1
|
Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS, McGill SK, Dougherty MK. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res 2019; 47:e103. [PMID: 31269198 PMCID: PMC6765137 DOI: 10.1093/nar/gkz569] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/08/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
Targeted PCR amplification and high-throughput sequencing (amplicon sequencing) of 16S rRNA gene fragments is widely used to profile microbial communities. New long-read sequencing technologies can sequence the entire 16S rRNA gene, but higher error rates have limited their attractiveness when accuracy is important. Here we present a high-throughput amplicon sequencing methodology based on PacBio circular consensus sequencing and the DADA2 sample inference method that measures the full-length 16S rRNA gene with single-nucleotide resolution and a near-zero error rate. In two artificial communities of known composition, our method recovered the full complement of full-length 16S sequence variants from expected community members without residual errors. The measured abundances of intra-genomic sequence variants were in the integral ratios expected from the genuine allelic variants within a genome. The full-length 16S gene sequences recovered by our approach allowed Escherichia coli strains to be correctly classified to the O157:H7 and K12 sub-species clades. In human fecal samples, our method showed strong technical replication and was able to recover the full complement of 16S rRNA alleles in several E. coli strains. There are likely many applications beyond microbial profiling for which high-throughput amplicon sequencing of complete genes with single-nucleotide resolution will be of use.
Collapse
Affiliation(s)
- Benjamin J Callahan
- Department of Population Health & Pathobiology, North Carolina State University, Raleigh, NC 27607, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Joan Wong
- Pacific Biosciences of California, Inc., Menlo Park, CA 94025, USA
| | - Cheryl Heiner
- Pacific Biosciences of California, Inc., Menlo Park, CA 94025, USA
| | - Steve Oh
- Pacific Biosciences of California, Inc., Menlo Park, CA 94025, USA
| | - Casey M Theriot
- Department of Population Health & Pathobiology, North Carolina State University, Raleigh, NC 27607, USA
| | - Ajay S Gulati
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pediatrics, Division of Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah K McGill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael K Dougherty
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Kumar V, Vollbrecht T, Chernyshev M, Mohan S, Hanst B, Bavafa N, Lorenzo A, Kumar N, Ketteringham R, Eren K, Golden M, Oliveira MF, Murrell B. Long-read amplicon denoising. Nucleic Acids Res 2019; 47:e104. [PMID: 31418021 PMCID: PMC6765106 DOI: 10.1093/nar/gkz657] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 01/03/2023] Open
Abstract
Long-read next-generation amplicon sequencing shows promise for studying complete genes or genomes from complex and diverse populations. Current long-read sequencing technologies have challenging error profiles, hindering data processing and incorporation into downstream analyses. Here we consider the problem of how to reconstruct, free of sequencing error, the true sequence variants and their associated frequencies from PacBio reads. Called 'amplicon denoising', this problem has been extensively studied for short-read sequencing technologies, but current solutions do not always successfully generalize to long reads with high indel error rates. We introduce two methods: one that runs nearly instantly and is very accurate for medium length reads and high template coverage, and another, slower method that is more robust when reads are very long or coverage is lower. On two Mock Virus Community datasets with ground truth, each sequenced on a different PacBio instrument, and on a number of simulated datasets, we compare our two approaches to each other and to existing algorithms. We outperform all tested methods in accuracy, with competitive run times even for our slower method, successfully discriminating templates that differ by a just single nucleotide. Julia implementations of Fast Amplicon Denoising (FAD) and Robust Amplicon Denoising (RAD), and a webserver interface, are freely available.
Collapse
Affiliation(s)
- Venkatesh Kumar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Medicine, University of California, San Diego, La Jolla 92093, CA, USA
| | - Thomas Vollbrecht
- Department of Medicine, University of California, San Diego, La Jolla 92093, CA, USA
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Medicine, University of California, San Diego, La Jolla 92093, CA, USA
| | - Sanjay Mohan
- Department of Medicine, University of California, San Diego, La Jolla 92093, CA, USA
| | - Brian Hanst
- Department of Biology, University of California, San Diego, La Jolla 92093, CA, USA
| | - Nicholas Bavafa
- Department of Medicine, University of California, San Diego, La Jolla 92093, CA, USA
| | - Antonia Lorenzo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Medicine, University of California, San Diego, La Jolla 92093, CA, USA
| | - Nikesh Kumar
- Department of Medicine, University of California, San Diego, La Jolla 92093, CA, USA
| | - Robert Ketteringham
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town 7925, South Africa
| | - Kemal Eren
- Department of Medicine, University of California, San Diego, La Jolla 92093, CA, USA
| | - Michael Golden
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| | - Michelli F Oliveira
- Department of Medicine, University of California, San Diego, La Jolla 92093, CA, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Medicine, University of California, San Diego, La Jolla 92093, CA, USA
| |
Collapse
|
3
|
Umotoy J, Bagaya BS, Joyce C, Schiffner T, Menis S, Saye-Francisco KL, Biddle T, Mohan S, Vollbrecht T, Kalyuzhniy O, Madzorera S, Kitchin D, Lambson B, Nonyane M, Kilembe W, Poignard P, Schief WR, Burton DR, Murrell B, Moore PL, Briney B, Sok D, Landais E. Rapid and Focused Maturation of a VRC01-Class HIV Broadly Neutralizing Antibody Lineage Involves Both Binding and Accommodation of the N276-Glycan. Immunity 2019; 51:141-154.e6. [PMID: 31315032 PMCID: PMC6642152 DOI: 10.1016/j.immuni.2019.06.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/31/2019] [Accepted: 06/06/2019] [Indexed: 11/25/2022]
Abstract
The VH1-2 restricted VRC01-class of antibodies targeting the HIV envelope CD4 binding site are a major focus of HIV vaccine strategies. However, a detailed analysis of VRC01-class antibody development has been limited by the rare nature of these responses during natural infection and the lack of longitudinal sampling of such responses. To inform vaccine strategies, we mapped the development of a VRC01-class antibody lineage (PCIN63) in the subtype C infected IAVI Protocol C neutralizer PC063. PCIN63 monoclonal antibodies had the hallmark VRC01-class features and demonstrated neutralization breadth similar to the prototype VRC01 antibody, but were 2- to 3-fold less mutated. Maturation occurred rapidly within ∼24 months of emergence of the lineage and somatic hypermutations accumulated at key contact residues. This longitudinal study of broadly neutralizing VRC01-class antibody lineage reveals early binding to the N276-glycan during affinity maturation, which may have implications for vaccine design.
Collapse
Affiliation(s)
- Jeffrey Umotoy
- International AIDS Vaccine Initiative Neutralizing Antibody Center, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Bernard S Bagaya
- UVRI-IAVI HIV Vaccine Program, Entebbe, Uganda; Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala-Uganda
| | - Collin Joyce
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergey Menis
- International AIDS Vaccine Initiative Neutralizing Antibody Center, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Karen L Saye-Francisco
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Trevor Biddle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sanjay Mohan
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA
| | - Thomas Vollbrecht
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA
| | - Oleksander Kalyuzhniy
- International AIDS Vaccine Initiative Neutralizing Antibody Center, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Sharon Madzorera
- Centre for HIV and STIs, National Institute for Communicable Diseases, of the National Health Laboratory Service (NHLS), Johannesburg 2131, South Africa
| | - Dale Kitchin
- Centre for HIV and STIs, National Institute for Communicable Diseases, of the National Health Laboratory Service (NHLS), Johannesburg 2131, South Africa
| | - Bronwen Lambson
- Centre for HIV and STIs, National Institute for Communicable Diseases, of the National Health Laboratory Service (NHLS), Johannesburg 2131, South Africa
| | - Molati Nonyane
- Centre for HIV and STIs, National Institute for Communicable Diseases, of the National Health Laboratory Service (NHLS), Johannesburg 2131, South Africa
| | | | - Pascal Poignard
- International AIDS Vaccine Initiative Neutralizing Antibody Center, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Institut de Biologie Structurale, Université Grenoble Alpes, Commissariat a l'Energie Atomique, Centre National de Recherche Scientifique and Centre Hospitalier Universitaire Grenoble Alpes, 38044 Grenoble, France
| | - William R Schief
- International AIDS Vaccine Initiative Neutralizing Antibody Center, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- International AIDS Vaccine Initiative Neutralizing Antibody Center, La Jolla, CA 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02114, USA
| | - Ben Murrell
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA; Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, of the National Health Laboratory Service (NHLS), Johannesburg 2131, South Africa; School of Pathology Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of Kwa-Zulu Natal, Durban 4013, South Africa
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Devin Sok
- International AIDS Vaccine Initiative Neutralizing Antibody Center, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Elise Landais
- International AIDS Vaccine Initiative Neutralizing Antibody Center, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, New York, NY 10004, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|