1
|
Shi X, Tian Y, Wang Y, Zhang Y, Yin Y, Tian Q, Li L, Ma B, He X, Zhou L. Mitofusin 1 Drives Preimplantation Development by Enhancing Chromatin Incorporation of Histone H3.3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414985. [PMID: 40091361 PMCID: PMC12079336 DOI: 10.1002/advs.202414985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Mitofusin 1 (MFN1) plays a crucial role in mitochondrial fusion and oocyte development. However, its function in preimplantation embryonic development and its potential involvement in epigenetic regulation remain poorly understood. In this study, it is shown that MFN1 interacts with PADI6, a key component of the cytoplasmic lattice in oocytes and early embryos. MFN1 deficiency in mice results in reduced PADI6 levels and decreased expression of translational machinery components, which suppress protein synthesis activity and lower histone H3.3 abundance. These disruptions lead to the failure of male pronucleus formation, aberrant zygotic genome activation, and impaired embryonic development. It is further demonstrated that the MFN1 activator S89 promotes H3.3 incorporation and rescues early development in maternally aged embryos with low MFN1 levels. Additionally, a positive correlation between MFN1 and H3.3 protein levels in early human embryos is observed. Together, these findings provide new insights into MFN1's role in regulating epigenetic reprogramming during preimplantation embryo development.
Collapse
Affiliation(s)
- Xiao‐yan Shi
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yu Tian
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yu‐fan Wang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Yi‐ran Zhang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Ying Yin
- Department of PhysiologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Qing Tian
- Department of Gynecology and ObstetricsZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101P. R. China
| | - Bing‐xin Ma
- Reproductive Medicine CenterTongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030P. R. China
| | - Ximiao He
- Department of PhysiologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Li‐quan Zhou
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| |
Collapse
|
2
|
Zhang G, Miao Y, Song Y, Wang L, Li Y, Zhu Y, Zhang W, Sun Q, Chen D. HIRA and dPCIF1 coordinately establish totipotent chromatin and control orderly ZGA in Drosophila embryos. Proc Natl Acad Sci U S A 2024; 121:e2410261121. [PMID: 39541353 PMCID: PMC11588057 DOI: 10.1073/pnas.2410261121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Early embryos undergo profound changes in their genomic architecture to establish the totipotent state, enabling pioneer factors to access chromatin and drive zygotic genome activation (ZGA). However, the mechanisms by which the totipotent state is established and properly interpreted by pioneer factors to allow orderly ZGA remain unknown. Here, we identify the H3.3-specific chaperone HIRA as a factor involving establishing totipotent-state chromatin in Drosophila early embryos. Through cophase separation with HIRA, the pioneer factor GAGA factor (GAF) efficiently binds to H3.3-marked nucleosomes to activate major-wave zygotic genes. Importantly, dPCIF1, a chromatin-associated protein, antagonized the GAF-HIRA interaction by competitively binding to HIRA, thereby restricting GAF on earlier chromatin and avoiding premature ZGA. Hence, the coordinated action of HIRA and dPCIF1 ensures sequential ZGA from the minor to major wave in early embryos. This study provides insights into understanding how a totipotent state is established and properly controlled during ZGA.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Institute of Biomedical Research, Yunnan University, Kunming650500, China
| | - Yaqi Miao
- Institute of Biomedical Research, Yunnan University, Kunming650500, China
| | - Yuan Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Liangliang Wang
- Institute of Biomedical Research, Yunnan University, Kunming650500, China
| | - Yawei Li
- Institute of Biomedical Research, Yunnan University, Kunming650500, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, Kunming650500, China
| | - Wenxin Zhang
- Institute of Biomedical Research, Yunnan University, Kunming650500, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing100101, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming650500, China
- Southwest United Graduate School, Kunming650500, China
| |
Collapse
|
3
|
Ciabrelli F, Atinbayeva N, Pane A, Iovino N. Epigenetic inheritance and gene expression regulation in early Drosophila embryos. EMBO Rep 2024; 25:4131-4152. [PMID: 39285248 PMCID: PMC11467379 DOI: 10.1038/s44319-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences/UFRJ, 21941902, Rio de Janeiro, Brazil
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
4
|
Melnikova L, Golovnin A. Multiple Roles of dXNP and dADD1- Drosophila Orthologs of ATRX Chromatin Remodeler. Int J Mol Sci 2023; 24:16486. [PMID: 38003676 PMCID: PMC10671109 DOI: 10.3390/ijms242216486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The Drosophila melanogaster dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the Drosophila genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes. Disruption of ATRX expression in humans leads to the development of α-thalassemia and cancer, especially glioma. However, the mechanisms that allow ATRX to regulate various cellular processes are poorly understood. Studying the functioning of dADD1/dXNP in the Drosophila model may contribute to understanding the mechanisms underlying the multifunctional action of ATRX and its connection with various cellular processes. This review provides a brief overview of the currently available information in mammals and Drosophila regarding the roles of ATRX, dXNP, and dADD1. It discusses possible mechanisms of action of complexes involving these proteins.
Collapse
Affiliation(s)
- Larisa Melnikova
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Anton Golovnin
- Department of Drosophila Molecular Genetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| |
Collapse
|
5
|
Lee H, Seo P, Teklay S, Yuguchi E, Benetta ED, Werren JH, Ferree PM. Ability of a selfish B chromosome to evade genome elimination in the jewel wasp, Nasonia vitripennis. Heredity (Edinb) 2023; 131:230-237. [PMID: 37524915 PMCID: PMC10462710 DOI: 10.1038/s41437-023-00639-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 08/02/2023] Open
Abstract
B chromosomes are non-essential, extra chromosomes that can exhibit transmission-enhancing behaviors, including meiotic drive, mitotic drive, and induction of genome elimination, in plants and animals. A fundamental but poorly understood question is what characteristics allow B chromosomes to exhibit these extraordinary behaviors. The jewel wasp, Nasonia vitripennis, harbors a heterochromatic, paternally transmitted B chromosome known as paternal sex ratio (PSR), which causes complete elimination of the sperm-contributed half of the genome during the first mitotic division of fertilized embryos. This genome elimination event may result from specific, previously observed alterations of the paternal chromatin. Due to the haplo-diploid reproduction of the wasp, genome elimination by PSR causes female-destined embryos to develop as haploid males that transmit PSR. PSR does not undergo self-elimination despite its presence with the paternal chromatin until the elimination event. Here we performed fluorescence microscopic analyses aimed at understanding this unexplained property. Our results show that PSR, like the rest of the genome, participates in the histone-to-protamine transition, arguing that PSR does not avoid this transition to escape self-elimination. In addition, PSR partially escapes the chromatin-altering activity of the intracellular bacterium, Wolbachia, demonstrating that this ability to evade chromatin alteration is not limited to PSR's own activity. Finally, we observed that the rDNA locus and other unidentified heterochromatic regions of the wasp's genome also seem to evade chromatin disruption by PSR, suggesting that PSR's genome-eliminating activity does not affect heterochromatin. Thus, PSR may target an aspect of euchromatin to cause genome elimination.
Collapse
Affiliation(s)
- Haena Lee
- W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA, 91711, USA
| | - Pooreum Seo
- W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA, 91711, USA
| | - Salina Teklay
- W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA, 91711, USA
| | - Emily Yuguchi
- W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA, 91711, USA
| | - Elena Dalla Benetta
- W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA, 91711, USA
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Patrick M Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, CA, 91711, USA.
| |
Collapse
|
6
|
Mohylyak I, Bengochea M, Pascual-Caro C, Asfogo N, Fonseca-Topp S, Danda N, Atak ZK, De Waegeneer M, Plaçais PY, Preat T, Aerts S, Corti O, de Juan-Sanz J, Hassan BA. Developmental transcriptional control of mitochondrial homeostasis is required for activity-dependent synaptic connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.544500. [PMID: 37333418 PMCID: PMC10274921 DOI: 10.1101/2023.06.11.544500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
During neuronal circuit formation, local control of axonal organelles ensures proper synaptic connectivity. Whether this process is genetically encoded is unclear and if so, its developmental regulatory mechanisms remain to be identified. We hypothesized that developmental transcription factors regulate critical parameters of organelle homeostasis that contribute to circuit wiring. We combined cell type-specific transcriptomics with a genetic screen to discover such factors. We identified Telomeric Zinc finger-Associated Protein (TZAP) as a temporal developmental regulator of neuronal mitochondrial homeostasis genes, including Pink1 . In Drosophila , loss of dTzap function during visual circuit development leads to loss of activity-dependent synaptic connectivity, that can be rescued by Pink1 expression. At the cellular level, loss of dTzap/TZAP leads to defects in mitochondrial morphology, attenuated calcium uptake and reduced synaptic vesicle release in fly and mammalian neurons. Our findings highlight developmental transcriptional regulation of mitochondrial homeostasis as a key factor in activity-dependent synaptic connectivity.
Collapse
|
7
|
Voon HPJ, Wong LH. Chromatin mutations in pediatric high grade gliomas. Front Oncol 2023; 12:1104129. [PMID: 36686810 PMCID: PMC9853562 DOI: 10.3389/fonc.2022.1104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Pediatric high grade gliomas (HGG) are lethal tumors which are currently untreatable. A number of recent studies have provided much needed insights into the mutations and mechanisms which drive oncogenesis in pediatric HGGs. It is now clear that mutations in chromatin proteins, particularly H3.3 and its associated chaperone complex (ATRX), are a hallmark feature of pediatric HGGs. We review the current literature on the normal roles of the ATRX/H3.3 complex and how these functions are disrupted by oncogenic mutations. We discuss the current clinical trials and pre-clinical models that target chromatin and DNA, and how these agents fit into the ATRX/H3.3 mutation model. As chromatin mutations are a relatively new discovery in pediatric HGGs, developing clear mechanistic insights are a key step to improving therapies for these tumors.
Collapse
|
8
|
Ayala-Guerrero L, Claudio-Galeana S, Furlan-Magaril M, Castro-Obregón S. Chromatin Structure from Development to Ageing. Subcell Biochem 2023; 102:7-51. [PMID: 36600128 DOI: 10.1007/978-3-031-21410-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nuclear structure influences genome architecture, which contributes to determine patterns of gene expression. Global changes in chromatin dynamics are essential during development and differentiation, and are one of the hallmarks of ageing. This chapter describes the molecular dynamics of chromatin structure that occur during development and ageing. In the first part, we introduce general information about the nuclear lamina, the chromatin structure, and the 3D organization of the genome. Next, we detail the molecular hallmarks found during development and ageing, including the role of DNA and histone modifications, 3D genome dynamics, and changes in the nuclear lamina. Within the chapter we discuss the implications that genome structure has on the mechanisms that drive development and ageing, and the physiological consequences when these mechanisms fail.
Collapse
Affiliation(s)
- Lorelei Ayala-Guerrero
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Sherlyn Claudio-Galeana
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Mayra Furlan-Magaril
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| |
Collapse
|
9
|
Kaur R, Leigh BA, Ritchie IT, Bordenstein SR. The Cif proteins from Wolbachia prophage WO modify sperm genome integrity to establish cytoplasmic incompatibility. PLoS Biol 2022; 20:e3001584. [PMID: 35609042 PMCID: PMC9128985 DOI: 10.1371/journal.pbio.3001584] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/25/2022] [Indexed: 01/27/2023] Open
Abstract
Inherited microorganisms can selfishly manipulate host reproduction to drive through populations. In Drosophila melanogaster, germline expression of the native Wolbachia prophage WO proteins CifA and CifB cause cytoplasmic incompatibility (CI) in which embryos from infected males and uninfected females suffer catastrophic mitotic defects and lethality; however, in infected females, CifA expression rescues the embryonic lethality and thus imparts a fitness advantage to the maternally transmitted Wolbachia. Despite widespread relevance to sex determination, evolution, and vector control, the mechanisms underlying when and how CI impairs male reproduction remain unknown and a topic of debate. Here, we use cytochemical, microscopic, and transgenic assays in D. melanogaster to demonstrate that CifA and CifB proteins of wMel localize to nuclear DNA throughout the process of spermatogenesis. Cif proteins cause abnormal histone retention in elongating spermatids and protamine deficiency in mature sperms that travel to the female reproductive tract with Cif proteins. Notably, protamine gene knockouts enhance wild-type CI. In ovaries, CifA localizes to germ cell nuclei and cytoplasm of early-stage egg chambers; however, Cifs are absent in late-stage oocytes and subsequently in fertilized embryos. Finally, CI and rescue are contingent upon a newly annotated CifA bipartite nuclear localization sequence. Together, our results strongly support the Host modification model of CI in which Cifs initially modify the paternal and maternal gametes to bestow CI-defining embryonic lethality and rescue.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brittany A. Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Isabella T. Ritchie
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
10
|
Rajam SM, Varghese PC, Dutta D. Histone Chaperones as Cardinal Players in Development. Front Cell Dev Biol 2022; 10:767773. [PMID: 35445016 PMCID: PMC9014011 DOI: 10.3389/fcell.2022.767773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Dynamicity and flexibility of the chromatin landscape are critical for most of the DNA-dependent processes to occur. This higher-order packaging of the eukaryotic genome into the chromatin is mediated by histones and associated non-histone proteins that determine the states of chromatin. Histone chaperones- “the guardian of genome stability and epigenetic information” controls the chromatin accessibility by escorting the nucleosomal and non-nucleosomal histones as well as their variants. This distinct group of molecules is involved in all facets of histone metabolism. The selectivity and specificity of histone chaperones to the histones determine the maintenance of the chromatin in an open or closed state. This review highlights the functional implication of the network of histone chaperones in shaping the chromatin function in the development of an organism. Seminal studies have reported embryonic lethality at different stages of embryogenesis upon perturbation of some of the chaperones, suggesting their essentiality in development. We hereby epitomize facts and functions that emphasize the relevance of histone chaperones in orchestrating different embryonic developmental stages starting from gametogenesis to organogenesis in multicellular organisms.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pallavi Chinnu Varghese
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
11
|
Udugama M, Vinod B, Chan FL, Hii L, Garvie A, Collas P, Kalitsis P, Steer D, Das P, Tripathi P, Mann J, Voon HPJ, Wong L. Histone H3.3 phosphorylation promotes heterochromatin formation by inhibiting H3K9/K36 histone demethylase. Nucleic Acids Res 2022; 50:4500-4514. [PMID: 35451487 PMCID: PMC9071403 DOI: 10.1093/nar/gkac259] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 12/24/2022] Open
Abstract
Histone H3.3 is an H3 variant which differs from the canonical H3.1/2 at four residues, including a serine residue at position 31 which is evolutionarily conserved. The H3.3 S31 residue is phosphorylated (H3.3 S31Ph) at heterochromatin regions including telomeres and pericentric repeats. However, the role of H3.3 S31Ph in these regions remains unknown. In this study, we find that H3.3 S31Ph regulates heterochromatin accessibility at telomeres during replication through regulation of H3K9/K36 histone demethylase KDM4B. In mouse embryonic stem (ES) cells, substitution of S31 with an alanine residue (H3.3 A31 -phosphorylation null mutant) results in increased KDM4B activity that removes H3K9me3 from telomeres. In contrast, substitution with a glutamic acid (H3.3 E31, mimics S31 phosphorylation) inhibits KDM4B, leading to increased H3K9me3 and DNA damage at telomeres. H3.3 E31 expression also increases damage at other heterochromatin regions including the pericentric heterochromatin and Y chromosome-specific satellite DNA repeats. We propose that H3.3 S31Ph regulation of KDM4B is required to control heterochromatin accessibility of repetitive DNA and preserve chromatin integrity.
Collapse
Affiliation(s)
| | | | - F Lyn Chan
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Linda Hii
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew Garvie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway,Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Paul Kalitsis
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - David Steer
- Biomedical Proteomics Facility, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Partha P Das
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pratibha Tripathi
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jeffrey R Mann
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Hsiao P J Voon
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lee H Wong
- To whom correspondence should be addressed.
| |
Collapse
|
12
|
Histone variant H2A.Z regulates zygotic genome activation. Nat Commun 2021; 12:7002. [PMID: 34853314 PMCID: PMC8636486 DOI: 10.1038/s41467-021-27125-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
During embryogenesis, the genome shifts from transcriptionally quiescent to extensively active in a process known as Zygotic Genome Activation (ZGA). In Drosophila, the pioneer factor Zelda is known to be essential for the progression of development; still, it regulates the activation of only a small subset of genes at ZGA. However, thousands of genes do not require Zelda, suggesting that other mechanisms exist. By conducting GRO-seq, HiC and ChIP-seq in Drosophila embryos, we demonstrate that up to 65% of zygotically activated genes are enriched for the histone variant H2A.Z. H2A.Z enrichment precedes ZGA and RNA Polymerase II loading onto chromatin. In vivo knockdown of maternally contributed Domino, a histone chaperone and ATPase, reduces H2A.Z deposition at transcription start sites, causes global downregulation of housekeeping genes at ZGA, and compromises the establishment of the 3D chromatin structure. We infer that H2A.Z is essential for the de novo establishment of transcriptional programs during ZGA via chromatin reorganization. During embryogenesis, the genome becomes transcriptionally active in a process known as zygotic genome activation (ZGA); how ZGA is initiated is still an open question. Here the authors show histone variant H2A.Z deposition precedes RNA polymerase II binding on chromatin, before ZGA. H2A.Z loss causes transcriptional downregulation of ZGA genes and leads to changes in the 3D genome organization.
Collapse
|
13
|
Vigneau J, Borg M. The epigenetic origin of life history transitions in plants and algae. PLANT REPRODUCTION 2021; 34:267-285. [PMID: 34236522 PMCID: PMC8566409 DOI: 10.1007/s00497-021-00422-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 05/17/2023]
Abstract
Plants and algae have a complex life history that transitions between distinct life forms called the sporophyte and the gametophyte. This phenomenon-called the alternation of generations-has fascinated botanists and phycologists for over 170 years. Despite the mesmerizing array of life histories described in plants and algae, we are only now beginning to learn about the molecular mechanisms controlling them and how they evolved. Epigenetic silencing plays an essential role in regulating gene expression during multicellular development in eukaryotes, raising questions about its impact on the life history strategy of plants and algae. Here, we trace the origin and function of epigenetic mechanisms across the plant kingdom, from unicellular green algae through to angiosperms, and attempt to reconstruct the evolutionary steps that influenced life history transitions during plant evolution. Central to this evolutionary scenario is the adaption of epigenetic silencing from a mechanism of genome defense to the repression and control of alternating generations. We extend our discussion beyond the green lineage and highlight the peculiar case of the brown algae. Unlike their unicellular diatom relatives, brown algae lack epigenetic silencing pathways common to animals and plants yet display complex life histories, hinting at the emergence of novel life history controls during stramenopile evolution.
Collapse
Affiliation(s)
- Jérômine Vigneau
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
14
|
Schoberleitner I, Bauer I, Huang A, Andreyeva EN, Sebald J, Pascher K, Rieder D, Brunner M, Podhraski V, Oemer G, Cázarez-García D, Rieder L, Keller MA, Winkler R, Fyodorov DV, Lusser A. CHD1 controls H3.3 incorporation in adult brain chromatin to maintain metabolic homeostasis and normal lifespan. Cell Rep 2021; 37:109769. [PMID: 34610319 PMCID: PMC8607513 DOI: 10.1016/j.celrep.2021.109769] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 01/31/2023] Open
Abstract
The ATP-dependent chromatin remodeling factor CHD1 is essential for the assembly of variant histone H3.3 into paternal chromatin during sperm chromatin remodeling in fertilized eggs. It remains unclear, however, if CHD1 has a similar role in normal diploid cells. Using a specifically tailored quantitative mass spectrometry approach, we show that Chd1 disruption results in reduced H3.3 levels in heads of Chd1 mutant flies. Chd1 deletion perturbs brain chromatin structure in a similar way as H3.3 deletion and leads to global de-repression of transcription. The physiological consequences are reduced food intake, metabolic alterations, and shortened lifespan. Notably, brain-specific CHD1 expression rescues these phenotypes. We further demonstrate a strong genetic interaction between Chd1 and H3.3 chaperone Hira. Thus, our findings establish CHD1 as a factor required for the assembly of H3.3-containing chromatin in adult cells and suggest a crucial role for CHD1 in the brain as a regulator of organismal health and longevity.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Anming Huang
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Evgeniya N Andreyeva
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Johanna Sebald
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Katharina Pascher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Dietmar Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Melanie Brunner
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Valerie Podhraski
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Daniel Cázarez-García
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato 36824, Mexico
| | - Leila Rieder
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato 36824, Mexico
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
15
|
Kursel LE, McConnell H, de la Cruz AFA, Malik HS. Gametic specialization of centromeric histone paralogs in Drosophila virilis. Life Sci Alliance 2021; 4:e202000992. [PMID: 33986021 PMCID: PMC8200288 DOI: 10.26508/lsa.202000992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
In most eukaryotes, centromeric histone (CenH3) proteins mediate mitosis and meiosis and ensure epigenetic inheritance of centromere identity. We hypothesized that disparate chromatin environments in soma versus germline might impose divergent functional requirements on single CenH3 genes, which could be ameliorated by gene duplications and subsequent specialization. Here, we analyzed the cytological localization of two recently identified CenH3 paralogs, Cid1 and Cid5, in Drosophila virilis using specific antibodies and epitope-tagged transgenic strains. We find that only ancestral Cid1 is present in somatic cells, whereas both Cid1 and Cid5 are expressed in testes and ovaries. However, Cid1 is lost in male meiosis but retained throughout oogenesis, whereas Cid5 is lost during female meiosis but retained in mature sperm. Following fertilization, only Cid1 is detectable in the early embryo, suggesting that maternally deposited Cid1 is rapidly loaded onto paternal centromeres during the protamine-to-histone transition. Our studies reveal mutually exclusive gametic specialization of divergent CenH3 paralogs. Duplication and divergence might allow essential centromeric genes to resolve an intralocus conflict between maternal and paternal centromeric requirements in many animal species.
Collapse
Affiliation(s)
- Lisa E Kursel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hannah McConnell
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Aida Flor A de la Cruz
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
16
|
Herbette M, Wei X, Chang CH, Larracuente AM, Loppin B, Dubruille R. Distinct spermiogenic phenotypes underlie sperm elimination in the Segregation Distorter meiotic drive system. PLoS Genet 2021; 17:e1009662. [PMID: 34228705 PMCID: PMC8284685 DOI: 10.1371/journal.pgen.1009662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Segregation Distorter (SD) is a male meiotic drive system in Drosophila melanogaster. Males heterozygous for a selfish SD chromosome rarely transmit the homologous SD+ chromosome. It is well established that distortion results from an interaction between Sd, the primary distorting locus on the SD chromosome and its target, a satellite DNA called Rsp, on the SD+ chromosome. However, the molecular and cellular mechanisms leading to post-meiotic SD+ sperm elimination remain unclear. Here we show that SD/SD+ males of different genotypes but with similarly strong degrees of distortion have distinct spermiogenic phenotypes. In some genotypes, SD+ spermatids fail to fully incorporate protamines after the removal of histones, and degenerate during the individualization stage of spermiogenesis. In contrast, in other SD/SD+ genotypes, protamine incorporation appears less disturbed, yet spermatid nuclei are abnormally compacted, and mature sperm nuclei are eventually released in the seminal vesicle. Our analyses of different SD+ chromosomes suggest that the severity of the spermiogenic defects associates with the copy number of the Rsp satellite. We propose that when Rsp copy number is very high (> 2000), spermatid nuclear compaction defects reach a threshold that triggers a checkpoint controlling sperm chromatin quality to eliminate abnormal spermatids during individualization.
Collapse
Affiliation(s)
- Marion Herbette
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Xiaolu Wei
- University of Rochester Medical Center, Department of Biomedical Genetics, Rochester, New York, United States of America
| | - Ching-Ho Chang
- University of Rochester Department of Biology, Rochester, New York, United States of America
| | - Amanda M. Larracuente
- University of Rochester Department of Biology, Rochester, New York, United States of America
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Raphaëlle Dubruille
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS UMR 5239, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| |
Collapse
|
17
|
Wu H, Nakazawa T, Morimoto R, Sakamoto M, Honda Y. Targeted disruption of hir1 alters the transcriptional expression pattern of putative lignocellulolytic genes in the white-rot fungus Pleurotus ostreatus. Fungal Genet Biol 2021; 147:103507. [PMID: 33383191 DOI: 10.1016/j.fgb.2020.103507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
Pleurotus ostreatus is frequently used in molecular genetics and genomic studies on white-rot fungi because various molecular genetic tools and relatively well-annotated genome databases are available. To explore the molecular mechanisms underlying wood lignin degradation by P. ostreatus, we performed mutational analysis of a newly isolated mutant UVRM28 that exhibits decreased lignin-degrading ability on the beech wood sawdust medium. We identified that a mutation in the hir1 gene encoding a putative histone chaperone, which probably plays an important role in DNA replication-independent nucleosome assembly, is responsible for the mutant phenotype. The expression pattern of ligninolytic genes was altered in hir1 disruptants. The most highly expressed gene vp2 was significantly inactivated, whereas the expression of vp1 was remarkably upregulated (300-400 fold) at the transcription level. Conversely, many cellulolytic and xylanolytic genes were upregulated in hir1 disruptants. Chromatin immunoprecipitation analysis suggested that the histone modification status was altered in the 5'-upstream regions of some of the up- and down-regulated lignocellulolytic genes in hir1 disruptants compared with that in the 20b strain. Hence, our data provide new insights into the regulatory mechanisms of lignocellulolytic genes in P. ostreatus.
Collapse
Affiliation(s)
- Hongli Wu
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Ryota Morimoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
18
|
Abstract
Nucleosome dynamics and properties are central to all forms of genomic activities. Among the core histones, H3 variants play a pivotal role in modulating nucleosome structure and function. Here, we focus on the impact of H3 variants on various facets of development. The deposition of the replicative H3 variant following DNA replication is essential for the transmission of the epigenomic information encoded in posttranscriptional modifications. Through this process, replicative H3 maintains cell fate while, in contrast, the replacement H3.3 variant opposes cell differentiation during early embryogenesis. In later steps of development, H3.3 and specialized H3 variants are emerging as new, important regulators of terminal cell differentiation, including neurons and gametes. The specific pathways that regulate the dynamics of the deposition of H3.3 are paramount during reprogramming events that drive zygotic activation and the initiation of a new cycle of development.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, University of Lyon, F-69007 Lyon, France;
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
19
|
Deng K, Feng W, Liu X, Su X, Zuo E, Du S, Huang Y, Shi D, Lu F. Anti-silencing factor 1A is associated with genome stability maintenance of mouse preimplantation embryos†. Biol Reprod 2020; 102:817-827. [PMID: 31916576 DOI: 10.1093/biolre/ioaa001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/07/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Genome stability is critical for the normal development of preimplantation embryos, as DNA damages may result in mutation and even embryo lethality. Anti-silencing factor 1A (ASF1A) is a histone chaperone and enriched in the MII oocytes as a maternal factor, which may be associated with the maintenance of genome stability. Thus, this study was undertaken to explore the role of ASF1A in maintaining the genome stability of early mouse embryos. The ASF1A expressed in the preimplantation embryos and displayed a dynamic pattern throughout the early embryonic development. Inhibition of ASF1A expression decreased embryonic development and increased DNA damages. Overexpression of ASF1A improved the developmental potential and decreased DNA damages. When 293T cells that had been integrated with RGS-NHEJ were co-transfected with plasmids of pcDNA3.1-ASF1A, gRNA-NHEJ, and hCas9, less cells expressed eGFP, indicating that non-homologous end joining was reduced by ASF1A. When 293T cells were co-transfected with plasmids of HR-donor, gRNA-HR, hCas9, and pcDNA3.1-ASF1A, more cells expressed eGFP, indicating that homologous recombination (HR) was enhanced by ASF1A. These results indicate that ASF1A may be associated with the genome stability maintenance of early mouse embryos and this action may be mediated by promoting DNA damage repair through HR pathway.
Collapse
Affiliation(s)
- Kai Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Wanyou Feng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Xiaohua Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Xiaoping Su
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Erwei Zuo
- Center for Animal Genomics, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shanshan Du
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Yongjun Huang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| |
Collapse
|
20
|
Histone variant H3.3 residue S31 is essential for Xenopus gastrulation regardless of the deposition pathway. Nat Commun 2020; 11:1256. [PMID: 32152320 PMCID: PMC7062693 DOI: 10.1038/s41467-020-15084-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 02/09/2020] [Indexed: 01/04/2023] Open
Abstract
Vertebrates exhibit specific requirements for replicative H3 and non-replicative H3.3 variants during development. To disentangle whether this involves distinct modes of deposition or unique functions once incorporated into chromatin, we combined studies in Xenopus early development with chromatin assays. Here we investigate the extent to which H3.3 mutated at residues that differ from H3.2 rescue developmental defects caused by H3.3 depletion. Regardless of the deposition pathway, only variants at residue 31-a serine that can become phosphorylated-failed to rescue endogenous H3.3 depletion. Although an alanine substitution fails to rescue H3.3 depletion, a phospho-mimic aspartate residue at position 31 rescues H3.3 function. To explore mechanisms involving H3.3 S31 phosphorylation, we identified factors attracted or repulsed by the presence of aspartate at position 31, along with modifications on neighboring residues. We propose that serine 31-phosphorylated H3.3 acts as a signaling module that stimulates the acetylation of K27, providing a chromatin state permissive to the embryonic development program.
Collapse
|
21
|
Ricketts MD, Dasgupta N, Fan J, Han J, Gerace M, Tang Y, Black BE, Adams PD, Marmorstein R. The HIRA histone chaperone complex subunit UBN1 harbors H3/H4- and DNA-binding activity. J Biol Chem 2019; 294:9239-9259. [PMID: 31040182 DOI: 10.1074/jbc.ra119.007480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/01/2019] [Indexed: 02/04/2023] Open
Abstract
The HIRA histone chaperone complex is composed of the proteins HIRA, UBN1, and CABIN1 and cooperates with the histone chaperone ASF1a to specifically bind and deposit H3.3/H4 into chromatin. We recently reported that the UBN1 Hpc2-related domain (HRD) specifically binds to H3.3/H4 over H3.1/H4. However, the mechanism for HIRA complex deposition of H3.3/H4 into nucleosomes remains unclear. Here, we characterize a central region of UBN1 (UBN1 middle domain) that is evolutionarily conserved and predicted to have helical secondary structure. We report that the UBN1 middle domain has dimer formation activity and binds to H3/H4 in a manner that does not discriminate between H3.1 and H3.3. We additionally identify a nearby DNA-binding domain in UBN1, located between the UBN1 HRD and middle domain, which binds DNA through electrostatic contacts involving several conserved lysine residues. Together, these observations suggest a mechanism for HIRA-mediated H3.3/H4 deposition whereby UBN1 associates with DNA and dimerizes to mediate formation of an (H3.3/H4)2 heterotetramer prior to chromatin deposition.
Collapse
Affiliation(s)
- M Daniel Ricketts
- From the Department of Biochemistry and Biophysics and.,the Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nirmalya Dasgupta
- the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Jiayi Fan
- From the Department of Biochemistry and Biophysics and
| | - Joseph Han
- From the Department of Biochemistry and Biophysics and.,the Department of Chemistry Graduate Group and
| | - Morgan Gerace
- From the Department of Biochemistry and Biophysics and
| | - Yong Tang
- the Wistar Institute, Philadelphia, Pennsylvania 19104, and
| | - Ben E Black
- From the Department of Biochemistry and Biophysics and.,the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Peter D Adams
- the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Ronen Marmorstein
- From the Department of Biochemistry and Biophysics and .,the Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,the Department of Chemistry Graduate Group and.,the Wistar Institute, Philadelphia, Pennsylvania 19104, and.,the Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
22
|
Leatham-Jensen M, Uyehara CM, Strahl BD, Matera AG, Duronio RJ, McKay DJ. Lysine 27 of replication-independent histone H3.3 is required for Polycomb target gene silencing but not for gene activation. PLoS Genet 2019; 15:e1007932. [PMID: 30699116 PMCID: PMC6370247 DOI: 10.1371/journal.pgen.1007932] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/11/2019] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Proper determination of cell fates depends on epigenetic information that is used to preserve memory of decisions made earlier in development. Post-translational modification of histone residues is thought to be a central means by which epigenetic information is propagated. In particular, modifications of histone H3 lysine 27 (H3K27) are strongly correlated with both gene activation and gene repression. H3K27 acetylation is found at sites of active transcription, whereas H3K27 methylation is found at loci silenced by Polycomb group proteins. The histones bearing these modifications are encoded by the replication-dependent H3 genes as well as the replication-independent H3.3 genes. Owing to differential rates of nucleosome turnover, H3K27 acetylation is enriched on replication-independent H3.3 histones at active gene loci, and H3K27 methylation is enriched on replication-dependent H3 histones across silenced gene loci. Previously, we found that modification of replication-dependent H3K27 is required for Polycomb target gene silencing, but it is not required for gene activation. However, the contribution of replication-independent H3.3K27 to these functions is unknown. Here, we used CRISPR/Cas9 to mutate the endogenous replication-independent H3.3K27 to a non-modifiable residue. Surprisingly, we find that H3.3K27 is also required for Polycomb target gene silencing despite the association of H3.3 with active transcription. However, the requirement for H3.3K27 comes at a later stage of development than that found for replication-dependent H3K27, suggesting a greater reliance on replication-independent H3.3K27 in post-mitotic cells. Notably, we find no evidence of global transcriptional defects in H3.3K27 mutants, despite the strong correlation between H3.3K27 acetylation and active transcription. During development, naïve precursor cells acquire distinct identities through differential regulation of gene expression. The process of cell fate specification is progressive and depends on memory of prior developmental decisions. Maintaining cell identities over time is not dependent on changes in genome sequence. Instead, epigenetic mechanisms propagate information on cell identity by maintaining select sets of genes in either the on or off state. Chemical modifications of histone proteins, which package and organize the genome within cells, are thought to play a central role in epigenetic gene regulation. However, identifying which histone modifications are required for gene regulation, and defining the mechanisms through which they function in the maintenance of cell identity, remains a longstanding research challenge. Here, we focus on the role of histone H3 lysine 27 (H3K27). Modifications of H3K27 are associated with both gene activation and gene silencing (i.e. H3K27 acetylation and methylation, respectively). The histones bearing these modifications are encoded by different histone genes. One set of histone genes is only expressed during cell division, whereas the other set of histone genes is expressed in both dividing and non-dividing cells. Because most cells permanently stop dividing by the end of development, these “replication-independent” histone genes are potentially important for long-term maintenance of cell identity. In this study, we demonstrate that replication-independent H3K27 is required for gene silencing by the Polycomb group of epigenetic regulators. However, despite a strong correlation between replication-independent histones and active genes, we find that replication-independent H3K27 is not required for gene activation. As mutations in replication-independent H3K27 have recently been identified in human cancers, this work may help to inform the mechanisms by which histone mutations contribute to human disease.
Collapse
Affiliation(s)
- Mary Leatham-Jensen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Christopher M. Uyehara
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - A. Gregory Matera
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Robert J. Duronio
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Daniel J. McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
23
|
Shindo Y, Amodeo AA. Dynamics of Free and Chromatin-Bound Histone H3 during Early Embryogenesis. Curr Biol 2019; 29:359-366.e4. [DOI: 10.1016/j.cub.2018.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/29/2018] [Accepted: 12/13/2018] [Indexed: 11/27/2022]
|
24
|
Abstract
Inheritance of genomic DNA underlies the vast majority of biological inheritance, yet it has been clear for decades that additional epigenetic information can be passed on to future generations. Here, we review major model systems for transgenerational epigenetic inheritance via the germline in multicellular organisms. In addition to surveying examples of epivariation that may arise stochastically or in response to unknown stimuli, we also discuss the induction of heritable epigenetic changes by genetic or environmental perturbations. Mechanistically, we discuss the increasingly well-understood molecular pathways responsible for epigenetic inheritance, with a focus on the unusual features of the germline epigenome.
Collapse
Affiliation(s)
- Ana Bošković
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
25
|
Horard B, Sapey-Triomphe L, Bonnefoy E, Loppin B. ASF1 is required to load histones on the HIRA complex in preparation of paternal chromatin assembly at fertilization. Epigenetics Chromatin 2018; 11:19. [PMID: 29751847 PMCID: PMC5946387 DOI: 10.1186/s13072-018-0189-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
Background Anti-Silencing Factor 1 (ASF1) is a conserved H3–H4 histone chaperone involved in both Replication-Coupled and Replication-Independent (RI) nucleosome assembly pathways. At DNA replication forks, ASF1 plays an important role in regulating the supply of H3.1/2 and H4 to the CAF-1 chromatin assembly complex. ASF1 also provides H3.3–H4 dimers to HIRA and DAXX chaperones for RI nucleosome assembly. The early Drosophila embryo is an attractive system to study chromatin assembly in a developmental context. The formation of a diploid zygote begins with the unique, genome-wide RI assembly of paternal chromatin following sperm protamine eviction. Then, within the same cytoplasm, syncytial embryonic nuclei undergo a series of rapid, synchronous S and M phases to form the blastoderm embryo. Here, we have investigated the implication of ASF1 in these two distinct assembly processes. Results We show that depletion of the maternal pool of ASF1 with a specific shRNA induces a fully penetrant, maternal effect embryo lethal phenotype. Unexpectedly, despite the depletion of ASF1 protein to undetectable levels, we show that asf1 knocked-down (KD) embryos can develop to various stages, thus demonstrating that ASF1 is not absolutely required for the amplification of cleavage nuclei. Remarkably, we found that ASF1 is required for the formation of the male pronucleus, although ASF1 protein does not reside in the decondensing sperm nucleus. In asf1 KD embryos, HIRA localizes to the male nucleus but is only capable of limited and insufficient chromatin assembly. Finally, we show that the conserved HIRA B domain, which is involved in ASF1-HIRA interaction, is dispensable for female fertility. Conclusions We conclude that ASF1 is critically required to load H3.3–H4 dimers on the HIRA complex prior to histone deposition on paternal DNA. This separation of tasks could optimize the rapid assembly of paternal chromatin within the gigantic volume of the egg cell. In contrast, ASF1 is surprisingly dispensable for the amplification of cleavage nuclei, although chromatin integrity is likely compromised in KD embryos. Electronic supplementary material The online version of this article (10.1186/s13072-018-0189-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive - CNRS - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622, Villeurbanne Cedex, France.
| | - Laure Sapey-Triomphe
- Laboratoire de Biométrie et Biologie Evolutive - CNRS - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622, Villeurbanne Cedex, France
| | - Emilie Bonnefoy
- Laboratoire de Biométrie et Biologie Evolutive - CNRS - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622, Villeurbanne Cedex, France
| | - Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive - CNRS - UMR5558, Université Claude Bernard Lyon I, 16, rue R. Dubois - Bât. G. Mendel, 69622, Villeurbanne Cedex, France.
| |
Collapse
|
26
|
Zhou M, Pan Z, Cao X, Guo X, He X, Sun Q, Di R, Hu W, Wang X, Zhang X, Zhang J, Zhang C, Liu Q, Chu M. Single Nucleotide Polymorphisms in the HIRA Gene Affect Litter Size in Small Tail Han Sheep. Animals (Basel) 2018; 8:ani8050071. [PMID: 29734691 PMCID: PMC5981282 DOI: 10.3390/ani8050071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Litter size is one of the most important reproductive traits in sheep. Two single nucleotide polymorphisms (SNPs), g.71874104G>A and g.71833755T>C, in the Histone Cell Cycle Regulator (HIRA) gene, were identified by whole-genome sequencing (WGS) and may be correlated with litter size in sheep. The two SNPs were genotyped and expression patterns of HIRA was determined in sheep breeds with different fecundity and in groups of Small Tail Han sheep producing large or small litters. Association analysis indicated that both SNPs were significantly correlated with litter size in Small Tail Han sheep. Furthermore, high levels of HIRA expression may have a negative effect on litter size in Small Tail Han sheep. Abstract Maintenance of appropriate levels of fecundity is critical for efficient sheep production. Opportunities to increase sheep litter size include identifying single gene mutations with major effects on ovulation rate and litter size. Whole-genome sequencing (WGS) data of 89 Chinese domestic sheep from nine different geographical locations and ten Australian sheep were analyzed to detect new polymorphisms affecting litter size. Comparative genomic analysis of sheep with contrasting litter size detected a novel set of candidate genes. Two SNPs, g.71874104G>A and g.71833755T>C, were genotyped in 760 Small Tail Han sheep and analyzed for association with litter size. The two SNPs were significantly associated with litter size, being in strong linkage disequilibrium in the region 71.80–71.87 Mb. This haplotype block contains one gene that may affect litter size, Histone Cell Cycle Regulator (HIRA). HIRA mRNA levels in sheep with different lambing ability were significantly higher in ovaries of Small Tail Han sheep (high fecundity) than in Sunite sheep (low fecundity). Moreover, the expression levels of HIRA in eight tissues of uniparous Small Tail Han sheep were significantly higher than in multiparous Small Tail Han sheep (p < 0.05). HIRA SNPs significantly affect litter size in sheep and are useful as genetic markers for litter size.
Collapse
Affiliation(s)
- Mei Zhou
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhangyuan Pan
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China.
| | - Xiaohan Cao
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Xiaofei Guo
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qing Sun
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Chunyuan Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
27
|
Zhang K, Wang H, Rajput SK, Folger JK, Smith GW. Characterization of H3.3 and HIRA expression and function in bovine early embryos. Mol Reprod Dev 2018; 85:106-116. [PMID: 29232016 DOI: 10.1002/mrd.22939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 01/20/2023]
Abstract
Histone variant H3.3 is encoded by two distinct genes, H3F3A and H3F3B, that are closely associated with actively transcribed genes. H3.3 replacement is continuous and essential for maintaining correct chromatin structure during mouse oogenesis. Upon fertilization, H3.3 is incorporated to parental chromatin, and is required for blastocyst formation in mice. The H3.3 exchange process is facilitated by the chaperone HIRA, particularly during zygote development. We previously demonstrated that H3.3 is required for bovine early embryonic development; here, we explored the mechanisms of its functional requirement. H3F3A mRNA abundance is stable whereas H3F3B and HIRA mRNA are relatively dynamic during early embryonic development. H3F3B mRNA quantity is also considerably higher than H3F3A. Immunofluorescence analysis revealed an even distribution of H3.3 between paternal and maternal pronuclei in zygotes, and subsequent stage-specific localization of H3.3 in early bovine embryos. Knockdown of H3.3 by targeting both H3F3A and H3F3B dramatically decreased the expression of NANOG (a pluripotency marker) and CTGF (Connective tissue growth factor; a trophectoderm marker) in bovine blastocysts. Additionally, we noted that Histone H3 lysine 36 dimethylation and linker Histone H1 abundance is reduced in H3.3-deficient embryos, which was similar to effects following knockdown of CHD1 (Chromodomain helicase DNA-binding protein 1). By contrast, no difference was observed in the abundance of Histone H3 lysine 4 trimethylation, Histone H3 lysine 9 dimethylation, or Splicing factor 3 B1. Collectively, these results established that H3.3 is required for correct epigenetic modifications and H1 deposition, dysregulation of which likely mediate the poor development in H3.3-deficient embryos.
Collapse
Affiliation(s)
- Kun Zhang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Dairy Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Han Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sandeep K Rajput
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Joseph K Folger
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| |
Collapse
|
28
|
Shaping Chromatin in the Nucleus: The Bricks and the Architects. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:1-14. [PMID: 29208640 DOI: 10.1101/sqb.2017.82.033753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromatin organization in the nucleus provides a vast repertoire of information in addition to that encoded genetically. Understanding how this organization impacts genome stability and influences cell fate and tumorigenesis is an area of rapid progress. Considering the nucleosome, the fundamental unit of chromatin structure, the study of histone variants (the bricks) and their selective loading by histone chaperones (the architects) is particularly informative. Here, we report recent advances in understanding how relationships between histone variants and their chaperones contribute to tumorigenesis using cell lines and Xenopus development as model systems. In addition to their role in histone deposition, we also document interactions between histone chaperones and other chromatin factors that govern higher-order structure and control DNA metabolism. We highlight how a fine-tuned assembly line of bricks (H3.3 and CENP-A) and architects (HIRA, HJURP, and DAXX) is key in adaptation to developmental and pathological changes. An example of this conceptual advance is the exquisite sensitivity displayed by p53-null tumor cells to modulation of HJURP, the histone chaperone for CENP-A (CenH3 variant). We discuss how these findings open avenues for novel therapeutic paradigms in cancer care.
Collapse
|
29
|
Kimura S, Loppin B. The Drosophila chromosomal protein Mst77F is processed to generate an essential component of mature sperm chromatin. Open Biol 2017; 6:rsob.160207. [PMID: 27810970 PMCID: PMC5133442 DOI: 10.1098/rsob.160207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/05/2016] [Indexed: 01/26/2023] Open
Abstract
In most animals, the bulk of sperm DNA is packaged with sperm nuclear basic proteins (SNBPs), a diverse group of highly basic chromosomal proteins notably comprising mammalian protamines. The replacement of histones with SNBPs during spermiogenesis allows sperm DNA to reach an extreme level of compaction, but little is known about how SNBPs actually function in vivo. Mst77F is a Drosophila SNBP with unique DNA condensation properties in vitro, but its role during spermiogenesis remains unclear. Here, we show that Mst77F is required for the compaction of sperm DNA and the production of mature sperm, through its cooperation with protamine-like proteins Mst35Ba/b. We demonstrate that Mst77F is incorporated in spermatid chromatin as a precursor protein, which is subsequently processed through the proteolysis of its N-terminus. The cleavage of Mst77F is very similar to the processing of protamine P2 during human spermiogenesis and notably leaves the cysteine residues in the mature protein intact, suggesting that they participate in the formation of disulfide cross-links. Despite the rapid evolution of SNBPs, sperm chromatin condensation thus involves remarkably convergent mechanisms in distantly related animals.
Collapse
Affiliation(s)
- Shuhei Kimura
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
30
|
Involvement of sperm acetylated histones and the nuclear isoform of Glutathione peroxidase 4 in fertilization. J Cell Physiol 2017; 233:3093-3104. [DOI: 10.1002/jcp.26146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022]
|
31
|
Shi L, Wen H, Shi X. The Histone Variant H3.3 in Transcriptional Regulation and Human Disease. J Mol Biol 2017; 429:1934-1945. [PMID: 27894815 PMCID: PMC5446305 DOI: 10.1016/j.jmb.2016.11.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/19/2023]
Abstract
Histone proteins wrap around DNA to form nucleosomes, which further compact into the higher-order structure of chromatin. In addition to the canonical histones, there are also variant histones that often have pivotal roles in regulating chromatin dynamics and in the accessibility of the underlying DNA. H3.3 is the most common non-centromeric variant of histone H3 that differs from the canonical H3 by just 4-5 aa. Here, we discuss the current knowledge of H3.3 in transcriptional regulation and the recent discoveries and molecular mechanisms of H3.3 mutations in human cancer.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Wen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
32
|
The Drosophila DAXX-Like Protein (DLP) Cooperates with ASF1 for H3.3 Deposition and Heterochromatin Formation. Mol Cell Biol 2017; 37:MCB.00597-16. [PMID: 28320872 DOI: 10.1128/mcb.00597-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/09/2017] [Indexed: 01/22/2023] Open
Abstract
Histone variants are nonallelic isoforms of canonical histones, and they are deposited, in contrast to canonical histones, in a replication-independent (RI) manner. RI deposition of H3.3, a histone variant from the H3.3 family, is mediated in mammals by distinct pathways involving either the histone regulator A (HIRA) complex or the death-associated protein (DAXX)/α-thalassemia X-linked mental retardation protein (ATRX) complex. Here, we investigated the function of the Drosophila DAXX-like protein (DLP) by using both fly genetic approaches and protein biochemistry. DLP specifically interacts with H3.3 and shows a prominent localization on the base of the X chromosome, where it appears to act in concert with XNP, the Drosophila homolog of ATRX, in heterochromatin assembly and maintenance. The functional association between DLP and XNP is further supported by a series of experiments that illustrate genetic interactions and the DLP-XNP-dependent localization of specific chromosomal proteins. In addition, DLP both participates in the RI deposition of H3.3 and associates with anti-silencing factor 1 (ASF1). We suggest, in agreement with a recently proposed model, that DLP and ASF1 are part of a predeposition complex, which is recruited by XNP and is necessary to prevent DNA exposure in the nucleus.
Collapse
|
33
|
Aldrich JC, Leibholz A, Cheema MS, Ausiό J, Ferree PM. A 'selfish' B chromosome induces genome elimination by disrupting the histone code in the jewel wasp Nasonia vitripennis. Sci Rep 2017; 7:42551. [PMID: 28211924 PMCID: PMC5304203 DOI: 10.1038/srep42551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 01/04/2023] Open
Abstract
Intragenomic conflict describes a phenomenon in which genetic elements act ‘selfishly’ to gain a transmission advantage at the expense of the whole genome. A non-essential, selfish B chromosome known as Paternal Sex Ratio (PSR) induces complete elimination of the sperm-derived hereditary material in the jewel wasp Nasonia vitripennis. PSR prevents the paternal chromatin from forming chromosomes during the first embryonic mitosis, leading to its loss. Although paternally transmitted, PSR evades self-elimination in order to be inherited. We examined important post-translational modifications to the DNA packaging histones on the normal genome and the PSR chromosome in the fertilized embryo. Three histone marks – H3K9me2,3, H3K27me1, and H4K20me1 – became abnormally enriched and spread to ectopic positions on the sperm’s chromatin before entry into mitosis. In contrast, other histone marks and DNA methylation were not affected by PSR, suggesting that its effect on the paternal genome is specific to a subset of histone marks. Contrary to the paternally derived genome, the PSR chromosome was visibly devoid of the H3K27me1 and H4K20me1 marks. These findings strongly suggest that PSR causes paternal genome elimination by disrupting at least three histone marks following fertilization, while PSR avoids self-elimination by evading two of these marks.
Collapse
Affiliation(s)
- John C Aldrich
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - Alexandra Leibholz
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W-3P6, Canada
| | - Juan Ausiό
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W-3P6, Canada
| | - Patrick M Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| |
Collapse
|
34
|
Wu CH, Zong Q, Du AL, Zhang W, Yao HC, Yu XQ, Wang YF. Knockdown of Dynamitin in testes significantly decreased male fertility in Drosophila melanogaster. Dev Biol 2016; 420:79-89. [DOI: 10.1016/j.ydbio.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 10/09/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
35
|
Blythe SA, Wieschaus EF. Establishment and maintenance of heritable chromatin structure during early Drosophila embryogenesis. eLife 2016; 5:20148. [PMID: 27879204 PMCID: PMC5156528 DOI: 10.7554/elife.20148] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022] Open
Abstract
During embryogenesis, the initial chromatin state is established during a period of rapid proliferative activity. We have measured with 3-min time resolution how heritable patterns of chromatin structure are initially established and maintained during the midblastula transition (MBT). We find that regions of accessibility are established sequentially, where enhancers are opened in advance of promoters and insulators. These open states are stably maintained in highly condensed mitotic chromatin to ensure faithful inheritance of prior accessibility status across cell divisions. The temporal progression of establishment is controlled by the biological timers that control the onset of the MBT. In general, acquisition of promoter accessibility is controlled by the biological timer that measures the nucleo-cytoplasmic (N:C) ratio, whereas timing of enhancer accessibility is regulated independently of the N:C ratio. These different timing classes each associate with binding sites for two transcription factors, GAGA-factor and Zelda, previously implicated in controlling chromatin accessibility at ZGA. DOI:http://dx.doi.org/10.7554/eLife.20148.001
Collapse
Affiliation(s)
- Shelby A Blythe
- Howard Hughes Medical Institute, Princeton University, Princeton, United States
| | - Eric F Wieschaus
- Howard Hughes Medical Institute, Princeton University, Princeton, United States
| |
Collapse
|
36
|
Unlocking sperm chromatin at fertilization requires a dedicated egg thioredoxin in Drosophila. Nat Commun 2016; 7:13539. [PMID: 27876811 PMCID: PMC5122968 DOI: 10.1038/ncomms13539] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022] Open
Abstract
In most animals, the extreme compaction of sperm DNA is achieved after the massive replacement of histones with sperm nuclear basic proteins (SNBPs), such as protamines. In some species, the ultracompact sperm chromatin is stabilized by a network of disulfide bonds connecting cysteine residues present in SNBPs. Studies in mammals have established that the reduction of these disulfide crosslinks at fertilization is required for sperm nuclear decondensation and the formation of the male pronucleus. Here, we show that the Drosophila maternal thioredoxin Deadhead (DHD) is specifically required to unlock sperm chromatin at fertilization. In dhd mutant eggs, the sperm nucleus fails to decondense and the replacement of SNBPs with maternally-provided histones is severely delayed, thus preventing the participation of paternal chromosomes in embryo development. We demonstrate that DHD localizes to the sperm nucleus to reduce its disulfide targets and is then rapidly degraded after fertilization.
Collapse
|
37
|
A Molecular Prospective for HIRA Complex Assembly and H3.3-Specific Histone Chaperone Function. J Mol Biol 2016; 429:1924-1933. [PMID: 27871933 DOI: 10.1016/j.jmb.2016.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022]
Abstract
Incorporation of variant histone sequences, in addition to post-translational modification of histones, serves to modulate the chromatin environment. Different histone chaperone proteins mediate the storage and chromatin deposition of variant histones. Although the two non-centromeric histone H3 variants, H3.1 and H3.3, differ by only 5 aa, replacement of histone H3.1 with H3.3 can modulate the transcription for highly expressed and developmentally required genes, lead to the formation of repressive heterochromatin, or aid in DNA and chromatin repair. The human histone cell cycle regulator (HIRA) complex composed of HIRA, ubinuclein-1, CABIN1, and transiently anti-silencing function 1, forms one of the two complexes that bind and deposit H3.3/H4 into chromatin. A number of recent biochemical and structural studies have revealed important details underlying how these proteins assemble and function together as a multiprotein H3.3-specific histone chaperone complex. Here, we present a review of existing data and present a new model for the assembly of the HIRA complex and for the HIRA-mediated incorporation of H3.3/H4 into chromatin.
Collapse
|
38
|
HIRA Is Required for Heart Development and Directly Regulates Tnni2 and Tnnt3. PLoS One 2016; 11:e0161096. [PMID: 27518902 PMCID: PMC4982693 DOI: 10.1371/journal.pone.0161096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/31/2016] [Indexed: 01/04/2023] Open
Abstract
Chromatin remodelling is essential for cardiac development. Interestingly, the role of histone chaperones has not been investigated in this regard. HIRA is a member of the HUCA (HIRA/UBN1/CABIN1/ASF1a) complex that deposits the variant histone H3.3 on chromatin independently of replication. Lack of HIRA has general effects on chromatin and gene expression dynamics in embryonic stem cells and mouse oocytes. Here we describe the conditional ablation of Hira in the cardiogenic mesoderm of mice. We observed surface oedema, ventricular and atrial septal defects and embryonic lethality. We identified dysregulation of a subset of cardiac genes, notably upregulation of troponins Tnni2 and Tnnt3, involved in cardiac contractility and decreased expression of Epha3, a gene necessary for the fusion of the muscular ventricular septum and the atrioventricular cushions. We found that HIRA binds GAGA rich DNA loci in the embryonic heart, and in particular a previously described enhancer of Tnni2/Tnnt3 (TTe) bound by the transcription factor NKX2.5. HIRA-dependent H3.3 enrichment was observed at the TTe in embryonic stem cells (ESC) differentiated toward cardiomyocytes in vitro. Thus, we show here that HIRA has locus-specific effects on gene expression and that histone chaperone activity is vital for normal heart development, impinging on pathways regulated by an established cardiac transcription factor.
Collapse
|
39
|
Abstract
The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm-egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Raphaëlle Dubruille
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Béatrice Horard
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
40
|
Sadasivam DA, Huang DH. Maintenance of Tissue Pluripotency by Epigenetic Factors Acting at Multiple Levels. PLoS Genet 2016; 12:e1005897. [PMID: 26926299 PMCID: PMC4771708 DOI: 10.1371/journal.pgen.1005897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/04/2016] [Indexed: 01/24/2023] Open
Abstract
Pluripotent stem cells often adopt a unique developmental program while retaining certain flexibility. The molecular basis of such properties remains unclear. Using differentiation of pluripotent Drosophila imaginal tissues as assays, we examined the contribution of epigenetic factors in ectopic activation of Hox genes. We found that over-expression of Trithorax H3K4 methyltransferase can induce ectopic adult appendages by selectively activating the Hox genes Ultrabithorax and Sex comb reduced in wing and leg discs, respectively. This tissue-specific inducibility correlates with the presence of paused RNA polymerase II in the promoter-proximal region of these genes. Although the Antennapedia promoter is paused in eye-antenna discs, it cannot be induced by Trx without a reduction in histone variants or their chaperones, suggesting additional control by the nucleosomal architecture. Lineage tracing and pulse-chase experiments revealed that the active state of Hox genes is maintained substantially longer in mutants deficient for HIRA, a chaperone for the H3.3 variant. In addition, both HIRA and H3.3 appeared to act cooperatively with the Polycomb group of epigenetic repressors. These results support the involvement of H3.3-mediated nucleosome turnover in restoring the repressed state. We propose a regulatory framework integrating transcriptional pausing, histone modification, nucleosome architecture and turnover for cell lineage maintenance. During animal development, the primordia of different body parts undergo a series of transitions in which their developmental potency becomes more restricted. Hox genes encode a family of evolutionarily conserved transcriptional factors that are crucial for choosing different paths during transitions. Thus, the transcriptional status of Hox genes is directly linked to the maintenance and developmental direction of pluripotent tissues. As post-translational methylation of histone H3 is pivotal for transcriptional control, we could activate Hox genes and alter the subsequent development of some pluripotent Drosophila imaginal tissues by increasing the level of Trithorax that catalyzes activation-related methylation. However, other imaginal tissues remain refractory unless histone variants or their chaperones that directly affect nucleosome dynamics are simultaneously depleted. By monitoring the duration of Hox expression under these conditions, we found that the active state of Hox genes is substantially prolonged, resulting from effective conversion of promoter-associated paused RNA polymerase II into active transcription. Further analyses indicate that these factors are functionally linked to the Polycomb group of epigenetic factors that bestow long-term repression. Our studies demonstrate that developmental constraints are modulated by factors acting at multiple levels, offering a useful approach to tissue re-programming in regeneration medicine and stem cell research.
Collapse
Affiliation(s)
- Devendran A. Sadasivam
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Der-Hwa Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
41
|
Ricketts MD, Frederick B, Hoff H, Tang Y, Schultz DC, Singh Rai T, Grazia Vizioli M, Adams PD, Marmorstein R. Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex. Nat Commun 2015; 6:7711. [PMID: 26159857 PMCID: PMC4510971 DOI: 10.1038/ncomms8711] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/01/2015] [Indexed: 01/01/2023] Open
Abstract
Histone chaperones bind specific histones to mediate their storage, eviction or deposition from/or into chromatin. The HIRA histone chaperone complex, composed of HIRA, ubinuclein-1 (UBN1) and CABIN1, cooperates with the histone chaperone ASF1a to mediate H3.3-specific binding and chromatin deposition. Here we demonstrate that the conserved UBN1 Hpc2-related domain (HRD) is a novel H3.3-specific-binding domain. Biochemical and biophysical studies show the UBN1-HRD preferentially binds H3.3/H4 over H3.1/H4. X-ray crystallographic and mutational studies reveal that conserved residues within the UBN1-HRD and H3.3 G90 as key determinants of UBN1–H3.3-binding specificity. Comparison of the structure with the unrelated H3.3-specific chaperone DAXX reveals nearly identical points of contact between the chaperone and histone in the proximity of H3.3 G90, although the mechanism for H3.3 G90 recognition appears to be distinct. This study points to UBN1 as the determinant of H3.3-specific binding and deposition by the HIRA complex. Ubinuclein-1 (UBN1) is a subunit of the HIRA histone chaperone complex that deposits histone H3.3 into chromatin. Here the authors use structural and biochemical studies to show that a conserved domain in UBN1 mediates H3.3-specific binding by the HIRA complex.
Collapse
Affiliation(s)
- M Daniel Ricketts
- 1] Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brian Frederick
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - Henry Hoff
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - Yong Tang
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - David C Schultz
- The Wistar Institute, Philadelphia, Pennsylvania, 19104, USA
| | - Taranjit Singh Rai
- 1] Institute of Cancer Sciences, CR-UK Beatson Labs, University of Glasgow, Glasgow G61 1BD, UK [2] Institute of Biomedical and Environmental Health Research, University of West of Scotland, Paisley PA1 2BE, UK
| | - Maria Grazia Vizioli
- Institute of Cancer Sciences, CR-UK Beatson Labs, University of Glasgow, Glasgow G61 1BD, UK
| | - Peter D Adams
- Institute of Cancer Sciences, CR-UK Beatson Labs, University of Glasgow, Glasgow G61 1BD, UK
| | - Ronen Marmorstein
- 1] Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [3] Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
42
|
Borg M, Berger F. Chromatin remodelling during male gametophyte development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:177-188. [PMID: 25892182 DOI: 10.1111/tpj.12856] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 05/28/2023]
Abstract
The plant life cycle alternates between a diploid sporophytic phase and haploid gametophytic phase, with the latter giving rise to the gametes. Male gametophyte development encompasses two mitotic divisions that results in a simple three-celled structure knows as the pollen grain, in which two sperm cells are encased within a larger vegetative cell. Both cell types exhibit a very different type of chromatin organization - highly condensed in sperm cell nuclei and highly diffuse in the vegetative cell. Distinct classes of histone variants have dynamic and differential expression in the two cell lineages of the male gametophyte. Here we review how the dynamics of histone variants are linked to reprogramming of chromatin activities in the male gametophyte, compaction of the sperm cell genome and zygotic transitions post-fertilization.
Collapse
Affiliation(s)
- Michael Borg
- Gregor Mendel Institute, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
43
|
Duc C, Benoit M, Le Goff S, Simon L, Poulet A, Cotterell S, Tatout C, Probst AV. The histone chaperone complex HIR maintains nucleosome occupancy and counterbalances impaired histone deposition in CAF-1 complex mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:707-22. [PMID: 25600486 DOI: 10.1111/tpj.12758] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/21/2014] [Accepted: 12/23/2014] [Indexed: 05/09/2023]
Abstract
Chromatin organization is essential for coordinated gene expression, genome stability, and inheritance of epigenetic information. The main components involved in chromatin assembly are specific complexes such as Chromatin Assembly Factor 1 (CAF-1) and Histone Regulator (HIR), which deposit histones in a DNA synthesis-dependent or -independent manner, respectively. Here, we characterize the role of the plant orthologs Histone Regulator A (HIRA), Ubinuclein (UBN) and Calcineurin Binding protein 1 (CABIN1), which constitute the HIR complex. Arabidopsis loss-of-function mutants for the various subunits of the complex are viable, but hira mutants show reduced fertility. We show that loss of HIRA reduces extractable histone H3 protein levels and decreases nucleosome occupancy at both actively transcribed genes and heterochromatic regions. Concomitantly, HIRA contributes to maintenance of silencing of pericentromeric repeats and certain transposons. A genetic analysis based on crosses between mutants deficient in subunits of the CAF-1 and HIR complexes showed that simultaneous loss of both the CAF-1 and HIR histone H3 chaperone complexes severely affects plant survival, growth and reproductive development. Our results suggest that HIRA partially rescues impaired histone deposition in fas mutants to preserve nucleosome occupancy, implying plasticity in histone variant interaction and deposition.
Collapse
Affiliation(s)
- Céline Duc
- Génétique, Reproduction et Développement, CNRS UMR 6293, Clermont Université, INSERM U1103, 24 Avenue des Landais, BP 80026, Aubière Cedex, 63171, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hong K, Kim YJ, Choi Y. Function of TET proteins in germ cell reprogramming. Genes Genomics 2015. [DOI: 10.1007/s13258-014-0254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Tang MCW, Jacobs SA, Mattiske DM, Soh YM, Graham AN, Tran A, Lim SL, Hudson DF, Kalitsis P, O’Bryan MK, Wong LH, Mann JR. Contribution of the two genes encoding histone variant h3.3 to viability and fertility in mice. PLoS Genet 2015; 11:e1004964. [PMID: 25675407 PMCID: PMC4335506 DOI: 10.1371/journal.pgen.1004964] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Histones package DNA and regulate epigenetic states. For the latter, probably the most important histone is H3. Mammals have three near-identical H3 isoforms: canonical H3.1 and H3.2, and the replication-independent variant H3.3. This variant can accumulate in slowly dividing somatic cells, replacing canonical H3. Some replication-independent histones, through their ability to incorporate outside S-phase, are functionally important in the very slowly dividing mammalian germ line. Much remains to be learned of H3.3 functions in germ cell development. Histone H3.3 presents a unique genetic paradigm in that two conventional intron-containing genes encode the identical protein. Here, we present a comprehensive analysis of the developmental effects of null mutations in each of these genes. H3f3a mutants were viable to adulthood. Females were fertile, while males were subfertile with dysmorphic spermatozoa. H3f3b mutants were growth-deficient, dying at birth. H3f3b heterozygotes were also growth-deficient, with males being sterile because of arrest of round spermatids. This sterility was not accompanied by abnormalities in sex chromosome inactivation in meiosis I. Conditional ablation of H3f3b at the beginning of folliculogenesis resulted in zygote cleavage failure, establishing H3f3b as a maternal-effect gene, and revealing a requirement for H3.3 in the first mitosis. Simultaneous ablation of H3f3a and H3f3b in folliculogenesis resulted in early primary oocyte death, demonstrating a crucial role for H3.3 in oogenesis. These findings reveal a heavy reliance on H3.3 for growth, gametogenesis, and fertilization, identifying developmental processes that are particularly susceptible to H3.3 deficiency. They also reveal partial redundancy in function of H3f3a and H3f3b, with the latter gene being generally the most important.
Collapse
Affiliation(s)
- Michelle C. W. Tang
- Department of Zoology, The University of Melbourne, Melbourne, Victoria, Australia
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Shelley A. Jacobs
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Deidre M. Mattiske
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Yu May Soh
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Alison N. Graham
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - An Tran
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Shu Ly Lim
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Damien F. Hudson
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Paul Kalitsis
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Moira K. O’Bryan
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Lee H. Wong
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Jeffrey R. Mann
- Genetics Theme, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
46
|
Histone variants: the artists of eukaryotic chromatin. SCIENCE CHINA-LIFE SCIENCES 2015; 58:232-9. [DOI: 10.1007/s11427-015-4817-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
47
|
Gurard-Levin ZA, Quivy JP, Almouzni G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 2015; 83:487-517. [PMID: 24905786 DOI: 10.1146/annurev-biochem-060713-035536] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.
Collapse
Affiliation(s)
- Zachary A Gurard-Levin
- Institut Curie, Centre de Recherche; CNRS UMR 3664; Equipe Labellisée, Ligue contre le Cancer; and Université Pierre et Marie Curie, Paris F-75248, France;
| | | | | |
Collapse
|
48
|
Horard B, Loppin B. Histone storage and deposition in the early Drosophila embryo. Chromosoma 2015; 124:163-75. [PMID: 25563491 DOI: 10.1007/s00412-014-0504-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022]
Abstract
Drosophila development initiates with the formation of a diploid zygote followed by the rapid division of embryonic nuclei. This syncytial phase of development occurs almost entirely under maternal control and ends when the blastoderm embryo cellularizes and activates its zygotic genome. The biosynthesis and storage of histones in quantity sufficient for chromatin assembly of several thousands of genome copies represent a unique challenge for the developing embryo. In this article, we have reviewed our current understanding of the mechanisms involved in the production, storage, and deposition of histones in the fertilized egg and during the exponential amplification of cleavage nuclei.
Collapse
Affiliation(s)
- Béatrice Horard
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire-CNRS UMR5534, Université Claude Bernard Lyon 1, University of Lyon, 69100, Villeurbanne, France
| | | |
Collapse
|
49
|
Yang P, Wu W, Macfarlan TS. Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. Bioessays 2014; 37:52-9. [PMID: 25328107 DOI: 10.1002/bies.201400072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian egg employs a wide spectrum of epigenome modification machinery to reprogram the sperm nucleus shortly after fertilization. This event is required for transcriptional activation of the paternal/zygotic genome and progression through cleavage divisions. Reprogramming of paternal nuclei requires replacement of sperm protamines with canonical and non-canonical histones, covalent modification of histone tails, and chemical modification of DNA (notably oxidative demethylation of methylated cytosines). In this essay we highlight the role maternal histone variants play during developmental reprogramming following fertilization. We discuss how reduced maternal histone variant incorporation in somatic nuclear transfer experiments may explain the reduced viability of resulting embryos and how knowledge of repressive and activating maternal factors may be used to improve somatic cell reprogramming.
Collapse
Affiliation(s)
- Peng Yang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
50
|
Filipescu D, Müller S, Almouzni G. Histone H3 Variants and Their Chaperones During Development and Disease: Contributing to Epigenetic Control. Annu Rev Cell Dev Biol 2014; 30:615-46. [DOI: 10.1146/annurev-cellbio-100913-013311] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Filipescu
- Institut Curie, Centre de Recherche, Paris, F-75248 France; , ,
| | | | | |
Collapse
|