1
|
Carlier F, Li M, Maroc L, Debuchy R, Souaid C, Noordermeer D, Grognet P, Malagnac F. Loss of EZH2-like or SU(VAR)3-9-like proteins causes simultaneous perturbations in H3K27 and H3K9 tri-methylation and associated developmental defects in the fungus Podospora anserina. Epigenetics Chromatin 2021; 14:22. [PMID: 33962663 PMCID: PMC8105982 DOI: 10.1186/s13072-021-00395-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Selective gene silencing is key to development. It is generally accepted that H3K27me3-enriched heterochromatin maintains transcriptional repression established during early development and regulates cell fate. Conversely, H3K9me3-enriched heterochromatin prevents differentiation but constitutes protection against transposable elements. We exploited the fungus Podospora anserina, a valuable alternative to higher eukaryote models, to question the biological relevance and functional interplay of these two distinct heterochromatin conformations. RESULTS We established genome-wide patterns of H3K27me3 and H3K9me3 modifications, and found these marks mutually exclusive within gene-rich regions but not within repeats. We generated the corresponding histone methyltransferase null mutants and showed an interdependence of H3K9me3 and H3K27me3 marks. Indeed, removal of the PaKmt6 EZH2-like enzyme resulted not only in loss of H3K27me3 but also in significant H3K9me3 reduction. Similarly, removal of PaKmt1 SU(VAR)3-9-like enzyme caused loss of H3K9me3 and substantial decrease of H3K27me3. Removal of the H3K9me binding protein PaHP1 provided further support to the notion that each type of heterochromatin requires the presence of the other. We also established that P. anserina developmental programs require H3K27me3-mediated silencing, since loss of the PaKmt6 EZH2-like enzyme caused severe defects in most aspects of the life cycle including growth, differentiation processes and sexual reproduction, whereas loss of the PaKmt1 SU(VAR)3-9-like enzyme resulted only in marginal defects, similar to loss of PaHP1. CONCLUSIONS Our findings support a conserved function of the PRC2 complex in fungal development. However, we uncovered an intriguing evolutionary fluidity in the repressive histone deposition machinery, which challenges canonical definitions of constitutive and facultative heterochromatin.
Collapse
Affiliation(s)
- F Carlier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
- Group Fungal Epigenomics, Department of Mycology, Institut Pasteur, Paris, France
| | - M Li
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - L Maroc
- Génétique Quantitative et Évolution-Le Moulon, INRA-Université Paris-Saclay-CNRS-AgroParisTech, Batiment 400, UFR Des Sciences, 91405, Orsay CEDEX, France
| | - R Debuchy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - C Souaid
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
- Inserm, Theories and Approaches of Genomic Complexity (TAGC), UMR1090, Aix-Marseille University, 13288, Marseille, France
| | - D Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - P Grognet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.
| | - F Malagnac
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Kruse K, Hug CB, Vaquerizas JM. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol 2020; 21:303. [PMID: 33334380 PMCID: PMC7745377 DOI: 10.1186/s13059-020-02215-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Chromosome conformation capture data, particularly from high-throughput approaches such as Hi-C, are typically very complex to analyse. Existing analysis tools are often single-purpose, or limited in compatibility to a small number of data formats, frequently making Hi-C analyses tedious and time-consuming. Here, we present FAN-C, an easy-to-use command-line tool and powerful Python API with a broad feature set covering matrix generation, analysis, and visualisation for C-like data ( https://github.com/vaquerizaslab/fanc ). Due to its compatibility with the most prevalent Hi-C storage formats, FAN-C can be used in combination with a large number of existing analysis tools, thus greatly simplifying Hi-C matrix analysis.
Collapse
Affiliation(s)
- Kai Kruse
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Clemens B Hug
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
3
|
Brueckner L, Zhao PA, van Schaik T, Leemans C, Sima J, Peric‐Hupkes D, Gilbert DM, van Steensel B. Local rewiring of genome-nuclear lamina interactions by transcription. EMBO J 2020; 39:e103159. [PMID: 32080885 PMCID: PMC7073462 DOI: 10.15252/embj.2019103159] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Transcriptionally inactive genes are often positioned at the nuclear lamina (NL), as part of large lamina-associated domains (LADs). Activation of such genes is often accompanied by repositioning toward the nuclear interior. How this process works and how it impacts flanking chromosomal regions are poorly understood. We addressed these questions by systematic activation or inactivation of individual genes, followed by detailed genome-wide analysis of NL interactions, replication timing, and transcription patterns. Gene activation inside LADs typically causes NL detachment of the entire transcription unit, but rarely more than 50-100 kb of flanking DNA, even when multiple neighboring genes are activated. The degree of detachment depends on the expression level and the length of the activated gene. Loss of NL interactions coincides with a switch from late to early replication timing, but the latter can involve longer stretches of DNA. Inactivation of active genes can lead to increased NL contacts. These extensive datasets are a resource for the analysis of LAD rewiring by transcription and reveal a remarkable flexibility of interphase chromosomes.
Collapse
Affiliation(s)
- Laura Brueckner
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Peiyao A Zhao
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Tom van Schaik
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Christ Leemans
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jiao Sima
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Daniel Peric‐Hupkes
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - David M Gilbert
- Department of Biological ScienceFlorida State UniversityTallahasseeFLUSA
| | - Bas van Steensel
- Division of Gene Regulation and Oncode InstituteNetherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Cell BiologyErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
4
|
Ben Zouari Y, Platania A, Molitor AM, Sexton T. 4See: A Flexible Browser to Explore 4C Data. Front Genet 2020; 10:1372. [PMID: 32038719 PMCID: PMC6985583 DOI: 10.3389/fgene.2019.01372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
It is established that transcription of many metazoan genes is regulated by distal regulatory sequences beyond the promoter. Enhancers have been identified at up to megabase distances from their regulated genes, and/or proximal to or within the introns of unregulated genes. The unambiguous identification of the target genes of newly identified regulatory elements can thus be challenging. Well-studied enhancers have been found to come into direct physical proximity with regulated genes, presumably by the formation of chromatin loops. Chromosome conformation capture (3C) derivatives that assess the frequency of proximity between different genetic elements is thus a popular method for exploring gene regulation by distal regulatory elements. For studies of chromatin loops and promoter-enhancer communication, 4C (circular chromosome conformation capture) is one of the methods of choice, optimizing cost (required sequencing depth), throughput, and resolution. For ease of visual inspection of 4C data we present 4See, a versatile and user-friendly browser. 4See allows 4C profiles from the same bait to be flexibly plotted together, allowing biological replicates to either be compared, or pooled for comparisons between different cell types or experimental conditions. 4C profiles can be integrated with gene tracks, linear epigenomic profiles, and annotated regions of interest, such as called significant interactions, allowing rapid data exploration with limited computational resources or bioinformatics expertise.
Collapse
Affiliation(s)
- Yousra Ben Zouari
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,CNRS UMR7104, Illkirch, France.,INSERM U1258, Illkirch, France.,University of Strasbourg, Illkirch, France
| | - Angeliki Platania
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,CNRS UMR7104, Illkirch, France.,INSERM U1258, Illkirch, France.,University of Strasbourg, Illkirch, France
| | - Anne M Molitor
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,CNRS UMR7104, Illkirch, France.,INSERM U1258, Illkirch, France.,University of Strasbourg, Illkirch, France
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,CNRS UMR7104, Illkirch, France.,INSERM U1258, Illkirch, France.,University of Strasbourg, Illkirch, France
| |
Collapse
|
5
|
Rom A, Melamed L, Gil N, Goldrich MJ, Kadir R, Golan M, Biton I, Perry RBT, Ulitsky I. Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nat Commun 2019; 10:5092. [PMID: 31704914 PMCID: PMC6841665 DOI: 10.1038/s41467-019-13075-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Chromodomain helicase DNA binding protein 2 (Chd2) is a chromatin remodeller implicated in neurological disease. Here we show that Chaserr, a highly conserved long noncoding RNA transcribed from a region near the transcription start site of Chd2 and on the same strand, acts in concert with the CHD2 protein to maintain proper Chd2 expression levels. Loss of Chaserr in mice leads to early postnatal lethality in homozygous mice, and severe growth retardation in heterozygotes. Mechanistically, loss of Chaserr leads to substantially increased Chd2 mRNA and protein levels, which in turn lead to transcriptional interference by inhibiting promoters found downstream of highly expressed genes. We further show that Chaserr production represses Chd2 expression solely in cis, and that the phenotypic consequences of Chaserr loss are rescued when Chd2 is perturbed as well. Targeting Chaserr is thus a potential strategy for increasing CHD2 levels in haploinsufficient individuals.
Collapse
Affiliation(s)
- Aviv Rom
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Liliya Melamed
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Gil
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Rotem Kadir
- National Institute for Biotechnology in the Negev and Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matan Golan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Inbal Biton
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Ben-Tov Perry
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Swahn H, Sabith Ebron J, Lamar K, Yin S, Kerschner JL, NandyMazumdar M, Coppola C, Mendenhall EM, Leir S, Harris A. Coordinate regulation of ELF5 and EHF at the chr11p13 CF modifier region. J Cell Mol Med 2019; 23:7726-7740. [PMID: 31557407 PMCID: PMC6815777 DOI: 10.1111/jcmm.14646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 12/21/2022] Open
Abstract
E74-like factor 5 (ELF5) and ETS-homologous factor (EHF) are epithelial selective ETS family transcription factors (TFs) encoded by genes at chr11p13, a region associated with cystic fibrosis (CF) lung disease severity. EHF controls many key processes in lung epithelial function so its regulatory mechanisms are important. Using CRISPR/Cas9 technology, we removed three key cis-regulatory elements (CREs) from the chr11p13 region and also activated multiple open chromatin sites with CRISPRa in airway epithelial cells. Deletion of the CREs caused subtle changes in chromatin architecture and site-specific increases in EHF and ELF5. CRISPRa had most effect on ELF5 transcription. ELF5 levels are low in airway cells but higher in LNCaP (prostate) and T47D (breast) cancer cells. ATAC-seq in these lines revealed novel peaks of open chromatin at the 5' end of chr11p13 associated with an expressed ELF5 gene. Furthermore, 4C-seq assays identified direct interactions between the active ELF5 promoter and sites within the EHF locus, suggesting coordinate regulation between these TFs. ChIP-seq for ELF5 in T47D cells revealed ELF5 occupancy within EHF introns 1 and 6, and siRNA-mediated depletion of ELF5 enhanced EHF expression. These results define a new role for ELF5 in lung epithelial biology.
Collapse
Affiliation(s)
- Hannah Swahn
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Jey Sabith Ebron
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Kay‐Marie Lamar
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Shiyi Yin
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Jenny L. Kerschner
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Monali NandyMazumdar
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Candice Coppola
- Department of Biological SciencesUniversity of Alabama in HuntsvilleHuntsvilleALUSA
| | - Eric M. Mendenhall
- Department of Biological SciencesUniversity of Alabama in HuntsvilleHuntsvilleALUSA
| | - Shih‐Hsing Leir
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| | - Ann Harris
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
7
|
Structural and spatial chromatin features at developmental gene loci in human pluripotent stem cells. Nat Commun 2017; 8:1616. [PMID: 29158493 PMCID: PMC5696376 DOI: 10.1038/s41467-017-01679-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 10/06/2017] [Indexed: 01/05/2023] Open
Abstract
Higher-order chromatin organization controls transcriptional programs that govern cell properties and functions. In order for pluripotent stem cells (PSCs) to appropriately respond to differentiation signals, developmental gene loci should be structurally and spatially regulated to be readily available for immediate transcription, even though these genes are hardly expressed in PSCs. Here, we show that both chromatin interaction profiles and nuclear positions at developmental gene loci differ between human somatic cells and hPSCs, and that changes in the chromatin interactions are closely related to the nuclear repositioning. Moreover, we also demonstrate that developmental gene loci, which have bivalent histone modifications, tend to colocalize in PSCs. Furthermore, this colocalization requires PRC1, PRC2, and TrxG complexes, which are essential regulatory factors for the maintenance of transcriptionally poised developmental genes. Our results indicate that higher-order chromatin regulation may be an integral part of the differentiation capacity that defines pluripotency.
Collapse
|
8
|
Stolzenburg LR, Yang R, Kerschner JL, Fossum S, Xu M, Hoffmann A, Lamar KM, Ghosh S, Wachtel S, Leir SH, Harris A. Regulatory dynamics of 11p13 suggest a role for EHF in modifying CF lung disease severity. Nucleic Acids Res 2017; 45:8773-8784. [PMID: 28549169 PMCID: PMC5587731 DOI: 10.1093/nar/gkx482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/01/2017] [Accepted: 05/17/2017] [Indexed: 02/02/2023] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), but are not good predictors of lung phenotype. Genome-wide association studies (GWAS) previously identified additional genomic sites associated with CF lung disease severity. One of these, at chromosome 11p13, is an intergenic region between Ets homologous factor (EHF) and Apaf-1 interacting protein (APIP). Our goal was to determine the functional significance of this region, which being intergenic is probably regulatory. To identify cis-acting elements, we used DNase-seq and H3K4me1 and H3K27Ac ChIP-seq to map open and active chromatin respectively, in lung epithelial cells. Two elements showed strong enhancer activity for the promoters of EHF and the 5' adjacent gene E47 like ETS transcription factor 5 (ELF5) in reporter gene assays. No enhancers of the APIP promoter were found. Circular chromosome conformation capture (4C-seq) identified direct physical interactions of elements within 11p13. This confirmed the enhancer-promoter associations, identified additional interacting elements and defined topologically associating domain (TAD) boundaries, enriched for CCCTC-binding factor (CTCF). No strong interactions were observed with the APIP promoter, which lies outside the main TAD encompassing the GWAS signal. These results focus attention on the role of EHF in modifying CF lung disease severity.
Collapse
Affiliation(s)
- Lindsay R. Stolzenburg
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rui Yang
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jenny L. Kerschner
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44016, USA
| | - Sara Fossum
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew Xu
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew Hoffmann
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kay-Marie Lamar
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44016, USA
| | - Sujana Ghosh
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sarah Wachtel
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shih-Hsing Leir
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44016, USA
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44016, USA
| |
Collapse
|
9
|
Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes. Mol Psychiatry 2017; 22:836-849. [PMID: 27240531 PMCID: PMC5508252 DOI: 10.1038/mp.2016.84] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/18/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Copy number variants (CNVs) are major contributors to genomic imbalance disorders. Phenotyping of 137 unrelated deletion and reciprocal duplication carriers of the distal 16p11.2 220 kb BP2-BP3 interval showed that these rearrangements are associated with autism spectrum disorders and mirror phenotypes of obesity/underweight and macrocephaly/microcephaly. Such phenotypes were previously associated with rearrangements of the non-overlapping proximal 16p11.2 600 kb BP4-BP5 interval. These two CNV-prone regions at 16p11.2 are reciprocally engaged in complex chromatin looping, as successfully confirmed by 4C-seq, fluorescence in situ hybridization and Hi-C, as well as coordinated expression and regulation of encompassed genes. We observed that genes differentially expressed in 16p11.2 BP4-BP5 CNV carriers are concomitantly modified in their chromatin interactions, suggesting that disruption of chromatin interplays could participate in the observed phenotypes. We also identified cis- and trans-acting chromatin contacts to other genomic regions previously associated with analogous phenotypes. For example, we uncovered that individuals with reciprocal rearrangements of the trans-contacted 2p15 locus similarly display mirror phenotypes on head circumference and weight. Our results indicate that chromosomal contacts' maps could uncover functionally and clinically related genes.
Collapse
|
10
|
Denker A, de Laat W. The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev 2017; 30:1357-82. [PMID: 27340173 PMCID: PMC4926860 DOI: 10.1101/gad.281964.116] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The relevance of three-dimensional (3D) genome organization for transcriptional regulation and thereby for cellular fate at large is now widely accepted. Our understanding of the fascinating architecture underlying this function is based on microscopy studies as well as the chromosome conformation capture (3C) methods, which entered the stage at the beginning of the millennium. The first decade of 3C methods rendered unprecedented insights into genome topology. Here, we provide an update of developments and discoveries made over the more recent years. As we discuss, established and newly developed experimental and computational methods enabled identification of novel, functionally important chromosome structures. Regulatory and architectural chromatin loops throughout the genome are being cataloged and compared between cell types, revealing tissue invariant and developmentally dynamic loops. Architectural proteins shaping the genome were disclosed, and their mode of action is being uncovered. We explain how more detailed insights into the 3D genome increase our understanding of transcriptional regulation in development and misregulation in disease. Finally, to help researchers in choosing the approach best tailored for their specific research question, we explain the differences and commonalities between the various 3C-derived methods.
Collapse
Affiliation(s)
- Annette Denker
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Wouter de Laat
- Hubrecht Institute-Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| |
Collapse
|
11
|
Loviglio MN, Beck CR, White JJ, Leleu M, Harel T, Guex N, Niknejad A, Bi W, Chen ES, Crespo I, Yan J, Charng WL, Gu S, Fang P, Coban-Akdemir Z, Shaw CA, Jhangiani SN, Muzny DM, Gibbs RA, Rougemont J, Xenarios I, Lupski JR, Reymond A. Identification of a RAI1-associated disease network through integration of exome sequencing, transcriptomics, and 3D genomics. Genome Med 2016; 8:105. [PMID: 27799067 PMCID: PMC5088687 DOI: 10.1186/s13073-016-0359-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/16/2016] [Indexed: 02/13/2023] Open
Abstract
Background Smith-Magenis syndrome (SMS) is a developmental disability/multiple congenital anomaly disorder resulting from haploinsufficiency of RAI1. It is characterized by distinctive facial features, brachydactyly, sleep disturbances, and stereotypic behaviors. Methods We investigated a cohort of 15 individuals with a clinical suspicion of SMS who showed neither deletion in the SMS critical region nor damaging variants in RAI1 using whole exome sequencing. A combination of network analysis (co-expression and biomedical text mining), transcriptomics, and circularized chromatin conformation capture (4C-seq) was applied to verify whether modified genes are part of the same disease network as known SMS-causing genes. Results Potentially deleterious variants were identified in nine of these individuals using whole-exome sequencing. Eight of these changes affect KMT2D, ZEB2, MAP2K2, GLDC, CASK, MECP2, KDM5C, and POGZ, known to be associated with Kabuki syndrome 1, Mowat-Wilson syndrome, cardiofaciocutaneous syndrome, glycine encephalopathy, mental retardation and microcephaly with pontine and cerebellar hypoplasia, X-linked mental retardation 13, X-linked mental retardation Claes-Jensen type, and White-Sutton syndrome, respectively. The ninth individual carries a de novo variant in JAKMIP1, a regulator of neuronal translation that was recently found deleted in a patient with autism spectrum disorder. Analyses of co-expression and biomedical text mining suggest that these pathologies and SMS are part of the same disease network. Further support for this hypothesis was obtained from transcriptome profiling that showed that the expression levels of both Zeb2 and Map2k2 are perturbed in Rai1–/– mice. As an orthogonal approach to potentially contributory disease gene variants, we used chromatin conformation capture to reveal chromatin contacts between RAI1 and the loci flanking ZEB2 and GLDC, as well as between RAI1 and human orthologs of the genes that show perturbed expression in our Rai1–/– mouse model. Conclusions These holistic studies of RAI1 and its interactions allow insights into SMS and other disorders associated with intellectual disability and behavioral abnormalities. Our findings support a pan-genomic approach to the molecular diagnosis of a distinctive disorder. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0359-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Nicla Loviglio
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Janson J White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marion Leleu
- School of Life Sciences, EPFL (Ecole Polytechnique Fédérale de Lausanne), 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Tamar Harel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicolas Guex
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Anne Niknejad
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Edward S Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Isaac Crespo
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Jiong Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Laboratory Medicine Program, UHN, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ping Fang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Present address: WuXiNextCODE, 101Main Street, Cambridge, MA, 02142, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacques Rougemont
- School of Life Sciences, EPFL (Ecole Polytechnique Fédérale de Lausanne), 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Ioannis Xenarios
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
12
|
Chen M, Lin H, Zhao H. CHANGE POINT ANALYSIS OF HISTONE MODIFICATIONS REVEALS EPIGENETIC BLOCKS LINKING TO PHYSICAL DOMAINS. Ann Appl Stat 2016; 10:506-526. [PMID: 27231496 DOI: 10.1214/16-aoas905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone modification is a vital epigenetic mechanism for transcriptional control in eukaryotes. High-throughput techniques have enabled whole-genome analysis of histone modifications in recent years. However, most studies assume one combination of histone modification invariantly translates to one transcriptional output regardless of local chromatin environment. In this study we hypothesize that, the genome is organized into local domains that manifest similar enrichment pattern of histone modification, which leads to orchestrated regulation of expression of genes with relevant biological functions. We propose a multivariate Bayesian Change Point (BCP) model to segment the Drosophila melanogaster genome into consecutive blocks on the basis of combinatorial patterns of histone marks. By modeling the sparse distribution of histone marks with a zero-inflated Gaussian mixture, our partitions capture local BLOCKs that manifest relatively homogeneous enrichment pattern of histone marks. We further characterized BLOCKs by their transcription levels, distribution of genes, degree of co-regulation and GO enrichment. Our results demonstrate that these BLOCKs, although inferred merely from histone modifications, reveal strong relevance with physical domains, which suggests their important roles in chromatin organization and coordinated gene regulation.
Collapse
Affiliation(s)
- Mengjie Chen
- Department of Biostatistics and Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Haifan Lin
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520
| |
Collapse
|
13
|
Kenigsberg E, Yehuda Y, Marjavaara L, Keszthelyi A, Chabes A, Tanay A, Simon I. The mutation spectrum in genomic late replication domains shapes mammalian GC content. Nucleic Acids Res 2016; 44:4222-32. [PMID: 27085808 PMCID: PMC4872117 DOI: 10.1093/nar/gkw268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/10/2016] [Accepted: 03/30/2016] [Indexed: 11/14/2022] Open
Abstract
Genome sequence compositions and epigenetic organizations are correlated extensively across multiple length scales. Replication dynamics, in particular, is highly correlated with GC content. We combine genome-wide time of replication (ToR) data, topological domains maps and detailed functional epigenetic annotations to study the correlations between replication timing and GC content at multiple scales. We find that the decrease in genomic GC content at large scale late replicating regions can be explained by mutation bias favoring A/T nucleotide, without selection or biased gene conversion. Quantification of the free dNTP pool during the cell cycle is consistent with a mechanism involving replication-coupled mutation spectrum that favors AT nucleotides at late S-phase. We suggest that mammalian GC content composition is shaped by independent forces, globally modulating mutation bias and locally selecting on functional element. Deconvoluting these forces and analyzing them on their native scales is important for proper characterization of complex genomic correlations.
Collapse
Affiliation(s)
- Ephraim Kenigsberg
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Yehuda
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrea Keszthelyi
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Birchler JA. Parallel Universes for Models of X Chromosome Dosage Compensation in Drosophila: A Review. Cytogenet Genome Res 2016; 148:52-67. [PMID: 27166165 DOI: 10.1159/000445924] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 11/19/2022] Open
Abstract
Dosage compensation in Drosophila involves an approximately 2-fold increase in expression of the single X chromosome in males compared to the per gene expression in females with 2 X chromosomes. Two models have been considered for an explanation. One proposes that the male-specific lethal (MSL) complex that is associated with the male X chromosome brings histone modifiers to the sex chromosome to increase its expression. The other proposes that the inverse effect which results from genomic imbalance would tend to upregulate the genome approximately 2-fold, but the MSL complex sequesters histone modifiers from the autosomes to the X to mute this autosomal male-biased expression. On the X, the MSL complex must override the high level of resulting histone modifications to prevent overcompensation of the X chromosome. Each model is evaluated in terms of fitting classical genetic and recent molecular data. Potential paths toward resolving the models are suggested.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Mo., USA
| |
Collapse
|
15
|
Yang R, Kerschner JL, Gosalia N, Neems D, Gorsic LK, Safi A, Crawford GE, Kosak ST, Leir SH, Harris A. Differential contribution of cis-regulatory elements to higher order chromatin structure and expression of the CFTR locus. Nucleic Acids Res 2016; 44:3082-94. [PMID: 26673704 PMCID: PMC4838340 DOI: 10.1093/nar/gkv1358] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022] Open
Abstract
Higher order chromatin structure establishes domains that organize the genome and coordinate gene expression. However, the molecular mechanisms controlling transcription of individual loci within a topological domain (TAD) are not fully understood. The cystic fibrosis transmembrane conductance regulator (CFTR) gene provides a paradigm for investigating these mechanisms.CFTR occupies a TAD bordered by CTCF/cohesin binding sites within which are cell-type-selective cis-regulatory elements for the locus. We showed previously that intronic and extragenic enhancers, when occupied by specific transcription factors, are recruited to the CFTR promoter by a looping mechanism to drive gene expression. Here we use a combination of CRISPR/Cas9 editing of cis-regulatory elements and siRNA-mediated depletion of architectural proteins to determine the relative contribution of structural elements and enhancers to the higher order structure and expression of the CFTR locus. We found the boundaries of the CFTRTAD are conserved among diverse cell types and are dependent on CTCF and cohesin complex. Removal of an upstream CTCF-binding insulator alters the interaction profile, but has little effect on CFTR expression. Within the TAD, intronic enhancers recruit cell-type selective transcription factors and deletion of a pivotal enhancer element dramatically decreases CFTR expression, but has minor effect on its 3D structure.
Collapse
Affiliation(s)
- Rui Yang
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jenny L Kerschner
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nehal Gosalia
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniel Neems
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lidija K Gorsic
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexias Safi
- Division of Medical Genetics, Department of Pediatrics and Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC 27708, USA
| | - Gregory E Crawford
- Division of Medical Genetics, Department of Pediatrics and Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC 27708, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shih-Hsing Leir
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL 60614, USA Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
16
|
Bagadia M, Singh A, Singh Sandhu K. Three Dimensional Organization of Genome Might Have Guided the Dynamics of Gene Order Evolution in Eukaryotes. Genome Biol Evol 2016; 8:946-54. [PMID: 26957031 PMCID: PMC4824123 DOI: 10.1093/gbe/evw050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, genes are nonrandomly organized into short gene-dense regions or "gene-clusters" interspersed by long gene-poor regions. How these gene-clusters have evolved is not entirely clear. Gene duplication may not account for all the gene-clusters since the genes in most of the clusters do not exhibit significant sequence similarity. In this study, using genome-wide data sets from budding yeast, fruit-fly, and human, we show that: 1) long-range evolutionary repositioning of genes strongly associate with their spatial proximity in the nucleus; 2) presence of evolutionary DNA break-points at involved loci hints at their susceptibility to undergo long-range genomic rearrangements; and 3) correlated epigenetic and transcriptional states of engaged genes highlight the underlying evolutionary constraints. The significance of observation 1, 2, and 3 are particularly stronger for the instances of inferred evolutionary gain, as compared with loss, of linear gene-clustering. These observations suggest that the long-range genomic rearrangements guided through 3D genome organization might have contributed to the evolution of gene order. We further hypothesize that the evolution of linear gene-clusters in eukaryotic genomes might have been mediated through spatial interactions among distant loci in order to optimize co-ordinated regulation of genes. We model this hypothesis through a heuristic model of gene-order evolution.
Collapse
Affiliation(s)
- Meenakshi Bagadia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar 140306, India
| | - Arashdeep Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar 140306, India
| | - Kuljeet Singh Sandhu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, SAS Nagar 140306, India
| |
Collapse
|
17
|
Matelot M, Noordermeer D. Determination of High-Resolution 3D Chromatin Organization Using Circular Chromosome Conformation Capture (4C-seq). Methods Mol Biol 2016; 1480:223-41. [PMID: 27659989 DOI: 10.1007/978-1-4939-6380-5_20] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
3D chromatin organization is essential for many aspects of transcriptional regulation. Circular Chromosome Conformation Capture followed by Illumina sequencing (4C-seq) is among the most powerful techniques to determine 3D chromatin organization. 4C-seq, like other modifications of the original 3C technique, uses the principle of "proximity ligation" to identify and quantify ten thousands of genomic interactions at a kilobase scale in a single experiment for predefined loci in the genome.In this chapter we focus on the experimental steps in the 4C-seq protocol, providing detailed descriptions on the preparation of cells, the construction of the circularized 3C library and the generation of the Illumina high throughput sequencing library. This protocol is particularly suited for the use of mammalian tissue samples, but can be used with minimal changes on circulating cells and cell lines from other sources as well. In the final section of this chapter, we provide a brief overview of data analysis approaches, accompanied by links to publicly available analysis tools.
Collapse
Affiliation(s)
- Mélody Matelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, University Paris-Saclay, 1 Avenue de la terrasse, 91198, Gif sur Yvette, France
| | - Daan Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, University Paris-Saclay, 1 Avenue de la terrasse, 91198, Gif sur Yvette, France.
| |
Collapse
|
18
|
Millau JF, Gaudreau L. Detection of Short-Range DNA Interactions in Mammalian Cells Using High-Resolution Circular Chromosome Conformation Capture Coupled to Deep Sequencing. Methods Mol Biol 2015; 1334:245-59. [PMID: 26404155 DOI: 10.1007/978-1-4939-2877-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
DNA interactions shape the genome to physically and functionally connect regulatory elements to their target genes. Studying these interactions is crucial to understanding the molecular mechanisms that regulate gene expression. In this chapter, we present a protocol for high-resolution circular chromosome conformation capture coupled to deep sequencing. This methodology allows to investigate short-range DNA interactions (<100 kbp) and to obtain high-resolution DNA interaction maps of loci. It is a powerful tool to explore how regulatory elements and genes are connected together.
Collapse
Affiliation(s)
- Jean-François Millau
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, Canada, J1K 2R1.
| | - Luc Gaudreau
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, Canada, J1K 2R1
| |
Collapse
|
19
|
Singh AM, Sun Y, Li L, Zhang W, Wu T, Zhao S, Qin Z, Dalton S. Cell-Cycle Control of Bivalent Epigenetic Domains Regulates the Exit from Pluripotency. Stem Cell Reports 2015; 5:323-36. [PMID: 26278042 PMCID: PMC4618451 DOI: 10.1016/j.stemcr.2015.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/13/2015] [Accepted: 07/19/2015] [Indexed: 12/29/2022] Open
Abstract
Here we show that bivalent domains and chromosome architecture for bivalent genes are dynamically regulated during the cell cycle in human pluripotent cells. Central to this is the transient increase in H3K4-trimethylation at developmental genes during G1, thereby creating a "window of opportunity" for cell-fate specification. This mechanism is controlled by CDK2-dependent phosphorylation of the MLL2 (KMT2B) histone methyl-transferase, which facilitates its recruitment to developmental genes in G1. MLL2 binding is required for changes in chromosome architecture around developmental genes and establishes promoter-enhancer looping interactions in a cell-cycle-dependent manner. These cell-cycle-regulated loops are shown to be essential for activation of bivalent genes and pluripotency exit. These findings demonstrate that bivalent domains are established to control the cell-cycle-dependent activation of developmental genes so that differentiation initiates from the G1 phase.
Collapse
Affiliation(s)
- Amar M Singh
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Yuhua Sun
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Li Li
- Department of Biostatistics and Bioinformatics, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Wenjuan Zhang
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Tianming Wu
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|
20
|
Abstract
The modENCODE (Model Organism Encyclopedia of DNA Elements) Consortium aimed to map functional elements-including transcripts, chromatin marks, regulatory factor binding sites, and origins of DNA replication-in the model organisms Drosophila melanogaster and Caenorhabditis elegans. During its five-year span, the consortium conducted more than 2,000 genome-wide assays in developmentally staged animals, dissected tissues, and homogeneous cell lines. Analysis of these data sets provided foundational insights into genome, epigenome, and transcriptome structure and the evolutionary turnover of regulatory pathways. These studies facilitated a comparative analysis with similar data types produced by the ENCODE Consortium for human cells. Genome organization differs drastically in these distant species, and yet quantitative relationships among chromatin state, transcription, and cotranscriptional RNA processing are deeply conserved. Of the many biological discoveries of the modENCODE Consortium, we highlight insights that emerged from integrative studies. We focus on operational and scientific lessons that may aid future projects of similar scale or aims in other, emerging model systems.
Collapse
Affiliation(s)
- James B Brown
- Department of Statistics, University of California, Berkeley, California 94720;
| | | |
Collapse
|
21
|
Montes M, Nielsen MM, Maglieri G, Jacobsen A, Højfeldt J, Agrawal-Singh S, Hansen K, Helin K, van de Werken HJG, Pedersen JS, Lund AH. The lncRNA MIR31HG regulates p16(INK4A) expression to modulate senescence. Nat Commun 2015; 6:6967. [PMID: 25908244 DOI: 10.1038/ncomms7967] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/20/2015] [Indexed: 12/31/2022] Open
Abstract
Oncogene-induced senescence (OIS) can occur in response to oncogenic insults and is considered an important tumour suppressor mechanism. Here we identify the lncRNA MIR31HG as upregulated in OIS and find that knockdown of MIR31HG promotes a strong p16(INK4A)-dependent senescence phenotype. Under normal conditions, MIR31HG is found in both nucleus and cytoplasm, but following B-RAF expression MIR31HG is located mainly in the cytoplasm. We show that MIR31HG interacts with both INK4A and MIR31HG genomic regions and with Polycomb group (PcG) proteins, and that MIR31HG is required for PcG-mediated repression of the INK4A locus. We further identify a functional enhancer, located between MIR31HG and INK4A, which becomes activated during OIS and interacts with the MIR31HG promoter. Data from melanoma patients show a negative correlation between MIR31HG and p16(INK4A) expression levels, suggesting a role for this transcript in cancer. Hence, our data provide a new lncRNA-mediated regulatory mechanism for the tumour suppressor p16(INK4A).
Collapse
Affiliation(s)
- Marta Montes
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen 2200, Denmark
| | - Morten M Nielsen
- Department of Molecular Medicine, Århus University Hospital, Skejby, Århus N 8200, Denmark
| | - Giulia Maglieri
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen 2200, Denmark
| | - Anders Jacobsen
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jonas Højfeldt
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen 2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Shuchi Agrawal-Singh
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen 2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Klaus Hansen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen 2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen 2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Jakob S Pedersen
- Department of Molecular Medicine, Århus University Hospital, Skejby, Århus N 8200, Denmark.,Bioinformatics Research Center, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, Copenhagen 2200, Denmark
| |
Collapse
|
22
|
Vieux-Rochas M, Fabre PJ, Leleu M, Duboule D, Noordermeer D. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain. Proc Natl Acad Sci U S A 2015; 112:4672-7. [PMID: 25825760 PMCID: PMC4403207 DOI: 10.1073/pnas.1504783112] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Embryogenesis requires the precise activation and repression of many transcriptional regulators. The Polycomb group proteins and the associated H3K27me3 histone mark are essential to maintain the inactive state of many of these genes. Mammalian Hox genes are targets of Polycomb proteins and form local 3D clusters centered on the H3K27me3 mark. More distal contacts have also been described, yet their selectivity, dynamics, and relation to other layers of chromatin organization remained elusive. We report that repressed Hox genes form mutual intra- and interchromosomal interactions with other genes located in strong domains labeled by H3K27me3. These interactions occur in a central and active nuclear environment that consists of the HiC compartment A, away from peripheral lamina-associated domains. Interactions are independent of nearby H3K27me3-marked loci and determined by chromosomal distance and cell-type-specific scaling factors, thus inducing a moderate reorganization during embryogenesis. These results provide a simplified view of nuclear organization whereby Polycomb proteins may have evolved to repress genes located in gene-dense regions whose position is restricted to central, active, nuclear environments.
Collapse
Affiliation(s)
- Maxence Vieux-Rochas
- School of Life Sciences, Swiss Federal Institute of Technology - Lausanne (EPFL), 1015 Lausanne, Switzerland; and
| | - Pierre J Fabre
- School of Life Sciences, Swiss Federal Institute of Technology - Lausanne (EPFL), 1015 Lausanne, Switzerland; and
| | - Marion Leleu
- School of Life Sciences, Swiss Federal Institute of Technology - Lausanne (EPFL), 1015 Lausanne, Switzerland; and
| | - Denis Duboule
- School of Life Sciences, Swiss Federal Institute of Technology - Lausanne (EPFL), 1015 Lausanne, Switzerland; and Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland
| | - Daan Noordermeer
- School of Life Sciences, Swiss Federal Institute of Technology - Lausanne (EPFL), 1015 Lausanne, Switzerland; and
| |
Collapse
|
23
|
Makunin IV, Kolesnikova TD, Andreyenkova NG. Underreplicated regions in Drosophila melanogaster are enriched with fast-evolving genes and highly conserved noncoding sequences. Genome Biol Evol 2014; 6:2050-60. [PMID: 25062918 PMCID: PMC4159006 DOI: 10.1093/gbe/evu156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many late replicating regions are underreplicated in polytene chromosomes of Drosophila melanogaster. These regions contain silenced chromatin and overlap long syntenic blocks of conserved gene order in drosophilids. In this report we show that in D. melanogaster the underreplicated regions are enriched with fast-evolving genes lacking homologs in distant species such as mosquito or human, indicating that the phylogenetic conservation of genes correlates with replication timing and chromatin status. Drosophila genes without human homologs located in the underreplicated regions have higher nonsynonymous substitution rate and tend to encode shorter proteins when compared with those in the adjacent regions. At the same time, the underreplicated regions are enriched with ultraconserved elements and highly conserved noncoding sequences, especially in introns of very long genes indicating the presence of an extensive regulatory network that may be responsible for the conservation of gene order in these regions. The regions have a modest preference for long noncoding RNAs but are depleted for small nucleolar RNAs, microRNAs, and transfer RNAs. Our results demonstrate that the underreplicated regions have a specific genic composition and distinct pattern of evolution.
Collapse
Affiliation(s)
- Igor V Makunin
- Research Computing Centre, The University of Queensland, St Lucia, Queensland, AustraliaInstitute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana D Kolesnikova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaNovosibirsk State University, Russia
| | - Natalya G Andreyenkova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
24
|
Abstract
All species continuously evolve to adapt to changing environments. The genetic variation that fosters such adaptation is caused by a plethora of mechanisms, including meiotic recombination that generates novel allelic combinations in the progeny of two parental lineages. However, a considerable number of eukaryotic species, including many fungi, do not have an apparent sexual cycle and are consequently thought to be limited in their evolutionary potential. As such organisms are expected to have reduced capability to eliminate deleterious mutations, they are often considered as evolutionary dead ends. However, inspired by recent reports we argue that such organisms can be as persistent as organisms with conventional sexual cycles through the use of other mechanisms, such as genomic rearrangements, to foster adaptation.
Collapse
Affiliation(s)
- Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
25
|
David FPA, Delafontaine J, Carat S, Ross FJ, Lefebvre G, Jarosz Y, Sinclair L, Noordermeer D, Rougemont J, Leleu M. HTSstation: a web application and open-access libraries for high-throughput sequencing data analysis. PLoS One 2014; 9:e85879. [PMID: 24475057 PMCID: PMC3903476 DOI: 10.1371/journal.pone.0085879] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/03/2013] [Indexed: 01/25/2023] Open
Abstract
The HTSstation analysis portal is a suite of simple web forms coupled to modular analysis pipelines for various applications of High-Throughput Sequencing including ChIP-seq, RNA-seq, 4C-seq and re-sequencing. HTSstation offers biologists the possibility to rapidly investigate their HTS data using an intuitive web application with heuristically pre-defined parameters. A number of open-source software components have been implemented and can be used to build, configure and run HTS analysis pipelines reactively. Besides, our programming framework empowers developers with the possibility to design their own workflows and integrate additional third-party software. The HTSstation web application is accessible at http://htsstation.epfl.ch.
Collapse
Affiliation(s)
- Fabrice P. A. David
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Julien Delafontaine
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Solenne Carat
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Frederick J. Ross
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gregory Lefebvre
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yohan Jarosz
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Lucas Sinclair
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Daan Noordermeer
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| | - Jacques Rougemont
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- * E-mail: (JR); (ML)
| | - Marion Leleu
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- * E-mail: (JR); (ML)
| |
Collapse
|
26
|
Structural variation-associated expression changes are paralleled by chromatin architecture modifications. PLoS One 2013; 8:e79973. [PMID: 24265791 PMCID: PMC3827143 DOI: 10.1371/journal.pone.0079973] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 10/07/2013] [Indexed: 01/04/2023] Open
Abstract
Copy number variants (CNVs) influence the expression of genes that map not only within the rearrangement, but also to its flanks. To assess the possible mechanism(s) underlying this “neighboring effect”, we compared intrachromosomal interactions and histone modifications in cell lines of patients affected by genomic disorders and control individuals. Using chromosome conformation capture (4C-seq), we observed that a set of genes flanking the Williams-Beuren Syndrome critical region (WBSCR) were often looping together. The newly identified interacting genes include AUTS2, mutations of which are associated with autism and intellectual disabilities. Deletion of the WBSCR disrupts the expression of this group of flanking genes, as well as long-range interactions between them and the rearranged interval. We also pinpointed concomitant changes in histone modifications between samples. We conclude that large genomic rearrangements can lead to chromatin conformation changes that extend far away from the structural variant, thereby possibly modulating expression globally and modifying the phenotype. GEO Series accession number: GSE33784, GSE33867.
Collapse
|
27
|
Differential effect of aneuploidy on the X chromosome and genes with sex-biased expression in Drosophila. Proc Natl Acad Sci U S A 2013; 110:16514-9. [PMID: 24062456 DOI: 10.1073/pnas.1316041110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Global analysis of gene expression via RNA sequencing was conducted for trisomics for the left arm of chromosome 2 (2L) and compared with the normal genotype. The predominant response of genes on 2L was dosage compensation in that similar expression occurred in the trisomic compared with the diploid control. However, the male and female trisomic/normal expression ratio distributions for 2L genes differed in that females also showed a strong peak of genes with increased expression and males showed a peak of reduced expression relative to the opposite sex. For genes in other autosomal regions, the predominant response to trisomy was reduced expression to the inverse of the altered chromosomal dosage (2/3), but a minor peak of increased expression in females and further reduced expression in males were also found, illustrating a sexual dimorphism for the response to aneuploidy. Moreover, genes with sex-biased expression as revealed by comparing amounts in normal males and females showed responses of greater magnitude to trisomy 2L, suggesting that the genes involved in dosage-sensitive aneuploid effects also influence sex-biased expression. Each autosomal chromosome arm responded to 2L trisomy similarly, but the ratio distributions for X-linked genes were distinct in both sexes, illustrating an X chromosome-specific response to aneuploidy.
Collapse
|
28
|
Harmston N, Lenhard B. Chromatin and epigenetic features of long-range gene regulation. Nucleic Acids Res 2013; 41:7185-99. [PMID: 23766291 PMCID: PMC3753629 DOI: 10.1093/nar/gkt499] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The precise regulation of gene transcription during metazoan development is controlled by a complex system of interactions between transcription factors, histone modifications and modifying enzymes and chromatin conformation. Developments in chromosome conformation capture technologies have revealed that interactions between regions of chromatin are pervasive and highly cell-type specific. The movement of enhancers and promoters in and out of higher-order chromatin structures within the nucleus are associated with changes in expression and histone modifications. However, the factors responsible for mediating these changes and determining enhancer:promoter specificity are still not completely known. In this review, we summarize what is known about the patterns of epigenetic and chromatin features characteristic of elements involved in long-range interactions. In addition, we review the insights into both local and global patterns of chromatin interactions that have been revealed by the latest experimental and computational methods.
Collapse
Affiliation(s)
- Nathan Harmston
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London W12 0NN, UK, Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London W12 0NN, UK and Department of Informatics, University of Bergen, Thromøhlensgate 55, N-5008 Bergen, Norway
| | | |
Collapse
|
29
|
Holwerda SJB, van de Werken HJG, Ribeiro de Almeida C, Bergen IM, de Bruijn MJW, Verstegen MJAM, Simonis M, Splinter E, Wijchers PJ, Hendriks RW, de Laat W. Allelic exclusion of the immunoglobulin heavy chain locus is independent of its nuclear localization in mature B cells. Nucleic Acids Res 2013; 41:6905-16. [PMID: 23748562 PMCID: PMC3737562 DOI: 10.1093/nar/gkt491] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In developing B cells, the immunoglobulin heavy chain (IgH) locus is thought to move from repressive to permissive chromatin compartments to facilitate its scheduled rearrangement. In mature B cells, maintenance of allelic exclusion has been proposed to involve recruitment of the non-productive IgH allele to pericentromeric heterochromatin. Here, we used an allele-specific chromosome conformation capture combined with sequencing (4C-seq) approach to unambigously follow the individual IgH alleles in mature B lymphocytes. Despite their physical and functional difference, productive and non-productive IgH alleles in B cells and unrearranged IgH alleles in T cells share many chromosomal contacts and largely reside in active chromatin. In brain, however, the locus resides in a different repressive environment. We conclude that IgH adopts a lymphoid-specific nuclear location that is, however, unrelated to maintenance of allelic exclusion. We additionally find that in mature B cells—but not in T cells—the distal VH regions of both IgH alleles position themselves away from active chromatin. This, we speculate, may help to restrict enhancer activity to the productively rearranged VH promoter element.
Collapse
Affiliation(s)
- Sjoerd J B Holwerda
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Díaz-Castillo C. Females and males contribute in opposite ways to the evolution of gene order in Drosophila. PLoS One 2013; 8:e64491. [PMID: 23696898 PMCID: PMC3655977 DOI: 10.1371/journal.pone.0064491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/16/2013] [Indexed: 11/19/2022] Open
Abstract
An intriguing association between the spatial layout of chromosomes within nuclei and the evolution of chromosome gene order was recently uncovered. Chromosome regions with conserved gene order in the Drosophila genus are larger if they interact with the inner side of the nuclear envelope in D. melanogaster somatic cells. This observation opens a new door to understand the evolution of chromosomes in the light of the dynamics of the spatial layout of chromosomes and the way double-strand breaks are repaired in D. melanogaster germ lines. Chromosome regions at the nuclear periphery in somatic cell nuclei relocate to more internal locations of male germ line cell nuclei, which might prefer a gene order-preserving mechanism to repair double-strand breaks. Conversely, chromosome regions at the nuclear periphery in somatic cells keep their location in female germ line cell nuclei, which might be inaccessible for cellular machinery that causes gene order-disrupting chromosome rearrangements. Thus, the gene order stability for genome regions at the periphery of somatic cell nuclei might result from the active repair of double-strand breaks using conservative mechanisms in male germ line cells, and the passive inaccessibility for gene order-disrupting factors at the periphery of nuclei of female germ line cells. In the present article, I find evidence consistent with a DNA break repair-based differential contribution of both D. melanogaster germ lines to the stability/disruption of gene order. The importance of germ line differences for the layout of chromosomes and DNA break repair strategies with regard to other genomic patterns is briefly discussed.
Collapse
|
31
|
Rocha PP, Skok JA. The origin of recurrent translocations in recombining lymphocytes: a balance between break frequency and nuclear proximity. Curr Opin Cell Biol 2013; 25:365-71. [PMID: 23478218 DOI: 10.1016/j.ceb.2013.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/13/2013] [Accepted: 02/16/2013] [Indexed: 02/05/2023]
Abstract
Translocations occur through the aberrant joining of large stretches of non-contiguous chromosomal regions. The substrates for these illegitimate rearrangements can arise as a result of damage incurred during normal cellular processes, such as transcription and replication, or through the action of genotoxic agents. In lymphocytes many translocations bear signs of having originated from abnormalities introduced during programmed recombination. Although recombination is tightly controlled at different levels, mistakes can occur leading to cytogenetic anomalies that include deletions, insertions, amplifications and translocations, which are an underlying cause of leukemias and lymphomas. In this review we focus on recent studies that provide insight into the origins of translocations that arise during the two lymphocyte specific programmed recombination events: V(D)J and class switch recombination (CSR).
Collapse
Affiliation(s)
- Pedro P Rocha
- Department of Pathology, New York University School of Medicine, 550 First Avenue, MSB 599, New York, NY 10016, USA
| | | |
Collapse
|
32
|
Chaumeil J, Micsinai M, Ntziachristos P, Deriano L, Wang JMH, Ji Y, Nora EP, Rodesch MJ, Jeddeloh JA, Aifantis I, Kluger Y, Schatz DG, Skok JA. Higher-order looping and nuclear organization of Tcra facilitate targeted rag cleavage and regulated rearrangement in recombination centers. Cell Rep 2013; 3:359-70. [PMID: 23416051 DOI: 10.1016/j.celrep.2013.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/01/2013] [Accepted: 01/16/2013] [Indexed: 11/16/2022] Open
Abstract
V(D)J recombination is essential for generating a diverse array of B and T cell receptors that can recognize and combat foreign antigens. As with any recombination event, tight control is essential to prevent the occurrence of genetic anomalies that drive cellular transformation. One important aspect of regulation is directed targeting of the RAG recombinase. Indeed, RAG accumulates at the 3' end of individual antigen receptor loci poised for rearrangement; however, it is not known whether focal binding is involved in regulating cleavage, and what mechanisms lead to enrichment of RAG in this region. Here, we show that monoallelic looping out of the 3' end of the T cell receptor α (Tcra) locus, coupled with transcription and increased chromatin/nuclear accessibility, is linked to focal RAG binding and ATM-mediated regulation of monoallelic cleavage on looped-out 3' regions. Our data identify higher-order loop formation as a key determinant of directed RAG targeting and the maintenance of genome stability.
Collapse
Affiliation(s)
- Julie Chaumeil
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods 2012; 9:969-72. [PMID: 22961246 DOI: 10.1038/nmeth.2173] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/17/2012] [Indexed: 01/22/2023]
Abstract
Regulatory DNA elements can control the expression of distant genes via physical interactions. Here we present a cost-effective methodology and computational analysis pipeline for robust characterization of the physical organization around selected promoters and other functional elements using chromosome conformation capture combined with high-throughput sequencing (4C-seq). Our approach can be multiplexed and routinely integrated with other functional genomics assays to facilitate physical characterization of gene regulation.
Collapse
|
34
|
Sexton T, Kurukuti S, Mitchell JA, Umlauf D, Nagano T, Fraser P. Sensitive detection of chromatin coassociations using enhanced chromosome conformation capture on chip. Nat Protoc 2012; 7:1335-50. [PMID: 22722369 DOI: 10.1038/nprot.2012.071] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromosome conformation capture (3C) is a powerful technique for analyzing spatial chromatin organization in vivo. Technical variants of the assay ('4C') allow the systematic detection of genome-wide coassociations with bait sequences of interest, enabling the nuclear environments of specific genes to be probed. We describe enhanced 4C (e4C, enhanced chromosome conformation capture on chip), a technique incorporating additional enrichment steps for bait-specific sequences, and thus improving sensitivity in the detection of weaker, distal chromatin coassociations. In brief, e4C entails the fixation, restriction digestion and ligation steps of conventional 3C, with an optional chromatin immunoprecipitation (ChIP) step to select for subsets of chromatin coassociations, followed by bait enrichment by biotinylated primer extension and pull-down, adapter ligation and PCR amplification. Chromatin coassociations with the bait sequence can then be assessed by hybridizing e4C products to microarrays or sequencing. The e4C procedure takes approximately 1 week to go from tissue to DNA ready for microarray hybridization.
Collapse
Affiliation(s)
- Tom Sexton
- Laboratory of Chromatin and Cell Biology, Institute of Human Genetics, Montpellier, France
| | | | | | | | | | | |
Collapse
|
35
|
Splinter E, de Wit E, van de Werken HJG, Klous P, de Laat W. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. Methods 2012; 58:221-30. [PMID: 22609568 DOI: 10.1016/j.ymeth.2012.04.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/29/2012] [Accepted: 04/30/2012] [Indexed: 11/26/2022] Open
Abstract
Chromosome Conformation Capture (3C) and 3C-based technologies are constantly evolving in order to probe nuclear organization with higher depth and resolution. One such method is 4C-technology that allows the investigation of the nuclear environment of a locus of choice. The use of Illumina next generation sequencing as a detection platform for the analysis of 4C data has further improved the sensitivity and resolution of this method. Here we provide a step-by-step protocol for 4C-seq, describing the procedure from the initial template preparation until the final data analysis, interchanged with background information and considerations.
Collapse
Affiliation(s)
- Erik Splinter
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, Utrecht 3584 CT, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Tolhuis B, Blom M, van Lohuizen M. Chromosome conformation capture on chip in single Drosophila melanogaster tissues. Methods 2012; 58:231-42. [PMID: 22525789 DOI: 10.1016/j.ymeth.2012.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 11/17/2022] Open
Abstract
Chromosomes are protein-DNA complexes that encode life. In a cell nucleus, chromosomes are folded in a highly specific manner, which connects strongly to some of their paramount functions, such as DNA replication and gene transcription. Chromosome conformation capture methodologies allow researchers to detect chromosome folding, by quantitatively measuring which genomic sequences are in close proximity in nuclear space. Here, we describe a modified chromosome conformation capture on chip (4C) protocol, which is specifically designed for detection of chromosome folding in a single Drosophila melanogaster tissue. Our protocol enables 4C analyses on a limited number of cells, which is crucial for fly tissues, because these contain relatively low numbers of cells. We used this protocol to demonstrate that target genes of Polycomb group proteins interact with each other in nuclear space of third instar larval brain cells. Major benefits of using D. melanogaster in 4C studies are: (1) powerful and tractable genetic approaches can be incorporated; (2) short generation time allows use of complex genotypes; and (3) compact and well annotated genome. We anticipate that our sensitized 4C method will be generally applicable to detect chromosome folding in other fly tissues.
Collapse
Affiliation(s)
- Bas Tolhuis
- Division of Molecular Genetics and the Centre for Biomedical Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | |
Collapse
|
37
|
Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 2012; 148:458-72. [PMID: 22265598 DOI: 10.1016/j.cell.2012.01.010] [Citation(s) in RCA: 1411] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/15/2011] [Accepted: 01/04/2012] [Indexed: 01/27/2023]
Abstract
Chromosomes are the physical realization of genetic information and thus form the basis for its readout and propagation. Here we present a high-resolution chromosomal contact map derived from a modified genome-wide chromosome conformation capture approach applied to Drosophila embryonic nuclei. The data show that the entire genome is linearly partitioned into well-demarcated physical domains that overlap extensively with active and repressive epigenetic marks. Chromosomal contacts are hierarchically organized between domains. Global modeling of contact density and clustering of domains show that inactive domains are condensed and confined to their chromosomal territories, whereas active domains reach out of the territory to form remote intra- and interchromosomal contacts. Moreover, we systematically identify specific long-range intrachromosomal contacts between Polycomb-repressed domains. Together, these observations allow for quantitative prediction of the Drosophila chromosomal contact map, laying the foundation for detailed studies of chromosome structure and function in a genetically tractable system.
Collapse
Affiliation(s)
- Tom Sexton
- Institut de Génétique Humaine, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Boutanaev AM, Nemchinov LG. Are clustered genes in the genomes of Arabidopsis and Drosophila regulated differently? Gene 2012; 491:284-8. [PMID: 22008664 DOI: 10.1016/j.gene.2011.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/22/2011] [Accepted: 09/24/2011] [Indexed: 10/16/2022]
Abstract
In the eukaryotic genome, genes with similar functions tend to co-localize in close proximity. Such gene clusters together with non-clustered genes constitute a chromatin domain which is a higher order regulatory unit. On a lower level co-expressed genes are regulated by differential activity of transcription factors (TF). We compared genome-wide distributions of TF in gene clusters in the genomes of Drosophila melanogaster and Arabidopsis thaliana. This revealed a significant excess of TF genes in gene clusters of the Arabidopsis genome, whereas in the genome of Drosophila distribution of TF in gene clusters did not differ from stochastic. We speculate that these alternatives could lead to different pathways of regulation of clustered genes in two species and to evolutionary-progressive changes in architecture of regulatory networks, governing the activity of clustered genes in the animal kingdom.
Collapse
Affiliation(s)
- Alexander M Boutanaev
- USDA/ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, Beltsville MD 20705, USA.
| | | |
Collapse
|
39
|
Abstract
Over the past 10 years, the development of chromosome conformation capture (3C) technology and the subsequent genomic variants thereof have enabled the analysis of nuclear organization at an unprecedented resolution and throughput. The technology relies on the original and, in hindsight, remarkably simple idea that digestion and religation of fixed chromatin in cells, followed by the quantification of ligation junctions, allows for the determination of DNA contact frequencies and insight into chromosome topology. Here we evaluate and compare the current 3C-based methods (including 4C [chromosome conformation capture-on-chip], 5C [chromosome conformation capture carbon copy], HiC, and ChIA-PET), summarize their contribution to our current understanding of genome structure, and discuss how shape influences genome function.
Collapse
Affiliation(s)
- Elzo de Wit
- Hubrecht Institute-KNAW, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Wouter de Laat
- Hubrecht Institute-KNAW, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
40
|
Abstract
Chromosome conformation capture (3C) technology and its genome-wide derivatives have revolutionized our knowledge on chromatin folding and nuclear organization. 4C-seq Technology combines 3C principles with high-throughput sequencing (4C-seq) to enable for unbiased genome-wide screens for DNA contacts made by single genomic sites of interest. Here, we discuss in detail the design, application, and data analysis of 4C-seq experiments. Based on many hundreds of different 4C-seq experiments, we define criteria to assess data quality and show how different restriction enzymes and cross-linking conditions affect results. We describe in detail the mapping strategy of 4C-seq reads and show advanced strategies for data analysis.
Collapse
|
41
|
Ranz JM, Díaz-Castillo C, Petersen R. Conserved Gene Order at the Nuclear Periphery in Drosophila. Mol Biol Evol 2011; 29:13-6. [DOI: 10.1093/molbev/msr178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
42
|
Variegated gene expression caused by cell-specific long-range DNA interactions. Nat Cell Biol 2011; 13:944-51. [PMID: 21706023 DOI: 10.1038/ncb2278] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 05/09/2011] [Indexed: 12/21/2022]
Abstract
Mammalian genomes contain numerous regulatory DNA sites with unknown target genes. We used mice with an extra β-globin locus control region (LCR) to investigate how a regulator searches the genome for target genes. We find that the LCR samples a restricted nuclear subvolume, wherein it preferentially contacts genes controlled by shared transcription factors. No contacted gene is detectably upregulated except for endogenous β-globin genes located on another chromosome. This demonstrates genetically that mammalian trans activation is possible, but suggests that it will be rare. Trans activation occurs not pan-cellularly, but in 'jackpot' cells enriched for the interchromosomal interaction. Therefore, cell-specific long-range DNA contacts can cause variegated expression.
Collapse
|
43
|
Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJG, Zhu Y, Kaaij LJT, van Ijcken W, Gribnau J, Heard E, de Laat W. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev 2011; 25:1371-83. [PMID: 21690198 DOI: 10.1101/gad.633311] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional topology of DNA in the cell nucleus provides a level of transcription regulation beyond the sequence of the linear DNA. To study the relationship between the transcriptional activity and the spatial environment of a gene, we used allele-specific chromosome conformation capture-on-chip (4C) technology to produce high-resolution topology maps of the active and inactive X chromosomes in female cells. We found that loci on the active X form multiple long-range interactions, with spatial segregation of active and inactive chromatin. On the inactive X, silenced loci lack preferred interactions, suggesting a unique random organization inside the inactive territory. However, escapees, among which is Xist, are engaged in long-range contacts with each other, enabling identification of novel escapees. Deletion of Xist results in partial refolding of the inactive X into a conformation resembling the active X without affecting gene silencing or DNA methylation. Our data point to a role for Xist RNA in shaping the conformation of the inactive X chromosome at least partially independent of transcription.
Collapse
Affiliation(s)
- Erik Splinter
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Thomas S, Li XY, Sabo PJ, Sandstrom R, Thurman RE, Canfield TK, Giste E, Fisher W, Hammonds A, Celniker SE, Biggin MD, Stamatoyannopoulos JA. Dynamic reprogramming of chromatin accessibility during Drosophila embryo development. Genome Biol 2011; 12:R43. [PMID: 21569360 PMCID: PMC3219966 DOI: 10.1186/gb-2011-12-5-r43] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/21/2011] [Accepted: 05/11/2011] [Indexed: 12/22/2022] Open
Abstract
Background The development of complex organisms is believed to involve progressive restrictions in cellular fate. Understanding the scope and features of chromatin dynamics during embryogenesis, and identifying regulatory elements important for directing developmental processes remain key goals of developmental biology. Results We used in vivo DNaseI sensitivity to map the locations of regulatory elements, and explore the changing chromatin landscape during the first 11 hours of Drosophila embryonic development. We identified thousands of conserved, developmentally dynamic, distal DNaseI hypersensitive sites associated with spatial and temporal expression patterning of linked genes and with large regions of chromatin plasticity. We observed a nearly uniform balance between developmentally up- and down-regulated DNaseI hypersensitive sites. Analysis of promoter chromatin architecture revealed a novel role for classical core promoter sequence elements in directing temporally regulated chromatin remodeling. Another unexpected feature of the chromatin landscape was the presence of localized accessibility over many protein-coding regions, subsets of which were developmentally regulated or associated with the transcription of genes with prominent maternal RNA contributions in the blastoderm. Conclusions Our results provide a global view of the rich and dynamic chromatin landscape of early animal development, as well as novel insights into the organization of developmentally regulated chromatin features.
Collapse
Affiliation(s)
- Sean Thomas
- Department of Genome Sciences, University of Washington, Foege S310A, 1705 NE Pacific Street, Box 355065, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mikhaylova LM, Nurminsky DI. Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome. BMC Biol 2011; 9:29. [PMID: 21542906 PMCID: PMC3104377 DOI: 10.1186/1741-7007-9-29] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/04/2011] [Indexed: 02/02/2023] Open
Abstract
Background Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI) has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven. Results Microarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencing-associated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes. Conclusions Our data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissue-biased genes to the autosomes.
Collapse
Affiliation(s)
- Lyudmila M Mikhaylova
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, USA
| | | |
Collapse
|
46
|
Tolhuis B, Blom M, Kerkhoven RM, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B. Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet 2011; 7:e1001343. [PMID: 21455484 PMCID: PMC3063757 DOI: 10.1371/journal.pgen.1001343] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 02/16/2011] [Indexed: 01/15/2023] Open
Abstract
Polycomb group (PcG) proteins bind and regulate hundreds of genes. Previous evidence has suggested that long-range chromatin interactions may contribute to the regulation of PcG target genes. Here, we adapted the Chromosome Conformation Capture on Chip (4C) assay to systematically map chromosomal interactions in Drosophila melanogaster larval brain tissue. Our results demonstrate that PcG target genes interact extensively with each other in nuclear space. These interactions are highly specific for PcG target genes, because non-target genes with either low or high expression show distinct interactions. Notably, interactions are mostly limited to genes on the same chromosome arm, and we demonstrate that a topological rather than a sequence-based mechanism is responsible for this constraint. Our results demonstrate that many interactions among PcG target genes exist and that these interactions are guided by overall chromosome architecture.
Collapse
Affiliation(s)
- Bas Tolhuis
- Division of Molecular Genetics and Centre for Biomedical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Weber CC, Hurst LD. Support for multiple classes of local expression clusters in Drosophila melanogaster, but no evidence for gene order conservation. Genome Biol 2011; 12:R23. [PMID: 21414197 PMCID: PMC3129673 DOI: 10.1186/gb-2011-12-3-r23] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/04/2011] [Accepted: 03/17/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Gene order in eukaryotic genomes is not random, with genes with similar expression profiles tending to cluster. In yeasts, the model taxon for gene order analysis, such syntenic clusters of non-homologous genes tend to be conserved over evolutionary time. Whether similar clusters show gene order conservation in other lineages is, however, undecided. Here, we examine this issue in Drosophila melanogaster using high-resolution chromosome rearrangement data. RESULTS We show that D. melanogaster has at least three classes of expression clusters: first, as observed in mammals, large clusters of functionally unrelated housekeeping genes; second, small clusters of functionally related highly co-expressed genes; and finally, as previously defined by Spellman and Rubin, larger domains of co-expressed but functionally unrelated genes. The latter are, however, not independent of the small co-expression clusters and likely reflect a methodological artifact. While the small co-expression and housekeeping/essential gene clusters resemble those observed in yeast, in contrast to yeast, we see no evidence that any of the three cluster types are preserved as synteny blocks. If anything, adjacent co-expressed genes are more likely to become rearranged than expected. Again in contrast to yeast, in D. melanogaster, gene pairs with short intergene distance or in divergent orientations tend to have higher rearrangement rates. These findings are consistent with co-expression being partly due to shared chromatin environment. CONCLUSIONS We conclude that, while similar in terms of cluster types, gene order evolution has strikingly different patterns in yeasts and in D. melanogaster, although recombination is associated with gene order rearrangement in both.
Collapse
Affiliation(s)
- Claudia C Weber
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | |
Collapse
|
48
|
Wang GZ, Lercher MJ, Hurst LD. Transcriptional coupling of neighboring genes and gene expression noise: evidence that gene orientation and noncoding transcripts are modulators of noise. Genome Biol Evol 2011; 3:320-31. [PMID: 21402863 PMCID: PMC5654408 DOI: 10.1093/gbe/evr025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
How is noise in gene expression modulated? Do mechanisms of noise control impact genome organization? In yeast, the expression of one gene can affect that of a very close neighbor. As the effect is highly regionalized, we hypothesize that genes in different orientations will have differing degrees of coupled expression and, in turn, different noise levels. Divergently organized gene pairs, in particular those with bidirectional promoters, have close promoters, maximizing the likelihood that expression of one gene affects the neighbor. With more distant promoters, the same is less likely to hold for gene pairs in nondivergent orientation. Stochastic models suggest that coupled chromatin dynamics will typically result in low abundance-corrected noise (ACN). Transcription of noncoding RNA (ncRNA) from a bidirectional promoter, we thus hypothesize to be a noise-reduction, expression-priming, mechanism. The hypothesis correctly predicts that protein-coding genes with a bidirectional promoter, including those with a ncRNA partner, have lower ACN than other genes and divergent gene pairs uniquely have correlated ACN. Moreover, as predicted, ACN increases with the distance between promoters. The model also correctly predicts ncRNA transcripts to be often divergently transcribed from genes that a priori would be under selection for low noise (essential genes, protein complex genes) and that the latter genes should commonly reside in divergent orientation. Likewise, that genes with bidirectional promoters are rare subtelomerically, cluster together, and are enriched in essential gene clusters is expected and observed. We conclude that gene orientation and transcription of ncRNAs are candidate modulators of noise.
Collapse
Affiliation(s)
- Guang-Zhong Wang
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | | | | |
Collapse
|
49
|
Meister P, Mango SE, Gasser SM. Locking the genome: nuclear organization and cell fate. Curr Opin Genet Dev 2011; 21:167-74. [PMID: 21345665 DOI: 10.1016/j.gde.2011.01.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 01/12/2023]
Abstract
The differentiation of pluripotent or totipotent cells into various differentiated cell types is accompanied by a restriction of gene expression patterns, alteration in histone and DNA methylation, and changes in the gross nuclear organization of eu- and heterochromatic domains. Several recent studies have coupled genome-wide mapping of histone modifications with changes in gene expression. Other studies have examined changes in the subnuclear positioning of tissue-specific genes upon transcriptional induction or repression. Here we summarize intriguing correlations of the three phenomena, which suggest that in some cases causal relationships may exist.
Collapse
Affiliation(s)
- Peter Meister
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | |
Collapse
|
50
|
Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J, Tixier V, Mas A, Cavalli G. Polycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila. Cell 2011; 144:214-26. [DOI: 10.1016/j.cell.2010.12.026] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/22/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
|