1
|
Gritti F. Retention mechanism in slalom chromatography: Perspectives on the characterization of large DNA and RNA biopolymers in cell and gene therapy. J Chromatogr A 2025; 1743:465691. [PMID: 39874743 DOI: 10.1016/j.chroma.2025.465691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics. In this review, we first recall non-exhaustively the main currently available analytical techniques (enzyme-linked immunosorbent assay (ELISA), agarose gel electrophoresis (AGE), pulse field gel electrophoresis (PFGE), capillary gel electrophoresis (CGE), mass photometry (MP), anion-exchange chromatography (AEX), ion-pairing reversed-phase liquid chromatography (IP-RPLC), hydrophobic interaction chromatography (HIC), size-exclusion chromatography (SEC), hydrodynamic chromatography (HDC), highly converging flow ultra-filtration (HCF-UF), asymmetrical flow field-flow fractionation (AF4), mass spectrometry (MS), and atomic force microscopy (AFM)) for analyzing mixtures containing large nucleic acid biopolymers, while assessing their strengths and weaknesses. We then focus comprehensively on the SC technique, report on its past applications since its birth, and review in detail the history and evolution of the proposed retention mechanisms accounting for the observations made in SC. This includes and emphasizes the latest physico-chemical insights (shear rates in packed HPLC columns, entropic elasticity and relaxation of dsDNA, dsRNA, and mRNA biopolymers) governing the retention behavior of such biopolymers in SC. Finally, based on the recent advancements in understanding the fundamentals of retention in SC, we provide some perspectives and recent proof-of-concept for the analytical characterization by SC of large dsDNAs (plasmid digests, polymerase chain reaction (PCR) verification), the separation of supercoiled/circular and linear dsDNAs (plasmid linearization), the isolation and quantification of large dsRNAs impurities present in mRNA samples produced by IVT, and the differentiation between dsRNA conformers.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA.
| |
Collapse
|
2
|
Jiang Y, Wang Z, Scheuring S. A structural biology compatible file format for atomic force microscopy. Nat Commun 2025; 16:1671. [PMID: 39955301 PMCID: PMC11829953 DOI: 10.1038/s41467-025-56760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
Cryogenic electron microscopy (cryo-EM), X-ray crystallography, and nuclear magnetic resonance (NMR) contribute structural data that are interchangeable, cross-verifiable, and visualizable on common platforms, making them powerful tools for our understanding of protein structures. Unfortunately, atomic force microscopy (AFM) has so far failed to interface with these structural biology methods, despite the recent development of localization AFM (LAFM) that allows extracting high-resolution structural information from AFM data. Here, we build on LAFM and develop a pipeline that transforms AFM data into 3D-density files (.afm) that are readable by programs commonly used to visualize, analyze, and interpret structural data. We show that 3D-LAFM densities can serve as force fields to steer molecular dynamics flexible fitting (MDFF) to obtain structural models of previously unresolved states based on AFM observations in close-to-native environment. Besides, the .afm format enables direct 3D or 2D visualization and analysis of conventional AFM images. We anticipate that the file format will find wide usage and embed AFM in the repertoire of methods routinely used by the structural biology community, allowing AFM researchers to deposit data in repositories in a format that allows comparison and cross-verification with data from other techniques.
Collapse
Affiliation(s)
- Yining Jiang
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA
| | - Zhaokun Wang
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA.
- Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, USA.
| |
Collapse
|
3
|
McArthur SJ, Umeda K, Kodera N. Nano-Scale Video Imaging of Motility Machinery by High-Speed Atomic Force Microscopy. Biomolecules 2025; 15:257. [PMID: 40001560 PMCID: PMC11852755 DOI: 10.3390/biom15020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Motility is a vital aspect of many forms of life, with a wide range of highly conserved as well as highly unique systems adapted to the needs of various organisms and environments. While many motility systems are well studied using structural techniques like X-ray crystallography and electron microscopy, as well as fluorescence microscopy methodologies, it is difficult to directly determine the relationship between the shape and movement of a motility system due to a notable gap in spatiotemporal resolution. Bridging this gap as well as understanding the dynamic molecular movements that underpin motility mechanisms has been challenging. The advent of high-speed atomic force microscopy (HS-AFM) has provided a new window into understanding these nano-scale machines and the dynamic processes underlying motility. In this review, we highlight some of the advances in this field, ranging from reconstituted systems and purified higher-order supramolecular complexes to live cells, in both prokaryotic and eukaryotic contexts.
Collapse
Affiliation(s)
- Steven John McArthur
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan and Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| |
Collapse
|
4
|
Giblin-Burnham J, Javanmardi Y, Moeendarbary E, Hoogenboom BW. Finite element modelling of atomic force microscopy imaging on deformable surfaces. SOFT MATTER 2024. [PMID: 39569923 PMCID: PMC11580413 DOI: 10.1039/d4sm01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Atomic force microscopy (AFM) provides a three-dimensional topographic representation of a sample surface, at nanometre resolution. Computational simulations can aid the interpretation of such representations, but have mostly been limited to cases where both the AFM probe and the sample are hard and not compressible. In many applications, however, the sample is soft and therefore deformed due to the force exerted by the AFM tip. Here we use finite element modelling (FEM) to study how the measured AFM topography relates to the surface structures of soft and compressible materials. Consistent with previous analytical studies, the measured elastic modulus in AFM is generally found to deviate from the elastic modulus of the sample material. By the analysis of simple surface geometries, the FEM modelling shows how measured mechanical and topographic features in AFM images depend on a combination of tip-sample geometry and indentation of the tip into the sample. Importantly for the interpretation of AFM data, nanoparticles may appear larger or smaller by a factor of two depending on tip size and indentation force; and a higher spatial resolution in AFM images does not necessarily coincide with a more accurate representation of the sample surface. These observations on simple surface geometries also extend to molecular-resolution AFM, as illustrated by comparing FEM results with experimental data acquired on DNA. Taken together, the FEM results provide a framework that aids the interpretation of surface topography and local mechanics as measured by AFM.
Collapse
Affiliation(s)
- Joshua Giblin-Burnham
- Department of Engineering Science, University of Oxford, Wellington Square, Oxford OX1 2JD, UK.
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK.
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK.
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
5
|
Wu X, Miyashita O, Tama F. Modeling Conformational Transitions of Biomolecules from Atomic Force Microscopy Images using Normal Mode Analysis. J Phys Chem B 2024; 128:9363-9372. [PMID: 39319845 PMCID: PMC11457880 DOI: 10.1021/acs.jpcb.4c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024]
Abstract
Observing a single biomolecule performing its function is fundamental in biophysics as it provides important information for elucidating the mechanism. High-speed atomic force microscopy (HS-AFM) is a unique and powerful technique that allows the observation of biomolecular motion in a near-native environment. However, the spatial resolution of HS-AFM is limited by the physical size of the cantilever tip, which restricts the ability to obtain atomic details of molecules. In this study, we propose a novel computational algorithm designed to derive atomistic models of conformational dynamics from AFM images. Our method uses normal-mode analysis to describe the expected motions of the molecule, allowing these motions to be represented with a limited number of coordinates. This approach mitigates the problem of overinterpretation inherent in the analysis of AFM images with limited resolution. We demonstrate the effectiveness of our algorithm, NMFF-AFM, using synthetic data sets for three proteins that undergo significant conformational changes. NMFF-AFM is a fast and user-friendly program that requires minimal setup and has the potential to be a valuable tool for biophysical studies using HS-AFM.
Collapse
Affiliation(s)
- Xuan Wu
- Department
of Physics, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Osamu Miyashita
- RIKEN
Center for Computational Science, 6-7-1 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Florence Tama
- Department
of Physics, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- RIKEN
Center for Computational Science, 6-7-1 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Institute
of Transformative Bio-Molecules, Nagoya
University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
6
|
Heath GR, Micklethwaite E, Storer TM. NanoLocz: Image Analysis Platform for AFM, High-Speed AFM, and Localization AFM. SMALL METHODS 2024; 8:e2301766. [PMID: 38426645 DOI: 10.1002/smtd.202301766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Atomic Force Microscopy (AFM), High-Speed AFM (HS-AFM) simulation AFM, and Localization AFM (LAFM) enable the study of molecules and surfaces with increasingly higher spatiotemporal resolution. However, effective and rapid analysis of the images and movies produced by these techniques can be challenging, often requiring the use of multiple image processing software applications and scripts. Here, NanoLocz, an open-source solution that offers advanced analysis capabilities for the AFM community, is presented. Integration and continued development of AFM analysis tools is essential to improve access to data, increase throughput, and open new analysis opportunities. NanoLocz efficiently leverages the rich data AFM has to offer by incorporating and combining existing and newly developed analysis methods for AFM, HS-AFM, simulation AFM, and LAFM seamlessly. It facilitates and streamlines AFM analysis workflows from import of raw data, through to various analysis workflows. Here, the study demonstrates the capabilities of NanoLocz and the new methods it enables including single-molecule LAFM, time-resolved LAFM, and simulation LAFM.
Collapse
Affiliation(s)
- George R Heath
- School of Physics & Astronomy, Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
- School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Emily Micklethwaite
- School of Physics & Astronomy, Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| | - Tabitha M Storer
- School of Physics & Astronomy, Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
7
|
Sumino A, Sumikama T, Zhao Y, Flechsig H, Umeda K, Kodera N, Konno H, Hattori M, Shibata M. High-Speed Atomic Force Microscopy Reveals Fluctuations and Dimer Splitting of the N-Terminal Domain of GluA2 Ionotropic Glutamate Receptor-Auxiliary Subunit Complex. ACS NANO 2024; 18:25018-25035. [PMID: 39180186 DOI: 10.1021/acsnano.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptors (AMPARs) enable rapid excitatory synaptic transmission by localizing to the postsynaptic density of glutamatergic spines. AMPARs possess large extracellular N-terminal domains (NTDs), which are crucial for AMPAR clustering at synaptic sites. However, the dynamics of NTDs and the molecular mechanism governing their synaptic clustering remain elusive. Here, we employed high-speed atomic force microscopy (HS-AFM) to directly visualize the conformational dynamics of NTDs in the GluA2 subunit complexed with TARP γ2 in lipid environments. HS-AFM videos of GluA2-γ2 in the resting and activated/open states revealed fluctuations in NTD dimers. Conversely, in the desensitized/closed state, the two NTD dimers adopted a separated conformation with less fluctuation. Notably, we observed individual NTD dimers transitioning into monomers, with extended monomeric states in the activated/open state. Molecular dynamics simulations provided further support, confirming the energetic stability of the monomeric NTD states within lipids. This NTD-dimer splitting resulted in subunit exchange between the receptors and increased the number of interaction sites with synaptic protein neuronal pentraxin 1 (NP1). Moreover, our HS-AFM studies revealed that NP1 forms a ring-shaped octamer through N-terminal disulfide bonds and binds to the tip of the NTD. These findings suggest a molecular mechanism in which NP1, upon forming an octamer, is secreted into the synaptic region and binds to the tip of the GluA2 NTD, thereby bridging and clustering multiple AMPARs. Thus, our findings illuminate the critical role of NTD dynamics in the synaptic clustering of AMPARs and contribute valuable insights into the fundamental processes of synaptic transmission.
Collapse
Affiliation(s)
- Ayumi Sumino
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Sumikama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, and Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Yangpu District, Shanghai 200438, China
- Human Phenome Institute, Fudan University, Yangpu District, Shanghai 200438, China
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, and Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Yangpu District, Shanghai 200438, China
| | - Mikihiro Shibata
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
8
|
Ngo KX, Vu HT, Umeda K, Trinh MN, Kodera N, Uyeda T. Deciphering the actin structure-dependent preferential cooperative binding of cofilin. eLife 2024; 13:RP95257. [PMID: 39093938 PMCID: PMC11296705 DOI: 10.7554/elife.95257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0-6.3 nm) than the MAD within typical helices (4.3-5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.
Collapse
Affiliation(s)
- Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Huong T Vu
- Centre for Mechanochemical Cell Biology, Warwick Medical SchoolCoventryUnited Kingdom
| | - Kenichi Umeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Minh-Nhat Trinh
- School of Electrical and Electronic Engineering, Hanoi University of Science and TechnologyHanoiViet Nam
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Taro Uyeda
- Department of Physics, Faculty of Advanced Science and Engineering, Waseda University, ShinjukuTokyoJapan
| |
Collapse
|
9
|
Onoa B, Díaz-Celis C, Cañari-Chumpitaz C, Lee A, Bustamante C. Real-Time Multistep Asymmetrical Disassembly of Nucleosomes and Chromatosomes Visualized by High-Speed Atomic Force Microscopy. ACS CENTRAL SCIENCE 2024; 10:122-137. [PMID: 38292612 PMCID: PMC10823521 DOI: 10.1021/acscentsci.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/30/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
During replication, expression, and repair of the eukaryotic genome, cellular machinery must access the DNA wrapped around histone proteins forming nucleosomes. These octameric protein·DNA complexes are modular, dynamic, and flexible and unwrap or disassemble either spontaneously or by the action of molecular motors. Thus, the mechanism of formation and regulation of subnucleosomal intermediates has gained attention genome-wide because it controls DNA accessibility. Here, we imaged nucleosomes and their more compacted structure with the linker histone H1 (chromatosomes) using high-speed atomic force microscopy to visualize simultaneously the changes in the DNA and the histone core during their disassembly when deposited on mica. Furthermore, we trained a neural network and developed an automatic algorithm to track molecular structural changes in real time. Our results show that nucleosome disassembly is a sequential process involving asymmetrical stepwise dimer ejection events. The presence of H1 restricts DNA unwrapping, significantly increases the nucleosomal lifetime, and affects the pathway in which heterodimer asymmetrical dissociation occurs. We observe that tetrasomes are resilient to disassembly and that the tetramer core (H3·H4)2 can diffuse along the nucleosome positioning sequence. Tetrasome mobility might be critical to the proper assembly of nucleosomes and can be relevant during nucleosomal transcription, as tetrasomes survive RNA polymerase passage. These findings are relevant to understanding nucleosome intrinsic dynamics and their modification by DNA-processing enzymes.
Collapse
Affiliation(s)
- Bibiana Onoa
- Jason
L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
| | - César Díaz-Celis
- Jason
L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
| | - Cristhian Cañari-Chumpitaz
- Jason
L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
| | - Antony Lee
- Laboratoire
Photonique Numérique et Nanosciences, LP2N UMR 5298, Université de Bordeaux, Institut d’Optique,
CNRS, F-33400 Talence, France
| | - Carlos Bustamante
- Jason
L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, California 94720, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
- Kavli
Energy Nanoscience Institute, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Ye Z, Galvanetto N, Puppulin L, Pifferi S, Flechsig H, Arndt M, Triviño CAS, Di Palma M, Guo S, Vogel H, Menini A, Franz CM, Torre V, Marchesi A. Structural heterogeneity of the ion and lipid channel TMEM16F. Nat Commun 2024; 15:110. [PMID: 38167485 PMCID: PMC10761740 DOI: 10.1038/s41467-023-44377-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Transmembrane protein 16 F (TMEM16F) is a Ca2+-activated homodimer which functions as an ion channel and a phospholipid scramblase. Despite the availability of several TMEM16F cryogenic electron microscopy (cryo-EM) structures, the mechanism of activation and substrate translocation remains controversial, possibly due to restrictions in the accessible protein conformational space. In this study, we use atomic force microscopy under physiological conditions to reveal a range of structurally and mechanically diverse TMEM16F assemblies, characterized by variable inter-subunit dimerization interfaces and protomer orientations, which have escaped prior cryo-EM studies. Furthermore, we find that Ca2+-induced activation is associated to stepwise changes in the pore region that affect the mechanical properties of transmembrane helices TM3, TM4 and TM6. Our direct observation of membrane remodelling in response to Ca2+ binding along with additional electrophysiological analysis, relate this structural multiplicity of TMEM16F to lipid and ion permeation processes. These results thus demonstrate how conformational heterogeneity of TMEM16F directly contributes to its diverse physiological functions.
Collapse
Affiliation(s)
- Zhongjie Ye
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Nicola Galvanetto
- Department of Physics, University of Zurich, 8057, Zurich, Switzerland
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Leonardo Puppulin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30172 Mestre, Venice, Italy
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan
| | - Simone Pifferi
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Holger Flechsig
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan
| | - Melanie Arndt
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | | | - Michael Di Palma
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| | - Shifeng Guo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Horst Vogel
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anna Menini
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Clemens M Franz
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan
| | - Vincent Torre
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy.
- Institute of Materials (ION-CNR), Area Science Park, Basovizza, 34149, Trieste, Italy.
- BIoValley Investments System and Solutions (BISS), 34148, Trieste, Italy.
| | - Arin Marchesi
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, 920-1192, Kanazawa, Japan.
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy.
| |
Collapse
|
11
|
Takeda K, Flechsig H, Muro I, Amyot R, Kobayashi F, Kodera N, Ando T, Konno H. Structural Dynamics of E6AP E3 Ligase HECT Domain and Involvement of a Flexible Hinge Loop in the Ubiquitin Chain Synthesis Mechanism. NANO LETTERS 2023; 23:11940-11948. [PMID: 38055898 PMCID: PMC10755755 DOI: 10.1021/acs.nanolett.3c04150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Ubiquitin (Ub) ligases E3 are important factors in selecting target proteins for ubiquitination and determining the type of polyubiquitin chains on the target proteins. In the HECT (homologous to E6AP C-terminus)-type E3 ligases, the HECT domain is composed of an N-lobe and a C-lobe that are connected by a flexible hinge loop. The large conformational rearrangement of the HECT domain via the flexible hinge loop is essential for the HECT-type E3-mediated Ub transfer from E2 to a target protein. However, detailed insights into the structural dynamics of the HECT domain remain unclear. Here, we provide the first direct demonstration of the structural dynamics of the HECT domain using high-speed atomic force microscopy at the nanoscale. We also found that the flexibility of the hinge loop has a great impact not only on its structural dynamics but also on the formation mechanism of free Ub chains.
Collapse
Affiliation(s)
- Kazusa Takeda
- Graduate
School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Holger Flechsig
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ikumi Muro
- Graduate
School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Romain Amyot
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Fuminori Kobayashi
- Graduate
School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroki Konno
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
12
|
Heath GR. High-speed atomic force microscopy: extracting high-resolution information through image analysis. Biophys Rev 2023; 15:2065-2068. [PMID: 38192352 PMCID: PMC10771478 DOI: 10.1007/s12551-023-01168-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Affiliation(s)
- George R. Heath
- School of Physics & Astronomy, Bragg Centre for Materials Research, University of Leeds, Leeds, UK
- School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
13
|
Hall D. Simulating biological surface dynamics in high-speed atomic force microscopy experiments. Biophys Rev 2023; 15:2069-2079. [PMID: 38192349 PMCID: PMC10771409 DOI: 10.1007/s12551-023-01169-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 01/10/2024] Open
Abstract
High-speed atomic force microscopy (HSAFM) is an important tool for studying the dynamic behavior of large biomolecular assemblies at surfaces. However, unlike light microscopy techniques, which visualize each point in the field of view at the same time, in HSAFM, the surface is literally imaged pixel-by-pixel with a variable extent of time separation existing between recordings made at one pixel and all others within the surface image. Such "temporal asynchronicity" in the recording of the spatial information can introduce distortions into the image when the surface components move at a rate comparable to that at which the surface is imaged. This Letter describes recently released software developments that are able to predict the likely form of these distortions and estimate confidence levels when assigning the identity of observed structures. These described approaches may facilitate both the design and optimization of future HSAFM experimental protocols. Further to this, they may assist in the interpretation of results from already published HSAFM studies.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1164 Japan
| |
Collapse
|
14
|
Dzedzickis A, Rožėnė J, Bučinskas V, Viržonis D, Morkvėnaitė-Vilkončienė I. Characteristics and Functionality of Cantilevers and Scanners in Atomic Force Microscopy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6379. [PMID: 37834515 PMCID: PMC10573440 DOI: 10.3390/ma16196379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In this paper, we provide a systematic review of atomic force microscopy (AFM), a fast-developing technique that embraces scanners, controllers, and cantilevers. The main objectives of this review are to analyze the available technical solutions of AFM, including the limitations and problems. The main questions the review addresses are the problems of working in contact, noncontact, and tapping AFM modes. We do not include applications of AFM but rather the design of different parts and operation modes. Since the main part of AFM is the cantilever, we focused on its operation and design. Information from scientific articles published over the last 5 years is provided. Many articles in this period disclose minor amendments in the mechanical system but suggest innovative AFM control and imaging algorithms. Some of them are based on artificial intelligence. During operation, control of cantilever dynamic characteristics can be achieved by magnetic field, electrostatic, or aerodynamic forces.
Collapse
Affiliation(s)
- Andrius Dzedzickis
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, Plytines 25, 10105 Vilnius, Lithuania
| | | | | | | | - Inga Morkvėnaitė-Vilkončienė
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, Plytines 25, 10105 Vilnius, Lithuania
| |
Collapse
|
15
|
Yilmaz N, Panevska A, Tomishige N, Richert L, Mély Y, Sepčić K, Greimel P, Kobayashi T. Assembly dynamics and structure of an aegerolysin, ostreolysin A6. J Biol Chem 2023; 299:104940. [PMID: 37343702 PMCID: PMC10366546 DOI: 10.1016/j.jbc.2023.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Ostreolysin A6 (OlyA6) is an oyster mushroom-derived membrane-binding protein that, upon recruitment of its partner protein, pleurotolysin B, forms a cytolytic membrane pore complex. OlyA6 itself is not cytolytic but has been reported to exhibit pro-apoptotic activities in cell culture. Here we report the formation dynamics and the structure of OlyA6 assembly on a lipid membrane containing an OlyA6 high-affinity receptor, ceramide phosphoethanolamine, and cholesterol. High-speed atomic force microscopy revealed the reorganization of OlyA6 dimers from initial random surface coverage to 2D protein crystals composed of hexameric OlyA6 repeat units. Crystal growth took place predominantly in the longitudinal direction by the association of OlyA6 dimers, forming a hexameric unit cell. Molecular-level examination of the OlyA6 crystal elucidated the arrangement of dimers within the unit cell and the structure of the dimer that recruits pleurotolysin B for pore formation.
Collapse
Affiliation(s)
- Neval Yilmaz
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; NanoLSI, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan.
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nario Tomishige
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Greimel
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan.
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
16
|
Irvin EM, Wang H. Single-molecule imaging of genome maintenance proteins encountering specific DNA sequences and structures. DNA Repair (Amst) 2023; 128:103528. [PMID: 37392578 PMCID: PMC10989508 DOI: 10.1016/j.dnarep.2023.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
DNA repair pathways are tightly regulated processes that recognize specific hallmarks of DNA damage and coordinate lesion repair through discrete mechanisms, all within the context of a three-dimensional chromatin landscape. Dysregulation or malfunction of any one of the protein constituents in these pathways can contribute to aging and a variety of diseases. While the collective action of these many proteins is what drives DNA repair on the organismal scale, it is the interactions between individual proteins and DNA that facilitate each step of these pathways. In much the same way that ensemble biochemical techniques have characterized the various steps of DNA repair pathways, single-molecule imaging (SMI) approaches zoom in further, characterizing the individual protein-DNA interactions that compose each pathway step. SMI techniques offer the high resolving power needed to characterize the molecular structure and functional dynamics of individual biological interactions on the nanoscale. In this review, we highlight how our lab has used SMI techniques - traditional atomic force microscopy (AFM) imaging in air, high-speed AFM (HS-AFM) in liquids, and the DNA tightrope assay - over the past decade to study protein-nucleic acid interactions involved in DNA repair, mitochondrial DNA replication, and telomere maintenance. We discuss how DNA substrates containing specific DNA sequences or structures that emulate DNA repair intermediates or telomeres were generated and validated. For each highlighted project, we discuss novel findings made possible by the spatial and temporal resolution offered by these SMI techniques and unique DNA substrates.
Collapse
Affiliation(s)
| | - Hong Wang
- Toxicology Program, North Carolina State University, Raleigh, NC, USA; Physics Department, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
17
|
Flechsig H, Ando T. Protein dynamics by the combination of high-speed AFM and computational modeling. Curr Opin Struct Biol 2023; 80:102591. [PMID: 37075535 DOI: 10.1016/j.sbi.2023.102591] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/21/2023]
Abstract
High-speed atomic force microscopy (HS-AFM) allows direct observation of biological molecules in dynamic action. However, HS-AFM has no atomic resolution. This article reviews recent progress of computational methods to infer high-resolution information, including the construction of 3D atomistic structures, from experimentally acquired resolution-limited HS-AFM images.
Collapse
Affiliation(s)
- Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
18
|
Puppulin L, Ishikawa J, Sumino A, Marchesi A, Flechsig H, Umeda K, Kodera N, Nishimasu H, Shibata M. Dynamics of Target DNA Binding and Cleavage by Staphylococcus aureus Cas9 as Revealed by High-Speed Atomic Force Microscopy. ACS NANO 2023; 17:4629-4641. [PMID: 36848598 DOI: 10.1021/acsnano.2c10709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Programmable DNA binding and cleavage by CRISPR-Cas9 has revolutionized the life sciences. However, the off-target cleavage observed in DNA sequences with some homology to the target still represents a major limitation for a more widespread use of Cas9 in biology and medicine. For this reason, complete understanding of the dynamics of DNA binding, interrogation and cleavage by Cas9 is crucial to improve the efficiency of genome editing. Here, we use high-speed atomic force microscopy (HS-AFM) to investigate Staphylococcus aureus Cas9 (SaCas9) and its dynamics of DNA binding and cleavage. Upon binding to single-guide RNA (sgRNA), SaCas9 forms a close bilobed structure that transiently and flexibly adopts also an open configuration. The SaCas9-mediated DNA cleavage is characterized by release of cleaved DNA and immediate dissociation, confirming that SaCas9 operates as a multiple turnover endonuclease. According to present knowledge, the process of searching for target DNA is mainly governed by three-dimensional diffusion. Independent HS-AFM experiments show a potential long-range attractive interaction between SaCas9-sgRNA and its target DNA. The interaction precedes the formation of the stable ternary complex and is observed exclusively in the vicinity of the protospacer-adjacent motif (PAM), up to distances of several nanometers. The direct visualization of the process by sequential topographic images suggests that SaCas9-sgRNA binds to the target sequence first, while the following binding of the PAM is accompanied by local DNA bending and formation of the stable complex. Collectively, our HS-AFM data reveal a potential and unexpected behavior of SaCas9 during the search for DNA targets.
Collapse
Affiliation(s)
- Leonardo Puppulin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Junichiro Ishikawa
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Ayumi Sumino
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Arin Marchesi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Via Tronto, 10/A Torrette di Ancona, 60126, Ancona, Italy
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Nishimasu
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Inamori Research Institute for Science, Shimogyo-ku, Kyoto 600-8411, Japan
| | - Mikihiro Shibata
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
19
|
Amyot R, Kodera N, Flechsig H. BioAFMviewer software for simulation atomic force microscopy of molecular structures and conformational dynamics. J Struct Biol X 2023; 7:100086. [PMID: 36865763 PMCID: PMC9972558 DOI: 10.1016/j.yjsbx.2023.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Atomic force microscopy (AFM) and high-speed scanning have significantly advanced real time observation of biomolecular dynamics, with applications ranging from single molecules to the cellular level. To facilitate the interpretation of resolution-limited imaging, post-experimental computational analysis plays an increasingly important role to understand AFM measurements. Data-driven simulation of AFM, computationally emulating experimental scanning, and automatized fitting has recently elevated the understanding of measured AFM topographies by inferring the underlying full 3D atomistic structures. Providing an interactive user-friendly interface for simulation AFM, the BioAFMviewer software has become an established tool within the Bio-AFM community, with a plethora of applications demonstrating how the obtained full atomistic information advances molecular understanding beyond topographic imaging. This graphical review illustrates the BioAFMviewer capacities and further emphasizes the importance of simulation AFM to complement experimental observations.
Collapse
Affiliation(s)
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
20
|
Visualizing RNA conformational and architectural heterogeneity in solution. Nat Commun 2023; 14:714. [PMID: 36759615 PMCID: PMC9911696 DOI: 10.1038/s41467-023-36184-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
RNA flexibility is reflected in its heterogeneous conformation. Through direct visualization using atomic force microscopy (AFM) and the adenosylcobalamin riboswitch aptamer domain as an example, we show that a single RNA sequence folds into conformationally and architecturally heterogeneous structures under near-physiological solution conditions. Recapitulated 3D topological structures from AFM molecular surfaces reveal that all conformers share the same secondary structural elements. Only a population-weighted cohort, not any single conformer, including the crystal structure, can account for the ensemble behaviors observed by small-angle X-ray scattering (SAXS). All conformers except one are functionally active in terms of ligand binding. Our findings provide direct visual evidence that the sequence-structure relationship of RNA under physiologically relevant solution conditions is more complex than the one-to-one relationship for well-structured proteins. The direct visualization of conformational and architectural ensembles at the single-molecule level in solution may suggest new approaches to RNA structural analyses.
Collapse
|
21
|
End-to-end differentiable blind tip reconstruction for noisy atomic force microscopy images. Sci Rep 2023; 13:129. [PMID: 36599879 DOI: 10.1038/s41598-022-27057-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Observing the structural dynamics of biomolecules is vital to deepening our understanding of biomolecular functions. High-speed (HS) atomic force microscopy (AFM) is a powerful method to measure biomolecular behavior at near physiological conditions. In the AFM, measured image profiles on a molecular surface are distorted by the tip shape through the interactions between the tip and molecule. Once the tip shape is known, AFM images can be approximately deconvolved to reconstruct the surface geometry of the sample molecule. Thus, knowing the correct tip shape is an important issue in the AFM image analysis. The blind tip reconstruction (BTR) method developed by Villarrubia (J Res Natl Inst Stand Technol 102:425, 1997) is an algorithm that estimates tip shape only from AFM images using mathematical morphology operators. While the BTR works perfectly for noise-free AFM images, the algorithm is susceptible to noise. To overcome this issue, we here propose an alternative BTR method, called end-to-end differentiable BTR, based on a modern machine learning approach. In the method, we introduce a loss function including a regularization term to prevent overfitting to noise, and the tip shape is optimized with automatic differentiation and backpropagations developed in deep learning frameworks. Using noisy pseudo-AFM images of myosin V motor domain as test cases, we show that our end-to-end differentiable BTR is robust against noise in AFM images. The method can also detect a double-tip shape and deconvolve doubled molecular images. Finally, application to real HS-AFM data of myosin V walking on an actin filament shows that the method can reconstruct the accurate surface geometry of actomyosin consistent with the structural model. Our method serves as a general post-processing for reconstructing hidden molecular surfaces from any AFM images. Codes are available at https://github.com/matsunagalab/differentiable_BTR .
Collapse
|
22
|
Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images. PLoS Comput Biol 2022; 18:e1010384. [PMID: 36580448 PMCID: PMC9833559 DOI: 10.1371/journal.pcbi.1010384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/11/2023] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
High-speed atomic force microscopy (HS-AFM) is a powerful technique for capturing the time-resolved behavior of biomolecules. However, structural information in HS-AFM images is limited to the surface geometry of a sample molecule. Inferring latent three-dimensional structures from the surface geometry is thus important for getting more insights into conformational dynamics of a target biomolecule. Existing methods for estimating the structures are based on the rigid-body fitting of candidate structures to each frame of HS-AFM images. Here, we extend the existing frame-by-frame rigid-body fitting analysis to multiple frames to exploit orientational correlations of a sample molecule between adjacent frames in HS-AFM data due to the interaction with the stage. In the method, we treat HS-AFM data as time-series data, and they are analyzed with the hidden Markov modeling. Using simulated HS-AFM images of the taste receptor type 1 as a test case, the proposed method shows a more robust estimation of molecular orientations than the frame-by-frame analysis. The method is applicable in integrative modeling of conformational dynamics using HS-AFM data.
Collapse
|