1
|
Duncan PJ, Romanò N, Nair SV, McClafferty H, Le Tissier P, Shipston MJ. Long-term, Dynamic Remodelling of the Corticotroph Transcriptome and Excitability After a Period of Chronic Stress. Endocrinology 2024; 165:bqae139. [PMID: 39423299 PMCID: PMC11538779 DOI: 10.1210/endocr/bqae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Chronic stress results in long-term dynamic changes at multiple levels of the hypothalamic-pituitary-adrenal (HPA) axis resulting in stress axis dysregulation with long-term impacts on human and animal health. However, the underlying mechanisms and dynamics of altered of HPA axis function, in particular at the level of pituitary corticotrophs, during a period of chronic stress and in the weeks after its cessation (defined as "recovery") are very poorly understood. Here, we address the fundamental question of how a period of chronic stress results in altered anterior pituitary corticotroph function and whether this persists in recovery, as well as the transcriptomic changes underlying this. We demonstrate that, in mice, spontaneous and corticotrophin-releasing hormone-stimulated electrical excitability of corticotrophs, essential for ACTH secretion, is suppressed for weeks to months of recovery following a period of chronic stress. Surprisingly, there are only modest changes in the corticotroph transcriptome during the period of stress, but major alterations occur in recovery. Importantly, although transcriptional changes for a large proportion of mRNAs follow the time course suppression of corticotroph excitability, many other genes display highly dynamic transcriptional changes with distinct time courses throughout recovery. Taken together, this suggests that chronic stress results in complex dynamic transcriptional and functional changes in corticotroph physiology, which are highly dynamic for weeks following cessation of chronic stress. These insights provide a fundamental new framework to further understand underlying molecular mechanisms as well approaches to both diagnosis and treatment of stress-related dysfunction of the HPA axis.
Collapse
Affiliation(s)
- Peter J Duncan
- Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Nicola Romanò
- Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, Haining 314400, PR China
| | - Sooraj V Nair
- Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Heather McClafferty
- Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Paul Le Tissier
- Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, Haining 314400, PR China
| | - Michael J Shipston
- Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University School of Medicine, Haining 314400, PR China
| |
Collapse
|
2
|
Maita F, Maiolo L, Lucarini I, Del Rio De Vicente JI, Sciortino A, Ledda M, Mussi V, Lisi A, Convertino A. Revealing Low Amplitude Signals of Neuroendocrine Cells through Disordered Silicon Nanowires-Based Microelectrode Array. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301925. [PMID: 37357140 PMCID: PMC10460871 DOI: 10.1002/advs.202301925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Today, the key methodology to study in vitro or in vivo electrical activity in a population of electrogenic cells, under physiological or pathological conditions, is by using microelectrode array (MEA). While significant efforts have been devoted to develop nanostructured MEAs for improving the electrophysiological investigation in neurons and cardiomyocytes, data on the recording of the electrical activity from neuroendocrine cells with MEA technology are scarce owing to their weaker electrical signals. Disordered silicon nanowires (SiNWs) for developing a MEA that, combined with a customized acquisition board, successfully capture the electrical signals generated by the corticotrope AtT-20 cells as a function of the extracellular calcium (Ca2+ ) concentration are reported. The recorded signals show a shape that clearly resembles the action potential waveform by suggesting a natural membrane penetration of the SiNWs. Additionally, the generation of synchronous signals observed under high Ca2+ content indicates the occurrence of a collective behavior in the AtT-20 cell population. This study extends the usefulness of MEA technology to the investigation of the electrical communication in cells of the pituitary gland, crucial in controlling several essential human functions, and provides new perspectives in recording with MEA the electrical activity of excitable cells.
Collapse
Affiliation(s)
- Francesco Maita
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Luca Maiolo
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Ivano Lucarini
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | | | - Antonio Sciortino
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Mario Ledda
- Institute of Translational PharmacologyNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Valentina Mussi
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Antonella Lisi
- Institute of Translational PharmacologyNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Annalisa Convertino
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| |
Collapse
|
3
|
Churilov AN, Milton JG. Modeling pulsativity in the hypothalamic-pituitary-adrenal hormonal axis. Sci Rep 2022; 12:8480. [PMID: 35589935 PMCID: PMC9120490 DOI: 10.1038/s41598-022-12513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
A new mathematical model for biological rhythms in the hypothalamic–pituitary–adrenal (HPA) axis is proposed. This model takes the form of a system of impulsive time-delay differential equations which include pulsatile release of adrenocorticotropin (ACTH) by the pituitary gland and a time delay for the release of glucocorticoid hormones by the adrenal gland. Numerical simulations demonstrate that the model’s response to periodic and circadian inputs from the hypothalamus are consistent with those generated by recent models which do not include a pulsatile pituitary. In contrast the oscillatory phenomena generated by the impulsive delay equation mode occur even if the time delay is zero. The observation that the time delay merely introduces a small phase shift suggesting that the effects of the adrenal gland are “downstream” to the origin of pulsativity. In addition, the model accounts for the occurrence of ultradian oscillations in an isolated pituitary gland. These observations suggest that principles of pulse modulated control, familiar to control engineers, may have an increasing role to play in understanding the HPA axis.
Collapse
Affiliation(s)
- Alexander N Churilov
- Faculty of Mathematics and Mechanics, Saint Petersburg State University, Saint Petersburg, Russia
| | - John G Milton
- W. M. Keck Science Center, The Claremont Colleges, Claremont, CA, USA.
| |
Collapse
|
4
|
Fazli M, Bertram R. Network Properties of Electrically Coupled Bursting Pituitary Cells. Front Endocrinol (Lausanne) 2022; 13:936160. [PMID: 35872987 PMCID: PMC9299381 DOI: 10.3389/fendo.2022.936160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
The endocrine cells of the anterior pituitary gland are electrically active when stimulated or, in some cases, when not inhibited. The activity pattern thought to be most effective in releasing hormones is bursting, which consists of depolarization with small spikes that are much longer than single spikes. Although a majority of the research on cellular activity patterns has been performed on dispersed cells, the environment in situ is characterized by networks of coupled cells of the same type, at least in the case of somatotrophs and lactotrophs. This produces some degree of synchronization of their activity, which can be greatly increased by hormones and changes in the physiological state. In this computational study, we examine how electrical coupling among model cells influences synchronization of bursting oscillations among the population. We focus primarily on weak electrical coupling, since strong coupling leads to complete synchronization that is not characteristic of pituitary cell networks. We first look at small networks to point out several unexpected behaviors of the coupled system, and then consider a larger random scale-free network to determine what features of the structural network formed through gap junctional coupling among cells produce a high degree of functional coupling, i.e., clusters of synchronized cells. We employ several network centrality measures, and find that cells that are closely related in terms of their closeness centrality are most likely to be synchronized. We also find that structural hubs (cells with extensive coupling to other cells) are typically not functional hubs (cells synchronized with many other cells). Overall, in the case of weak electrical coupling, it is hard to predict the functional network that arises from a structural network, or to use a functional network as a means for determining the structural network that gives rise to it.
Collapse
Affiliation(s)
- Mehran Fazli
- Department of Mathematics, Florida State University, Tallahassee, FL, United States
| | - Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee, FL, United States
- Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL, United States
- *Correspondence: Richard Bertram,
| |
Collapse
|
5
|
Duncan PJ, Fazli M, Romanò N, Le Tissier P, Bertram R, Shipston MJ. Chronic stress facilitates bursting electrical activity in pituitary corticotrophs. J Physiol 2021; 600:313-332. [PMID: 34855218 DOI: 10.1113/jp282367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
Coordination of an appropriate stress response is dependent upon anterior pituitary corticotroph excitability in response to hypothalamic secretagogues and glucocorticoid negative feedback. A key determinant of corticotroph excitability is large conductance calcium- and voltage-activated (BK) potassium channels that are critical for promoting corticotrophin-releasing hormone (CRH)-induced bursting that enhances adrenocorticotrophic hormone secretion. Previous studies revealed hypothalamic-pituitary-adrenal axis hyperexcitability following chronic stress (CS) is partly a function of increased corticotroph output. Thus, we hypothesise that chronic stress promotes corticotroph excitability through a BK-dependent mechanism. Corticotrophs from CS mice displayed significant increase in spontaneous bursting, which was suppressed by the BK blocker paxilline. Mathematical modelling reveals that the time constant of BK channel activation, plus properties and proportion of BK channels functionally coupled to L-type Ca2+ channels determines bursting activity. Surprisingly, CS corticotrophs (but not unstressed) display CRH-induced bursting even when the majority of BK channels are inhibited by paxilline, which modelling suggests is a consequence of the stochastic behaviour of a small number of BK channels coupled to L-type Ca2+ channels. Our data reveal that changes in the stochastic behaviour of a small number of BK channels can finely tune corticotroph excitability through stress-induced changes in BK channel properties. Importantly, regulation of BK channel function is highly context dependent allowing dynamic control of corticotroph excitability over a large range of time domains and physiological challenges in health and disease. This is likely to occur in other BK-expressing endocrine cells, with important implications for the physiological processes they regulate and the potential for therapy. KEY POINTS: Chronic stress (CS) is predicted to modify the electrical excitability of anterior pituitary corticotrophs. Electrophysiological recordings from isolated corticotrophs from CS male mice display spontaneous electrical bursting behaviour compared to the tonic spiking behaviour of unstressed corticotrophs. The increased spontaneous bursting from CS corticotrophs is BK-dependent and mathematical modelling reveals that the time constant of activation, properties and proportion of BK channels functionally coupled to L-type calcium channels determines the promotion of bursting activity. CS (but not unstressed) corticotrophs display corticotrophin-releasing hormone-induced bursting even when the majority of BK channels are pharmacologically inhibited, which can be explained by the stochastic behaviour of a small number of BK channels with distinct properties. Corticotroph excitability can be finely tuned by the stochastic behaviour of a small number of BK channels dependent on their properties and functional co-localisation with L-type calcium channels to control corticotroph excitability over diverse time domains and physiological challenges.
Collapse
Affiliation(s)
- Peter J Duncan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Mehran Fazli
- Department of Mathematics, Florida State University, Tallahassee, FL, USA
| | - Nicola Romanò
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Paul Le Tissier
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee, FL, USA.,Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Michael J Shipston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Fazli M, Vo T, Bertram R. Fast-slow analysis of a stochastic mechanism for electrical bursting. CHAOS (WOODBURY, N.Y.) 2021; 31:103128. [PMID: 34717336 DOI: 10.1063/5.0059338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Electrical bursting oscillations in neurons and endocrine cells are activity patterns that facilitate the secretion of neurotransmitters and hormones and have been the focus of study for several decades. Mathematical modeling has been an extremely useful tool in this effort, and the use of fast-slow analysis has made it possible to understand bursting from a dynamic perspective and to make testable predictions about changes in system parameters or the cellular environment. It is typically the case that the electrical impulses that occur during the active phase of a burst are due to stable limit cycles in the fast subsystem of equations or, in the case of so-called "pseudo-plateau bursting," canards that are induced by a folded node singularity. In this article, we show an entirely different mechanism for bursting that relies on stochastic opening and closing of a key ion channel. We demonstrate, using fast-slow analysis, how the short-lived stochastic channel openings can yield a much longer response in which single action potentials are converted into bursts of action potentials. Without this stochastic element, the system is incapable of bursting. This mechanism can describe stochastic bursting in pituitary corticotrophs, which are small cells that exhibit a great deal of noise as well as other pituitary cells, such as lactotrophs and somatotrophs that exhibit noisy bursts of electrical activity.
Collapse
Affiliation(s)
- Mehran Fazli
- Department of Mathematics, Florida State University, Tallahassee, Florida 32306, USA
| | - Theodore Vo
- School of Mathematics, Monash University, Clayton, Victoria 3800, Australia
| | - Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|