1
|
Perry KI, Bahlai CA, Assal TJ, Riley CB, Turo KJ, Taylor L, Radl J, Delgado de la Flor YA, Sivakoff FS, Gardiner MM. Landscape change and alien invasions drive shifts in native lady beetle communities over a century. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3024. [PMID: 39192693 DOI: 10.1002/eap.3024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/08/2024] [Accepted: 05/10/2024] [Indexed: 08/29/2024]
Abstract
Understanding causes of insect population declines is essential for the development of successful conservation plans, but data limitations restrict assessment across spatial and temporal scales. Museum records represent a source of historical data that can be leveraged to investigate temporal trends in insect communities. Native lady beetle decline has been attributed to competition with established alien species and landscape change, but the relative importance of these drivers is difficult to measure with short-term field-based studies. We assessed distribution patterns for native lady beetles over 12 decades using museum records, and evaluated the relative importance of alien species and landscape change as factors contributing to changes in communities. We compiled occurrence records for 28 lady beetle species collected in Ohio, USA, from 1900 to 2018. Taxonomic beta-diversity was used to evaluate changes in lady beetle community composition over time. To evaluate the relative influence of temporal, spatial, landscape, and community factors on the captures of native species, we constructed negative binomial generalized additive models. We report evidence of declines in captures for several native species. Importantly, the timing, severity, and drivers of these documented declines were species-specific. Land cover change was associated with declines in captures, particularly for Coccinella novemnotata which declined prior to the arrival of alien species. Following the establishment and spread of alien lady beetles, processes of species loss/gain and turnover shifted communities toward the dominance of a few alien species beginning in the 1980s. Because factors associated with declines in captures were highly species-specific, this emphasizes that mechanisms driving population losses cannot be generalized even among closely related native species. These findings also indicate the importance of museum holdings and the analysis of species-level data when studying temporal trends in insect populations.
Collapse
Affiliation(s)
- Kayla I Perry
- Department of Entomology, The Ohio State University, Wooster, Ohio, USA
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Christie A Bahlai
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Timothy J Assal
- Department of Geography, Kent State University, Kent, Ohio, USA
| | | | - Katherine J Turo
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| | - Leo Taylor
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| | - James Radl
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| | | | - Frances S Sivakoff
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Marion, Ohio, USA
| | - Mary M Gardiner
- Department of Entomology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Van Tatenhove AM, Neill J, Norvell RE, Stuber EF, Rushing CS. Scale-dependent population drivers inform avian management in a declining saline lake ecosystem. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3021. [PMID: 39219158 DOI: 10.1002/eap.3021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/20/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024]
Abstract
Shrinking saline lakes provide irreplaceable habitat for waterbird species globally. Disentangling the effects of wetland habitat loss from other drivers of waterbird population dynamics is critical for protecting these species in the face of unprecedented changes to saline lake ecosystems, ideally through decision-making frameworks that identify effective management options and their potential outcomes. Here, we develop a framework to assess the effects of hypothesized population drivers and identify potential future outcomes of plausible management scenarios on a saline lake-reliant waterbird species. We use 36 years of monitoring data to quantify the effects of environmental conditions on the population size of a regionally important breeding colony of American white pelicans (Pelecanus erythrorhynchos) at Great Salt Lake, Utah, US, then forecast colony abundance under various management scenarios. We found that low lake levels, which allow terrestrial predators access to the colony, are probable drivers of recent colony declines. Without local management efforts, we predicted colony abundance could likely decline approximately 37.3% by 2040, although recent colony observations suggest population declines may be more extreme than predicted. Results from our population projection scenarios suggested that proactive approaches to preventing predator colony access and reversing saline lake declines are crucial for the persistence of the Great Salt Lake pelican colony. Increasing wetland habitat and preventing predator access to the colony together provided the most effective protection, increasing abundance 145.4% above projections where no management actions are taken, according to our population projection scenarios. Given the importance of water levels to the persistence of island-nesting colonial species, proactive approaches to reversing saline lake declines could likely benefit pelicans as well as other avian species reliant on these unique ecosystems.
Collapse
Affiliation(s)
- Aimee M Van Tatenhove
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, USA
| | - John Neill
- Great Salt Lake Ecosystem Program, Utah Division of Wildlife Resources, Hooper, Utah, USA
| | | | - Erica F Stuber
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, USA
- U.S. Geological Survey Utah Cooperative Fish and Wildlife Research Unit, Utah State University, Logan, Utah, USA
| | - Clark S Rushing
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Bahlai CA. Forecasting insect dynamics in a changing world. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101133. [PMID: 37858790 DOI: 10.1016/j.cois.2023.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Predicting how insects will respond to stressors through time is difficult because of the diversity of insects, environments, and approaches used to monitor and model. Forecasting models take correlative/statistical, mechanistic models, and integrated forms; in some cases, temporal processes can be inferred from spatial models. Because of heterogeneity associated with broad community measurements, models are often unable to identify mechanistic explanations. Many present efforts to forecast insect dynamics are restricted to single-species models, which can offer precise predictions but limited generalizability. Trait-based approaches may offer a good compromise that limits the masking of the ranges of responses while still offering insight. Regardless of the modeling approach, the data used to parameterize a forecasting model should be carefully evaluated for temporal autocorrelation, minimum data needs, and sampling biases in the data. Forecasting models can be tested using near-term predictions and revised to improve future forecasts.
Collapse
Affiliation(s)
- Christie A Bahlai
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA; Environmental Science and Design Research Institute, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
4
|
Zylstra ER, Neupane N, Zipkin EF. Multi-season climate projections forecast declines in migratory monarch butterflies. GLOBAL CHANGE BIOLOGY 2022; 28:6135-6151. [PMID: 35983755 DOI: 10.1111/gcb.16349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Climate change poses a unique threat to migratory species as it has the potential to alter environmental conditions at multiple points along a species' migratory route. The eastern migratory population of monarch butterflies (Danaus plexippus) has declined markedly over the last few decades, in part due to variation in breeding-season climate. Here, we combined a retrospective, annual-cycle model for the eastern monarch population with climate projections within the spring breeding grounds in eastern Texas and across the summer breeding grounds in the midwestern U.S. and southern Ontario, Canada to evaluate how monarchs are likely to respond to climate change over the next century. Our results reveal that projected changes in breeding-season climate are likely to lead to decreases in monarch abundance, with high potential for overwintering population size to fall below the historical minimum three or more times in the next two decades. Climatic changes across the expansive summer breeding grounds will also cause shifts in the distribution of monarchs, with higher projected abundances in areas that become wetter but not appreciably hotter (e.g., northern Ohio) and declines in abundance where summer temperatures are projected to increase well above those observed in the recent past (e.g., northern Minnesota). Although climate uncertainties dominate long-term population forecasts, our analyses suggest that we can improve precision of near-term forecasts by collecting targeted data to better understand relationships between breeding-season climate variables and local monarch abundance. Overall, our results highlight the importance of accounting for the impacts of climate changes throughout the full-annual cycle of migratory species.
Collapse
Affiliation(s)
- Erin R Zylstra
- Department of Integrative Biology, Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Tucson Audubon Society, Tucson, Arizona, USA
| | - Naresh Neupane
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Elise F Zipkin
- Department of Integrative Biology, Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Oro D, Pueyo Y, Bauzà J, Errea MP, Arroyo AI. Long transient response of vegetation dynamics after four millennia of anthropogenic impacts in an island ecosystem. GLOBAL CHANGE BIOLOGY 2022; 28:6318-6332. [PMID: 35950624 PMCID: PMC9804734 DOI: 10.1111/gcb.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Agents of global change commonly have a higher impact on island ecosystem dynamics. In the Mediterranean region, those dynamics have historically been influenced by anthropogenic impacts, for example, the introduction of invasive species and overharvesting of resources. Here, we analysed the spatio-temporal dynamics of vegetation in sa Dragonera island, which experienced a large environmental change ca. 4000 years ago by the arrival of humans. Anthropogenic impacts, such as herbivory by goats and over-logging, ended in the 1970s, while in 2011 the site became the largest Mediterranean island where rats were eradicated. Invasive rats and goats played the ecological role of two endemic species, the cave goat and the giant dormouse, which inhabited the island for more than 5 million years and were rapidly extinct by humans. We used Landsat imagery to explore NDVI as a proxy of vegetation productivity over the years 1984-2021, orthophotos to assess changes in land and vegetation covers and historical plant inventories to study the dynamics in plant diversity. Results showed that those indicators steadily increased both in spring and in summer, while the noise around the trends was partially explained by climate variability. The regime shifts in the temporal dynamics of vegetation productivity suggested a transient from a perturbed to a non-perturbed stable state. Trends in successional dynamics, spatial self-organization and plant diversity also showed the same type of transient dynamics. Historical perturbations related to harvesting (mainly the synergies between goat browsing, burning and forest over-logging) were more important than rat eradication or the influence of climate to explain the vegetation dynamics. Our study shows the transient nature of this small island ecosystem after 4000 years of perturbations and its current path towards vegetation dynamics more controlled by ecological interactions lacking large herbivores and omnivores, drought dynamics and the carrying capacity of the island.
Collapse
Affiliation(s)
- Daniel Oro
- Centre d'Estudis Avançats de Blanes CEAB (CSIC)BlanesSpain
| | | | - Joan Bauzà
- Departament de GeografiaUniversitat de les Illes Balears (UIB)PalmaSpain
| | | | - Antonio Ignacio Arroyo
- Centre d'Estudis Avançats de Blanes CEAB (CSIC)BlanesSpain
- Instituto Pirenaico de Ecología (CSIC)ZaragozaSpain
| |
Collapse
|
6
|
Gaiser EE, Kominoski JS, McKnight DM, Bahlai CA, Cheng C, Record S, Wollheim WM, Christianson KR, Downs MR, Hawman PA, Holbrook SJ, Kumar A, Mishra DR, Molotch NP, Primack RB, Rassweiler A, Schmitt RJ, Sutter LA. Long-term ecological research and the COVID-19 anthropause: A window to understanding social-ecological disturbance. Ecosphere 2022; 13:e4019. [PMID: 35573027 PMCID: PMC9087370 DOI: 10.1002/ecs2.4019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/07/2022] Open
Abstract
The period of disrupted human activity caused by the COVID-19 pandemic, coined the "anthropause," altered the nature of interactions between humans and ecosystems. It is uncertain how the anthropause has changed ecosystem states, functions, and feedback to human systems through shifts in ecosystem services. Here, we used an existing disturbance framework to propose new investigation pathways for coordinated studies of distributed, long-term social-ecological research to capture effects of the anthropause. Although it is still too early to comprehensively evaluate effects due to pandemic-related delays in data availability and ecological response lags, we detail three case studies that show how long-term data can be used to document and interpret changes in air and water quality and wildlife populations and behavior coinciding with the anthropause. These early findings may guide interpretations of effects of the anthropause as it interacts with other ongoing environmental changes in the future, particularly highlighting the importance of long-term data in separating disturbance impacts from natural variation and long-term trends. Effects of this global disturbance have local to global effects on ecosystems with feedback to social systems that may be detectable at spatial scales captured by nationally to globally distributed research networks.
Collapse
Affiliation(s)
- Evelyn E. Gaiser
- Institute of Environment and Department of Biological SciencesFlorida International UniversityMiamiFloridaUSA
| | - John S. Kominoski
- Institute of Environment and Department of Biological SciencesFlorida International UniversityMiamiFloridaUSA
| | - Diane M. McKnight
- Institute of Arctic and Alpine Research and Environmental Studies ProgramUniversity of ColoradoBoulderColoradoUSA
| | | | - Chingwen Cheng
- The Design SchoolArizona State UniversityTempeArizonaUSA
| | - Sydne Record
- Department of BiologyBryn Mawr CollegeBryn MawrPennsylvaniaUSA
| | - Wilfred M. Wollheim
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
| | | | - Martha R. Downs
- National Center for Ecological Analysis and SynthesisUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Peter A. Hawman
- Department of GeographyUniversity of GeorgiaAthensGeorgiaUSA
| | - Sally J. Holbrook
- Department of Ecology, Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Abhishek Kumar
- Department of Environmental ConservationUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | | | - Noah P. Molotch
- Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderColoradoUSA
| | | | - Andrew Rassweiler
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Russell J. Schmitt
- Department of Ecology, Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Lori A. Sutter
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
7
|
Bahlai CA, White ER, Perrone JD, Cusser S, Stack Whitney K. The broken window: An algorithm for quantifying and characterizing misleading trajectories in ecological processes. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|