1
|
Quinn BL, Bajic JL, Romo SJ, Wu A, Bortoni A, Breuer K, Swartz SM. Anatomical distribution and flight control function of wing sensory hairs in Seba's short-tailed bat. Anat Rec (Hoboken) 2025. [PMID: 40365796 DOI: 10.1002/ar.25679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025]
Abstract
Bats use sensory systems such as echolocation and vision to track prey, avoid obstacles, and inform their trajectories. In addition, though less studied, bats also have extensive networks of sensory hairs across their wings. Preliminary evidence has shown that these hairs are involved in flow sensing and relay sensory information during flight. However, little is known about the functional role of sensory hairs in flight control or potential intraspecific variation in hair distribution. Through a morphological study of specimens of Seba's short-tailed bat (Carollia perspicillata), we find relatively low intraspecific variability in sensory hair distribution and consistent regional density patterns. We compare flight kinematics from the same species in wind tunnel experiments before and after removal of sensory hairs from the ventral wings. Depilation of sensory hairs resulted in changes to kinematic variables at the whole- and within-wingbeat levels, such as wingbeat frequency, chordwise wing folding, and wing extension. Taken together, these findings indicate that sensory hairs relay sensory information and function to alter fine-scale wing shape and positioning, thereby impacting flight kinematics and dynamics.
Collapse
Affiliation(s)
- Brooke L Quinn
- Brown University Department of Ecology, Evolution, and Organismal Biology, Providence, Rhode Island, USA
| | - Jade L Bajic
- Brown University Department of Ecology, Evolution, and Organismal Biology, Providence, Rhode Island, USA
| | - Santiago J Romo
- Brown University, Center for Fluid Mechanics, School of Engineering, Providence, Rhode Island, USA
| | - Ariel Wu
- Department of Physics, Brown University, Providence, Rhode Island, USA
| | - Alberto Bortoni
- Brown University Department of Ecology, Evolution, and Organismal Biology, Providence, Rhode Island, USA
| | - Kenneth Breuer
- Brown University Department of Ecology, Evolution, and Organismal Biology, Providence, Rhode Island, USA
- Brown University, Center for Fluid Mechanics, School of Engineering, Providence, Rhode Island, USA
| | - Sharon M Swartz
- Brown University Department of Ecology, Evolution, and Organismal Biology, Providence, Rhode Island, USA
- Brown University, Center for Fluid Mechanics, School of Engineering, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Zhang J, Wu K, Dong J, Feng J, Yu L. Modeling the interplay between regional heterogeneity and critical dynamics underlying brain functional networks. Neural Netw 2025; 184:107100. [PMID: 39740389 DOI: 10.1016/j.neunet.2024.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/03/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
The human brain exhibits heterogeneity across regions and network connectivity patterns; However, how these heterogeneities contribute to whole-brain network functions and cognitive capacities remains unclear. In this study, we focus on the regional heterogeneity reflected in local dynamics and study how it contributes to the emergence of functional connectivity patterns, network ignition dynamics of the empirical brains. We find that the level of synchrony among voxelwise neural activities measured from the fMRI data is significantly correlated with the transcriptional variations in excitatory and inhibitory receptor gene expression. Consequently, we construct heterogeneous whole-brain network models with nodal excitability calibrated by the synchronization measure of regional dynamics. We demonstrate that as the extent of heterogeneity increases, the models operating around the critical point between order and disorder generate simulated functional connectivity networks increasingly similar to empirical resting-state or working memory task-evoked function connectivity networks. Furthermore, the heterogeneous models can predict individual differences in resting-state and task-evoked reconfiguration of the functional connectivity, as well as the comparative causal effect of empirical brain networks-that is, how the dynamics of one brain region affect whole-brain synchronization. Overall, this work demonstrates the viability of using regional heterogeneous functional signals to improve the performance of the whole-brain models, and illustrates how regional heterogeneity in human brains interplays with structural connections and critical dynamics to contribute to the emergence of functional connectivity networks.
Collapse
Affiliation(s)
- Jijin Zhang
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kejian Wu
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jiaqi Dong
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200433, China; Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK; School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Lianchun Yu
- School of Physical Science and Technology, Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
3
|
Haggard M, Chacron MJ. Nonresponsive Neurons Improve Population Coding of Object Location. J Neurosci 2025; 45:e1068242024. [PMID: 39542727 PMCID: PMC11735655 DOI: 10.1523/jneurosci.1068-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/24/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding how heterogeneous neural populations represent sensory input to give rise to behavior remains a central problem in systems neuroscience. Here we investigated how midbrain neurons within the electrosensory system of Apteronotus leptorhynchus code for object location in space. In vivo simultaneous recordings were achieved via Neuropixels probes, high-density electrode arrays, with the stimulus positioned at different locations relative to the animal. Midbrain neurons exhibited heterogeneous response profiles, with a significant proportion (65%) seemingly nonresponsive to moving stimuli. Remarkably, we found that nonresponsive neurons increased population coding of object location through synergistic interactions with responsive neurons by effectively reducing noise. Mathematical modeling demonstrated that increased response heterogeneity together with the experimentally observed correlations was sufficient to give rise to independent encoding by responsive neurons. Furthermore, the addition of nonresponsive neurons in the model gave rise to synergistic population coding. Taken together, our findings reveal that nonresponsive neurons, which are frequently excluded from analysis, can significantly improve population coding of object location through synergistic interactions with responsive neurons. Combinations of responsive and nonresponsive neurons have been observed in sensory systems across taxa; it is likely that similar synergistic interactions improve population coding across modalities and behavioral tasks.
Collapse
Affiliation(s)
- Myriah Haggard
- Quantitative Life Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
4
|
Zeldenrust F, Calcini N, Yan X, Bijlsma A, Celikel T. The tuning of tuning: How adaptation influences single cell information transfer. PLoS Comput Biol 2024; 20:e1012043. [PMID: 38739640 PMCID: PMC11115315 DOI: 10.1371/journal.pcbi.1012043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/23/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Sensory neurons reconstruct the world from action potentials (spikes) impinging on them. To effectively transfer information about the stimulus to the next processing level, a neuron needs to be able to adapt its working range to the properties of the stimulus. Here, we focus on the intrinsic neural properties that influence information transfer in cortical neurons and how tightly their properties need to be tuned to the stimulus statistics for them to be effective. We start by measuring the intrinsic information encoding properties of putative excitatory and inhibitory neurons in L2/3 of the mouse barrel cortex. Excitatory neurons show high thresholds and strong adaptation, making them fire sparsely and resulting in a strong compression of information, whereas inhibitory neurons that favour fast spiking transfer more information. Next, we turn to computational modelling and ask how two properties influence information transfer: 1) spike-frequency adaptation and 2) the shape of the IV-curve. We find that a subthreshold (but not threshold) adaptation, the 'h-current', and a properly tuned leak conductance can increase the information transfer of a neuron, whereas threshold adaptation can increase its working range. Finally, we verify the effect of the IV-curve slope in our experimental recordings and show that excitatory neurons form a more heterogeneous population than inhibitory neurons. These relationships between intrinsic neural features and neural coding that had not been quantified before will aid computational, theoretical and systems neuroscientists in understanding how neuronal populations can alter their coding properties, such as through the impact of neuromodulators. Why the variability of intrinsic properties of excitatory neurons is larger than that of inhibitory ones is an exciting question, for which future research is needed.
Collapse
Affiliation(s)
- Fleur Zeldenrust
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen - the Netherlands
| | - Niccolò Calcini
- Maastricht Centre for Systems Biology (MaCSBio), University of Maastricht, Maastricht, The Netherlands
| | - Xuan Yan
- Institute of Neuroscience, Chinese Academy of Sciences, Beijing, China
| | - Ate Bijlsma
- Department of Population Health Sciences / Department of Biology, Universiteit Utrecht, the Netherlands
| | - Tansu Celikel
- School of Psychology, Georgia Institute of Technology, Atlanta - GA, United States of America
| |
Collapse
|
5
|
Vazquez-Guerrero P, Tuladhar R, Psychalinos C, Elwakil A, Chacron MJ, Santamaria F. Fractional order memcapacitive neuromorphic elements reproduce and predict neuronal function. Sci Rep 2024; 14:5817. [PMID: 38461365 PMCID: PMC10925066 DOI: 10.1038/s41598-024-55784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 03/11/2024] Open
Abstract
There is an increasing need to implement neuromorphic systems that are both energetically and computationally efficient. There is also great interest in using electric elements with memory, memelements, that can implement complex neuronal functions intrinsically. A feature not widely incorporated in neuromorphic systems is history-dependent action potential time adaptation which is widely seen in real cells. Previous theoretical work shows that power-law history dependent spike time adaptation, seen in several brain areas and species, can be modeled with fractional order differential equations. Here, we show that fractional order spiking neurons can be implemented using super-capacitors. The super-capacitors have fractional order derivative and memcapacitive properties. We implemented two circuits, a leaky integrate and fire and a Hodgkin-Huxley. Both circuits show power-law spiking time adaptation and optimal coding properties. The spiking dynamics reproduced previously published computer simulations. However, the fractional order Hodgkin-Huxley circuit showed novel dynamics consistent with criticality. We compared the responses of this circuit to recordings from neurons in the weakly-electric fish that have previously been shown to perform fractional order differentiation of their sensory input. The criticality seen in the circuit was confirmed in spontaneous recordings in the live fish. Furthermore, the circuit also predicted long-lasting stimulation that was also corroborated experimentally. Our work shows that fractional order memcapacitors provide intrinsic memory dependence that could allow implementation of computationally efficient neuromorphic devices. Memcapacitors are static elements that consume less energy than the most widely studied memristors, thus allowing the realization of energetically efficient neuromorphic devices.
Collapse
Affiliation(s)
- Patricia Vazquez-Guerrero
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78349, USA
| | - Rohisha Tuladhar
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78349, USA
| | | | - Ahmed Elwakil
- Department of Electrical and Computer Engineering, University of Sharjah, PO Box 27272, Sharjah, UAE
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Maurice J Chacron
- Department of Physiology, McGill University, Quebec, H3G 1Y6, Canada
| | - Fidel Santamaria
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, 78349, USA.
| |
Collapse
|
6
|
Beetz MJ. A perspective on neuroethology: what the past teaches us about the future of neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:325-346. [PMID: 38411712 PMCID: PMC10995053 DOI: 10.1007/s00359-024-01695-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. The celebration of the journal's centennial is a great time point to appreciate the recent progress in neuroethology and to discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neuroscience makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010-2022) and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the diversity of neuroethology and gives us a perspective on the field's scientific future. At the end, I highlight three research topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists to follow neuroethological approaches.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
7
|
Hladnik TC, Grewe J. Receptive field sizes and neuronal encoding bandwidth are constrained by axonal conduction delays. PLoS Comput Biol 2023; 19:e1010871. [PMID: 37566629 PMCID: PMC10446211 DOI: 10.1371/journal.pcbi.1010871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/23/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Studies on population coding implicitly assume that spikes from the presynaptic cells arrive simultaneously at the integrating neuron. In natural neuronal populations, this is usually not the case-neuronal signaling takes time and populations cover a certain space. The spread of spike arrival times depends on population size, cell density and axonal conduction velocity. Here we analyze the consequences of population size and axonal conduction delays on the stimulus encoding performance in the electrosensory system of the electric fish Apteronotus leptorhynchus. We experimentally locate p-type electroreceptor afferents along the rostro-caudal body axis and relate locations to neurophysiological response properties. In an information-theoretical approach we analyze the coding performance in homogeneous and heterogeneous populations. As expected, the amount of information increases with population size and, on average, heterogeneous populations encode better than the average same-size homogeneous population, if conduction delays are compensated for. The spread of neuronal conduction delays within a receptive field strongly degrades encoding of high-frequency stimulus components. Receptive field sizes typically found in the electrosensory lateral line lobe of A. leptorhynchus appear to be a good compromise between the spread of conduction delays and encoding performance. The limitations imposed by finite axonal conduction velocity are relevant for any converging network as is shown by model populations of LIF neurons. The bandwidth of natural stimuli and the maximum meaningful population sizes are constrained by conduction delays and may thus impact the optimal design of nervous systems.
Collapse
Affiliation(s)
- Tim C. Hladnik
- Institute for Neurobiology, Eberhardt Karls Universität Tübingen, Tübingen, Germany
- Systems Neurobiology, Werner Reichard Center for Integrative Neurobiology, Universität Tübingen, Tübingen, Germany
| | - Jan Grewe
- Institute for Neurobiology, Eberhardt Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Metzen MG, Chacron MJ. Descending pathways increase sensory neural response heterogeneity to facilitate decoding and behavior. iScience 2023; 26:107139. [PMID: 37416462 PMCID: PMC10320509 DOI: 10.1016/j.isci.2023.107139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
The functional role of heterogeneous spiking responses of otherwise similarly tuned neurons to stimulation, which has been observed ubiquitously, remains unclear to date. Here, we demonstrate that such response heterogeneity serves a beneficial function that is used by downstream brain areas to generate behavioral responses that follows the detailed timecourse of the stimulus. Multi-unit recordings from sensory pyramidal cells within the electrosensory system of Apteronotus leptorhynchus were performed and revealed highly heterogeneous responses that were similar for all cell types. By comparing the coding properties of a given neural population before and after inactivation of descending pathways, we found that heterogeneities were beneficial as decoding was then more robust to the addition of noise. Taken together, our results not only reveal that descending pathways actively promote response heterogeneity within a given cell type, but also uncover a beneficial function for such heterogeneity that is used by the brain to generate behavior.
Collapse
Affiliation(s)
- Michael G. Metzen
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Maurice J. Chacron
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
9
|
Marquez MM, Chacron MJ. Serotonin increases population coding of behaviorally relevant stimuli by enhancing responses of ON but not OFF-type sensory neurons. Heliyon 2023; 9:e18315. [PMID: 37539191 PMCID: PMC10395545 DOI: 10.1016/j.heliyon.2023.e18315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
How neural populations encode sensory input to generate behavioral responses remains a central problem in systems neuroscience. Here we investigated how neuromodulation influences population coding of behaviorally relevant stimuli to give rise to behavior in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. We performed multi-unit recordings from ON and OFF sensory pyramidal cells in response to stimuli whose amplitude (i.e., envelope) varied in time, before and after electrical stimulation of the raphe nuclei. Overall, raphe stimulation increased population coding by ON- but not by OFF-type cells, despite both cell types showing similar sensitivities to the stimulus at the single neuron level. Surprisingly, only changes in population coding by ON-type cells were correlated with changes in behavioral responses. Taken together, our results show that neuromodulation differentially affects ON vs. OFF-type cells in order to enhance perception of behaviorally relevant sensory input.
Collapse
|