1
|
Snoj J, Zhou W, Ljubetič A, Jerala R. Advances in designed bionanomolecular assemblies for biotechnological and biomedical applications. Curr Opin Biotechnol 2025; 92:103256. [PMID: 39827499 DOI: 10.1016/j.copbio.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
Recent advances in protein engineering have revolutionized the design of bionanomolecular assemblies for functional therapeutic and biotechnological applications. This review highlights the progress in creating complex protein architectures, encompassing both finite and extended assemblies. AI tools, including AlphaFold, RFDiffusion, and ProteinMPNN, have significantly enhanced the scalability and success of de novo designs. Finite assemblies, like nanocages and coiled-coil-based structures, enable precise molecular encapsulation or functional protein domain presentation. Extended assemblies, including filaments and 2D/3D lattices, offer unparalleled structural versatility for applications such as vaccine development, responsive biomaterials, and engineered cellular scaffolds. The convergence of artificial intelligence-driven design and experimental validation promises strong acceleration of the development of tailored protein assemblies, offering new opportunities in synthetic biology, materials science, biotechnology, and biomedicine.
Collapse
Affiliation(s)
- Jaka Snoj
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Weijun Zhou
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Lee S, Kibler RD, Ahn G, Hsia Y, Borst AJ, Philomin A, Kennedy MA, Huang B, Stoddard B, Baker D. Four-component protein nanocages designed by programmed symmetry breaking. Nature 2025; 638:546-552. [PMID: 39695226 PMCID: PMC11821509 DOI: 10.1038/s41586-024-07814-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/11/2024] [Indexed: 12/20/2024]
Abstract
Four, eight or twenty C3 symmetric protein trimers can be arranged with tetrahedral, octahedral or icosahedral point group symmetry to generate closed cage-like structures1,2. Viruses access more complex higher triangulation number icosahedral architectures by breaking perfect point group symmetry3-9, but nature appears not to have explored similar symmetry breaking for tetrahedral or octahedral symmetries. Here we describe a general design strategy for building higher triangulation number architectures starting from regular polyhedra through pseudosymmetrization of trimeric building blocks. Electron microscopy confirms the structures of T = 4 cages with 48 (tetrahedral), 96 (octahedral) and 240 (icosahedral) subunits, each with 4 distinct chains and 6 different protein-protein interfaces, and diameters of 33 nm, 43 nm and 75 nm, respectively. Higher triangulation number viruses possess very sophisticated functionalities; our general route to higher triangulation number nanocages should similarly enable a next generation of multiple antigen-displaying vaccine candidates10,11 and targeted delivery vehicles12,13.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Ryan D Kibler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Green Ahn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Annika Philomin
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Madison A Kennedy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Barry Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Wang S, Favor A, Kibler R, Lubner J, Borst AJ, Coudray N, Redler RL, Chiang HT, Sheffler W, Hsia Y, Li Z, Ekiert DC, Bhabha G, Pozzo LD, Baker D. Bond-centric modular design of protein assemblies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617872. [PMID: 39416012 PMCID: PMC11483063 DOI: 10.1101/2024.10.11.617872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
We describe a modular bond-centric approach to protein nanomaterial design inspired by the rich diversity of chemical structures that can be generated from the small number of atomic valencies and bonding interactions. We design protein building blocks with regular coordination geometries and bonding interactions that enable the assembly of a wide variety of closed and opened nanomaterials using simple geometrical principles. Experimental characterization confirms successful formation of more than twenty multi-component polyhedral protein cages, 2D arrays, and 3D protein lattices, with a high (10-50 %) success rate and electron microscopy data closely matching the corresponding design models. Because of the modularity, individual building blocks can assemble with different partners to generate distinct regular assemblies, resulting in an economy of parts and enabling the construction of reconfigurable systems.
Collapse
Affiliation(s)
- Shunzhi Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew Favor
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Ryan Kibler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Joshua Lubner
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew J. Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Nicolas Coudray
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA
| | - Rachel L. Redler
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Huat Thart Chiang
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Zhe Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Damian C. Ekiert
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Gira Bhabha
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Custom protein nanoparticles for targeted drug delivery. Nat Struct Mol Biol 2024; 31:1317-1318. [PMID: 38724719 DOI: 10.1038/s41594-024-01289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
|
5
|
Yang EC, Divine R, Miranda MC, Borst AJ, Sheffler W, Zhang JZ, Decarreau J, Saragovi A, Abedi M, Goldbach N, Ahlrichs M, Dobbins C, Hand A, Cheng S, Lamb M, Levine PM, Chan S, Skotheim R, Fallas J, Ueda G, Lubner J, Somiya M, Khmelinskaia A, King NP, Baker D. Computational design of non-porous pH-responsive antibody nanoparticles. Nat Struct Mol Biol 2024; 31:1404-1412. [PMID: 38724718 PMCID: PMC11402598 DOI: 10.1038/s41594-024-01288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/22/2024] [Indexed: 05/21/2024]
Abstract
Programming protein nanomaterials to respond to changes in environmental conditions is a current challenge for protein design and is important for targeted delivery of biologics. Here we describe the design of octahedral non-porous nanoparticles with a targeting antibody on the two-fold symmetry axis, a designed trimer programmed to disassemble below a tunable pH transition point on the three-fold axis, and a designed tetramer on the four-fold symmetry axis. Designed non-covalent interfaces guide cooperative nanoparticle assembly from independently purified components, and a cryo-EM density map closely matches the computational design model. The designed nanoparticles can package protein and nucleic acid payloads, are endocytosed following antibody-mediated targeting of cell surface receptors, and undergo tunable pH-dependent disassembly at pH values ranging between 5.9 and 6.7. The ability to incorporate almost any antibody into a non-porous pH-dependent nanoparticle opens up new routes to antibody-directed targeted delivery.
Collapse
Affiliation(s)
- Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure & Design, University of Washington, Seattle, WA, USA
| | - Robby Divine
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biochemistry, University of Washington, Seattle, WA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Marcos C Miranda
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Andrew J Borst
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Will Sheffler
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jason Z Zhang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin Decarreau
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Amijai Saragovi
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Mohamad Abedi
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nicolas Goldbach
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Technical University of Munich, Munich, Germany
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alexis Hand
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suna Cheng
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Mila Lamb
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Paul M Levine
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rebecca Skotheim
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jorge Fallas
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - George Ueda
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joshua Lubner
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Masaharu Somiya
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- SANKEN, Osaka University, Osaka, Japan
| | - Alena Khmelinskaia
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Transdisciplinary Research Area 'Building Blocks of Matter and Fundamental Interactions (TRA Matter)', University of Bonn, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Pillai A, Idris A, Philomin A, Weidle C, Skotheim R, Leung PJY, Broerman A, Demakis C, Borst AJ, Praetorius F, Baker D. De novo design of allosterically switchable protein assemblies. Nature 2024; 632:911-920. [PMID: 39143214 PMCID: PMC11338832 DOI: 10.1038/s41586-024-07813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Allosteric modulation of protein function, wherein the binding of an effector to a protein triggers conformational changes at distant functional sites, plays a central part in the control of metabolism and cell signalling1-3. There has been considerable interest in designing allosteric systems, both to gain insight into the mechanisms underlying such 'action at a distance' modulation and to create synthetic proteins whose functions can be regulated by effectors4-7. However, emulating the subtle conformational changes distributed across many residues, characteristic of natural allosteric proteins, is a significant challenge8,9. Here, inspired by the classic Monod-Wyman-Changeux model of cooperativity10, we investigate the de novo design of allostery through rigid-body coupling of peptide-switchable hinge modules11 to protein interfaces12 that direct the formation of alternative oligomeric states. We find that this approach can be used to generate a wide variety of allosterically switchable systems, including cyclic rings that incorporate or eject subunits in response to peptide binding and dihedral cages that undergo effector-induced disassembly. Size-exclusion chromatography, mass photometry13 and electron microscopy reveal that these designed allosteric protein assemblies closely resemble the design models in both the presence and absence of peptide effectors and can have ligand-binding cooperativity comparable to classic natural systems such as haemoglobin14. Our results indicate that allostery can arise from global coupling of the energetics of protein substructures without optimized side-chain-side-chain allosteric communication pathways and provide a roadmap for generating allosterically triggerable delivery systems, protein nanomachines and cellular feedback control circuitry.
Collapse
Affiliation(s)
- Arvind Pillai
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| | - Abbas Idris
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Annika Philomin
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Connor Weidle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rebecca Skotheim
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Philip J Y Leung
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Adam Broerman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Cullen Demakis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Florian Praetorius
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Albanese KI, Petrenas R, Pirro F, Naudin EA, Borucu U, Dawson WM, Scott DA, Leggett GJ, Weiner OD, Oliver TAA, Woolfson DN. Rationally seeded computational protein design of ɑ-helical barrels. Nat Chem Biol 2024; 20:991-999. [PMID: 38902458 PMCID: PMC11288890 DOI: 10.1038/s41589-024-01642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/09/2024] [Indexed: 06/22/2024]
Abstract
Computational protein design is advancing rapidly. Here we describe efficient routes starting from validated parallel and antiparallel peptide assemblies to design two families of α-helical barrel proteins with central channels that bind small molecules. Computational designs are seeded by the sequences and structures of defined de novo oligomeric barrel-forming peptides, and adjacent helices are connected by loop building. For targets with antiparallel helices, short loops are sufficient. However, targets with parallel helices require longer connectors; namely, an outer layer of helix-turn-helix-turn-helix motifs that are packed onto the barrels. Throughout these computational pipelines, residues that define open states of the barrels are maintained. This minimizes sequence sampling, accelerating the design process. For each of six targets, just two to six synthetic genes are made for expression in Escherichia coli. On average, 70% of these genes express to give soluble monomeric proteins that are fully characterized, including high-resolution structures for most targets that match the design models with high accuracy.
Collapse
Affiliation(s)
- Katherine I Albanese
- School of Chemistry, University of Bristol, Bristol, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
| | | | - Fabio Pirro
- School of Chemistry, University of Bristol, Bristol, UK
| | | | - Ufuk Borucu
- School of Biochemistry, University of Bristol, Medical Sciences Building, Bristol, UK
| | | | - D Arne Scott
- Rosa Biotech, Science Creates St Philips, Bristol, UK
| | | | - Orion D Weiner
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK.
- School of Biochemistry, University of Bristol, Medical Sciences Building, Bristol, UK.
- Bristol BioDesign Institute, University of Bristol, Bristol, UK.
| |
Collapse
|
8
|
Edman NI, Phal A, Redler RL, Schlichthaerle T, Srivatsan SR, Ehnes DD, Etemadi A, An SJ, Favor A, Li Z, Praetorius F, Gordon M, Vincent T, Marchiano S, Blakely L, Lin C, Yang W, Coventry B, Hicks DR, Cao L, Bethel N, Heine P, Murray A, Gerben S, Carter L, Miranda M, Negahdari B, Lee S, Trapnell C, Zheng Y, Murry CE, Schweppe DK, Freedman BS, Stewart L, Ekiert DC, Schlessinger J, Shendure J, Bhabha G, Ruohola-Baker H, Baker D. Modulation of FGF pathway signaling and vascular differentiation using designed oligomeric assemblies. Cell 2024; 187:3726-3740.e43. [PMID: 38861993 PMCID: PMC11246234 DOI: 10.1016/j.cell.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and mitogen-activated protein kinase (MAPK) pathway activation. The high specificity of the designed agonists reveals distinct roles for two FGFR splice variants in driving arterial endothelium and perivascular cell fates during early vascular development. Our designed modular assemblies should be broadly useful for unraveling the complexities of signaling in key developmental transitions and for developing future therapeutic applications.
Collapse
Affiliation(s)
- Natasha I Edman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Ashish Phal
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Rachel L Redler
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas Schlichthaerle
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Sanjay R Srivatsan
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Devon Duron Ehnes
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Ali Etemadi
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seong J An
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andrew Favor
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Zhe Li
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Florian Praetorius
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Max Gordon
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Thomas Vincent
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Silvia Marchiano
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Leslie Blakely
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Chuwei Lin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Derrick R Hicks
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Longxing Cao
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Neville Bethel
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Piper Heine
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Analisa Murray
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Stacey Gerben
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Marcos Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Babak Negahdari
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98109, USA
| | - Ying Zheng
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle WA 98109, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Center for Cardiovascular Biology, University of Washington, Seattle WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Department of Medicine/Cardiology, University of Washington, Seattle WA 98195, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Benjamin S Freedman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98109, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
9
|
Ennist NM, Wang S, Kennedy MA, Curti M, Sutherland GA, Vasilev C, Redler RL, Maffeis V, Shareef S, Sica AV, Hua AS, Deshmukh AP, Moyer AP, Hicks DR, Swartz AZ, Cacho RA, Novy N, Bera AK, Kang A, Sankaran B, Johnson MP, Phadkule A, Reppert M, Ekiert D, Bhabha G, Stewart L, Caram JR, Stoddard BL, Romero E, Hunter CN, Baker D. De novo design of proteins housing excitonically coupled chlorophyll special pairs. Nat Chem Biol 2024; 20:906-915. [PMID: 38831036 PMCID: PMC11213709 DOI: 10.1038/s41589-024-01626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.
Collapse
Affiliation(s)
- Nathan M Ennist
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Shunzhi Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Madison A Kennedy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | | | | | - Rachel L Redler
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Valentin Maffeis
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - Saeed Shareef
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anthony V Sica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ash Sueh Hua
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arundhati P Deshmukh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adam P Moyer
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Derrick R Hicks
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Avi Z Swartz
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Ralph A Cacho
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nathan Novy
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Amala Phadkule
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Damian Ekiert
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elisabet Romero
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
de Haas RJ, Brunette N, Goodson A, Dauparas J, Yi SY, Yang EC, Dowling Q, Nguyen H, Kang A, Bera AK, Sankaran B, de Vries R, Baker D, King NP. Rapid and automated design of two-component protein nanomaterials using ProteinMPNN. Proc Natl Acad Sci U S A 2024; 121:e2314646121. [PMID: 38502697 PMCID: PMC10990136 DOI: 10.1073/pnas.2314646121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The design of protein-protein interfaces using physics-based design methods such as Rosetta requires substantial computational resources and manual refinement by expert structural biologists. Deep learning methods promise to simplify protein-protein interface design and enable its application to a wide variety of problems by researchers from various scientific disciplines. Here, we test the ability of a deep learning method for protein sequence design, ProteinMPNN, to design two-component tetrahedral protein nanomaterials and benchmark its performance against Rosetta. ProteinMPNN had a similar success rate to Rosetta, yielding 13 new experimentally confirmed assemblies, but required orders of magnitude less computation and no manual refinement. The interfaces designed by ProteinMPNN were substantially more polar than those designed by Rosetta, which facilitated in vitro assembly of the designed nanomaterials from independently purified components. Crystal structures of several of the assemblies confirmed the accuracy of the design method at high resolution. Our results showcase the potential of deep learning-based methods to unlock the widespread application of designed protein-protein interfaces and self-assembling protein nanomaterials in biotechnology.
Collapse
Affiliation(s)
- Robbert J. de Haas
- Department of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen6078 WE, The Netherlands
| | - Natalie Brunette
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Alex Goodson
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Sue Y. Yi
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Erin C. Yang
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Quinton Dowling
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Hannah Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Asim K. Bera
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Renko de Vries
- Department of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen6078 WE, The Netherlands
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
- HHMI, Seattle, WA98195
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA98195
- Institute for Protein Design, University of Washington, Seattle, WA98195
| |
Collapse
|
11
|
Huddy TF, Hsia Y, Kibler RD, Xu J, Bethel N, Nagarajan D, Redler R, Leung PJY, Weidle C, Courbet A, Yang EC, Bera AK, Coudray N, Calise SJ, Davila-Hernandez FA, Han HL, Carr KD, Li Z, McHugh R, Reggiano G, Kang A, Sankaran B, Dickinson MS, Coventry B, Brunette TJ, Liu Y, Dauparas J, Borst AJ, Ekiert D, Kollman JM, Bhabha G, Baker D. Blueprinting extendable nanomaterials with standardized protein blocks. Nature 2024; 627:898-904. [PMID: 38480887 PMCID: PMC10972742 DOI: 10.1038/s41586-024-07188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/09/2024] [Indexed: 03/26/2024]
Abstract
A wooden house frame consists of many different lumber pieces, but because of the regularity of these building blocks, the structure can be designed using straightforward geometrical principles. The design of multicomponent protein assemblies, in comparison, has been much more complex, largely owing to the irregular shapes of protein structures1. Here we describe extendable linear, curved and angled protein building blocks, as well as inter-block interactions, that conform to specified geometric standards; assemblies designed using these blocks inherit their extendability and regular interaction surfaces, enabling them to be expanded or contracted by varying the number of modules, and reinforced with secondary struts. Using X-ray crystallography and electron microscopy, we validate nanomaterial designs ranging from simple polygonal and circular oligomers that can be concentrically nested, up to large polyhedral nanocages and unbounded straight 'train track' assemblies with reconfigurable sizes and geometries that can be readily blueprinted. Because of the complexity of protein structures and sequence-structure relationships, it has not previously been possible to build up large protein assemblies by deliberate placement of protein backbones onto a blank three-dimensional canvas; the simplicity and geometric regularity of our design platform now enables construction of protein nanomaterials according to 'back of an envelope' architectural blueprints.
Collapse
Affiliation(s)
- Timothy F Huddy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ryan D Kibler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jinwei Xu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Neville Bethel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Rachel Redler
- Department of Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Philip J Y Leung
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Connor Weidle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alexis Courbet
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Erin C Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Nicolas Coudray
- Department of Cell Biology, NYU School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA
- Division of Precision Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - S John Calise
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Fatima A Davila-Hernandez
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannah L Han
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Kenneth D Carr
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Zhe Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Ryan McHugh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Gabriella Reggiano
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Miles S Dickinson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - T J Brunette
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yulai Liu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Damian Ekiert
- Department of Cell Biology, NYU School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Gira Bhabha
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Li Z, Wang S, Nattermann U, Bera AK, Borst AJ, Yaman MY, Bick MJ, Yang EC, Sheffler W, Lee B, Seifert S, Hura GL, Nguyen H, Kang A, Dalal R, Lubner JM, Hsia Y, Haddox H, Courbet A, Dowling Q, Miranda M, Favor A, Etemadi A, Edman NI, Yang W, Weidle C, Sankaran B, Negahdari B, Ross MB, Ginger DS, Baker D. Accurate computational design of three-dimensional protein crystals. NATURE MATERIALS 2023; 22:1556-1563. [PMID: 37845322 DOI: 10.1038/s41563-023-01683-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
Protein crystallization plays a central role in structural biology. Despite this, the process of crystallization remains poorly understood and highly empirical, with crystal contacts, lattice packing arrangements and space group preferences being largely unpredictable. Programming protein crystallization through precisely engineered side-chain-side-chain interactions across protein-protein interfaces is an outstanding challenge. Here we develop a general computational approach for designing three-dimensional protein crystals with prespecified lattice architectures at atomic accuracy that hierarchically constrains the overall number of degrees of freedom of the system. We design three pairs of oligomers that can be individually purified, and upon mixing, spontaneously self-assemble into >100 µm three-dimensional crystals. The structures of these crystals are nearly identical to the computational design models, closely corresponding in both overall architecture and the specific protein-protein interactions. The dimensions of the crystal unit cell can be systematically redesigned while retaining the space group symmetry and overall architecture, and the crystals are extremely porous and highly stable. Our approach enables the computational design of protein crystals with high accuracy, and the designed protein crystals, which have both structural and assembly information encoded in their primary sequences, provide a powerful platform for biological materials engineering.
Collapse
Affiliation(s)
- Zhe Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shunzhi Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Una Nattermann
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure & Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Muammer Y Yaman
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Matthew J Bick
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Erin C Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure & Design, University of Washington, Seattle, WA, USA
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Byeongdu Lee
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Soenke Seifert
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hannah Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Radhika Dalal
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Joshua M Lubner
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hugh Haddox
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alexis Courbet
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- HHMI, University of Washington, Seattle, WA, USA
| | - Quinton Dowling
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Marcos Miranda
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew Favor
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Ali Etemadi
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Natasha I Edman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Connor Weidle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Babak Negahdari
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Michael B Ross
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- HHMI, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Wu C, Sun J, Almuaalemi HYM, Sohan ASMMF, Yin B. Structural Optimization Design of Microfluidic Chips Based on Fast Sequence Pair Algorithm. MICROMACHINES 2023; 14:1577. [PMID: 37630113 PMCID: PMC10456452 DOI: 10.3390/mi14081577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
The market for microfluidic chips is experiencing significant growth; however, their development is hindered by a complex design process and low efficiency. Enhancing microfluidic chips' design quality and efficiency has emerged as an integral approach to foster their advancement. Currently, the existing structural design schemes lack careful consideration regarding the impact of chip area, microchannel length, and the number of intersections on chip design. This inadequacy leads to redundant chip structures resulting from the separation of layout and wiring design. This study proposes a structural optimization method for microfluidic chips to address these issues utilizing a simulated annealing algorithm. The simulated annealing algorithm generates an initial solution in advance using the fast sequence pair algorithm. Subsequently, an improved simulated annealing algorithm is employed to obtain the optimal solution for the device layout. During the wiring stage, an advanced wiring method is used to designate the high wiring area, thereby increasing the success rate of microfluidic chip wiring. Furthermore, the connection between layout and routing is reinforced through an improved layout adjustment method, which reduces the length of microchannels and the number of intersections. Finally, the effectiveness of the structural optimization approach is validated through six sets of test cases, successfully achieving the objective of enhancing the design quality of microfluidic chips.
Collapse
Affiliation(s)
- Chuang Wu
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Y.M.A.)
- Nantong Fuleda Vehicle Accessory Component Co., Ltd., Nantong 226300, China
- Jiangsu Tongshun Power Technology Co., Ltd., Nantong 226300, China
| | - Jiju Sun
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Y.M.A.)
| | | | - A. S. M. Muhtasim Fuad Sohan
- Faculty of Engineering, Department of Mechanical Engineering, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (J.S.); (H.Y.M.A.)
| |
Collapse
|
14
|
de Haas RJ, Brunette N, Goodson A, Dauparas J, Yi SY, Yang EC, Dowling Q, Nguyen H, Kang A, Bera AK, Sankaran B, de Vries R, Baker D, King NP. Rapid and automated design of two-component protein nanomaterials using ProteinMPNN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551935. [PMID: 37577478 PMCID: PMC10418170 DOI: 10.1101/2023.08.04.551935] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The design of novel protein-protein interfaces using physics-based design methods such as Rosetta requires substantial computational resources and manual refinement by expert structural biologists. A new generation of deep learning methods promises to simplify protein-protein interface design and enable its application to a wide variety of problems by researchers from various scientific disciplines. Here we test the ability of a deep learning method for protein sequence design, ProteinMPNN, to design two-component tetrahedral protein nanomaterials and benchmark its performance against Rosetta. ProteinMPNN had a similar success rate to Rosetta, yielding 13 new experimentally confirmed assemblies, but required orders of magnitude less computation and no manual refinement. The interfaces designed by ProteinMPNN were substantially more polar than those designed by Rosetta, which facilitated in vitro assembly of the designed nanomaterials from independently purified components. Crystal structures of several of the assemblies confirmed the accuracy of the design method at high resolution. Our results showcase the potential of deep learning-based methods to unlock the widespread application of designed protein-protein interfaces and self-assembling protein nanomaterials in biotechnology.
Collapse
|
15
|
Huddy TF, Hsia Y, Kibler RD, Xu J, Bethel N, Nagarajan D, Redler R, Leung PJY, Courbet A, Yang EC, Bera AK, Coudray N, Calise SJ, Davila-Hernandez FA, Weidle C, Han HL, Li Z, McHugh R, Reggiano G, Kang A, Sankaran B, Dickinson MS, Coventry B, Brunette TJ, Liu Y, Dauparas J, Borst AJ, Ekiert D, Kollman JM, Bhabha G, Baker D. Blueprinting expandable nanomaterials with standardized protein building blocks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544258. [PMID: 37333359 PMCID: PMC10274926 DOI: 10.1101/2023.06.09.544258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A wooden house frame consists of many different lumber pieces, but because of the regularity of these building blocks, the structure can be designed using straightforward geometrical principles. The design of multicomponent protein assemblies in comparison has been much more complex, largely due to the irregular shapes of protein structures 1 . Here we describe extendable linear, curved, and angled protein building blocks, as well as inter-block interactions that conform to specified geometric standards; assemblies designed using these blocks inherit their extendability and regular interaction surfaces, enabling them to be expanded or contracted by varying the number of modules, and reinforced with secondary struts. Using X-ray crystallography and electron microscopy, we validate nanomaterial designs ranging from simple polygonal and circular oligomers that can be concentrically nested, up to large polyhedral nanocages and unbounded straight "train track" assemblies with reconfigurable sizes and geometries that can be readily blueprinted. Because of the complexity of protein structures and sequence-structure relationships, it has not been previously possible to build up large protein assemblies by deliberate placement of protein backbones onto a blank 3D canvas; the simplicity and geometric regularity of our design platform now enables construction of protein nanomaterials according to "back of an envelope" architectural blueprints.
Collapse
|
16
|
Ennist N, Wang S, Kennedy M, Curti M, Sutherland G, Vasilev C, Redler R, Maffeis V, Shareef S, Sica A, Hua A, Deshmukh A, Moyer A, Hicks D, Swartz A, Cacho R, Novy N, Bera A, Kang A, Sankaran B, Johnson M, Reppert M, Ekiert D, Bhabha G, Stewart L, Caram J, Stoddard B, Romero E, Hunter CN, Baker D. De novo design of energy transfer proteins housing excitonically coupled chlorophyll special pairs. RESEARCH SQUARE 2023:rs.3.rs-2736786. [PMID: 37131790 PMCID: PMC10153362 DOI: 10.21203/rs.3.rs-2736786/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Natural photosystems couple light harvesting to charge separation using a "special pair" of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independent of complexities of native photosynthetic proteins, and as a first step towards synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that precisely position chlorophyll dimers. X-ray crystallography shows that one designed protein binds two chlorophylls in a binding orientation matching native special pairs, while a second positions them in a previously unseen geometry. Spectroscopy reveals excitonic coupling, and fluorescence lifetime imaging demonstrates energy transfer. We designed special pair proteins to assemble into 24-chlorophyll octahedral nanocages; the design model and cryo-EM structure are nearly identical. The design accuracy and energy transfer function of these special pair proteins suggest that de novo design of artificial photosynthetic systems is within reach of current computational methods.
Collapse
Affiliation(s)
| | | | | | - Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ-CERCA)
| | | | | | | | | | - Saeed Shareef
- Institute of Chemical Research of Catalonia (ICIQ-CERCA)
| | | | - Ash Hua
- University of California, Los Angeles
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|