1
|
Goodwyn E. The innate story code. Biosystems 2024; 244:105285. [PMID: 39128645 DOI: 10.1016/j.biosystems.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Code biology reveals a great many codes beyond the genetic code as integral to biological functioning. Recent scholars have linked the growing field of code biology to analytical psychology, confirming that the encoded information inherited by the human organism is indeed massive and capable of great sophistication. In this discussion, I will expand on this project by showing how developments in embodied cognition reveal a code that links the world of universal emotional responses to common experiences to the world of embodied visuospatial narratives--i.e., the "archetypes" of analytical psychology. Viewed in this manner, archetypes become spontaneous symbolic narratives that symbolize universal emotional responses to typical human environments. Such symbolic narratives aim toward adaptation, and use a universal code that maps such situations to visuospatial narratives, with the adaptor being the human body itself.
Collapse
Affiliation(s)
- Erik Goodwyn
- UK Eastern State Hospital, Billings Clinic Dept of Psychiatry, University of Kentucky Dept of Psychiatry, University of Louisville Dept of Psychiatry, USA.
| |
Collapse
|
2
|
Brassington L, Arner AM, Watowich MM, Damstedt J, Ng KS, Lim YAL, Venkataraman VV, Wallace IJ, Kraft TS, Lea AJ. Integrating the Thrifty Genotype and Evolutionary Mismatch Hypotheses to understand variation in cardiometabolic disease risk. Evol Med Public Health 2024; 12:214-226. [PMID: 39484023 PMCID: PMC11525211 DOI: 10.1093/emph/eoae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/18/2024] [Indexed: 11/03/2024] Open
Abstract
More than 60 years ago, James Neel proposed the Thrifty Genotype Hypothesis to explain the widespread prevalence of type 2 diabetes in Western, industrial contexts. This hypothesis posits that variants linked to conservative energy usage and increased fat deposition would have been favored throughout human evolution due to the advantages they could provide during periods of resource limitation. However, in industrial environments, these variants instead produce an increased risk of obesity, metabolic syndrome, type 2 diabetes, and related health issues. This hypothesis has been popular and impactful, with thousands of citations, many ongoing debates, and several spin-off theories in biomedicine, evolutionary biology, and anthropology. However, despite great attention, the applicability and utility of the Thrifty Genotype Hypothesis (TGH) to modern human health remains, in our opinion, unresolved. To move research in this area forward, we first discuss the original formulation of the TGH and its critiques. Second, we trace the TGH to updated hypotheses that are currently at the forefront of the evolutionary medicine literature-namely, the Evolutionary Mismatch Hypothesis. Third, we lay out empirical predictions for updated hypotheses and evaluate them against the current literature. Finally, we discuss study designs that could be fruitful for filling current knowledge gaps; here, we focus on partnerships with subsistence-level groups undergoing lifestyle transitions, and we present data from an ongoing study with the Orang Asli of Malaysia to illustrate this point. Overall, we hope this synthesis will guide new empirical research aimed at understanding how the human evolutionary past interacts with our modern environments to influence cardiometabolic health.
Collapse
Affiliation(s)
- Layla Brassington
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Audrey M Arner
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Marina M Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Jane Damstedt
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Kee Seong Ng
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vivek V Venkataraman
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Ian J Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Thomas S Kraft
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Amanda J Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
3
|
Reynolds AZ, Niedbalski SD. Sex-biased gene regulation varies across human populations as a result of adaptive evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24888. [PMID: 38100225 PMCID: PMC11279473 DOI: 10.1002/ajpa.24888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 03/03/2024]
Abstract
OBJECTIVES Studies of human sexual dimorphism and gender disparities in health focus on ostensibly universal molecular sex differences, such as sex chromosomes and circulating hormone levels, while ignoring the extraordinary diversity in biology, behavior, and culture acquired by different human populations over their unique evolutionary histories. MATERIALS AND METHODS Using RNA-Seq data and whole genome sequences from 1000G and HGDP, we investigate variation in sex-biased gene expression across 11 human populations and test whether population-level variation in sex-biased expression may have resulted from adaptive evolution in regions containing sex-specific regulatory variants. RESULTS We find that sex-biased gene expression in humans is highly variable, mostly population-specific, and demonstrates between population reversals. Expression quantitative trait locus mapping reveals sex-specific regulatory regions with evidence of recent positive natural selection, suggesting that variation in sex-biased expression may have evolved as an adaptive response to ancestral environments experienced by human populations. DISCUSSION These results indicate that sex-biased gene expression is more flexible than previously thought and is not generally shared among human populations. Instead, molecular phenotypes associated with sex depend on complex interactions between population-specific molecular evolution and physiological responses to contemporary socioecologies.
Collapse
Affiliation(s)
- Adam Z. Reynolds
- Department of Anthropology, University of New Mexico, Albuquerque, NM
| | | |
Collapse
|
4
|
Salles FJ, Frydas IS, Papaioannou N, Schultz DR, Luz MS, Rogero MM, Sarigiannis DA, Olympio KPK. Occupational exposure to potentially toxic elements alters gene expression profiles in formal and informal Brazilian workers. ENVIRONMENTAL RESEARCH 2023; 236:116835. [PMID: 37543127 DOI: 10.1016/j.envres.2023.116835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Chemical elements, such as toxic metals, have previously demonstrated their ability to alter gene expression in humans and other species. In this study, microarray analysis was used to compare the gene expression profiles of different occupational exposure populations: a) informal workers who perform soldering of jewelry inside their houses (n = 22) in São Paulo (SP) State; and b) formal workers from a steel company (n = 10) in Rio de Janeiro (RJ) state, Brazil. Control participants were recruited from the same neighborhoods without occupational chemical exposure (n = 19 in SP and n = 8 in RJ). A total of 68 blood samples were collected and RNA was extracted and hybridized using an Agilent microarray platform. Data pre-processing, statistical and pathway analysis were performed using GeneSpring software. Different expression was detected by fold-change analysis resulting in 16 up- and 33 down-regulated genes in informal workers compared to the control group. Pathway analysis revealed genes enriched in MAPK, Toll-like receptor, and NF-kappa B signaling pathways, involved in inflammatory and immune responses. In formal workers, 20 up- and 50 down-regulated genes were found related to antimicrobial peptides, defensins, neutrophil degranulation, Fc-gamma receptor-dependent phagocytosis, and pathways associated with atherosclerosis development, which is one of the main factors involved in the progression of cardiovascular diseases. The gene IFI27 was the only one commonly differentially expressed between informal and formal workers and is known to be associated with various types of cancer. In conclusion, differences in gene expression related to occupational exposure are mainly associated with inflammation and immune response. Previous research has identified a link between inflammation and immune responses and the development of chronic diseases, suggesting that prolonged occupational exposures to potentially toxic elements in Brazilian metal workers could lead to negative health outcomes. Further analysis should be carried out to investigate its direct effects and to validate causal associations.
Collapse
Affiliation(s)
- Fernanda Junqueira Salles
- Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, CEP 01246-904, São Paulo, SP, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP, 01246-000, Brazil.
| | - Ilias S Frydas
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece.
| | - Nafsika Papaioannou
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece.
| | - Dayna R Schultz
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece.
| | - Maciel Santos Luz
- Laboratory of Metallurgical Process, Institute for Technological Research, Sao Paulo, SP, Brazil.
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of Sao Paulo, 01246-904 São Paulo, Brazil.
| | - Dimosthenis A Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; National Hellenic Research Foundation, Athens, Greece; Environmental Health Engineering, Science, Technology and Society Department, School for Advanced Study (IUSS), Pavia, Italy.
| | - Kelly Polido Kaneshiro Olympio
- Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, CEP 01246-904, São Paulo, SP, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
5
|
Ning Z, Tan X, Yuan Y, Huang K, Pan Y, Tian L, Lu Y, Wang X, Qi R, Lu D, Yang Y, Guan Y, Mamatyusupu D, Xu S. Expression profiles of east-west highly differentiated genes in Uyghur genomes. Natl Sci Rev 2023; 10:nwad077. [PMID: 37138773 PMCID: PMC10150800 DOI: 10.1093/nsr/nwad077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 05/05/2023] Open
Abstract
It remains unknown and debatable how European-Asian-differentiated alleles affect individual phenotypes. Here, we made the first effort to analyze the expression profiles of highly differentiated genes with eastern and western origins in 90 Uyghurs using whole-genome (30× to 60×) and transcriptome data. We screened 921 872 east-west highly differentiated genetic variants, of which ∼4.32% were expression quantitative trait loci (eQTLs), ∼0.12% were alternative splicing quantitative trait loci (sQTLs), and ∼0.12% showed allele-specific expression (ASE). The 8305 highly differentiated eQTLs of strong effects appear to have undergone natural selection, associated with immunity and metabolism. European-origin alleles tend to be more biasedly expressed; highly differentiated ASEs were enriched in diabetes-associated genes, likely affecting the diabetes susceptibility in the Uyghurs. We proposed an admixture-induced expression model to dissect the highly differentiated expression profiles. We provide new insights into the genetic basis of phenotypic differentiation between Western and Eastern populations, advancing our understanding of the impact of genetic admixture.
Collapse
Affiliation(s)
| | | | | | - Ke Huang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Tian
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoji Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruicheng Qi
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongsheng Lu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yaqun Guan
- Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi 830011, China
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, Urumqi 830046, China
| | | |
Collapse
|
6
|
Slavich GM, Mengelkoch S, Cole SW. Human social genomics: Concepts, mechanisms, and implications for health. LIFESTYLE MEDICINE 2023. [DOI: 10.1002/lim2.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Affiliation(s)
- George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences University of California Los Angeles California USA
| | - Summer Mengelkoch
- Department of Psychiatry and Biobehavioral Sciences University of California Los Angeles California USA
| | - Steven W. Cole
- Department of Psychiatry and Biobehavioral Sciences University of California Los Angeles California USA
- Department of Medicine University of California Los Angeles California USA
| |
Collapse
|
7
|
Kelly DE, Ramdas S, Ma R, Rawlings-Goss RA, Grant GR, Ranciaro A, Hirbo JB, Beggs W, Yeager M, Chanock S, Nyambo TB, Omar SA, Woldemeskel D, Belay G, Li H, Brown CD, Tishkoff SA. The genetic and evolutionary basis of gene expression variation in East Africans. Genome Biol 2023; 24:35. [PMID: 36829244 PMCID: PMC9951478 DOI: 10.1186/s13059-023-02874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a powerful approach for identifying the genes and molecular mechanisms underlying human traits and diseases, though most studies have focused on individuals of European descent. While important progress has been made to study a greater diversity of human populations, many groups remain unstudied, particularly among indigenous populations within Africa. To better understand the genetics of gene regulation in East Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162 diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of predominantly European ancestry and identify candidate genes under selection in human populations. RESULTS We find the gene regulatory architecture of African and non-African populations is broadly shared, though there is a considerable amount of variation at individual loci across populations. Comparing our analyses to an equivalently sized cohort of European Americans, we find that QTL mapping in Africans improves the detection of expression QTLs and fine-mapping of causal variation. Integrating our QTL scans with signatures of natural selection, we find several genes related to immunity and metabolism that are highly differentiated between Africans and non-Africans, as well as a gene associated with pigmentation. CONCLUSION Extending QTL mapping studies beyond European ancestry, particularly to diverse indigenous populations, is vital for a complete understanding of the genetic architecture of human traits and can reveal novel functional variation underlying human traits and disease.
Collapse
Affiliation(s)
- Derek E Kelly
- Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shweta Ramdas
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Rong Ma
- Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Jibril B Hirbo
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William Beggs
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Meredith Yeager
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, MD, USA
| | - Thomas B Nyambo
- Department of Biochemistry, Kampala International University in Tanzania, Dar Es Salaam, Tanzania
| | - Sabah A Omar
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dawit Woldemeskel
- Microbial Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gurja Belay
- Microbial Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hongzhe Li
- Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher D Brown
- Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah A Tishkoff
- Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
8
|
Sanya RE, Nalwoga A, Grencis RK, Elliott AM, Webb EL, Andia Biraro I. Profiles of inflammatory markers and their association with cardiometabolic parameters in rural and urban Uganda. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16651.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Inflammation may be one of the pathways explaining differences in cardiometabolic risk between urban and rural residents. We investigated associations of inflammatory markers with rural versus urban residence, and with selected cardiometabolic parameters previously observed to differ between rural and urban residents: homeostatic model assessment of insulin resistance (HOMA-IR), fasting blood glucose (FBG), blood pressure (BP) and body mass index (BMI). Methods: From two community surveys conducted in Uganda, 313 healthy individuals aged ≥ 10 years were selected by age- and sex-stratified random sampling (rural Lake Victoria island communities, 212; urban Entebbe municipality, 101). Fluorescence intensities of plasma cytokines and chemokines were measured using a bead-based multiplex immunoassay. We used linear regression to examine associations between the analytes and rural-urban residence and principal component analysis (PCA) to further investigate patterns in the relationships. Correlations between analytes and metabolic parameters were assessed using Pearson’s correlation coefficient. Results: The urban setting had higher mean levels of IL-5 (3.27 vs 3.14, adjusted mean difference [95% confidence interval] 0.12[0.01,0.23] p=0.04), IFN-⍺ (26.80 vs 20.52, 6.30[2.18,10.41] p=0.003), EGF (5.67 vs 5.07, 0.60[0.32,0.98] p<0.00001), VEGF (3.68 vs 3.28, 0.40[0.25,0.56] p<0.00001), CD40 Ligand (4.82 vs 4.51, 0.31[0.12, 0.50] p=0.001) and Serpin-E1 (9.57 vs 9.46, 0.11[0.05,0.17] p<0.00001), but lower levels of GMCSF (2.94 vs 3.05, -0.10[-0.19,-0.02] p=0.02), CCL2 (2.82 vs 3.10, -0.45[-0.70,-0.21] p<0.00001) and CXCL10 (5.48 vs 5.96, -0.49[-0.71,-0.27] p<0.00001), compared to the rural setting. In PCA, the urban setting had lower representation of some classical inflammatory mediators but higher representation of various chemoattractants and vasoactive peptides. HOMA-IR, FBG, BP and BMI were positively correlated with several principal components characterised by pro-inflammatory analytes. Conclusions: In developing countries, immunological profiles differ between rural and urban environments. Differential expression of certain pro-inflammatory mediators may have important health consequences including contributing to increased cardiometabolic risk observed in the urban environment.
Collapse
|
9
|
Whole-exome analysis in Tunisian Imazighen and Arabs shows the impact of demography in functional variation. Sci Rep 2021; 11:21125. [PMID: 34702931 PMCID: PMC8548440 DOI: 10.1038/s41598-021-00576-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
Human populations are genetically affected by their demographic history, which shapes the distribution of their functional genomic variation. However, the genetic impact of recent demography is debated. This issue has been studied in different populations, but never in North Africans, despite their relevant cultural and demographic diversity. In this study we address the question by analyzing new whole-exome sequences from two culturally different Tunisian populations, an isolated Amazigh population and a close non-isolated Arab-speaking population, focusing on the distribution of functional variation. Both populations present clear differences in their variant frequency distribution, in general and for putatively damaging variation. This suggests a relevant effect in the Amazigh population of genetic isolation, drift, and inbreeding, pointing to relaxed purifying selection. We also discover the enrichment in Imazighen of variation associated to specific diseases or phenotypic traits, but the scarce genetic and biomedical data in the region limits further interpretation. Our results show the genomic impact of recent demography and reveal a clear genetic differentiation probably related to culture. These findings highlight the importance of considering cultural and demographic heterogeneity within North Africa when defining population groups, and the need for more data to improve knowledge on the region's health and disease landscape.
Collapse
|
10
|
Maurya R, Kanakan A, Vasudevan JS, Chattopadhyay P, Pandey R. Infection outcome needs two to tango: human host and the pathogen. Brief Funct Genomics 2021; 21:90-102. [PMID: 34402498 PMCID: PMC8385967 DOI: 10.1093/bfgp/elab037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases are potential drivers for human evolution, through a complex, continuous and dynamic interaction between the host and the pathogen/s. It is this dynamic interaction that contributes toward the clinical outcome of a pathogenic disease. These are modulated by contributions from the human genetic variants, transcriptional response (including noncoding RNA) and the pathogen’s genome architecture. Modern genomic tools and techniques have been crucial for the detection and genomic characterization of pathogens with respect to the emerging infectious diseases. Aided by next-generation sequencing (NGS), risk stratification of host population/s allows for the identification of susceptible subgroups and better disease management. Nevertheless, many challenges to a general understanding of host–pathogen interactions remain. In this review, we elucidate how a better understanding of the human host-pathogen interplay can substantially enhance, and in turn benefit from, current and future applications of multi-omics based approaches in infectious and rare diseases. This includes the RNA-level response, which modulates the disease severity and outcome. The need to understand the role of human genetic variants in disease severity and clinical outcome has been further highlighted during the Coronavirus disease 2019 (COVID-19) pandemic. This would enhance and contribute toward our future pandemic preparedness.
Collapse
Affiliation(s)
- Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akshay Kanakan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
| | - Janani Srinivasa Vasudevan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi-110007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
11
|
Raza RZ, Ma L, Zhang Z, Bao Y, Abbasi AA. Selection trends on nasal-associated SNP variants across human populations. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Nkurunungi G, Zirimenya L, Natukunda A, Nassuuna J, Oduru G, Ninsiima C, Zziwa C, Akello F, Kizindo R, Akello M, Kaleebu P, Wajja A, Luzze H, Cose S, Webb E, Elliott AM. Population differences in vaccine responses (POPVAC): scientific rationale and cross-cutting analyses for three linked, randomised controlled trials assessing the role, reversibility and mediators of immunomodulation by chronic infections in the tropics. BMJ Open 2021; 11:e040425. [PMID: 33593767 PMCID: PMC7893603 DOI: 10.1136/bmjopen-2020-040425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/01/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Vaccine-specific immune responses vary between populations and are often impaired in low income, rural settings. Drivers of these differences are not fully elucidated, hampering identification of strategies for optimising vaccine effectiveness. We hypothesise that urban-rural (and regional and international) differences in vaccine responses are mediated to an important extent by differential exposure to chronic infections, particularly parasitic infections. METHODS AND ANALYSIS Three related trials sharing core elements of study design and procedures (allowing comparison of outcomes across the trials) will test the effects of (1) individually randomised intervention against schistosomiasis (trial A) and malaria (trial B), and (2) Bacillus Calmette-Guérin (BCG) revaccination (trial C), on a common set of vaccine responses. We will enrol adolescents from Ugandan schools in rural high-schistosomiasis (trial A) and rural high-malaria (trial B) settings and from an established urban birth cohort (trial C). All participants will receive BCG on day '0'; yellow fever, oral typhoid and human papilloma virus (HPV) vaccines at week 4; and HPV and tetanus/diphtheria booster vaccine at week 28. Primary outcomes are BCG-specific IFN-γ responses (8 weeks after BCG) and for other vaccines, antibody responses to key vaccine antigens at 4 weeks after immunisation. Secondary analyses will determine effects of interventions on correlates of protective immunity, vaccine response waning, priming versus boosting immunisations, and parasite infection status and intensity. Overarching analyses will compare outcomes between the three trial settings. Sample archives will offer opportunities for exploratory evaluation of the role of immunological and 'trans-kingdom' mediators in parasite modulation of vaccine-specific responses. ETHICS AND DISSEMINATION Ethics approval has been obtained from relevant Ugandan and UK ethics committees. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications. TRIAL REGISTRATION NUMBERS ISRCTN60517191, ISRCTN62041885, ISRCTN10482904.
Collapse
Affiliation(s)
- Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Ludoviko Zirimenya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Agnes Natukunda
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Gloria Oduru
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Caroline Ninsiima
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Christopher Zziwa
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Florence Akello
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Robert Kizindo
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Mirriam Akello
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Anne Wajja
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Henry Luzze
- Uganda National Expanded Program on Immunisation, Ministry of Health, Kampala, Uganda
| | - Stephen Cose
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, London
| | - Emily Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, London
| |
Collapse
|
13
|
Bickler SW, Prieto JM, Cauvi DM, De Cos V, Nasamran C, Ameh E, Amin S, Nicholson S, Din H, Mocumbi AO, Noormahomed EV, Tellez-Isaias G, Fisch KM, De Maio A. Differential expression of nuclear genes encoding mitochondrial proteins from urban and rural populations in Morocco. Cell Stress Chaperones 2020; 25:847-856. [PMID: 32319023 PMCID: PMC7591688 DOI: 10.1007/s12192-020-01108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
Urbanization in low-income countries represents an important inflection point in the epidemiology of disease, with rural populations experiencing high rates of chronic and recurrent infections and urban populations displaying a profile of noncommunicable diseases. To investigate if urbanization alters the expression of genes encoding mitochondrial proteins, we queried gene microarray data from rural and urban populations living in Morocco (GSE17065). The R Bioconductor packages edgeR and limma were used to identify genes with different expression. The experimental design was modeled upon location and sex. Nuclear genes encoding mitochondrial proteins were identified from the MitoCarta2.0 database. Of the 1158 genes listed in the MitoCarta2.0 database, 847 genes (73%) were available for analysis in the Moroccan dataset. The urban-rural comparison with the greatest environmental differences showed that 76.5% of the MitoCarta2.0 genes were differentially expressed, with 97% of the genes having an increased expression in the urban area. Enrichment analysis revealed 367 significantly enriched pathways (adjusted p value < 0.05), with oxidative phosphorylation, insulin secretion and glucose regulations (adj.p values = 6.93E-16) being the top three. Four significantly perturbed KEGG disease pathways were associated with urbanization-three degenerative neurological diseases (Huntington's, Alzheimer's, and Parkinson's diseases) and herpes simplex infection (false discover rate corrected p value (PGFdr) < 0.2). Mitochondrial RNA metabolic processing and translational elongation were the biological processes that had the greatest enrichment (enrichment ratios 14.0 and 14.8, respectively, FDR < 0.5). Our study links urbanization in Morocco with changes in the expression of the nuclear genes encoding mitochondrial proteins.
Collapse
Affiliation(s)
- Stephen W. Bickler
- Division of Pediatric Surgery, Rady Children’s Hospital—University of California San Diego, 3030 Children’s Way, San Diego, CA 92123 USA
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Center for Investigations of Health and Education Disparities, University of California San Diego, La Jolla, CA 92093 USA
| | - James M. Prieto
- Department of Surgery, Naval Medical Center San Diego, San Diego, CA USA
| | - David M. Cauvi
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Center for Investigations of Health and Education Disparities, University of California San Diego, La Jolla, CA 92093 USA
| | - Victor De Cos
- Division of Pediatric Surgery, Rady Children’s Hospital—University of California San Diego, 3030 Children’s Way, San Diego, CA 92123 USA
| | - Chanond Nasamran
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093 USA
| | - Emmanuel Ameh
- Department of Pediatric Surgery, National Hospital, Abuja, Nigeria
| | - Said Amin
- Department of Histopathology, National Hospital, Abuja, Nigeria
| | - Sneha Nicholson
- Division of Pediatric Surgery, Rady Children’s Hospital—University of California San Diego, 3030 Children’s Way, San Diego, CA 92123 USA
| | - Hena Din
- Division of Pediatric Surgery, Rady Children’s Hospital—University of California San Diego, 3030 Children’s Way, San Diego, CA 92123 USA
| | - Ana Olga Mocumbi
- Instituto Nacional de Saúde, Maputo, Mozambique
- Department of Microbiology, Faculty of Medicine, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
| | | | | | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093 USA
| | - Antonio De Maio
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Center for Investigations of Health and Education Disparities, University of California San Diego, La Jolla, CA 92093 USA
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
14
|
de Ruiter K, Jochems SP, Tahapary DL, Stam KA, König M, van Unen V, Laban S, Höllt T, Mbow M, Lelieveldt BPF, Koning F, Sartono E, Smit JWA, Supali T, Yazdanbakhsh M. Helminth infections drive heterogeneity in human type 2 and regulatory cells. Sci Transl Med 2020; 12:12/524/eaaw3703. [DOI: 10.1126/scitranslmed.aaw3703] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 08/06/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023]
Abstract
Helminth infections induce strong type 2 and regulatory responses, but the degree of heterogeneity of such cells is not well characterized. Using mass cytometry, we profiled these cells in Europeans and Indonesians not exposed to helminths and in Indonesians residing in rural areas infected with soil-transmitted helminths. To assign immune alteration to helminth infection, the profiling was performed before and 1 year after deworming. Very distinct signatures were found in Europeans and Indonesians, showing expanded frequencies of T helper 2 cells, particularly CD161+ cells and ILC2s in helminth-infected Indonesians, which was confirmed functionally through analysis of cytokine-producing cells. Besides ILC2s and CD4+ T cells, CD8+ T cells and γδ T cells in Indonesians produced type 2 cytokines. Regulatory T cells were also expanded in Indonesians, but only those expressing CTLA-4, and some coexpressed CD38, HLA-DR, ICOS, or CD161. CD11c+ B cells were found to be the main IL-10 producers among B cells in Indonesians, a subset that was almost absent in Europeans. A number of the distinct immune profiles were driven by helminths as the profiles reverted after clearance of helminth infections. Moreover, Indonesians with no helminth infections residing in an urban area showed immune profiles that resembled Europeans rather than rural Indonesians, which excludes a major role for ethnicity. Detailed insight into the human type 2 and regulatory networks could provide opportunities to target these cells for more precise interventions.
Collapse
Affiliation(s)
- Karin de Ruiter
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Dicky L. Tahapary
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
- Department of Internal Medicine, Division of Endocrinology, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine Universitas Indonesia, 10430 Jakarta, Indonesia
- Metabolic, Cardiovascular and Aging Cluster, The Indonesian Medical Education and Research Institute, Universitas Indonesia, 10430 Jakarta, Indonesia
| | - Koen A. Stam
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Marion König
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Vincent van Unen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Sandra Laban
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Thomas Höllt
- Computer Graphics and Visualization Group, Delft University of Technology, 2628 XE Delft, Netherlands
- Computational Biology Center, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Moustapha Mbow
- Department of Immunology, Cheikh Anta Diop University of Dakar (UCAD), 5005 Dakar, Senegal
| | - Boudewijn P. F. Lelieveldt
- Department of LKEB Radiology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
- Department of Pattern Recognition and Bioinformatics Group, Delft University of Technology, 2628 XE Delft, Netherlands
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Erliyani Sartono
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Johannes W. A. Smit
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, Netherlands
- Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Taniawati Supali
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, 10430 Jakarta, Indonesia
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| |
Collapse
|
15
|
Urbanization in Sub-Saharan Africa: Declining Rates of Chronic and Recurrent Infection and Their Possible Role in the Origins of Non-communicable Diseases. World J Surg 2018; 42:1617-1628. [PMID: 29234849 DOI: 10.1007/s00268-017-4389-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Non-communicable diseases (NCDs), such as atherosclerosis and cancers, are a leading cause of death worldwide. An important, yet poorly explained epidemiological feature of NCDs is their low incidence in under developed areas of low-income countries and rising rates in urban areas. METHODS With the goal of better understanding how urbanization increases the incidence of NCDs, we provide an overview of the urbanization process in sub-Saharan Africa, discuss gene expression differences between rural and urban populations, and review the current NCD determinant model. We conclude by identifying research priorities. RESULTS Declining rates of chronic and recurrent infection are the hallmark of urbanization in sub-Saharan Africa. Gene profiling studies show urbanization results in complex molecular changes, with almost one-third of the peripheral blood leukocyte transcriptome altered. The current NCD determinant model could be improved by including a possible effect from declining rates of infection and expanding the spectrum of diseases that increase with urbanization. CONCLUSIONS Urbanization in sub-Saharan Africa provides a unique opportunity to investigate the mechanism by which the environment influences disease epidemiology. Research priorities include: (1) studies to define the relationship between infection and risk factors for NCDs, (2) explaining the observed differences in the inflammatory response between rural and urban populations, and (3) identification of animal models that simulate the biological changes that occurs with urbanization. A better understanding of the biological changes that occur with urbanization could lead to new prevention and treatment strategies for some of the most common surgical diseases in high-income countries.
Collapse
|
16
|
Mo A, Marigorta UM, Arafat D, Chan LHK, Ponder L, Jang SR, Prince J, Kugathasan S, Prahalad S, Gibson G. Disease-specific regulation of gene expression in a comparative analysis of juvenile idiopathic arthritis and inflammatory bowel disease. Genome Med 2018; 10:48. [PMID: 29950172 PMCID: PMC6020373 DOI: 10.1186/s13073-018-0558-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The genetic and immunological factors that contribute to differences in susceptibility and progression between sub-types of inflammatory and autoimmune diseases continue to be elucidated. Inflammatory bowel disease and juvenile idiopathic arthritis are both clinically heterogeneous and known to be due in part to abnormal regulation of gene activity in diverse immune cell types. Comparative genomic analysis of these conditions is expected to reveal differences in underlying genetic mechanisms of disease. METHODS We performed RNA-Seq on whole blood samples from 202 patients with oligoarticular, polyarticular, or systemic juvenile idiopathic arthritis, or with Crohn's disease or ulcerative colitis, as well as healthy controls, to characterize differences in gene expression. Gene ontology analysis combined with Blood Transcript Module and Blood Informative Transcript analysis was used to infer immunological differences. Comparative expression quantitative trait locus (eQTL) analysis was used to quantify disease-specific regulation of transcript abundance. RESULTS A pattern of differentially expressed genes and pathways reveals a gradient of disease spanning from healthy controls to oligoarticular, polyarticular, and systemic juvenile idiopathic arthritis (JIA); Crohn's disease; and ulcerative colitis. Transcriptional risk scores also provide good discrimination of controls, JIA, and IBD. Most eQTL are found to have similar effects across disease sub-types, but we also identify disease-specific eQTL at loci associated with disease by GWAS. CONCLUSION JIA and IBD are characterized by divergent peripheral blood transcriptomes, the genetic regulation of which displays limited disease specificity, implying that disease-specific genetic influences are largely independent of, or downstream of, eQTL effects.
Collapse
Affiliation(s)
- Angela Mo
- Center for Integrative Genomics and School of Biological Sciences, Georgia Institute of Technology, Engineered Biosystems Building, EBB 2115, 950 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Urko M Marigorta
- Center for Integrative Genomics and School of Biological Sciences, Georgia Institute of Technology, Engineered Biosystems Building, EBB 2115, 950 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Dalia Arafat
- Center for Integrative Genomics and School of Biological Sciences, Georgia Institute of Technology, Engineered Biosystems Building, EBB 2115, 950 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Lai Hin Kimi Chan
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Dr NE, Atlanta, GA, 30322, USA
| | - Lori Ponder
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Dr NE, Atlanta, GA, 30322, USA
| | - Se Ryeong Jang
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Dr NE, Atlanta, GA, 30322, USA
| | - Jarod Prince
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Dr NE, Atlanta, GA, 30322, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Dr NE, Atlanta, GA, 30322, USA
| | - Sampath Prahalad
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Dr NE, Atlanta, GA, 30322, USA
| | - Greg Gibson
- Center for Integrative Genomics and School of Biological Sciences, Georgia Institute of Technology, Engineered Biosystems Building, EBB 2115, 950 Atlantic Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
17
|
Bickler SW. Out of Africa: Insights from a prospective pediatric surgery database. J Pediatr Surg 2017; 53:S0022-3468(17)30631-0. [PMID: 29173776 DOI: 10.1016/j.jpedsurg.2017.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
In this year's Robert E. Gross lecture, I describe how experiences early in my career at a government referral hospital in Banjul, The Gambia, influenced my research. Collecting prospective data on all children presenting to the hospital with surgical problems allowed me to gain an understanding of the epidemiology of childhood surgical conditions in sub-Saharan Africa and an appreciation for the inherent challenges of delivering surgical care in settings of limited resources. Based on findings from this database, my research over the past 20years has focused on developing strategies for improving surgical care in low-income countries and better understanding the geographical variations that occur in some of the most common surgical conditions in high-income countries (e.g., appendicitis). Although this research continues to be a work-in-progress, it has the potential to improve the surgical care of children in both high- and low-income countries. Much of this research would not have been possible had I not ventured off the usual path for an academic surgeon.
Collapse
Affiliation(s)
- Stephen W Bickler
- Division of Pediatric Surgery, Rady Children's Hospital, San Diego, CA; Department of Surgery, School of Medicine, University of California, La Jolla, CA.
| |
Collapse
|
18
|
Zeng X, Tao L, Zhang P, Qin C, Chen S, He W, Tan Y, Xia Liu H, Yang SY, Chen Z, Jiang YY, Chen YZ. HEROD: a human ethnic and regional specific omics database. Bioinformatics 2017; 33:3276-3282. [PMID: 28549078 DOI: 10.1093/bioinformatics/btx340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/25/2017] [Indexed: 02/05/2023] Open
Abstract
Motivation Genetic and gene expression variations within and between populations and across geographical regions have substantial effects on the biological phenotypes, diseases, and therapeutic response. The development of precision medicines can be facilitated by the OMICS studies of the patients of specific ethnicity and geographic region. However, there is an inadequate facility for broadly and conveniently accessing the ethnic and regional specific OMICS data. Results Here, we introduced a new free database, HEROD, a human ethnic and regional specific OMICS database. Its first version contains the gene expression data of 53 070 patients of 169 diseases in seven ethnic populations from 193 cities/regions in 49 nations curated from the Gene Expression Omnibus (GEO), the ArrayExpress Archive of Functional Genomics Data (ArrayExpress), the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). Geographic region information of curated patients was mainly manually extracted from referenced publications of each original study. These data can be accessed and downloaded via keyword search, World map search, and menu-bar search of disease name, the international classification of disease code, geographical region, location of sample collection, ethnic population, gender, age, sample source organ, patient type (patient or healthy), sample type (disease or normal tissue) and assay type on the web interface. Availability and implementation The HEROD database is freely accessible at http://bidd2.nus.edu.sg/herod/index.php. The database and web interface are implemented in MySQL, PHP and HTML with all major browsers supported. Contact phacyz@nus.edu.sg.
Collapse
Affiliation(s)
- Xian Zeng
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, P. R. China.,Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543
| | - Lin Tao
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, P. R. China.,School of Medicine, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Peng Zhang
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543
| | - Chu Qin
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543
| | - Shangying Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543
| | - Weidong He
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543
| | - Ying Tan
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, P. R. China.,Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543
| | - Hong Xia Liu
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, P. R. China
| | - Sheng Yong Yang
- State Key Laboratory of Biotherapy, Molecular Medicine Research Center, West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Zhe Chen
- Zhejiang Key Laboratory of Gastro-Intestinal Pathophysiology, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yu Yang Jiang
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, P. R. China
| | - Yu Zong Chen
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, P. R. China.,Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543
| |
Collapse
|
19
|
Liu H, Smith TPL, Nonneman DJ, Dekkers JCM, Tuggle CK. A high-quality annotated transcriptome of swine peripheral blood. BMC Genomics 2017. [PMID: 28646867 PMCID: PMC5483264 DOI: 10.1186/s12864-017-3863-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background High throughput gene expression profiling assays of peripheral blood are widely used in biomedicine, as well as in animal genetics and physiology research. Accurate, comprehensive, and precise interpretation of such high throughput assays relies on well-characterized reference genomes and/or transcriptomes. However, neither the reference genome nor the peripheral blood transcriptome of the pig have been sufficiently assembled and annotated to support such profiling assays in this emerging biomedical model organism. We aimed to assemble published and novel RNA-seq data to provide a comprehensive, well-annotated blood transcriptome for pigs by integrating a de novo assembly with a genome-guided assembly. Results A de novo and a genome-guided transcriptome of porcine whole peripheral blood was assembled with ~162 million pairs of paired-end and ~183 million single-end, trimmed and normalized Illumina RNA-seq reads (~6 billion initial reads from 146 RNA-seq libraries) from five independent studies by using the Trinity and Cufflinks software, respectively. We then removed putative transcripts (PTs) of low confidence from both assemblies and merged the remaining PTs into an integrated transcriptome consisting of 132,928 PTs, with 126,225 (~95%) PTs from the de novo assembly and more than 91% of PTs spliced. In the integrated transcriptome, ~90% and 63% of PTs had significant sequence similarity to sequences in the NCBI NT and NR databases, respectively; 68,754 (~52%) PTs were annotated with 15,965 unique gene ontology (GO) terms; and 7618 PTs annotated with Enzyme Commission codes were assigned to 134 pathways curated by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Full exon-intron junctions of 17,528 PTs were validated by PacBio IsoSeq full-length cDNA reads from 3 other porcine tissues, NCBI pig RefSeq mRNAs and transcripts from Ensembl Sscrofa10.2 annotation. Completeness of the 5’ termini of 37,569 PTs was validated by public cap analysis of gene expression (CAGE) data. By comparison to the Ensembl transcripts, we found that (1) the deduced precursors of 54,402 PTs shared at least one intron or exon with those of 18,437 Ensembl transcripts; (2) 12,262 PTs had both longer 5’ and 3’ termini than their maximally overlapping Ensembl transcripts; and (3) 41,838 spliced PTs were totally missing from the Sscrofa10.2 annotation. Similar results were obtained when the PTs were compared to the pig NCBI RefSeq mRNA collection. Conclusions We built, validated and annotated a comprehensive porcine blood transcriptome with significant improvement over the annotation of Ensembl Sscrofa10.2 and the pig NCBI RefSeq mRNAs, and laid a foundation for blood-based high throughput transcriptomic assays in pigs and for advancing annotation of the pig genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3863-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haibo Liu
- Bioinformatics and Computational Biology Program, Department of Animal Science, Iowa State University, 2258 Kildee Hall, Ames, IA, 50011, USA
| | - Timothy P L Smith
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Dan J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, 239 Kildee Hall, Ames, IA, 50011, USA
| | - Christopher K Tuggle
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
20
|
Du L, Zhang C. Estimation of false discovery proportion in multiple testing: From normal to chi-squared test statistics. Electron J Stat 2017. [DOI: 10.1214/17-ejs1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Slavich GM. Life Stress and Health: A Review of Conceptual Issues and Recent Findings. TEACHING OF PSYCHOLOGY (COLUMBIA, MO.) 2016; 43:346-355. [PMID: 27761055 PMCID: PMC5066570 DOI: 10.1177/0098628316662768] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Life stress is a central construct in many models of human health and disease. The present article reviews research on stress and health, with a focus on (a) how life stress has been conceptualized and measured over time, (b) recent evidence linking stress and disease, and (c) mechanisms that might underlie these effects. Emerging from this body of work is evidence that stress is involved in the development, maintenance, or exacerbation of several mental and physical health conditions, including asthma, rheumatoid arthritis, anxiety disorders, depression, cardiovascular disease, chronic pain, human immunodeficiency virus/AIDS, stroke, and certain types of cancer. Stress has also been implicated in accelerated biological aging and premature mortality. These effects have been studied most commonly using self-report checklist measures of life stress exposure, although interview-based approaches provide a more comprehensive assessment of individuals' exposure to stress. Most recently, online systems like the Stress and Adversity Inventory (STRAIN) have been developed for assessing lifetime stress exposure, and such systems may provide important new information to help advance our understanding of how stressors occurring over the life course get embedded in the brain and body to affect lifespan health.
Collapse
Affiliation(s)
- George M. Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Bickler SW, Lizardo E, Cauvi DM, De Maio A. The transition from a rural to an urban environment in Africa alters G protein-coupled receptor signaling. Med Hypotheses 2016; 95:49-53. [PMID: 27692166 DOI: 10.1016/j.mehy.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/27/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022]
Abstract
Urbanization in Africa is associated with an increased incidence of non-communicable diseases, yet the cause and the mechanism remain poorly understood. Here, we propose a role for G protein-coupled receptor (GPCR) signaling in the biological changes that occur with urbanization and suggest a critical area of convergence in GPCR signaling might provide a molecular signature for exposure to environmental factors. As a first step in investing this hypothesis, we examined the expression of the G protein α, β and γ subunit, G protein related kinase, and β-arrestin genes in a rural and urban population living in Morocco (NCBI GSE8847). Three genes associated with the phosphatidylinositol signaling pathway (GNAQ, GNA11 and GNA15), and one gene controlling the cyclic adenosine monophosphate pathway (GNAI2) was altered by urbanization. Of note, the expression of ARRB1 gene, which encodes the β-arrestin 1 protein and dampens the cellular responses to extracellular signals, was greater in the rural compared to the urban population (P<0.00002). These preliminary findings support our hypothesis that urbanization fundamentally alters GPCR signaling, resulting in both a qualitative and quantitative change in the signaling process. Because GPCR signaling is involved in a broad spectrum of cellular functions, further research is needed confirm these preliminary findings and to investigate what role GPCRs might have in the biological changes that occur with urbanization.
Collapse
Affiliation(s)
- Stephen W Bickler
- Division of Pediatric Surgery, Rady Children's Hospital, San Diego, CA 92123, USA; Department of Surgery, School of Medicine, University of California, La Jolla, CA 92093, USA; Center for Investigations of Health and Education Disparities, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739, USA.
| | - Eliel Lizardo
- Center for Investigations of Health and Education Disparities, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739, USA; Department of Surgery, Naval Medical Center San Diego, San Diego, CA 92134, USA
| | - David M Cauvi
- Department of Surgery, School of Medicine, University of California, La Jolla, CA 92093, USA; Center for Investigations of Health and Education Disparities, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739, USA
| | - Antonio De Maio
- Department of Surgery, School of Medicine, University of California, La Jolla, CA 92093, USA; Center for Investigations of Health and Education Disparities, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739, USA; Department of Neurosciences, School of Medicine, University of California, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Liu H, Nguyen YT, Nettleton D, Dekkers JCM, Tuggle CK. Post-weaning blood transcriptomic differences between Yorkshire pigs divergently selected for residual feed intake. BMC Genomics 2016; 17:73. [PMID: 26801403 PMCID: PMC4724083 DOI: 10.1186/s12864-016-2395-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/14/2016] [Indexed: 01/23/2023] Open
Abstract
Background Improving feed efficiency (FE) of pigs by genetic selection is of economic and environmental significance. An increasingly accepted measure of feed efficiency is residual feed intake (RFI). Currently, the molecular mechanisms underlying RFI are largely unknown. Additionally, to incorporate RFI into animal breeding programs, feed intake must be recorded on individual pigs, which is costly and time-consuming. Thus, convenient and predictive biomarkers for RFI that can be measured at an early age are greatly desired. In this study, we aimed to explore whether differences exist in the global gene expression profiles of peripheral blood of 35 to 42 day-old pigs with extremely low (more efficient) and high RFI (less efficient) values from two lines that were divergently selected for RFI during the grow-finish phase, to use such information to explore the potential molecular basis of RFI differences, and to initiate development of predictive biomarkers for RFI. Results We identified 1972 differentially expressed genes (DEGs) (q ≤ 0.15) between the low (n = 15) and high (n = 16) RFI groups of animals by using RNA sequencing technology. We validated 24 of 37 selected DEGs by reverse transcription-quantitative PCR (RT-qPCR) in a joint analysis of 24 (12 per line) of the 31 samples already used for RNA-seq plus 24 (12 per line) novel samples from the same contemporary group of pigs. Using an analysis of the 24 novel samples alone, only nine of the 37 selected DEGs were validated. Genes involved in small molecule biosynthetic process, antigen processing and presentation of peptide antigen via major histocompatibility complex (MHC) class I, and steroid biosynthetic process were overrepresented among DEGs that had higher expression in the low versus high RFI animals. Genes known to function in the proteasome complex or mitochondrion were also significantly enriched among genes with higher expression in the low versus high RFI animals. Alternatively, genes involved in signal transduction, bone mineralization and regulation of phosphorylation were overrepresented among DEGs with lower expression in the low versus high RFI animals. The DEGs significantly overlapped with genes associated with disease, including hyperphagia, eating disorders and mitochondrial diseases (q < 1E-05). A weighted gene co-expression network analysis (WGCNA) identified four co-expression modules that were differentially expressed between the low and high RFI groups. Genes involved in lipid metabolism, regulation of bone mineralization, cellular immunity and response to stimulus were overrepresented within the two modules that were most significantly differentially expressed between the low and high RFI groups. We also found five of the DEGs and one of the co-expression modules were significantly associated with the RFI phenotype of individual animals (q < 0.05). Conclusions The post-weaning blood transcriptome was clearly different between the low and high RFI groups. The identified DEGs suggested potential differences in mitochondrial and proteasomal activities, small molecule biosynthetic process, and signal transduction between the two RFI groups and provided potential new insights into the molecular basis of RFI in pigs, although the observed relationship between the post-weaning blood gene expression and RFI phenotype measured during the grow-finish phase was not strong. DEGs and representative genes in co-expression modules that were associated with RFI phenotype provide a preliminary list for developing predictive biomarkers for RFI in pigs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2395-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Animal Science, Iowa State University, 2258 Kildee Hall, Ames, IA, 50011, USA.
| | - Yet T Nguyen
- Department of Statistics, Iowa State University, 1121 Snedecor Hall, Ames, IA, 50011, USA. .,Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Dan Nettleton
- Department of Statistics, Iowa State University, 1121 Snedecor Hall, Ames, IA, 50011, USA.
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, 239 Kildee Hall, Ames, IA, 50011, USA.
| | - Christopher K Tuggle
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
24
|
Matsha TE, Pheiffer C, Humphries SE, Gamieldien J, Erasmus RT, Kengne AP. Genome-Wide DNA Methylation in Mixed Ancestry Individuals with Diabetes and Prediabetes from South Africa. Int J Endocrinol 2016; 2016:3172093. [PMID: 27555869 PMCID: PMC4983374 DOI: 10.1155/2016/3172093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 01/09/2023] Open
Abstract
Aims. To conduct a genome-wide DNA methylation in individuals with type 2 diabetes, individuals with prediabetes, and control mixed ancestry individuals from South Africa. Methods. We used peripheral blood to perform genome-wide DNA methylation analysis in 3 individuals with screen detected diabetes, 3 individuals with prediabetes, and 3 individuals with normoglycaemia from the Bellville South Community, Cape Town, South Africa, who were age-, gender-, body mass index-, and duration of residency-matched. Methylated DNA immunoprecipitation (MeDIP) was performed by Arraystar Inc. (Rockville, MD, USA). Results. Hypermethylated DMRs were 1160 (81.97%) and 124 (43.20%), respectively, in individuals with diabetes and prediabetes when both were compared to subjects with normoglycaemia. Our data shows that genes related to the immune system, signal transduction, glucose transport, and pancreas development have altered DNA methylation in subjects with prediabetes and diabetes. Pathway analysis based on the functional analysis mapping of genes to KEGG pathways suggested that the linoleic acid metabolism and arachidonic acid metabolism pathways are hypomethylated in prediabetes and diabetes. Conclusions. Our study suggests that epigenetic changes are likely to be an early process that occurs before the onset of overt diabetes. Detailed analysis of DMRs that shows gradual methylation differences from control versus prediabetes to prediabetes versus diabetes in a larger sample size is required to confirm these findings.
Collapse
Affiliation(s)
- Tandi E. Matsha
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town 7535, South Africa
- *Tandi E. Matsha:
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Stephen E. Humphries
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Institute of Cardiovascular Science, The Rayne Building, University College London, London WC1E 6JF, UK
| | - Junaid Gamieldien
- South African National Bioinformatics Institute, University of the Western Cape, Cape Town 7535, South Africa
| | - Rajiv T. Erasmus
- Division of Chemical Pathology and National Health Laboratory Service (NHLS), Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 7505, South Africa
| | - Andre P. Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town 7505, South Africa
- Department of Medicine, University of Cape Town, Cape Town 8000, South Africa
| |
Collapse
|
25
|
Fagny M, Patin E, MacIsaac JL, Rotival M, Flutre T, Jones MJ, Siddle KJ, Quach H, Harmant C, McEwen LM, Froment A, Heyer E, Gessain A, Betsem E, Mouguiama-Daouda P, Hombert JM, Perry GH, Barreiro LB, Kobor MS, Quintana-Murci L. The epigenomic landscape of African rainforest hunter-gatherers and farmers. Nat Commun 2015; 6:10047. [PMID: 26616214 PMCID: PMC4674682 DOI: 10.1038/ncomms10047] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/28/2015] [Indexed: 12/23/2022] Open
Abstract
The genetic history of African populations is increasingly well documented, yet their patterns of epigenomic variation remain uncharacterized. Moreover, the relative impacts of DNA sequence variation and temporal changes in lifestyle and habitat on the human epigenome remain unknown. Here we generate genome-wide genotype and DNA methylation profiles for 362 rainforest hunter-gatherers and sedentary farmers. We find that the current habitat and historical lifestyle of a population have similarly critical impacts on the methylome, but the biological functions affected strongly differ. Specifically, methylation variation associated with recent changes in habitat mostly concerns immune and cellular functions, whereas that associated with historical lifestyle affects developmental processes. Furthermore, methylation variation—particularly that correlated with historical lifestyle—shows strong associations with nearby genetic variants that, moreover, are enriched in signals of natural selection. Our work provides new insight into the genetic and environmental factors affecting the epigenomic landscape of human populations over time. Genetic and environmental factors affect genome-wide patterns of epigenetic variation. Here, the authors show that while current habitat and historical lifestyle impact the methylome of rainforest hunter-gatherers and sedentary farmers, the biological functions affected and the degree of genetic control differ.
Collapse
Affiliation(s)
- Maud Fagny
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France.,Université Pierre et Marie Curie, Cellule Pasteur UPMC, Paris 75015, France
| | - Etienne Patin
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute and Department of Medical Genetics, University of British Columbia, Vancouver, Canada BC V5Z 4H4
| | - Maxime Rotival
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France
| | | | - Meaghan J Jones
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute and Department of Medical Genetics, University of British Columbia, Vancouver, Canada BC V5Z 4H4
| | - Katherine J Siddle
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France
| | - Hélène Quach
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France
| | - Christine Harmant
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France
| | - Lisa M McEwen
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute and Department of Medical Genetics, University of British Columbia, Vancouver, Canada BC V5Z 4H4
| | - Alain Froment
- IRD-MNHN, Sorbonne Universités, UMR208, Paris 75005, France
| | - Evelyne Heyer
- CNRS, MNHN, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Université, UMR7206, Paris 75005, France
| | - Antoine Gessain
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Paris 75015, France
| | - Edouard Betsem
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Paris 75015, France.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, BP1364 Yaoundé, Cameroon
| | - Patrick Mouguiama-Daouda
- Laboratoire Langue, Culture et Cognition (LCC), Université Omar Bongo, BP 13131 Libreville, Gabon
| | | | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Luis B Barreiro
- Université de Montréal, Centre de Recherche CHU Sainte-Justine, Montréal, Canada H3T 1C5
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute and Department of Medical Genetics, University of British Columbia, Vancouver, Canada BC V5Z 4H4
| | - Lluis Quintana-Murci
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France
| |
Collapse
|
26
|
Transcription Profiling of Malaria-Naïve and Semi-immune Colombian Volunteers in a Plasmodium vivax Sporozoite Challenge. PLoS Negl Trop Dis 2015; 9:e0003978. [PMID: 26244760 PMCID: PMC4526565 DOI: 10.1371/journal.pntd.0003978] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Continued exposure to malaria-causing parasites in endemic regions of malaria induces significant levels of acquired immunity in adult individuals. A better understanding of the transcriptional basis for this acquired immunological response may provide insight into how the immune system can be boosted during vaccination, and into why infected individuals differ in symptomology. Methodology/Principal Findings Peripheral blood gene expression profiles of 9 semi-immune volunteers from a Plasmodium vivax malaria prevalent region (Buenaventura, Colombia) were compared to those of 7 naïve individuals from a region with no reported transmission of malaria (Cali, Colombia) after a controlled infection mosquito bite challenge with P. vivax. A Fluidigm nanoscale quantitative RT-PCR array was used to survey altered expression of 96 blood informative transcripts at 7 timepoints after controlled infection, and RNASeq was used to contrast pre-infection and early parasitemia timepoints. There was no evidence for transcriptional changes prior to the appearance of blood stage parasites at day 12 or 13, at which time there was a strong interferon response and, unexpectedly, down-regulation of transcripts related to inflammation and innate immunity. This differential expression was confirmed with RNASeq, which also suggested perturbations of aspects of T cell function and erythropoiesis. Despite differences in clinical symptoms between the semi-immune and malaria naïve individuals, only subtle differences in their transcriptomes were observed, although 175 genes showed significantly greater induction or repression in the naïve volunteers from Cali. Conclusion/Significance Gene expression profiling of whole blood reveals the type and duration of the immune response to P. vivax infection, and highlights a subset of genes that may mediate adaptive immunity. Plasmodium vivax malaria is a debilitating, occasionally life-threatening, and economically burdensome disease in Central Latin America, where 70%- 80% of the population lives with the risk of infection. We performed a gene expression profiling experiment taking advantage of a previously described sporozoite challenge experiment in Cali, Colombia that reported more severe malaria symptoms in subjects who have never experienced malaria. We show that no major differences are seen in the transcriptomes of uninfected naïve and semi-immune volunteers prior to infection, but differential expression of both neutrophil and interferon-related genes was evident at onset of malaria. Several hundred genes showed a stronger response in the naïve individuals just as parasites appear in the peripheral blood, and these fall into several pathways of interest. These findings show how information from gene expression profiling of whole blood can reveal the type and duration of the immune response to P. vivax infection, and highlights a subset of genes that may mediate adaptive immunity in chronically exposed individuals.
Collapse
|
27
|
Bickler SW, Lizardo RE, De Maio A. The transition from a rural to an urban environment alters expression of the human Ebola virus receptor Neiman-Pick C1: implications for the current epidemic in West Africa. Cell Stress Chaperones 2015; 20:203-6. [PMID: 25477151 PMCID: PMC4326391 DOI: 10.1007/s12192-014-0557-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 01/06/2023] Open
Affiliation(s)
- Stephen W. Bickler
- />Center for Investigations of Health and Education Disparities, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739 USA
- />Department of Surgery, School of Medicine, University of California, La Jolla, CA 92093 USA
- />Division of Pediatric Surgery, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Radhames E. Lizardo
- />Center for Investigations of Health and Education Disparities, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739 USA
- />Department of Surgery, Naval Medical Center San Diego, San Diego, CA 92134 USA
- />Division of Pediatric Surgery, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Antonio De Maio
- />Center for Investigations of Health and Education Disparities, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739 USA
- />Department of Surgery, School of Medicine, University of California, La Jolla, CA 92093 USA
- />Department of Neurosciences, School of Medicine, University of California, La Jolla, CA 92093 USA
| |
Collapse
|
28
|
Yuan Y, Tian L, Lu D, Xu S. Analysis of genome-wide RNA-sequencing data suggests age of the CEPH/Utah (CEU) lymphoblastoid cell lines systematically biases gene expression profiles. Sci Rep 2015; 5:7960. [PMID: 25609584 PMCID: PMC4302305 DOI: 10.1038/srep07960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/29/2014] [Indexed: 01/19/2023] Open
Abstract
In human, Lymphoblastoid cell lines (LCLs) from the CEPH/CEU (Centre d'Etude du Polymorphisme Humain – Utah) family resource have been extensively used for examining the genetics of gene expression levels. However, we noted that CEU/CEPH cell lines were collected and transformed approximately thirty years ago, much earlier than the other cell lines from the pertaining individuals, which we suspected could potentially affect gene expression, data analysis and results interpretation. In this study, by analyzing RNA sequencing data of CEU and the other three European populations as well as an African population, we systematically examined and evaluated the potential confounding effect of LCL age on gene expression levels and patterns. Our results indicated that gene expression profiles of CEU samples have been biased by the older age of CEU cell lines. Interestingly, most of CEU-specific expressions are associated with functions related to cell proliferation, which are more likely due to older age of cell lines than intrinsic characters of the population. We suggested the results be carefully explained when CEU LCLs are used for transcriptomic data analysis in future studies.
Collapse
Affiliation(s)
- Yuan Yuan
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max-Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Tian
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max-Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongsheng Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max-Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuhua Xu
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max-Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
29
|
Mbow M, de Jong SE, Meurs L, Mboup S, Dieye TN, Polman K, Yazdanbakhsh M. Changes in immunological profile as a function of urbanization and lifestyle. Immunology 2015; 143:569-77. [PMID: 24924958 DOI: 10.1111/imm.12335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/14/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022] Open
Abstract
Differences in lifestyle and break with natural environment appear to be associated with changes in the immune system resulting in various adverse health effects. Although genetics can have a major impact on the immune system and disease susceptibility, the contribution of environmental factors is thought to be substantial. Here, we investigated the immunological profile of healthy volunteers living in a rural and an urban area of a developing African country (Senegal), and in a European country (the Netherlands). Using flow cytometry, we investigated T helper type 1 (Th1), Th2, Th17, Th22 and regulatory T cells, as well as CD4(+) T-cell and B-cell activation markers, and subsets of memory T and B cells in the peripheral blood. Rural Senegalese had significantly higher frequencies of Th1, Th2 and Th22 cells, memory CD4(+) T and B cells, as well as activated CD4(+) T and B cells compared with urban Senegalese and urban Dutch people. Within the Senegalese population, rural paritcipants displayed significantly higher frequencies of Th2 and Th22 cells, as well as higher pro-inflammatory and T-cell activation and memory profiles compared with the urban population. The greater magnitude of immune activation and the enlarged memory pool, together with Th2 polarization, seen in rural participants from Africa, followed by urban Africans and Europeans suggest that environmental changes may define immunological footprints, which could have consequences for disease patterns in general and vaccine responses in particular.
Collapse
Affiliation(s)
- Moustapha Mbow
- Immunology Department of the Laboratory of Bacteriology and Virology of Aristide Le Dantec University Hospital, Dakar, Senegal; Leiden Immunoparasitology Group, Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Biomedical Sciences of the Institute of Tropical Medicine of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
30
|
Çalışkan M, Pritchard JK, Ober C, Gilad Y. The effect of freeze-thaw cycles on gene expression levels in lymphoblastoid cell lines. PLoS One 2014; 9:e107166. [PMID: 25192014 PMCID: PMC4156430 DOI: 10.1371/journal.pone.0107166] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/06/2014] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) transformed lymphoblastoid cell lines (LCLs) are a widely used renewable resource for functional genomic studies in humans. The ability to accumulate multidimensional data pertaining to the same individual cell lines, from complete genomic sequences to detailed gene regulatory profiles, further enhances the utility of LCLs as a model system. However, the extent to which LCLs are a faithful model system is relatively unknown. We have previously shown that gene expression profiles of newly established LCLs maintain a strong individual component. Here, we extend our study to investigate the effect of freeze-thaw cycles on gene expression patterns in mature LCLs, especially in the context of inter-individual variation in gene expression. We report a profound difference in the gene expression profiles of newly established and mature LCLs. Once newly established LCLs undergo a freeze-thaw cycle, the individual specific gene expression signatures become much less pronounced as the gene expression levels in LCLs from different individuals converge to a more uniform profile, which reflects a mature transformed B cell phenotype. We found that previously identified eQTLs are enriched among the relatively few genes whose regulations in mature LCLs maintain marked individual signatures. We thus conclude that while insight drawn from gene regulatory studies in mature LCLs may generally not be affected by the artificial nature of the LCL model system, many aspects of primary B cell biology cannot be observed and studied in mature LCL cultures.
Collapse
Affiliation(s)
- Minal Çalışkan
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan K. Pritchard
- Departments of Genetics and Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Carole Ober
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Yoav Gilad
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
31
|
Huang E, Wells CA. The ground state of innate immune responsiveness is determined at the interface of genetic, epigenetic, and environmental influences. THE JOURNAL OF IMMUNOLOGY 2014; 193:13-9. [PMID: 24951823 DOI: 10.4049/jimmunol.1303410] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Monocytes and macrophages form the major cellular component of the innate immune system, with roles in tissue development, homeostasis, and host defense against infection. Environmental factors were shown to play a significant part in determining innate immune responsiveness, and this included systemic conditions, such as circulating glucose levels, gut microflora, time of year, and even diurnal rhythm, which had a direct impact on innate immune receptor expression. Although the underlying molecular processes are just beginning to emerge, it is clear that environmental factors may alter epigenetic states of peripheral blood monocytes and resident tissue macrophages. We conclude that some measure of cellular ground state must become an essential part of the analysis of myeloid responsiveness or infectious susceptibility.
Collapse
Affiliation(s)
- Edward Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia; and
| | - Christine Anne Wells
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia; and Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
32
|
Martin AR, Costa HA, Lappalainen T, Henn BM, Kidd JM, Yee MC, Grubert F, Cann HM, Snyder M, Montgomery SB, Bustamante CD. Transcriptome sequencing from diverse human populations reveals differentiated regulatory architecture. PLoS Genet 2014; 10:e1004549. [PMID: 25121757 PMCID: PMC4133153 DOI: 10.1371/journal.pgen.1004549] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 06/18/2014] [Indexed: 12/30/2022] Open
Abstract
Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of transcriptome differences across diverse human populations has not been systematically analyzed. To better understand the spectrum of gene expression variation, alternative splicing, and the population genetics of regulatory variation in humans, we have sequenced the genomes, exomes, and transcriptomes of EBV transformed lymphoblastoid cell lines derived from 45 individuals in the Human Genome Diversity Panel (HGDP). The populations sampled span the geographic breadth of human migration history and include Namibian San, Mbuti Pygmies of the Democratic Republic of Congo, Algerian Mozabites, Pathan of Pakistan, Cambodians of East Asia, Yakut of Siberia, and Mayans of Mexico. We discover that approximately 25.0% of the variation in gene expression found amongst individuals can be attributed to population differences. However, we find few genes that are systematically differentially expressed among populations. Of this population-specific variation, 75.5% is due to expression rather than splicing variability, and we find few genes with strong evidence for differential splicing across populations. Allelic expression analyses indicate that previously mapped common regulatory variants identified in eight populations from the International Haplotype Map Phase 3 project have similar effects in our seven sampled HGDP populations, suggesting that the cellular effects of common variants are shared across diverse populations. Together, these results provide a resource for studies analyzing functional differences across populations by estimating the degree of shared gene expression, alternative splicing, and regulatory genetics across populations from the broadest points of human migration history yet sampled. Previous gene expression studies have identified factors influencing population-level variation in gene regulation. However, these efforts have been limited to a small set of well-studied populations. By leveraging the high resolution of RNA sequencing and broad population sampling, we survey the landscape of transcriptome variation across a globally distributed set of seven populations that span a breadth of human genetic variation and major dispersal events. We assess differences in gene expression, transcript structure, and regulatory variation. We find only 44 transcripts that show significant differences in expression, likely as a result of the small sample size, but we find that 25% of the variance in gene expression is due to population differences. This is a larger fraction than previously observed, and it is likely due to the greater breadth of human diversity assayed in this study. We also find that population-specific variance is mostly due to transcription variability rather than the configuration of expressed gene products. Additionally, known common regulatory variants have similar effects across populations including those we study here. These data and results serve as a resource cataloging the wide array of gene expression regulation affecting population variation among diverse groups, improving our understanding of transcriptional diversity.
Collapse
Affiliation(s)
- Alicia R. Martin
- Stanford University School of Medicine, Department of Genetics, Stanford, California, United States of America
| | - Helio A. Costa
- Stanford University School of Medicine, Department of Genetics, Stanford, California, United States of America
| | - Tuuli Lappalainen
- Stanford University School of Medicine, Department of Genetics, Stanford, California, United States of America
| | - Brenna M. Henn
- Stony Brook University, SUNY, Department of Ecology and Evolution, Stony Brook, New York, United States of America
| | - Jeffrey M. Kidd
- University of Michigan School of Medicine, Department of Human Genetics, Ann Arbor, Michigan, United States of America
| | - Muh-Ching Yee
- Stanford University School of Medicine, Department of Genetics, Stanford, California, United States of America
| | - Fabian Grubert
- Stanford University School of Medicine, Department of Genetics, Stanford, California, United States of America
| | - Howard M. Cann
- Foundation Jean Dausset, Centre d'Etude du Polymorphisme Humain, Paris, France
| | - Michael Snyder
- Stanford University School of Medicine, Department of Genetics, Stanford, California, United States of America
| | - Stephen B. Montgomery
- Stanford University School of Medicine, Department of Genetics, Stanford, California, United States of America
- Stanford University School of Medicine, Department of Pathology, Stanford, California, United States of America
| | - Carlos D. Bustamante
- Stanford University School of Medicine, Department of Genetics, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Amoah AS, Obeng BB, May L, Kruize YC, Larbi IA, Kabesch M, Wilson MD, Hartgers FC, Boakye DA, Yazdanbakhsh M. Urban-rural differences in the gene expression profiles of Ghanaian children. Genes Immun 2014; 15:313-9. [PMID: 24848931 DOI: 10.1038/gene.2014.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/19/2022]
Abstract
Recent studies indicate that urbanization is having a pronounced effect on disease patterns in developing countries. To understand the immunological basis of this, we examined mRNA expression in whole blood of genes involved in immune activation and regulation in 151 children aged 5-13 years attending rural, urban low socioeconomic status (SES) and urban high-SES schools in Ghana. Samples were also collected to detect helminth and malaria infections. Marked differences in gene expression were observed between the rural and urban areas as well as within the urban area. The expression of both interleukin (IL)-10 and programmed cell death protein 1 increased significantly across the schools from urban high SES to urban low SES to rural (P-trend <0.001). Although IL-10 gene expression was significantly elevated in the rural compared with the urban schools (P<0.001), this was not associated with parasitic infection. Significant differences in the expression of toll-like receptors (TLRs) and their signaling genes were seen between the two urban schools. Genetic differences could not fully account for the gene expression profiles in the different groups as shown by analysis of IL-10, TLR-2 and TLR-4 gene polymorphisms. Immune gene expression patterns are strongly influenced by environmental determinants and may underlie the effects of urbanization seen on health outcomes.
Collapse
Affiliation(s)
- A S Amoah
- 1] Department of Parasitology, Noguchi Memorial Institute for Medical Research, Accra, Ghana [2] Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - B B Obeng
- 1] Department of Parasitology, Noguchi Memorial Institute for Medical Research, Accra, Ghana [2] Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - L May
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Y C Kruize
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - I A Larbi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - M Kabesch
- Department of Pediatric Pneumology and Allergy, KUNO University Children's Hospital Regensburg, Regensburg, Germany
| | - M D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - F C Hartgers
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - D A Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - M Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
34
|
Geographical, environmental and pathophysiological influences on the human blood transcriptome. CURRENT GENETIC MEDICINE REPORTS 2013; 1:203-211. [PMID: 25830076 DOI: 10.1007/s40142-013-0028-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gene expression variation provides a read-out of both genetic and environmental influences on gene activity. Geographical, genomic and sociogenomic studies have highlighted how life circumstances of an individual modify the expression of hundreds and in some cases thousands of genes in a co-ordinated manner. This review places such results in the context of a conserved set of 90 transcripts known as Blood Informative Transcripts (BIT) that capture the major conserved components of variation in the peripheral blood transcriptome. Pathophysiological states are also shown to associate with the perturbation of transcript abundance along the major axes. Discussion of false negative rates leads us to argue that simple significance thresholds provide a biased perspective on assessment of differential expression that may cloud the interpretation of studies with small sample sizes.
Collapse
|
35
|
Cole SW. Social regulation of human gene expression: mechanisms and implications for public health. Am J Public Health 2013; 103 Suppl 1:S84-92. [PMID: 23927506 DOI: 10.2105/ajph.2012.301183] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent analyses have discovered broad alterations in the expression of human genes across different social environments. The emerging field of social genomics has begun to identify the types of genes sensitive to social regulation, the biological signaling pathways mediating these effects, and the genetic polymorphisms that modify their individual impact. The human genome appears to have evolved specific "social programs" to adapt molecular physiology to the changing patterns of threat and opportunity ancestrally associated with changing social conditions. In the context of the immune system, this programming now fosters many of the diseases that dominate public health. The embedding of individual genomes within a broader metagenomic network provides a framework for integrating molecular, physiologic, and social perspectives on human health.
Collapse
Affiliation(s)
- Steven W Cole
- Steven W. Cole is with the Division of Hematology-Oncology, School of Medicine, University of California, Los Angeles
| |
Collapse
|
36
|
McHale CM, Zhang L, Thomas R, Smith MT. Analysis of the transcriptome in molecular epidemiology studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:500-517. [PMID: 23907930 PMCID: PMC5142298 DOI: 10.1002/em.21798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 05/29/2023]
Abstract
The human transcriptome is complex, comprising multiple transcript types, mostly in the form of non-coding RNA (ncRNA). The majority of ncRNA is of the long form (lncRNA, ≥ 200 bp), which plays an important role in gene regulation through multiple mechanisms including epigenetics, chromatin modification, control of transcription factor binding, and regulation of alternative splicing. Both mRNA and ncRNA exhibit additional variability in the form of alternative splicing and RNA editing. All aspects of the human transcriptome can potentially be dysregulated by environmental exposures. Next-generation RNA sequencing (RNA-Seq) is the best available methodology to measure this although it has limitations, including experimental bias. The third phase of the MicroArray Quality Control Consortium project (MAQC-III), also called Sequencing Quality Control (SeQC), aims to address these limitations through standardization of experimental and bioinformatic methodologies. A limited number of toxicogenomic studies have been conducted to date using RNA-Seq. This review describes the complexity of the human transcriptome, the application of transcriptomics by RNA-Seq or microarray in molecular epidemiology studies, and limitations of these approaches including the type of cell or tissue analyzed, experimental variation, and confounding. By using good study designs with precise, individual exposure measurements, sufficient power and incorporation of phenotypic anchors, studies in human populations can identify biomarkers of exposure and/or early effect and elucidate mechanisms of action underlying associated diseases, even at low doses. Analysis of datasets at the pathway level can compensate for some of the limitations of RNA-Seq and, as more datasets become available, will increasingly elucidate the exposure-disease continuum.
Collapse
Affiliation(s)
- Cliona M McHale
- Division of Environmental Health Sciences, Genes and Environment Laboratory, School of Public Health, University of California, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
37
|
Wild CP, Scalbert A, Herceg Z. Measuring the exposome: a powerful basis for evaluating environmental exposures and cancer risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:480-99. [PMID: 23681765 DOI: 10.1002/em.21777] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 05/23/2023]
Abstract
Advances in laboratory sciences offer much in the challenge to unravel the complex etiology of cancer and to therefore provide an evidence-base for prevention. One area where improved measurements are particularly important to epidemiology is exposure assessment; this requirement has been highlighted through the concept of the exposome. In addition, the ability to observe genetic and epigenetic alterations in individuals exposed to putative risk factors also affords an opportunity to elucidate underlying mechanisms of carcinogenesis, which in turn may allow earlier detection and more refined molecular classification of disease. In this context the application of omics technologies to large population-based studies and their associated biobanks raise exciting new avenues of research. This review considers the areas of genomics, transcriptomics, epigenomics and metabolomics and the evidence to date that people exposed to well-defined factors (for example, tobacco, diet, occupational exposures, environmental pollutants) have specific omics profiles. Although in their early stages of development these approaches show promising evidence of distinct exposure-derived biological effects and indicate molecular pathways that may be particularly relevant to the carcinogenic process subsequent to environmental and lifestyle exposures. Such an interdisciplinary approach is vital if the full benefits of advances in laboratory sciences and investments in large-scale prospective cohort studies are to be realized in relation to cancer prevention.
Collapse
Affiliation(s)
- Christopher P Wild
- International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon, France.
| | | | | |
Collapse
|
38
|
Yuan Y, Yang L, Shi M, Lu D, Lou H, Chen YPP, Jin L, Xu S. Identification of well-differentiated gene expressions between Han Chinese and Japanese using genome-wide microarray data analysis. J Med Genet 2013; 50:534-42. [DOI: 10.1136/jmedgenet-2012-101501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120362. [PMID: 23650636 DOI: 10.1098/rstb.2012.0362] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The last few years have seen the development of large efforts for the analysis of genome function, especially in the context of genome variation. One of the most prominent directions has been the extensive set of studies on expression quantitative trait loci (eQTLs), namely, the discovery of genetic variants that explain variation in gene expression levels. Such studies have offered promise not just for the characterization of functional sequence variation but also for the understanding of basic processes of gene regulation and interpretation of genome-wide association studies. In this review, we discuss some of the key directions of eQTL research and its implications.
Collapse
Affiliation(s)
- Alexandra C Nica
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | | |
Collapse
|
40
|
Abstract
Although we generally experience our bodies as being biologically stable across time and situations, an emerging field of research is demonstrating that external social conditions, especially our subjective perceptions of those conditions, can influence our most basic internal biological processes-namely, the expression of our genes. This research on human social genomics has begun to identify the types of genes that are subject to social-environmental regulation, the neural and molecular mechanisms that mediate the effects of social processes on gene expression, and the genetic polymorphisms that moderate individual differences in genomic sensitivity to social context. The molecular models resulting from this research provide new opportunities for understanding how social and genetic factors interact to shape complex behavioral phenotypes and susceptibility to disease. This research also sheds new light on the evolution of the human genome and challenges the fundamental belief that our molecular makeup is relatively stable and impermeable to social-environmental influence.
Collapse
Affiliation(s)
- George M Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | | |
Collapse
|
41
|
Elliott HR, Walia GK, Duggirala A, Groom A, Reddy SU, Chandak GR, Gupta V, Laakso M, Dekker JM, The RISC Consortium, Walker M, Ebrahim S, Smith GD, Relton CL. Migration and DNA methylation: a comparison of methylation patterns in type 2 diabetes susceptibility genes between indians and europeans. JOURNAL OF DIABETES RESEARCH & CLINICAL METABOLISM 2013; 2:6. [PMID: 27099715 PMCID: PMC4835020 DOI: 10.7243/2050-0866-2-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Type 2 diabetes is a global problem that is increasingly prevalent in low and middle income countries including India, and is partly attributed to increased urbanisation. Genotype clearly plays a role in type 2 diabetes susceptibility. However, the role of DNA methylation and its interaction with genotype and metabolic measures is poorly understood. This study aimed to establish whether methylation patterns of type 2 diabetes genes differ between distinct Indian and European populations and/or change following rural to urban migration in India. METHODS Quantitative DNA methylation analysis in Indians and Europeans using Sequenom® EpiTYPER® technology was undertaken in three genes: ADCY5, FTO and KCNJ11. Metabolic measures and genotype data were also analysed. RESULTS Consistent differences in DNA methylation patterns were observed between Indian and European populations in ADCY5, FTO and KCNJ11. Associations were demonstrated between FTO rs9939609 and BMI and between ADCY5rs17295401 and HDL levels in Europeans. However, these observations were not linked to local variation in DNA methylation levels. No differences in methylation patterns were observed in urban-dwelling migrants compared to their non-migrant rural-dwelling siblings in India. CONCLUSIONS Analysis of DNA methylation at three type 2 diabetes susceptibility loci highlighted geographical and ethnic differences in methylation patterns. These differences may be attributed to genetic and/or region-specific environmental factors.
Collapse
Affiliation(s)
- Hannah R. Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Gagandeep K. Walia
- South Asia Network for Chronic Disease, Public Health Foundation of India, New Delhi, India
| | - Aparna Duggirala
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Alix Groom
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - S. Umakar Reddy
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Giriraj R. Chandak
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | - Vipin Gupta
- South Asia Network for Chronic Disease, Public Health Foundation of India, New Delhi, India
| | - Markku Laakso
- University of Eastern Finland, Finland, and Kuopio University Hospital, Finland
| | - Jacqueline M. Dekker
- Department of Epidemiology and Biostatistics, EMGO Institute for Health and Care Research, VU University Medical Centre, Amsterdam, the Netherlands
| | | | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Shah Ebrahim
- South Asia Network for Chronic Disease, Public Health Foundation of India, New Delhi, India
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - George Davey Smith
- MRC Centre for Causal Analyses in Translational Epidemiology, Department of Social and Community Medicine, University
of Bristol, Bristol, UK
| | - Caroline L. Relton
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
42
|
|
43
|
Alkorta-Aranburu G, Beall CM, Witonsky DB, Gebremedhin A, Pritchard JK, Di Rienzo A. The genetic architecture of adaptations to high altitude in Ethiopia. PLoS Genet 2012; 8:e1003110. [PMID: 23236293 PMCID: PMC3516565 DOI: 10.1371/journal.pgen.1003110] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/06/2012] [Indexed: 11/21/2022] Open
Abstract
Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo. Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. Consistent with this idea, previous studies have identified genetic variants in Tibetan highlanders associated with reduction in hemoglobin levels, an advantageous phenotype at high altitude. To compare the genetic bases of adaptations to high altitude, we collected genetic and epigenetic data in Ethiopians living at high and low altitude, respectively. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, we find a different variant that is significantly associated with hemoglobin levels in Ethiopians. Approaches based on the difference in allele frequency between high- and lowlanders detected strong signals in genes with a clear role in defense from pathogens, consistent with known differences in pathogens between altitudes. Finally, we found a few genome-wide significant epigenetic differences between altitudes. These results taken together imply that Ethiopian and Tibetan highlanders adapted to the same environmental stress through different variants and genetic loci.
Collapse
Affiliation(s)
- Gorka Alkorta-Aranburu
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Cynthia M. Beall
- Department of Anthropology, Case Western Research University, Cleveland, Ohio, United States of America
- * E-mail: (CMB); (ADR)
| | - David B. Witonsky
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Amha Gebremedhin
- Department of Internal Medicine, Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jonathan K. Pritchard
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (CMB); (ADR)
| |
Collapse
|
44
|
Jacobo-Albavera L, Aguayo-de la Rosa PI, Villarreal-Molina T, Villamil-Ramírez H, León-Mimila P, Romero-Hidalgo S, López-Contreras BE, Sánchez-Muñoz F, Bojalil R, González-Barrios JA, Aguilar-Salinas CA, Canizales-Quinteros S. VNN1 gene expression levels and the G-137T polymorphism are associated with HDL-C levels in Mexican prepubertal children. PLoS One 2012. [PMID: 23185446 PMCID: PMC3504107 DOI: 10.1371/journal.pone.0049818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND VNN1 gene expression levels and the G-137T polymorphism have been associated with high density lipoprotein cholesterol (HDL-C) levels in Mexican American adults. We aim to evaluate the contribution of VNN1 gene expression and the G-137T variant to HDL-C levels and other metabolic traits in Mexican prepubertal children. METHODOLOGY/PRINCIPAL FINDINGS VNN1 mRNA expression levels were quantified in peripheral blood leukocytes from 224 unrelated Mexican-Mestizo children aged 6-8 years (107 boys and 117 girls) and were genotyped for the G-137T variant (rs4897612). To account for population stratification, a panel of 10 ancestry informative markers was analyzed. After adjustment for admixture, the TT genotype was significantly associated with lower VNN1 mRNA expression levels (P = 2.9 × 10(-5)), decreased HDL-C levels (β = -6.19, P = 0.028) and with higher body mass index (BMI) z-score (β = 0.48, P = 0.024) in the total sample. In addition, VNN1 expression showed a positive correlation with HDL-C levels (r = 0.220; P = 0.017) and a negative correlation with BMI z-score (r = -0.225; P = 0.015) only in girls. CONCLUSION/SIGNIFICANCE Our data suggest that VNN1 gene expression and the G-137T variant are associated with HDL-C levels in Mexican children, particularly in prepubertal girls.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Pablo I. Aguayo-de la Rosa
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Hugo Villamil-Ramírez
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Paola León-Mimila
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Rafael Bojalil
- Departamento de Inmunología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
- Departamento de Cuidado de la Salud, Universidad Autónoma Metropolitana (UAM) Xochimilco, Mexico City, Mexico
| | - Juan Antonio González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Samuel Canizales-Quinteros
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” (INCMNSZ), Mexico City, Mexico
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- * E-mail:
| |
Collapse
|
45
|
Nath AP, Arafat D, Gibson G. Using blood informative transcripts in geographical genomics: impact of lifestyle on gene expression in fijians. Front Genet 2012; 3:243. [PMID: 23162571 PMCID: PMC3494018 DOI: 10.3389/fgene.2012.00243] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/22/2012] [Indexed: 01/23/2023] Open
Abstract
In previous geographical genomics studies of the impact of lifestyle on gene expression inferred from microarray analysis of peripheral blood samples, we described the complex influences of culture, ethnicity, and gender in Morocco, and of pregnancy in Brisbane. Here we describe the use of nanofluidic Fluidigm quantitative RT-PCR arrays targeted at a set of 96 transcripts that are broadly informative of the major axes of immune gene expression, to explore the population structure of transcription in Fiji. As in Morocco, major differences are seen between the peripheral blood transcriptomes of rural villagers and residents of the capital city, Suva. The effect is much greater in Indian villages than in Melanesian highlanders and appears to be similar with respect to the nature of at least two axes of variation. Gender differences are much smaller than ethnicity or lifestyle effects. Body mass index is shown to associate with one of the axes as it does in Atlanta and Brisbane, establishing a link between the epidemiological transition of human metabolic disease, and gene expression profiles.
Collapse
Affiliation(s)
- Artika Praveeta Nath
- Center for Integrative Genomics, School of Biology, Georgia Institute of Technology Atlanta, GA, USA ; College of Medicine, Nursing and Health Sciences, Fiji National University Suva, Fiji
| | | | | |
Collapse
|
46
|
Stranger BE, De Jager PL. Coordinating GWAS results with gene expression in a systems immunologic paradigm in autoimmunity. Curr Opin Immunol 2012; 24:544-51. [PMID: 23040211 DOI: 10.1016/j.coi.2012.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 11/28/2022]
Abstract
There has been considerable progress in our understanding of the genetic architecture of susceptibility to inflammatory diseases in recent years: several hundred susceptibility loci have been discovered in genome-wide association studies (GWAS) of human populations. This success has created an important challenge in identifying the functional consequences of these risk-associated variants and in elucidating how the repercussions of individual susceptibility loci integrate to yield dysregulation of immune pathways and, ultimately, syndromic clinical phenotypes. The integration of GWAS association signals with high-resolution transcriptome and other genomic data that capture the dynamics of cellular state and function in the context of individual's collection of susceptibility alleles has proven to be a successful avenue of investigation. The rapid pace of methodological development in this area has been coupled with an accumulation of experimental data that makes the elucidation of complex biological networks underlying susceptibility to these common inflammatory diseases a reasonable goal in the near future.
Collapse
Affiliation(s)
- Barbara E Stranger
- Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
47
|
Dimas AS, Nica AC, Montgomery SB, Stranger BE, Raj T, Buil A, Giger T, Lappalainen T, Gutierrez-Arcelus M, McCarthy MI, Dermitzakis ET. Sex-biased genetic effects on gene regulation in humans. Genome Res 2012; 22:2368-75. [PMID: 22960374 PMCID: PMC3514666 DOI: 10.1101/gr.134981.111] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human regulatory variation, reported as expression quantitative trait loci (eQTLs), contributes to differences between populations and tissues. The contribution of eQTLs to differences between sexes, however, has not been investigated to date. Here we explore regulatory variation in females and males and demonstrate that 12%–15% of autosomal eQTLs function in a sex-biased manner. We show that genes possessing sex-biased eQTLs are expressed at similar levels across the sexes and highlight cases of genes controlling sexually dimorphic and shared traits that are under the control of distinct regulatory elements in females and males. This study illustrates that sex provides important context that can modify the effects of functional genetic variants.
Collapse
Affiliation(s)
- Antigone S Dimas
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Evidence for additive and interaction effects of host genotype and infection in malaria. Proc Natl Acad Sci U S A 2012; 109:16786-93. [PMID: 22949651 DOI: 10.1073/pnas.1204945109] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The host mechanisms responsible for protection against malaria remain poorly understood, with only a few protective genetic effects mapped in humans. Here, we characterize a host-specific genome-wide signature in whole-blood transcriptomes of Plasmodium falciparum-infected West African children and report a demonstration of genotype-by-infection interactions in vivo. Several associations involve transcripts sensitive to infection and implicate complement system, antigen processing and presentation, and T-cell activation (i.e., SLC39A8, C3AR1, FCGR3B, RAD21, RETN, LRRC25, SLC3A2, and TAPBP), including one association that validated a genome-wide association candidate gene (SCO1), implicating binding variation within a noncoding regulatory element. Gene expression profiles in mice infected with Plasmodium chabaudi revealed and validated similar responses and highlighted specific pathways and genes that are likely important responders in both hosts. These results suggest that host variation and its interplay with infection affect children's ability to cope with infection and suggest a polygenic model mounted at the transcriptional level for susceptibility.
Collapse
|
49
|
Selmi C, Feghali-Bostwick CA, Lleo A, Lombardi SA, De Santis M, Cavaciocchi F, Zammataro L, Mitchell MM, Lasalle JM, Medsger T, Gershwin ME. X chromosome gene methylation in peripheral lymphocytes from monozygotic twins discordant for scleroderma. Clin Exp Immunol 2012; 169:253-262. [PMID: 22861365 PMCID: PMC3445002 DOI: 10.1111/j.1365-2249.2012.04621.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2012] [Indexed: 12/20/2022] Open
Abstract
Scleroderma (SSc) is a rare connective tissue disease characterized by fibrosis, microvasculopathy and autoimmune features. The role of genetics is limited in SSc, as suggested by similar concordance rates in monozygotic and dizygotic twin pairs, while environmental factors may act through epigenetic changes, as demonstrated for specific genes. Further, sex chromosome changes have been reported in SSc and may explain the female preponderance. In the present study we compared the methylation profile of all X chromosome genes in peripheral blood mononuclear cells from monozygotic twins discordant (n=7) and concordant (n=1) for SSc. Methylated DNA immunoprecipitations from each discordant twin pair were hybridized to a custom-designed array included 998 sites encompassing promoters of all X chromosome genes and randomly chosen autosomal genes. Biostatistical tools identified sites with an elevated probability to be consistently hypermethylated (n=18) or hypomethylated (n=25) in affected twins. Identified genes include transcription factors (ARX, HSFX1, ZBED1, ZNF41) and surface antigens (IL1RAPL2, PGRMC1), and pathway analysis suggests their involvement in cell proliferation (PGK1, SMS, UTP14A, SSR4), apoptosis (MTM1), inflammation (ARAF) and oxidative stress (ENOX2). In conclusion, we propose that X chromosome genes with different methylation profiles in monozygotic twin pairs may constitute candidates for SSc susceptibility.
Collapse
Affiliation(s)
- C Selmi
- Division of Rheumatology, Allergy, and Clinical Immunology Medical Microbiology and Immunology, Genome Center and MIND Institute, University of California, Davis, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
No association between genetic ancestry and susceptibility to asthma or atopy in Canary Islanders. Immunogenetics 2012; 64:705-11. [PMID: 22710824 DOI: 10.1007/s00251-012-0631-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/06/2012] [Indexed: 01/06/2023]
Abstract
Asthma is a complex respiratory disease characterized by chronic inflammation of airways and frequently associated with atopic symptoms. The population from the Canary Islands, which has resulted from a recent admixture of North African and Iberian populations, shows the highest prevalence of asthma and atopic symptoms among the Spanish populations. Although environmental particularities would account for the majority of such disparity, genetic ancestry might play a role in increasing the susceptibility of asthma or atopy, as have been demonstrated in other recently African-admixed populations. Here, we aimed to explore whether genetic ancestry was associated with asthma or related traits in the Canary Islanders. For that, a total of 734 DNA samples from unrelated individuals of the GOA study, self-reporting at least two generations of ancestors from the Canary Islands (391 asthmatics and 343 controls), were successfully genotyped for 83 ancestry informative markers (AIMs), which allowed to precisely distinguishing between North African and Iberian ancestries. No association was found between genetic ancestry and asthma or related traits after adjusting by demographic variables differing among compared groups. Similarly, none of the individual AIMs was associated with asthma when results were considered in the context of the multiple comparisons performed (0.005 ≤ p value ≤ 0.042; 0.221 ≤ q value ≤ 0.443). Our results suggest that if genetic ancestry were involved in the susceptibility to asthma or related traits among Canary Islanders, its effects would be modest. Larger studies, examining more genetic variants, would be needed to explore such possibility.
Collapse
|