1
|
Fukuda J, Kosuge S, Satoh Y, Sekiya S, Yamamura R, Ooshio T, Hirata T, Sato R, Hatanaka KC, Mitsuhashi T, Nakamura T, Matsuno Y, Hatanaka Y, Hirano S, Sonoshita M. Concurrent targeting of GSK3 and MEK as a therapeutic strategy to treat pancreatic ductal adenocarcinoma. Cancer Sci 2024; 115:1333-1345. [PMID: 38320747 PMCID: PMC11007052 DOI: 10.1111/cas.16100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 04/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies worldwide. However, drug discovery for PDAC treatment has proven complicated, leading to stagnant therapeutic outcomes. Here, we identify Glycogen synthase kinase 3 (GSK3) as a therapeutic target through a whole-body genetic screening utilizing a '4-hit' Drosophila model mimicking the PDAC genotype. Reducing the gene dosage of GSK3 in a whole-body manner or knocking down GSK3 specifically in transformed cells suppressed 4-hit fly lethality, similar to Mitogen-activated protein kinase kinase (MEK), the therapeutic target in PDAC we have recently reported. Consistently, a combination of the GSK3 inhibitor CHIR99021 and the MEK inhibitor trametinib suppressed the phosphorylation of Polo-like kinase 1 (PLK1) as well as the growth of orthotopic human PDAC xenografts in mice. Additionally, reducing PLK1 genetically in 4-hit flies rescued their lethality. Our results reveal a therapeutic vulnerability in PDAC that offers a treatment opportunity for patients by inhibiting multiple targets.
Collapse
Affiliation(s)
- Junki Fukuda
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of Gastroenterological Surgery IIHokkaido University Faculty of MedicineSapporoJapan
| | - Shinya Kosuge
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of Gastroenterological Surgery IIHokkaido University Faculty of MedicineSapporoJapan
| | - Yusuke Satoh
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Sho Sekiya
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
- Department of Gastroenterological Surgery IIHokkaido University Faculty of MedicineSapporoJapan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Takako Ooshio
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Taiga Hirata
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Reo Sato
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Kanako C. Hatanaka
- Center for Development of Advanced DiagnosticsHokkaido University HospitalSapporoJapan
| | - Tomoko Mitsuhashi
- Department of Surgical PathologyHokkaido University HospitalSapporoJapan
| | - Toru Nakamura
- Department of Gastroenterological Surgery IIHokkaido University Faculty of MedicineSapporoJapan
| | - Yoshihiro Matsuno
- Department of Surgical PathologyHokkaido University HospitalSapporoJapan
| | - Yutaka Hatanaka
- Center for Development of Advanced DiagnosticsHokkaido University HospitalSapporoJapan
- Research Division of Genome Companion DiagnosticsHokkaido University HospitalSapporoJapan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery IIHokkaido University Faculty of MedicineSapporoJapan
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
2
|
Sekiya S, Fukuda J, Yamamura R, Ooshio T, Satoh Y, Kosuge S, Sato R, Hatanaka KC, Hatanaka Y, Mitsuhashi T, Nakamura T, Matsuno Y, Hirano S, Sonoshita M. Drosophila Screening Identifies Dual Inhibition of MEK and AURKB as an Effective Therapy for Pancreatic Ductal Adenocarcinoma. Cancer Res 2023; 83:2704-2715. [PMID: 37378549 DOI: 10.1158/0008-5472.can-22-3762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Significant progress has been made in understanding the pathogenesis of pancreatic ductal adenocarcinoma (PDAC) by generating and using murine models. To accelerate drug discovery by identifying novel therapeutic targets on a systemic level, here we generated a Drosophila model mimicking the genetic signature in PDAC (KRAS, TP53, CDKN2A, and SMAD4 alterations), which is associated with the worst prognosis in patients. The '4-hit' flies displayed epithelial transformation and decreased survival. Comprehensive genetic screening of their entire kinome revealed kinases including MEK and AURKB as therapeutic targets. Consistently, a combination of the MEK inhibitor trametinib and the AURKB inhibitor BI-831266 suppressed the growth of human PDAC xenografts in mice. In patients with PDAC, the activity of AURKB was associated with poor prognosis. This fly-based platform provides an efficient whole-body approach that complements current methods for identifying therapeutic targets in PDAC. SIGNIFICANCE Development of a Drosophila model mimicking genetic alterations in human pancreatic ductal adenocarcinoma provides a tool for genetic screening that identifies MEK and AURKB inhibition as a potential treatment strategy.
Collapse
Affiliation(s)
- Sho Sekiya
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Junki Fukuda
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Takako Ooshio
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Satoh
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Kosuge
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Reo Sato
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako C Hatanaka
- Center for Development of Advanced Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Yutaka Hatanaka
- Center for Development of Advanced Diagnostics, Hokkaido University Hospital, Sapporo, Japan
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Tomoko Mitsuhashi
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Li Y, Cai J, Du C, Lin Y, Li S, Ma A, Qin Y. Bioinformatic analysis and antiviral effect of Periplaneta americana defensins. Virus Res 2021; 308:198627. [PMID: 34785275 DOI: 10.1016/j.virusres.2021.198627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 01/08/2023]
Abstract
Due to the lack of an adaptive immune system, insects rely on innate immune mechanisms to fight against pathogenic infections. Two major innate immune pathways, Toll and IMD, orchestrate anti-pathogen responses by regulating the expression of antimicrobial peptide (AMP) genes. Although the antifungal or antibacterial function of AMPs has been well characterized, the antiviral role of AMPs in insects remains largely unclear. Periplaneta americana (P. americana), or the American cockroach, is used in traditional Chinese medicine as an antiviral agent; however, the underlying mechanism of action of P. americana extracts is unclear. Our previous study showed that the P. americana genome encodes multiple antimicrobial peptide genes. Based on these data, we predicted five novel P. americana defensins (PaDefensins) and analyzed their primary structure, secondary structure, and physicochemical properties. The putative antiviral, antifungal, antibacterial, and anticancer activities suggested that PaDefensin5 is a desirable therapeutic candidate against viral diseases. As the first experimental evidence of the antiviral effects of insect defensins, we also showed the antiviral effect of PaDefensin5 in Drosophila Kc cells and Drosophila embryos in vivo . In conclusion, results of both in silico predictions and subsequent antiviral experiments suggested PaDefensin5 a promising antiviral drug.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Jie Cai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Chunyu Du
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Yuhua Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Anping Ma
- Insititution of chemical surveillance, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China; Insititution of chemical surveillance, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Xiong Z, Jeon M, Allaway RJ, Kang J, Park D, Lee J, Jeon H, Ko M, Jiang H, Zheng M, Tan AC, Guo X, Dang KK, Tropsha A, Hecht C, Das TK, Carlson HA, Abagyan R, Guinney J, Schlessinger A, Cagan R. Crowdsourced identification of multi-target kinase inhibitors for RET- and TAU- based disease: The Multi-Targeting Drug DREAM Challenge. PLoS Comput Biol 2021; 17:e1009302. [PMID: 34520464 PMCID: PMC8483411 DOI: 10.1371/journal.pcbi.1009302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/30/2021] [Accepted: 07/23/2021] [Indexed: 01/22/2023] Open
Abstract
A continuing challenge in modern medicine is the identification of safer and more efficacious drugs. Precision therapeutics, which have one molecular target, have been long promised to be safer and more effective than traditional therapies. This approach has proven to be challenging for multiple reasons including lack of efficacy, rapidly acquired drug resistance, and narrow patient eligibility criteria. An alternative approach is the development of drugs that address the overall disease network by targeting multiple biological targets ('polypharmacology'). Rational development of these molecules will require improved methods for predicting single chemical structures that target multiple drug targets. To address this need, we developed the Multi-Targeting Drug DREAM Challenge, in which we challenged participants to predict single chemical entities that target pro-targets but avoid anti-targets for two unrelated diseases: RET-based tumors and a common form of inherited Tauopathy. Here, we report the results of this DREAM Challenge and the development of two neural network-based machine learning approaches that were applied to the challenge of rational polypharmacology. Together, these platforms provide a potentially useful first step towards developing lead therapeutic compounds that address disease complexity through rational polypharmacology.
Collapse
Affiliation(s)
- Zhaoping Xiong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Minji Jeon
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | | | - Jaewoo Kang
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
- Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Republic of Korea
| | - Donghyeon Park
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Jinhyuk Lee
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hwisang Jeon
- Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Republic of Korea
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Miyoung Ko
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Xindi Guo
- Sage Bionetworks, Seattle, Washington, United States of America
| | | | - Kristen K. Dang
- Sage Bionetworks, Seattle, Washington, United States of America
| | - Alex Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Chana Hecht
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Tirtha K. Das
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Heather A. Carlson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, United States of America
| | - Justin Guinney
- Sage Bionetworks, Seattle, Washington, United States of America
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Ross Cagan
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Institute of Cancer Sciences, University of Glasgow; Glasgow, Scotland, United Kingdom
| |
Collapse
|
5
|
Yamamura R, Ooshio T, Sonoshita M. Tiny Drosophila makes giant strides in cancer research. Cancer Sci 2021; 112:505-514. [PMID: 33275812 PMCID: PMC7893992 DOI: 10.1111/cas.14747] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer burden has been increasing worldwide, making cancer the second leading cause of death in the world. Over the past decades, various experimental models have provided important insights into the nature of cancer. Among them, the fruit fly Drosophila as a whole-animal toolkit has made a decisive contribution to our understanding of fundamental mechanisms of cancer development including loss of cell polarity. In recent years, scalable Drosophila platforms have proven useful also in developing anti-cancer regimens that are effective not only in mammalian models but also in patients. Here, we review studies using Drosophila as a tool to advance cancer study by complementing other traditional research systems.
Collapse
Affiliation(s)
- Ryodai Yamamura
- Division of Biomedical OncologyInstitute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Takako Ooshio
- Division of Biomedical OncologyInstitute for Genetic MedicineHokkaido UniversitySapporoJapan
| | - Masahiro Sonoshita
- Division of Biomedical OncologyInstitute for Genetic MedicineHokkaido UniversitySapporoJapan
- Global Station for Biosurfaces and Drug DiscoveryHokkaido UniversitySapporoJapan
| |
Collapse
|
6
|
Smith RHB, Khan ZM, Ung PMU, Scopton AP, Silber L, Mack SM, Real AM, Schlessinger A, Dar AC. Type II Binders Targeting the "GLR-Out" Conformation of the Pseudokinase STRADα. Biochemistry 2021; 60:289-302. [PMID: 33440120 DOI: 10.1021/acs.biochem.0c00714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudokinases play important roles in signal transduction and cellular processes similar to those of catalytically competent kinases. However, pseudokinase pharmacological tractability and conformational space accessibility are poorly understood. Pseudokinases have only recently been suggested to adopt "inactive" conformations or interact with conformation-specific kinase inhibitors (e.g., type II compounds). In this work, the heavily substituted pseudokinase STRADα, which possesses a DFG → GLR substitution in the catalytic site that permits nucleotide binding while impairing divalent cation coordination, is used as a test case to demonstrate the potential applicability of conformation-specific, type II compounds to pseudokinase pharmacology. Integrated structural modeling is employed to generate a "GLR-out" conformational ensemble. Likely interacting type II compounds are identified through virtual screening against this ensemble model. Biophysical validation of compound binding is demonstrated through protein thermal stabilization and ATP competition. Localization of a top-performing compound through surface methylation strongly suggests that STRADα can adopt the "GLR-out" conformation and interact with compounds that comply with the standard type II pharmacophore. These results suggest that, despite a loss of catalytic function, some pseudokinases, including STRADα, may retain the conformational switching properties of conventional protein kinases.
Collapse
Affiliation(s)
- Ryan H B Smith
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Zaigham M Khan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peter Man-Un Ung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Alex P Scopton
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lisa Silber
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Seshat M Mack
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Alexander M Real
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Arvin C Dar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
7
|
Kamdem JP, Duarte AE, Ibrahim M, Lukong KE, Barros LM, Roeder T. Bibliometric analysis of personalized humanized mouse and Drosophila models for effective combinational therapy in cancer patients. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165880. [PMID: 32592936 DOI: 10.1016/j.bbadis.2020.165880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
Research performed using model organisms such as mice and the fruit fly, Drosophila melanogaster has significantly enhanced our knowledge about cancer biology and the fundamental processes of cancer. This is because the major biological properties and genes associated with cancer including signaling pathways, oncogenes, tumor suppressors, and other regulators of cell growth and proliferation are evolutionary conserved. This review provides bibliometric analysis of research productivity, and performance of authors, institutions, countries, and journals associated with personalized animal cancer models, focussing on the role of Drosophila in cancer research, thus highlighting emerging trends in the field. A total of 1469 and 2672 original articles and reviews for Drosophila cancer model and patient-derived xenograft (PDX) respectively, were retrieved from the Scopus database and the most cited papers were thoroughly analyzed. Our analysis indicates a steadily increasing productivity of the animal models and especially of mouse models in cancer research. In addition to the many different systems that address almost all aspects of tumor research in humanized animal models, a trend towards using tailored screening platforms with Drosophila models in particular will become widespread in the future. Having Drosophila models that recapitulate major genetic aspects of a given tumor will enable the development and validation of novel therapeutic strategies for specific cancers, and provide a platform for screening small molecule inhibitors and other anti-tumor compounds. The combination of Drosophila cancer models and mouse PDX models particularly is highly promising and should be one of the major research strategies the future.
Collapse
Affiliation(s)
- Jean Paul Kamdem
- Department of Biological Sciences, Regional University of Cariri, Campus Pimenta, Crato, Ceara CEP: 63105-000, Brazil.
| | - Antonia Eliene Duarte
- Department of Biological Sciences, Regional University of Cariri, Campus Pimenta, Crato, Ceara CEP: 63105-000, Brazil
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM), KPK, Mardan, Pakistan
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology (BMI) College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Luiz Marivando Barros
- Department of Biological Sciences, Regional University of Cariri, Campus Pimenta, Crato, Ceara CEP: 63105-000, Brazil
| | - Thomas Roeder
- Christian-Albrechts Universität zu Kiel, Zoologisches Institut, Molekulare Physiologie, Olshausenstraße 40, D-24098 Kiel, Germany; German Center for Lung Research, Airway Research Center North, Kiel, Germany.
| |
Collapse
|
8
|
La Marca JE, Richardson HE. Two-Faced: Roles of JNK Signalling During Tumourigenesis in the Drosophila Model. Front Cell Dev Biol 2020; 8:42. [PMID: 32117973 PMCID: PMC7012784 DOI: 10.3389/fcell.2020.00042] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/17/2020] [Indexed: 12/27/2022] Open
Abstract
The highly conserved c-Jun N-terminal Kinase (JNK) signalling pathway has many functions, regulating a diversity of processes: from cell movement during embryogenesis to the stress response of cells after environmental insults. Studies modelling cancer using the vinegar fly, Drosophila melanogaster, have identified both pro- and anti-tumourigenic roles for JNK signalling, depending on context. As a tumour suppressor, JNK signalling commonly is activated by conserved Tumour Necrosis Factor (TNF) signalling, which promotes the caspase-mediated death of tumourigenic cells. JNK pathway activation can also occur via actin cytoskeleton alterations, and after cellular damage inflicted by reactive oxygen species (ROS). Additionally, JNK signalling frequently acts in concert with Salvador-Warts-Hippo (SWH) signalling – either upstream of or parallel to this potent growth-suppressing pathway. As a tumour promoter, JNK signalling is co-opted by cells expressing activated Ras-MAPK signalling (among other pathways), and used to drive cell morphological changes, induce invasive behaviours, block differentiation, and enable persistent cell proliferation. Furthermore, JNK is capable of non-autonomous influences within tumour microenvironments by effecting the transcription of various cell growth- and proliferation-promoting molecules. In this review, we discuss these aspects of JNK signalling in Drosophila tumourigenesis models, and highlight recent publications that have expanded our knowledge of this important and versatile pathway.
Collapse
Affiliation(s)
- John E La Marca
- Richardson Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Helena E Richardson
- Richardson Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|