-1 complex subunits responsible for respiration, electron flow, and CO2 uptake. The complex form of the phycocyanin beta subunit was nonphosphorylated, and the monomer form was phosphorylated at Ser20, suggesting phosphorylation-dependent deoligomerization of the phycocyanin beta subunit. This study provides an analytical platform for future studies to reveal how these complexes assemble and disassemble as a function of diurnal and circadian rhythms.
Collapse
|
39
|
Ding Z, Kihara D. Computational Methods for Predicting Protein-Protein Interactions Using Various Protein Features. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2018; 93:e62. [PMID: 29927082 PMCID: PMC6097941 DOI: 10.1002/cpps.62] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding protein-protein interactions (PPIs) in a cell is essential for learning protein functions, pathways, and mechanism of diseases. PPIs are also important targets for developing drugs. Experimental methods, both small-scale and large-scale, have identified PPIs in several model organisms. However, results cover only a part of PPIs of organisms; moreover, there are many organisms whose PPIs have not yet been investigated. To complement experimental methods, many computational methods have been developed that predict PPIs from various characteristics of proteins. Here we provide an overview of literature reports to classify computational PPI prediction methods that consider different features of proteins, including protein sequence, genomes, protein structure, function, PPI network topology, and those which integrate multiple methods. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ziyun Ding
- Department of Biological Science, Purdue University, West Lafayette, IN, 47907 USA
| | - Daisuke Kihara
- Department of Biological Science, Purdue University, West Lafayette, IN, 47907 USA
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907 USA
- Corresponding author: DK; , Phone: 1-765-496-2284 (DK)
| |
Collapse
|
40
|
Mioduszewski Ł, Cieplak M. Disordered peptide chains in an α-C-based coarse-grained model. Phys Chem Chem Phys 2018; 20:19057-19070. [PMID: 29972174 DOI: 10.1039/c8cp03309a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We construct a one-bead-per-residue coarse-grained dynamical model to describe intrinsically disordered proteins at significantly longer timescales than in the all-atom models. In this model, inter-residue contacts form and disappear during the course of the time evolution. The contacts may arise between the sidechains, the backbones or the sidechains and backbones of the interacting residues. The model yields results that are consistent with many all-atom and experimental data on these systems. We demonstrate that the geometrical properties of various homopeptides differ substantially in this model. In particular, the average radius of gyration scales with the sequence length in a residue-dependent manner.
Collapse
Affiliation(s)
- Łukasz Mioduszewski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
| | | |
Collapse
|
41
|
Ciemny M, Kurcinski M, Kamel K, Kolinski A, Alam N, Schueler-Furman O, Kmiecik S. Protein-peptide docking: opportunities and challenges. Drug Discov Today 2018; 23:1530-1537. [PMID: 29733895 DOI: 10.1016/j.drudis.2018.05.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
Peptides have recently attracted much attention as promising drug candidates. Rational design of peptide-derived therapeutics usually requires structural characterization of the underlying protein-peptide interaction. Given that experimental characterization can be difficult, reliable computational tools are needed. In recent years, a variety of approaches have been developed for 'protein-peptide docking', that is, predicting the structure of the protein-peptide complex, starting from the protein structure and the peptide sequence, including variable degrees of information about the peptide binding site and/or conformation. In this review, we provide an overview of protein-peptide docking methods and outline their capabilities, limitations, and applications in structure-based drug design. Key challenges are also briefly discussed, such as modeling of large-scale conformational changes upon binding, scoring of predicted models, and optimal inclusion of varied types of experimental data and theoretical predictions into an integrative modeling process.
Collapse
Affiliation(s)
- Maciej Ciemny
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland; Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Mateusz Kurcinski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Karol Kamel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Andrzej Kolinski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Nawsad Alam
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
42
|
Tsafou K, Tiwari PB, Forman-Kay JD, Metallo SJ, Toretsky JA. Targeting Intrinsically Disordered Transcription Factors: Changing the Paradigm. J Mol Biol 2018; 430:2321-2341. [PMID: 29655986 DOI: 10.1016/j.jmb.2018.04.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/21/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
Increased understanding of intrinsically disordered proteins (IDPs) and protein regions has revolutionized our view of the relationship between protein structure and function. Data now support that IDPs can be functional in the absence of a single, fixed, three-dimensional structure. Due to their dynamic morphology, IDPs have the ability to display a range of kinetics and affinity depending on what the system requires, as well as the potential for large-scale association. Although several studies have shed light on the functional properties of IDPs, the class of intrinsically disordered transcription factors (TFs) is still poorly characterized biophysically due to their combination of ordered and disordered sequences. In addition, TF modulation by small molecules has long been considered a difficult or even impossible task, limiting functional probe development. However, with evolving technology, it is becoming possible to characterize TF structure-function relationships in unprecedented detail and explore avenues not available or not considered in the past. Here we provide an introduction to the biophysical properties of intrinsically disordered TFs and we discuss recent computational and experimental efforts toward understanding the role of intrinsically disordered TFs in biology and disease. We describe a series of successful TF targeting strategies that have overcome the perception of the "undruggability" of TFs, providing new leads on drug development methodologies. Lastly, we discuss future challenges and opportunities to enhance our understanding of the structure-function relationship of intrinsically disordered TFs.
Collapse
Affiliation(s)
- K Tsafou
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - P B Tiwari
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - J D Forman-Kay
- Molecular Medicine, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto M5G 1X8, Canada
| | - S J Metallo
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - J A Toretsky
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA.
| |
Collapse
|
43
|
Peptide Derivatives of Erythropoietin in the Treatment of Neuroinflammation and Neurodegeneration. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:309-357. [DOI: 10.1016/bs.apcsb.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Alam N, Goldstein O, Xia B, Porter KA, Kozakov D, Schueler-Furman O. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLoS Comput Biol 2017; 13:e1005905. [PMID: 29281622 PMCID: PMC5760072 DOI: 10.1371/journal.pcbi.1005905] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/09/2018] [Accepted: 11/29/2017] [Indexed: 11/24/2022] Open
Abstract
Peptide-protein interactions contribute a significant fraction of the protein-protein interactome. Accurate modeling of these interactions is challenging due to the vast conformational space associated with interactions of highly flexible peptides with large receptor surfaces. To address this challenge we developed a fragment based high-resolution peptide-protein docking protocol. By streamlining the Rosetta fragment picker for accurate peptide fragment ensemble generation, the PIPER docking algorithm for exhaustive fragment-receptor rigid-body docking and Rosetta FlexPepDock for flexible full-atom refinement of PIPER docked models, we successfully addressed the challenge of accurate and efficient global peptide-protein docking at high-resolution with remarkable accuracy, as validated on a small but representative set of peptide-protein complex structures well resolved by X-ray crystallography. Our approach opens up the way to high-resolution modeling of many more peptide-protein interactions and to the detailed study of peptide-protein association in general. PIPER-FlexPepDock is freely available to the academic community as a server at http://piperfpd.furmanlab.cs.huji.ac.il. Peptide-protein interactions are crucial components of various important biological processes in living cells. High-resolution structural information of such interactions provides insight about the underlying biophysical principles governing the interactions, and a starting point for their targeted manipulations. Accurate docking algorithms can help fill the gap between the vast number of these interactions and the small number of experimentally solved structures. However, the accuracies of the existing protocols have been limited, in particular for ab initio docking when no information about the peptide beyond its sequence is available. Here we introduce PIPER-FlexPepDock, a fragment-based global docking protocol for high-resolution modeling of peptide-protein interactions. Integration of accurate and efficient representation of the peptide using fragment ensembles, their fast and exhaustive rigid-body docking, and their subsequent accurate flexible refinement, enables peptide-protein docking of remarkable accuracy. The validation on a representative benchmark set of crystallographically solved high-resolution peptide-protein complexes demonstrates significantly improved performance over all existing docking protocols. This opens up the way to the modeling of many more peptide-protein interactions, and to a more detailed study of peptide-protein association in general.
Collapse
Affiliation(s)
- Nawsad Alam
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Oriel Goldstein
- School of Computer Sciences and Engineering, The Hebrew University, Jerusalem, Israel
| | - Bing Xia
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Kathryn A. Porter
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
- Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (OSF); (DK)
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- * E-mail: (OSF); (DK)
| |
Collapse
|
45
|
Shin WH, Christoffer CW, Kihara D. In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods 2017; 131:22-32. [PMID: 28802714 PMCID: PMC5683929 DOI: 10.1016/j.ymeth.2017.08.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
A core concept behind modern drug discovery is finding a small molecule that modulates a function of a target protein. This concept has been successfully applied since the mid-1970s. However, the efficiency of drug discovery is decreasing because the druggable target space in the human proteome is limited. Recently, protein-protein interaction (PPI) has been identified asan emerging target space for drug discovery. PPI plays a pivotal role in biological pathways including diseases. Current human interactome research suggests that the number of PPIs is between 130,000 and 650,000, and only a small number of them have been targeted as drug targets. For traditional drug targets, in silico structure-based methods have been successful in many cases. However, their performance suffers on PPI interfaces because PPI interfaces are different in five major aspects: From a geometric standpoint, they have relatively large interface regions, flat geometry, and the interface surface shape tends to fluctuate upon binding. Also, their interactions are dominated by hydrophobic atoms, which is different from traditional binding-pocket-targeted drugs. Finally, PPI targets usually lack natural molecules that bind to the target PPI interface. Here, we first summarize characteristics of PPI interfaces and their known binders. Then, we will review existing in silico structure-based approaches for discovering small molecules that bind to PPI interfaces.
Collapse
Affiliation(s)
- Woong-Hee Shin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|