1
|
Moore CP, Rouach S, Le Goas M, Lerouge S, Tsapis N, Fresnais J, Berret JF. Magnetic pillar induced Poiseuille-like flow in microfluidic channels with viscous and viscoelastic fluids. LAB ON A CHIP 2025. [PMID: 40351132 DOI: 10.1039/d5lc00035a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Mucociliary clearance in mammals serves as the primary defense mechanism for removing particulate matter deposited in the pulmonary airways. Dysfunctions in this process are linked to serious respiratory diseases and can hinder effective drug delivery to the lungs. Microfluidic systems have emerged as a promising alternative for replicating lung functions in non-cellular physiological environments, offering a more controllable approach compared to in vivo and in vitro assays. Here we present a microfluidic platform featuring a closed-loop circular microchannel, integrating a thousand 75 μm-high magnetic pillars arranged in a square array. Made of polydimethylsiloxane and loaded with iron microparticles, the pillars are studied using scanning electron microscopy and magnetometry; their internal structure and bending response to a magnetic field are quantitatively analyzed. Using a combination of experimental data and finite element simulations, we found that the magnetic torque induced by permanent magnets dominates over magnetic force, generating fluid flow in the microchannel. Under the application of a rotating field, the time-dependent deflection of the pillars closely mimics the behavior of lung cilia, exhibiting alternating effective and recovery strokes. The velocity profiles of viscous and viscoelastic fluids are examined, and shown to display Poiseuille-type flow. By varying the viscosity of the fluids across four orders of magnitude, we identified a transition in propulsion regimes between viscous and elastic-driven flows. This active microfluidic platform offers a promising approach for modeling mucociliary clearance in drug delivery applications.
Collapse
Affiliation(s)
- Charles Paul Moore
- CNRS, Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, UMR8234, Sorbonne Université, F-75252 Paris Cedex 05, France
- Université Paris Cité, CNRS, Matière et systèmes complexes, 75013 Paris, France.
| | - Stefan Rouach
- Université Paris Cité, CNRS, Matière et systèmes complexes, 75013 Paris, France.
| | - Marine Le Goas
- Université Paris Cité, CNRS, Matière et systèmes complexes, 75013 Paris, France.
| | - Sandra Lerouge
- Université Paris Cité, CNRS, Matière et systèmes complexes, 75013 Paris, France.
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Jérôme Fresnais
- CNRS, Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, UMR8234, Sorbonne Université, F-75252 Paris Cedex 05, France
| | - Jean-François Berret
- Université Paris Cité, CNRS, Matière et systèmes complexes, 75013 Paris, France.
| |
Collapse
|
2
|
Qiu Y, Cai X, Bian X, Hu G. Design of a magnetically responsive artificial cilia array platform for microsphere transport. LAB ON A CHIP 2025; 25:330-342. [PMID: 39676634 DOI: 10.1039/d4lc00981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
We present an innovative platform designed to mimic the mucociliary clearance system, an essential defense mechanism in the respiratory tract. Our system utilizes PDMS and iron powder to fabricate micro-ciliary arrays that dynamically respond to alternating magnetic fields. The cilia exhibit an asymmetric beating pattern under a cyclically varying magnetic field, which propels microspheres directionally in a fluid medium, simulating the movement of mucus. We use both experimental setups and numerical simulations to investigate factors that influence the efficiency of particle transport, such as cilia beating frequency, microsphere size, cilia density, and fluid viscosity. Our results elucidate the role of artificial cilia in surface cleaning processes and provide insights that enhance our understanding of mucociliary clearance. This novel experimental platform holds great promise for advancing research in respiratory health and microchannel cleaning technologies, and contributes to our ability to model and study human respiratory function in vitro.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Xinwei Cai
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Xin Bian
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
3
|
Fieux M, Carsuzaa F, Bellanger Y, Bartier S, Fournier V, Lecron JC, Bainaud M, Louis B, Tringali S, Dufour X, Coste A, Favot L, Bequignon E. Dupilumab prevents nasal epithelial function alteration by IL-4 in vitro: Evidence for its efficacy. Int Forum Allergy Rhinol 2024; 14:1337-1349. [PMID: 38465788 DOI: 10.1002/alr.23343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyp (CRSwNP) is a typical type 2 inflammation involving interleukin (IL)-4 and IL-13. Dupilumab is a fully human monoclonal antibody targeting IL-4 receptor α subunit, thereby blocking signaling by both cytokines. Our hypothesis was that IL-4 and IL-13, by inducing a severe epithelial dysregulation, are involved in CRSwNP pathogenesis. This study aimed to evaluate the in vitro direct effect of IL-4, IL-13, and dupilumab on nasal epithelial functions. METHODS Nasal polyps and control mucosa from 28 patients, as well as human nasal epithelial cells (HNEC) from 35 patients with CRSwNP were used. Three major epithelial functions were investigated: the epithelial barrier function (characterized by transepithelial electrical resistance measurements and tight junction protein expression), the ciliary motion (characterized by the ciliary beating efficiency index), and wound healing (characterized by the wound repair rate) under various stimulations (IL-4, IL-13, and dupilumab). The main outcome was a significant change in epithelial functions following exposure to IL-4, IL-13, and dupilumab for 48 h in the basal media. RESULTS IL-4 (1, 10, and 100 ng/mL) but not IL-13 induced a significant decrease in occludin and zonula-occludens protein expression, ciliary beating efficiency, and wound repair rate in HNEC. Dupilumab (0.04 mg/mL) had no effect on HNEC and specifically restored all epithelial functions altered when cells were exposed to a 48-h IL-4 stimulation. CONCLUSION Dupilumab, in vitro, restored epithelial integrity by counteracting the effect of IL-4 on the epithelial barrier (increased epithelial permeability, decreased ciliary beating efficiency, and decreased wound repair rate).
Collapse
Affiliation(s)
- Maxime Fieux
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'ORL, d'Otoneurochirurgie et de Chirurgie Cervico-Faciale, Pierre Bénite, France
- Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Université de Lyon, Université Lyon 1, Lyon, France
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Florent Carsuzaa
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service ORL, Chirurgie Cervico-Maxillo-Faciale et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Yvan Bellanger
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
- Centre Hospitalier Intercommunal de Créteil, Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, Créteil, France
| | - Sophie Bartier
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
- Centre Hospitalier Intercommunal de Créteil, Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, Créteil, France
- Service d'ORL, de Chirurgie Cervico Faciale, Hôpital Henri-Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | - Virginie Fournier
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Jean Claude Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Matthieu Bainaud
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Bruno Louis
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
| | - Stéphane Tringali
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'ORL, d'Otoneurochirurgie et de Chirurgie Cervico-Faciale, Pierre Bénite, France
- Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Université de Lyon, Université Lyon 1, Lyon, France
- UMR 5305, Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| | - Xavier Dufour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
- Service ORL, Chirurgie Cervico-Maxillo-Faciale et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - André Coste
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
- Centre Hospitalier Intercommunal de Créteil, Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, Créteil, France
| | - Laure Favot
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, UR15560, Université de Poitiers, Poitiers, France
| | - Emilie Bequignon
- CNRS EMR 7000, Créteil, France
- INSERM, IMRB, Univ Paris Est Créteil, Créteil, France
- Centre Hospitalier Intercommunal de Créteil, Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, Créteil, France
| |
Collapse
|
4
|
Sedaghat MH, Behnia M, Abouali O. Nanoparticle Diffusion in Respiratory Mucus Influenced by Mucociliary Clearance: A Review of Mathematical Modeling. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37184652 DOI: 10.1089/jamp.2022.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Background: Inhalation and deposition of particles in human airways have attracted considerable attention due to importance of particulate pollutants, transmission of infectious diseases, and therapeutic delivery of drugs at targeted areas. We summarize current state-of-the art research in particle deposition on airway surface liquid (ASL) influenced by mucociliary clearance (MCC) by identifying areas that need further investigation. Methodology: We aim to review focus on governing and constitutive equations describing MCC geometry followed by description of mathematical modeling of ciliary forces, mucus rheology properties, and numerical approaches to solve modified time-dependent Navier-Stokes equations. We also review mathematical modeling of particle deposition in ASL influenced by MCC, particle transport in ASL in terms of Eulerian and Lagrangian approaches, and discuss the corresponding mass transport issues in this layer. Whenever required, numerical predictions are contrasted with the pertinent experimental data. Results: Results indicate that mean mucus and periciliary liquid velocities are strongly influenced by mucus rheological characteristics as well as ciliary abnormalities. However, most of the currently available literature on mucus fiber spacing, ciliary beat frequency, and particle surface chemistry is based on particle deposition on ASL by considering a fixed value of ASL velocity. The effects of real ASL flow regimes on particle deposition in this layer are limited. In addition, no other study is available on modeling nonhomogeneous and viscoelastic characteristics of mucus layer on ASL drug delivery. Conclusion: Simplification of assumptions on governing equations of drug delivery in ASL influenced by MCC leads to imposing some limitations on numerical results.
Collapse
Affiliation(s)
- Mohammad Hadi Sedaghat
- Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
| | - Mehrdad Behnia
- University of Central Florida School of Medicine, Orlando, Florida, USA
| | - Omid Abouali
- Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
- School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| |
Collapse
|
5
|
Carsuzaa F, Bequignon E, Bartier S, Coste A, Dufour X, Bainaud M, Lecron JC, Louis B, Tringali S, Favot L, Fieux M. Oncostatin M Contributes to Airway Epithelial Cell Dysfunction in Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2023; 24:6094. [PMID: 37047067 PMCID: PMC10094365 DOI: 10.3390/ijms24076094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a typical type-2 inflammation involving several cytokines and is associated with epithelial cell dysfunction. Oncostatin M (OSM) (belonging to the interleukin(IL)-6 family) could be a key driver of epithelial barrier dysfunction. Therefore, we investigated the presence of OSM and IL-6 and the expression pattern of tight junctions (TJs) in the nasal tissue of CRSwNP patients and controls using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Then, their potential role in the epithelial barrier was evaluated in vitro in 27 different primary cultures of human nasal epithelial cells (HNECs) by measuring TJ expression and transepithelial electric resistance (TEER) with or without OSM or IL-6 (1, 10, and 100 ng/mL). The effect on ciliary beating efficiency was evaluated by high-speed videomicroscopy and on repair mechanisms with a wound healing model with or without OSM. OSM and IL-6 were both overexpressed, and TJ (ZO-1 and occludin) expression was decreased in the nasal polyps compared to the control mucosa. OSM (100 ng/mL) but not IL-6 induced a significant decrease in TJ expression, TEER, and ciliary beating efficiency in HNECs. After 24 h, the wound repair rate was significantly higher in OSM-stimulated HNECs at 100 ng/mL. These results suggest that OSM could become a new target for monoclonal antibodies.
Collapse
Affiliation(s)
- Florent Carsuzaa
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service ORL, Chirurgie Cervico-Maxillo-Faciale et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, F-86000 Poitiers, France
| | - Emilie Bequignon
- Centre Hospitalier Intercommunal de Créteil, Service d’Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, F-94010 Créteil, France
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Sophie Bartier
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Hôpital Henri-Mondor, Assistance Publique des Hôpitaux de Paris, F-94010 Créteil, France
| | - André Coste
- Centre Hospitalier Intercommunal de Créteil, Service d’Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, F-94010 Créteil, France
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Xavier Dufour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service ORL, Chirurgie Cervico-Maxillo-Faciale et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, F-86000 Poitiers, France
| | - Matthieu Bainaud
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, F-86021 Poitiers, France
| | - Jean Claude Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, F-86021 Poitiers, France
| | - Bruno Louis
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Stéphane Tringali
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d’ORL, d’Otoneurochirurgie et de Chirurgie Cervico-Faciale, F-69310 Pierre Bénite, France
- Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Université de Lyon, Université Lyon 1, F-69003 Lyon, France
- UMR 5305, Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS, Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France
| | - Laure Favot
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
| | - Maxime Fieux
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d’ORL, d’Otoneurochirurgie et de Chirurgie Cervico-Faciale, F-69310 Pierre Bénite, France
- Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Université de Lyon, Université Lyon 1, F-69003 Lyon, France
| |
Collapse
|
6
|
Wang C, Tang H, Zhang X. Fluid-structure interaction of bio-inspired flexible slender structures: a review of selected topics. BIOINSPIRATION & BIOMIMETICS 2022; 17:041002. [PMID: 35443232 DOI: 10.1088/1748-3190/ac68ba] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Flexible slender structures are ubiquitous in biological systems and engineering applications. Fluid-structure interaction (FSI) plays a key role in the dynamics of such structures immersed in fluids. Here, we survey recent studies on highly simplified bio-inspired models (either mathematical or mechanical) that aim to revealthe flow physics associated with FSI. Various models from different sources of biological inspiration are included, namely flexible flapping foil inspired by fish and insects, deformable membrane inspired by jellyfish and cephalopods, beating filaments inspired by flagella and cilia of microorganisms, and flexible wall-mounted filaments inspired by terrestrial and aquatic plants. Suggestions on directions for future research are also provided.
Collapse
Affiliation(s)
- Chenglei Wang
- Research Center for Fluid Structure Interactions, Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, People's Republic of China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, People's Republic of China
| | - Hui Tang
- Research Center for Fluid Structure Interactions, Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, People's Republic of China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, People's Republic of China
| | - Xing Zhang
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
7
|
Bricmont N, Alexandru M, Louis B, Papon JF, Kempeneers C. Ciliary Videomicroscopy: A Long Beat from the European Respiratory Society Guidelines to the Recognition as a Confirmatory Test for Primary Ciliary Dyskinesia. Diagnostics (Basel) 2021; 11:diagnostics11091700. [PMID: 34574040 PMCID: PMC8471803 DOI: 10.3390/diagnostics11091700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare inherited ciliopathy in which respiratory cilia are stationary or dyskinetic. The clinical presentation of PCD is highly non-specific since it includes infections and disorders of the upper (otitis and rhinosinusitis) and lower (neonatal respiratory distress, bronchitis, pneumonia and bronchiectasis) airways, starting in early life. Clinical examination alone does not allow a PCD diagnosis, which relies on several concordant tests, since none are sensitive or specific enough alone. Despite being the most sensitive and specific test to diagnose PCD, digital high-speed videomicroscopy (DHSV) is not sufficiently standardized, preventing its use with complete confidence as a confirmatory diagnostic test for PCD, or its inclusion in a diagnostic algorithm. Since the 2017 ERS recommendations for PCD diagnosis, three main issues remain to be solved in order to optimize DHSV ciliary beating evaluation: the problem in defining an accurate sensitivity and specificity as there is no gold standard method to diagnose all PCD cases, a lack of standardization in the operating procedure for processing respiratory samples, and in the choice of measured parameters (self-operating or not). The development of new automated analysis approaches is promising and will require full clinical validation.
Collapse
Affiliation(s)
- Noemie Bricmont
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium;
- Correspondence:
| | - Mihaela Alexandru
- ENT Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (M.A.); (J.-F.P.)
| | - Bruno Louis
- Institut Mondor de Recherche Biomédicale INSERM-UPEC UMR 955, CNRS ERL7000, 94010 Créteil, France;
| | - Jean-François Papon
- ENT Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France; (M.A.); (J.-F.P.)
- Institut Mondor de Recherche Biomédicale INSERM-UPEC UMR 955, CNRS ERL7000, 94010 Créteil, France;
| | - Céline Kempeneers
- Pneumology Laboratory, I3 Group, GIGA Research Center, University of Liège, 4000 Liège, Belgium;
- Division of Respirology, Department of Pediatrics, University Hospital Liège, 4000 Liège, Belgium
| |
Collapse
|
8
|
Magneto-mechanically actuated microstructures to efficiently prevent bacterial biofilm formation. Sci Rep 2020; 10:15470. [PMID: 32963304 PMCID: PMC7508806 DOI: 10.1038/s41598-020-72406-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/26/2020] [Indexed: 01/22/2023] Open
Abstract
Biofilm colonisation of surfaces is of critical importance in various areas ranging from indwelling medical devices to industrial setups. Of particular importance is the reduced susceptibility of bacteria embedded in a biofilm to existing antimicrobial agents. In this paper, we demonstrate that remotely actuated magnetic cantilevers grafted on a substrate act efficiently in preventing bacterial biofilm formation. When exposed to an alternating magnetic field, the flexible magnetic cantilevers vertically deflect from their initial position periodically, with an extremely low frequency (0.16 Hz). The cantilevers’ beating prevents the initial stage of bacterial adhesion to the substrate surface and the subsequent biofilm growth. Our experimental data on E. coli liquid cultures demonstrate up to a 70% reduction in biofilm formation. A theoretical model has been developed to predict the amplitude of the cantilevers vertical deflection. Our results demonstrate proof-of-concept for a device that can magneto-mechanically prevent the first stage in bacterial biofilm formation, acting as on-demand fouling release active surfaces.
Collapse
|
9
|
Gu H, Lee SW, Carnicelli J, Zhang T, Ren D. Magnetically driven active topography for long-term biofilm control. Nat Commun 2020; 11:2211. [PMID: 32371860 PMCID: PMC7200660 DOI: 10.1038/s41467-020-16055-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Microbial biofilm formation on indwelling medical devices causes persistent infections that cannot be cured with conventional antibiotics. To address this unmet challenge, we engineer tunable active surface topographies with micron-sized pillars that can beat at a programmable frequency and force level in an electromagnetic field. Compared to the flat and static controls, active topographies with the optimized design prevent biofilm formation and remove established biofilms of uropathogenic Escherichia coli (UPEC), Pseudomonas aeruginosa, and Staphylococcus aureus, with up to 3.7 logs of biomass reduction. In addition, the detached biofilm cells are found sensitized to bactericidal antibiotics to the level comparable to exponential-phase planktonic cells. Based on these findings, a prototype catheter is engineered and found to remain clean for at least 30 days under the flow of artificial urine medium, while the control catheters are blocked by UPEC biofilms within 5 days.
Collapse
Affiliation(s)
- Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
| | - Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
| | - Joseph Carnicelli
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
| | - Teng Zhang
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
- Department of Mechanical and Aerospace Engineering, Syracuse University, 214 Link Hall, Syracuse, New York, 13244, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA.
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA.
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York, 13244, USA.
- Department of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York, 13244, USA.
| |
Collapse
|
10
|
Bequignon E, Mangin D, Bécaud J, Pasquier J, Angely C, Bottier M, Escudier E, Isabey D, Filoche M, Louis B, Papon JF, Coste A. Pathogenesis of chronic rhinosinusitis with nasal polyps: role of IL-6 in airway epithelial cell dysfunction. J Transl Med 2020; 18:136. [PMID: 32209102 PMCID: PMC7092549 DOI: 10.1186/s12967-020-02309-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by an alteration in airway epithelial cell functions including barrier function, wound repair mechanisms, mucociliary clearance. The mechanisms leading to epithelial cell dysfunction in nasal polyps (NPs) remain poorly understood. Our hypothesis was that among the inflammatory cytokines involved in NPs, IL-6 could alter epithelial repair mechanisms and mucociliary clearance. The aim of this study was to evaluate the in vitro effects of IL-6 on epithelial repair mechanisms in a wound repair model and on ciliary beating in primary cultures of Human Nasal Epithelial Cells (HNEC). Methods Primary cultures of HNEC taken from 38 patients during surgical procedures for CRSwNP were used in an in vitro model of wound healing. Effects of increasing concentrations of IL-6 (1 ng/mL, 10 ng/mL, and 100 ng/mL) and other ILs (IL-5, IL-9, IL-10) on wound closure kinetics were compared to cultures without IL-modulation. After wound closure, the differentiation process was characterized under basal conditions and after IL supplementation using cytokeratin-14, MUC5AC, and βIV tubulin as immunomarkers of basal, mucus, and ciliated cells, respectively. The ciliated edges of primary cultures were analyzed on IL-6 modulation by digital high-speed video-microscopy to measure: ciliary beating frequency (CBF), ciliary length, relative ciliary density, metachronal wavelength and the ciliary beating efficiency index. Results Our results showed that: (i) IL-6 accelerated airway wound repair in vitro, with a dose–response effect whereas no effect was observed after other ILs-stimulation. After 24 h, 79% of wounded wells with IL6-100 were fully repaired, vs 46% in the IL6-10 group, 28% in the IL6-1 group and 15% in the control group; (ii) specific migration analyses of closed wound at late repair stage (Day 12) showed IL-6 had the highest migration compared with other ILs (iii) The study of the IL-6 effect on ciliary function showed that CBF and metachronal wave increased but without significant modifications of ciliary density, length of cilia and efficiency index. Conclusion The up-regulated epithelial cell proliferation observed in polyps could be induced by IL-6 in the case of prior epithelial damage. IL-6 could be a major cytokine in NP physiopathology.
Collapse
Affiliation(s)
- Emilie Bequignon
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France. .,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France. .,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France. .,CNRS ERL 7000, 94010, Créteil, France.
| | - David Mangin
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Justine Bécaud
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jennifer Pasquier
- Nice Breast Institute, 06000, Nice, France.,Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christelle Angely
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Mathieu Bottier
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Estelle Escudier
- Inserm U933, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Service de génétique et d'embryologie médicale, AP-HP Hôpital Armand-Trousseau, Paris, France
| | - Daniel Isabey
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Marcel Filoche
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Bruno Louis
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jean-François Papon
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France.,Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Bicêtre, 94270, Le Kremlin-Bicêtre, France.,Faculté de Médecine, Université Paris-Sud, 94275, Le Kremlin-Bicêtre, France
| | - André Coste
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| |
Collapse
|
11
|
Fassad MR, Shoemark A, Legendre M, Hirst RA, Koll F, le Borgne P, Louis B, Daudvohra F, Patel MP, Thomas L, Dixon M, Burgoyne T, Hayes J, Nicholson AG, Cullup T, Jenkins L, Carr SB, Aurora P, Lemullois M, Aubusson-Fleury A, Papon JF, O’Callaghan C, Amselem S, Hogg C, Escudier E, Tassin AM, Mitchison HM. Mutations in Outer Dynein Arm Heavy Chain DNAH9 Cause Motile Cilia Defects and Situs Inversus. Am J Hum Genet 2018; 103:984-994. [PMID: 30471717 DOI: 10.1016/j.ajhg.2018.10.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/15/2018] [Indexed: 12/30/2022] Open
Abstract
Motile cilia move body fluids and gametes and the beating of cilia lining the airway epithelial surfaces ensures that they are kept clear and protected from inhaled pathogens and consequent respiratory infections. Dynein motor proteins provide mechanical force for cilia beating. Dynein mutations are a common cause of primary ciliary dyskinesia (PCD), an inherited condition characterized by deficient mucociliary clearance and chronic respiratory disease coupled with laterality disturbances and subfertility. Using next-generation sequencing, we detected mutations in the ciliary outer dynein arm (ODA) heavy chain gene DNAH9 in individuals from PCD clinics with situs inversus and in one case male infertility. DNAH9 and its partner heavy chain DNAH5 localize to type 2 ODAs of the distal cilium and in DNAH9-mutated nasal respiratory epithelial cilia we found a loss of DNAH9/DNAH5-containing type 2 ODAs that was restricted to the distal cilia region. This confers a reduced beating frequency with a subtle beating pattern defect affecting the motility of the distal cilia portion. 3D electron tomography ultrastructural studies confirmed regional loss of ODAs from the distal cilium, manifesting as either loss of whole ODA or partial loss of ODA volume. Paramecium DNAH9 knockdown confirms an evolutionarily conserved function for DNAH9 in cilia motility and ODA stability. We find that DNAH9 is widely expressed in the airways, despite DNAH9 mutations appearing to confer symptoms restricted to the upper respiratory tract. In summary, DNAH9 mutations reduce cilia function but some respiratory mucociliary clearance potential may be retained, widening the PCD disease spectrum.
Collapse
|
12
|
Oltean A, Schaffer AJ, Bayly PV, Brody SL. Quantifying Ciliary Dynamics during Assembly Reveals Stepwise Waveform Maturation in Airway Cells. Am J Respir Cell Mol Biol 2018; 59:511-522. [PMID: 29851510 PMCID: PMC6178159 DOI: 10.1165/rcmb.2017-0436oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/31/2018] [Indexed: 11/24/2022] Open
Abstract
Motile cilia are essential for clearance of particulates and pathogens from airways. For effective transport, ciliary motor proteins and axonemal structures interact to generate the rhythmic, propulsive bending, but the mechanisms that produce a dynamic waveform remain incompletely understood. Biomechanical measures of human ciliary motion and their relationships to ciliary assembly are needed to illuminate the biophysics of normal ciliary function and to quantify dysfunction in ciliopathies. To these ends, we analyzed ciliary motion by high-speed video microscopy of ciliated cells sampled from human lung airways compared with primary culture cells that undergo ciliogenesis in vitro. Quantitative assessment of waveform parameters showed variations in waveform shape between individual cilia; however, general trends in waveform parameters emerged, associated with progression of cilia length and stage of differentiation. When cilia emerged from cultured cells, beat frequency was initially elevated, then fell and remained stable as cilia lengthened. In contrast, the average bending amplitude and the ability to generate force gradually increased and eventually approached values observed in ex vivo samples. Dynein arm motor proteins DNAH5, DNAH9, DNAH11, and DNAH6 were localized within specific regions of the axoneme in the ex vivo cells; however, distinct stages of in vitro waveform development identified by biomechanical features were associated with the progressive movement of dyneins to the appropriate proximal or distal sections of the cilium. These observations suggest that the stepwise variation in waveform development during ciliogenesis is dependent on cilia length and potentially on outer dynein arm assembly.
Collapse
Affiliation(s)
- Alina Oltean
- Department of Medicine and
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri
| | | | - Philip V. Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri
| | | |
Collapse
|
13
|
Bottier M, Blanchon S, Pelle G, Bequignon E, Isabey D, Coste A, Escudier E, Grotberg JB, Papon JF, Filoche M, Louis B. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part I, experimental analysis. PLoS Comput Biol 2017; 13:e1005605. [PMID: 28708889 PMCID: PMC5510807 DOI: 10.1371/journal.pcbi.1005605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivo measurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow, presented in greater detail in a second companion article. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. The obtained experimental data are used to feed a 2D mathematical and numerical model of the coupling between cilia, fluid, and micro-bead motion. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress, which can easily be measured in the clinical setting, is proposed as a new index for characterizing the efficiency of ciliary beating.
Collapse
Affiliation(s)
- Mathieu Bottier
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
| | - Sylvain Blanchon
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
- CHU Toulouse, Hôpital des Enfants, Service de pneumologie-allergologie pédiatrique, Toulouse, France
| | - Gabriel Pelle
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
| | - Emilie Bequignon
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
- AP-HP, Hôpital H. Mondor-A. Chenevier, Service d’ORL et de chirurgie cervico-faciale, Créteil, France
| | - Daniel Isabey
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
| | - André Coste
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
- AP-HP, Hôpital H. Mondor-A. Chenevier, Service d’ORL et de chirurgie cervico-faciale, Créteil, France
- Hôpital intercommunal, Service d’ORL et de chirurgie cervico-faciale, Créteil, France
| | - Estelle Escudier
- Inserm, U933, Paris, France
- Université Pierre et Marie Curie, U933, Paris, France
- AP-HP, Hôpital Armand-Trousseau, Service de génétique et d’embryologie médicale, Paris, France
| | - James B. Grotberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jean-François Papon
- Inserm U955, Equipe 13, Créteil, France
- CNRS, ERL 7240, Créteil, France
- AP-HP, Hôpital Bicêtre, Service d’ORL et de chirurgie cervico-faciale, Le Kremlin-Bicêtre, France
| | - Marcel Filoche
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
- Physique de la Matière Condensée, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| | - Bruno Louis
- Inserm U955, Equipe 13, Créteil, France
- Université Paris-Est, Faculté de médecine, Créteil, France
- CNRS, ERL 7240, Créteil, France
- * E-mail:
| |
Collapse
|