1
|
McGrath KE, Koniski AD, Murphy K, Getman M, An HH, Schulz VP, Kim AR, Zhang B, Schofield TL, Papoin J, Blanc L, Kingsley PD, Westhoff CM, Gallagher PG, Chou ST, Steiner LA, Palis J. BMI1 regulates human erythroid self-renewal through both gene repression and gene activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578704. [PMID: 38370741 PMCID: PMC10871261 DOI: 10.1101/2024.02.02.578704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The limited proliferative capacity of erythroid precursors is a major obstacle to generate sufficient numbers of in vitro-derived red blood cells (RBC) for clinical purposes. We and others have determined that BMI1, a member of the polycomb repressive complex 1 (PRC1), is both necessary and sufficient to drive extensive proliferation of self-renewing erythroblasts (SREs). However, the mechanisms of BMI1 action remain poorly understood. BMI1 overexpression led to 10 billion-fold increase BMI1-induced (i)SRE self-renewal. Despite prolonged culture and BMI1 overexpression, human iSREs can terminally mature and agglutinate with typing reagent monoclonal antibodies against conventional RBC antigens. BMI1 and RING1B occupancy, along with repressive histone marks, were identified at known BMI1 target genes, including the INK-ARF locus, consistent with an altered cell cycle following BMI1 inhibition. We also identified upregulated BMI1 target genes with low repressive histone modifications, including key regulator of cholesterol homeostasis. Functional studies suggest that both cholesterol import and synthesis are essential for BMI1-associated self-renewal. These findings support the hypothesis that BMI1 regulates erythroid self-renewal not only through gene repression but also through gene activation and offer a strategy to expand the pool of immature erythroid precursors for eventual clinical uses.
Collapse
Affiliation(s)
- Kathleen E. McGrath
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Anne D. Koniski
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Kristin Murphy
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Michael Getman
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Hyun Hyung An
- Dept. of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Ah Ram Kim
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Taylor L. Schofield
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Julien Papoin
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Paul D. Kingsley
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | | | - Patrick G. Gallagher
- Dept. of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Nationwide Children’s Hospital, Ohio State University, Columbus, OH, USA
| | - Stella T. Chou
- Dept. of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laurie A. Steiner
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
2
|
Cheron J, Beccari L, Hagué P, Icick R, Despontin C, Carusone T, Defrance M, Bhogaraju S, Martin-Garcia E, Capellan R, Maldonado R, Vorspan F, Bonnefont J, de Kerchove d'Exaerde A. USP7/Maged1-mediated H2A monoubiquitination in the paraventricular thalamus: an epigenetic mechanism involved in cocaine use disorder. Nat Commun 2023; 14:8481. [PMID: 38123574 PMCID: PMC10733359 DOI: 10.1038/s41467-023-44120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
The risk of developing drug addiction is strongly influenced by the epigenetic landscape and chromatin remodeling. While histone modifications such as methylation and acetylation have been studied in the ventral tegmental area and nucleus accumbens (NAc), the role of H2A monoubiquitination remains unknown. Our investigations, initially focused on the scaffold protein melanoma-associated antigen D1 (Maged1), reveal that H2A monoubiquitination in the paraventricular thalamus (PVT) significantly contributes to cocaine-adaptive behaviors and transcriptional repression induced by cocaine. Chronic cocaine use increases H2A monoubiquitination, regulated by Maged1 and its partner USP7. Accordingly, Maged1 specific inactivation in thalamic Vglut2 neurons, or USP7 inhibition, blocks cocaine-evoked H2A monoubiquitination and cocaine locomotor sensitization. Additionally, genetic variations in MAGED1 and USP7 are linked to altered susceptibility to cocaine addiction and cocaine-associated symptoms in humans. These findings unveil an epigenetic modification in a non-canonical reward pathway of the brain and a potent marker of epigenetic risk factors for drug addiction in humans.
Collapse
Affiliation(s)
- Julian Cheron
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium
| | - Leonardo Beccari
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Université Claude Bernard Lyon 1, Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Lyon, France
| | - Perrine Hagué
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium
| | - Romain Icick
- INSERM UMRS_1144, Université Paris Cité, Paris, France
| | - Chloé Despontin
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium
| | | | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Elena Martin-Garcia
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Roberto Capellan
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Jérôme Bonnefont
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium
| | - Alban de Kerchove d'Exaerde
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute, Neurophysiology Laboratory, Brussels, Belgium.
- WELBIO, Wavre, Belgium.
| |
Collapse
|
3
|
Abstract
Polycomb group (PcG) proteins are crucial chromatin regulators that maintain repression of lineage-inappropriate genes and are therefore required for stable cell fate. Recent advances show that PcG proteins form distinct multi-protein complexes in various cellular environments, such as in early development, adult tissue maintenance and cancer. This surprising compositional diversity provides the basis for mechanistic diversity. Understanding this complexity deepens and refines the principles of PcG complex recruitment, target-gene repression and inheritance of memory. We review how the core molecular mechanism of Polycomb complexes operates in diverse developmental settings and propose that context-dependent changes in composition and mechanism are essential for proper epigenetic regulation in development.
Collapse
Affiliation(s)
- Jongmin J Kim
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Meng Y, Sun H, Li Y, Zhao S, Su J, Zeng F, Deng G, Chen X. Targeting Ferroptosis by Ubiquitin System Enzymes: A Potential Therapeutic Strategy in Cancer. Int J Biol Sci 2022; 18:5475-5488. [PMID: 36147464 PMCID: PMC9461661 DOI: 10.7150/ijbs.73790] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ferroptosis is a novel type of regulated cell death driven by the excessive accumulation of iron-dependent lipid peroxidation. Therapy-resistant tumor cells, particularly those in the mesenchymal-like state and prone to metastasis, are highly susceptible to ferroptosis, suggesting that induction of ferroptosis in tumor cells is a promising strategy for cancer therapy. Although ferroptosis is regulated at various levels, ubiquitination is key to post-translational regulation of ferroptotic cell death. E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are the most remarkable ubiquitin system enzymes, whose dysregulation accounts for the progression of multiple cancers. E3s are involved in the attachment of ubiquitin to substrates for their degradation, and this process is reversed by DUBs. Accumulating evidence has highlighted the important role of ubiquitin system enzymes in regulating the sensitivity of ferroptosis. Herein, we will portray the regulatory networks of ferroptosis mediated by E3s or DUBs and discuss opportunities and challenges for incorporating this regulation into cancer therapy.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiyan Sun
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yayun Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Furong Zeng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangtong Deng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Geng Z, Gao Z. Mammalian PRC1 Complexes: Compositional Complexity and Diverse Molecular Mechanisms. Int J Mol Sci 2020; 21:E8594. [PMID: 33202645 PMCID: PMC7697839 DOI: 10.3390/ijms21228594] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Polycomb group (PcG) proteins function as vital epigenetic regulators in various biological processes, including pluripotency, development, and carcinogenesis. PcG proteins form multicomponent complexes, and two major types of protein complexes have been identified in mammals to date, Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). The PRC1 complexes are composed in a hierarchical manner in which the catalytic core, RING1A/B, exclusively interacts with one of six Polycomb group RING finger (PCGF) proteins. This association with specific PCGF proteins allows for PRC1 to be subdivided into six distinct groups, each with their own unique modes of action arising from the distinct set of associated proteins. Historically, PRC1 was considered to be a transcription repressor that deposited monoubiquitylation of histone H2A at lysine 119 (H2AK119ub1) and compacted local chromatin. More recently, there is increasing evidence that demonstrates the transcription activation role of PRC1. Moreover, studies on the higher-order chromatin structure have revealed a new function for PRC1 in mediating long-range interactions. This provides a different perspective regarding both the transcription activation and repression characteristics of PRC1. This review summarizes new advancements regarding the composition of mammalian PRC1 and accompanying explanations of how diverse PRC1-associated proteins participate in distinct transcription regulation mechanisms.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Zhonghua Gao
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
- The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
6
|
Bar C, Cohen I, Zhao D, Pothula V, Litskevitch A, Koseki H, Zheng D, Ezhkova E. Polycomb Repressive Complex 1 Controls Maintenance of Fungiform Papillae by Repressing Sonic Hedgehog Expression. Cell Rep 2020; 28:257-266.e5. [PMID: 31269445 PMCID: PMC6921245 DOI: 10.1016/j.celrep.2019.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/22/2019] [Accepted: 06/03/2019] [Indexed: 12/28/2022] Open
Abstract
How tissue patterns are formed and maintained are fundamental questions. The murine tongue epithelium, a paradigm for tissue patterning, consists of an array of specialized fungiform papillae structures that harbor taste cells. The formation of fungiform papillae is preceded by pronounced spatial changes in gene expression, in which taste cell genes such as Shh, initially diffused in lingual epithelial progenitors, become restricted to taste cells when their specification progresses. However, the requirement of spatial restriction of taste cell gene expression for patterning and formation of fungiform papillae is unknown. Here, we show that a chromatin regulator, Polycomb repressive complex (PRC) 1, is required for proper maintenance of fungiform papillae by repressing Shh and preventing ectopic SHH signaling in non-taste cells. Ablation of SHH signaling in PRC1-null non-taste cells rescues the maintenance of taste cells. Altogether, our studies exemplify how epigenetic regulation establishes spatial gene expression patterns necessary for specialized niche structures. Formation and maintenance of patterns are critical for tissue development. Bar et al. show that PRC1, an epigenetic regulator, is critical for lingual papillae development. Specifically, PRC1 regulates maintenance of the developing fungiform papillae, harboring taste cells, by repressing Shh expression in the non-gustatory epithelium surrounding taste cells.
Collapse
Affiliation(s)
- Carmit Bar
- Black Family Stem Cell Institute, The Tisch Cancer Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Idan Cohen
- Black Family Stem Cell Institute, The Tisch Cancer Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Venu Pothula
- Black Family Stem Cell Institute, The Tisch Cancer Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Anna Litskevitch
- Department of Molecular & Cell Biology, University of California, Berkeley, 142 Life Sciences Addition, Berkeley, CA 94720, USA
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; AMED-CREST, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, The Tisch Cancer Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
7
|
RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propagation of H2AK119ub1 during cell division. Nat Cell Biol 2020; 22:439-452. [PMID: 32203418 DOI: 10.1038/s41556-020-0484-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/14/2020] [Indexed: 01/12/2023]
Abstract
Stable propagation of epigenetic information is important for maintaining cell identity in multicellular organisms. However, it remains largely unknown how mono-ubiquitinated histone H2A on lysine 119 (H2AK119ub1) is established and stably propagated during cell division. In this study, we found that the proteins RYBP and YAF2 each specifically bind H2AK119ub1 to recruit the RYBP-PRC1 or YAF2-PRC1 complex to catalyse the ubiquitination of H2A on neighbouring nucleosomes through a positive-feedback model. Additionally, we demonstrated that histone H1-compacted chromatin enhances the distal propagation of H2AK119ub1, thereby reinforcing the inheritance of H2AK119ub1 during cell division. Moreover, we showed that either disruption of RYBP/YAF2-PRC1 activity or impairment of histone H1-dependent chromatin compaction resulted in a significant defect of the maintenance of H2AK119ub1. Therefore, our results suggest that histone H1-dependent chromatin compaction plays a critical role in the stable propagation of H2AK119ub1 by RYBP/YAF2-PRC1 during cell division.
Collapse
|
8
|
Wang JQ, Yan FQ, Wang LH, Yin WJ, Chang TY, Liu JP, Wu KJ. Identification of new hypoxia-regulated epithelial-mesenchymal transition marker genes labeled by H3K4 acetylation. Genes Chromosomes Cancer 2019; 59:73-83. [PMID: 31408253 DOI: 10.1002/gcc.22802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-induced epithelial-mesenchymal transition (EMT) involves the interplay between chromatin modifiers histone deacetylase 3 (HDAC3) and WDR5. The histone mark histone 3 lysine 4 acetylation (H3K4Ac) is observed in the promoter regions of various EMT marker genes (eg, CDH1 and VIM). To further define the genome-wide location of H3K4Ac, a chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) analysis was performed using a head and neck squamous cell carcinoma (HNSCC) FaDu cell line under normoxia and hypoxia. H3K4Ac was found to be located mainly around the transcription start site. Coupled with analysis of gene expression by RNA sequencing and using a HDAC3 knockdown cell line, 10 new genes (BMI1, GLI1, SMO, FOXF1, SIRT2, etc) that were labeled by H3K4Ac and regulated by HDAC3 were identified. Overexpression or knockdown of GLI1/SMO increased or repressed the in vitro migration and invasion activity in OECM-1/FaDu cells, respectively. In HNSCC patients, coexpression of GLI1 and SMO in primary tumors correlated with metastasis. Our results identify new EMT marker genes that may play a significant role in hypoxia-induced EMT and metastasis and further provide diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Jian-Qiu Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Feng-Qin Yan
- Department of Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li-Hui Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Wen-Juan Yin
- Department of Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ting-Yu Chang
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Research Center for Tumor Medical Science, Graduate Institute of New Drug Development, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Barbosa K, Deshpande A, Chen BR, Ghosh A, Sun Y, Dutta S, Weetall M, Dixon J, Armstrong SA, Bohlander SK, Deshpande AJ. Acute myeloid leukemia driven by the CALM-AF10 fusion gene is dependent on BMI1. Exp Hematol 2019; 74:42-51.e3. [PMID: 31022428 PMCID: PMC10586237 DOI: 10.1016/j.exphem.2019.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
A subset of acute myeloid and lymphoid leukemia cases harbor a t(10;11)(p13;q14) translocation resulting in the CALM-AF10 fusion gene. Standard chemotherapeutic strategies are often ineffective in treating patients with CALM-AF10 fusions. Hence, there is an urgent need to identify molecular pathways dysregulated in CALM-AF10-positive leukemias which may lay the foundation for novel targeted therapies. Here we demonstrate that the Polycomb Repressive Complex 1 gene BMI1 is consistently overexpressed in adult and pediatric CALM-AF10-positive leukemias. We demonstrate that genetic Bmi1 depletion abrogates CALM-AF10-mediated transformation of murine hematopoietic stem and progenitor cells (HSPCs). Furthermore, CALM-AF10-positive murine and human AML cells are sensitive to the small-molecule BMI1 inhibitor PTC-209 as well as to PTC-596, a compound in clinical development that has been shown to result in downstream degradation of BMI1 protein. PTC-596 significantly prolongs survival of mice injected with a human CALM-AF10 cell line in a xenograft assay. In summary, these results validate BMI1 as a bona fide candidate for therapeutic targeting in AML with CALM-AF10 rearrangements.
Collapse
MESH Headings
- Animals
- Heterocyclic Compounds, 2-Ring/pharmacology
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Polycomb Repressive Complex 1/antagonists & inhibitors
- Polycomb Repressive Complex 1/genetics
- Polycomb Repressive Complex 1/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Thiazoles/pharmacology
- U937 Cells
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anagha Deshpande
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Bo-Rui Chen
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anwesha Ghosh
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Younguk Sun
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Sayantanee Dutta
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | | | - Jesse Dixon
- Peptide Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Aniruddha J Deshpande
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA.
| |
Collapse
|
10
|
Zhang Y, Koppula P, Gan B. Regulation of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1. Cell Cycle 2019; 18:773-783. [PMID: 30907299 DOI: 10.1080/15384101.2019.1597506] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SLC7A11 (or xCT) imports extracellular cystine into cells to promote glutathione synthesis, thus inhibiting ferroptosis. SLC7A11 expression is tightly controlled in normal cells and its dysregulation results in aberrant expression of SLC7A11 in human cancers. We recently discovered that tumor suppressor BAP1, a H2A deubiquitinase, represses SLC7A11 expression by reducing H2A ubiquitination (H2Aub) on the SLC7A11 promoter. BAP1 inactivation in cancer cells leads to SLC7A11 de-repression, ferroptosis resistance, and tumor development. Here we show that BAP1 promotes ferroptosis induced by class I ferroptosis inducer (FIN) erastin but not by class II FIN RSL3, further supporting that BAP1 regulates ferroptosis through SLC7A11. In addition, we studied how BAP1 coordinates with other transcription factors to regulate SLC7A11 expression and show that BAP1-mediated SLC7A11 repression does not require NRF2 and ATF4 transcription factors. Finally, we show that, while BAP1 decreases whereas PRC1 (a major H2Aub ubiquitin ligase) increases H2Aub binding on the SLC7A11 promoter, both BAP1 and PRC1 represses SLC7A11 expression, suggesting that a dynamic regulation of H2Aub is important for SLC7A11 repression. Together, our data provide additional insights on epigenetic regulation of SLC7A11 expression in cancer cells.
Collapse
Affiliation(s)
- Yilei Zhang
- a Department of Experimental Radiation Oncology , the University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Pranavi Koppula
- a Department of Experimental Radiation Oncology , the University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Experimental Radiation Oncology , The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| | - Boyi Gan
- a Department of Experimental Radiation Oncology , the University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Experimental Radiation Oncology , The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| |
Collapse
|
11
|
BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 2018; 20:1181-1192. [PMID: 30202049 PMCID: PMC6170713 DOI: 10.1038/s41556-018-0178-0] [Citation(s) in RCA: 679] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/26/2018] [Indexed: 12/29/2022]
Abstract
The roles and regulatory mechanisms of ferroptosis, a non-apoptotic form of cell death, in cancer remain unclear. The tumor suppressor BRCA1-associated protein 1 (BAP1) encodes a nuclear de-ubiquitinating (DUB) enzyme to reduce histone 2A ubiquitination (H2Aub) on chromatin. Here integrated transcriptomic, epigenomic, and cancer genomic analyses link BAP1 to metabolism-related biological processes, and identify cystine transporter SLC7A11 as a key BAP1 target gene in human cancers. Functional studies reveal that BAP1 decreases H2Aub occupancy on the SLC7A11 promoter and represses SLC7A11 expression in a DUB-dependent manner and that BAP1 inhibits cystine uptake through repressing SLC7A11 expression, leading to elevated lipid peroxidation and ferroptosis. Furthermore, we show that BAP1 inhibits tumor development partly through SLC7A11 and ferroptosis and that cancer-associated BAP1 mutants lose their abilities to repress SLC7A11 and to promote ferroptosis. Together, our results uncover a previously unappreciated epigenetic mechanism coupling ferroptosis to tumor suppression.
Collapse
|
12
|
Yu F, Zhou C, Zeng H, Liu Y, Li S. BMI1 activates WNT signaling in colon cancer by negatively regulating the WNT antagonist IDAX. Biochem Biophys Res Commun 2018; 496:468-474. [DOI: 10.1016/j.bbrc.2018.01.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
|
13
|
BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response. Proc Natl Acad Sci U S A 2017; 114:3192-3197. [PMID: 28275095 DOI: 10.1073/pnas.1619588114] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.
Collapse
|
14
|
Jin J, Liu J, Chen C, Liu Z, Jiang C, Chu H, Pan W, Wang X, Zhang L, Li B, Jiang C, Ge X, Xie X, Wang P. The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nat Commun 2016; 7:13594. [PMID: 27886188 PMCID: PMC5133637 DOI: 10.1038/ncomms13594] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 10/18/2016] [Indexed: 12/11/2022] Open
Abstract
Nanog is a master pluripotency factor of embryonic stem cells (ESCs). Stable expression of Nanog is essential to maintain the stemness of ESCs. However, Nanog is a short-lived protein and quickly degraded by the ubiquitin-dependent proteasome system. Here we report that the deubiquitinase USP21 interacts with, deubiquitinates and stabilizes Nanog, and therefore maintains the protein level of Nanog in mouse ESCs (mESCs). Loss of USP21 results in Nanog degradation, mESCs differentiation and reduces somatic cell reprogramming efficiency. USP21 is a transcriptional target of the LIF/STAT3 pathway and is downregulated upon differentiation. Moreover, differentiation cues promote ERK-mediated phosphorylation and dissociation of USP21 from Nanog, thus leading to Nanog degradation. In addition, USP21 is recruited to gene promoters by Nanog to deubiquitinate histone H2A at K119 and thus facilitates Nanog-mediated gene expression. Together, our findings provide a regulatory mechanism by which extrinsic signals regulate mESC fate via deubiquitinating Nanog. Nanog regulates embryonic stem cell (ESC) pluripotency but what controls Nanog protein stability is unclear. Here, the authors show that in mouse ESCs, Nanog protein is ubiquitinated and stabilized by the deubiquitinase USP21, which in turn is regulated by extrinsic signals, STAT3 and ERK.
Collapse
Affiliation(s)
- Jiali Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jian Liu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences No. 19A Yuquan Road, Beijing 100049, China
| | - Cong Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhenping Liu
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Cong Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongshang Chu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weijuan Pan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xinbo Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Bin Li
- Key Laboratory of Molecular Virology and Immunology, Unit of Molecular Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cizhong Jiang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Xin Ge
- Department of Clinical Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai 200072, China
| | - Xin Xie
- Chinese Academy of Sciences Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences No. 19A Yuquan Road, Beijing 100049, China
| | - Ping Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| |
Collapse
|
15
|
Koya J, Kataoka K, Sato T, Bando M, Kato Y, Tsuruta-Kishino T, Kobayashi H, Narukawa K, Miyoshi H, Shirahige K, Kurokawa M. DNMT3A R882 mutants interact with polycomb proteins to block haematopoietic stem and leukaemic cell differentiation. Nat Commun 2016; 7:10924. [PMID: 27010239 PMCID: PMC4820786 DOI: 10.1038/ncomms10924] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 02/02/2016] [Indexed: 01/25/2023] Open
Abstract
Despite the clinical impact of DNMT3A mutation on acute myeloid leukaemia, the molecular mechanisms regarding how this mutation causes leukaemogenesis in vivo are largely unknown. Here we show that, in murine transplantation experiments, recipients transplanted with DNMT3A mutant-transduced cells exhibit aberrant haematopoietic stem cell (HSC) accumulation. Differentiation-associated genes are downregulated without accompanying changes in methylation status of their promoter-associated CpG islands in DNMT3A mutant-transduced stem/progenitor cells, representing a DNA methylation-independent role of mutated DNMT3A. DNMT3A R882H also promotes monoblastic transformation in vitro in combination with HOXA9. Molecularly, the DNMT3A mutant interacts with polycomb repressive complex 1 (PRC1), causing transcriptional silencing, revealing a DNA methylation-independent role of DNMT3A mutation. Suppression of PRC1 impairs aberrant HSC accumulation and monoblastic transformation. From our data, it is shown that DNMT3A mutants can block the differentiation of HSCs and leukaemic cells via PRC1. This interaction could be targetable in DNMT3A-mutated leukaemias. DNMT3A mutations are known to cause acute myeloid leukaemia. Here, Koya et al. show that DNMT3A R882H mutation causes monoblastic transformation and haematopoietic stem cell accumulation in a methylation-independent manner, by suppressing the polycomb repressive complex 1, causing transcriptional silencing.
Collapse
Affiliation(s)
- Junji Koya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Keisuke Kataoka
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomohiko Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masashige Bando
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuki Kato
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takako Tsuruta-Kishino
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroshi Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Kensuke Narukawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroyuki Miyoshi
- Subteam for Manipulation of Cell Fate, RIKEN BioResource Center, 3-1-1, Koyadai, Tsukuba-shi, Ibaraki 305-0074, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, bunkyo-ku, Tokyo 113-8655, Japan.,Department of Cell Therapy and Transplantation, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
16
|
Khan AA, Lee AJ, Roh TY. Polycomb group protein-mediated histone modifications during cell differentiation. Epigenomics 2015; 7:75-84. [PMID: 25687468 DOI: 10.2217/epi.14.61] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polycomb group (PcG) proteins play an important role in the regulation of gene expression, especially genes encoding lineage-specific factors. Perturbations in PcG protein expression may trigger an unexpected developmental pathway, resulting in birth defects and developmental disabilities. Two Polycomb repressive complexes, PRC1 and PRC2, have been identified and are related with diverse cellular processes through histone modifications. Many developmental genes are trimethylated at histone H3 lysine 27 (H3K27me3) mediated by PRC2, which provides a binding site for PRC1. These processes contribute to chromatin compaction and transcriptional repression. In this review, we discuss about the complex formation of PcG proteins, the mechanism through which they are recruited to target sites and their functional roles in cell differentiation.
Collapse
Affiliation(s)
- Abdul Aziz Khan
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang, Gyeongbuk 790-784, Republic of Korea
| | | | | |
Collapse
|
17
|
Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complex. Nat Commun 2015; 6:7307. [PMID: 26095772 PMCID: PMC4557297 DOI: 10.1038/ncomms8307] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/27/2015] [Indexed: 12/29/2022] Open
Abstract
ASXL1 is the obligate regulatory subunit of a deubiquitinase complex whose catalytic subunit is BAP1. Heterozygous mutations of ASXL1 that result in premature truncations are frequent in myeloid leukemias and Bohring-Opitz syndrome. Here we demonstrate that ASXL1 truncations confer enhanced activity on the ASXL1-BAP1 complex. Stable expression of truncated, hyperactive ASXL1-BAP1 complexes in a haematopoietic precursor cell line results in global erasure of H2AK119Ub, striking depletion of H3K27me3, selective upregulation of a subset of genes whose promoters are marked by both H2AK119Ub and H3K4me3, and spontaneous differentiation to the mast cell lineage. These outcomes require the catalytic activity of BAP1, indicating that they are downstream consequences of H2AK119Ub erasure. In bone marrow precursors, expression of truncated ASXL1-BAP1 complex cooperates with TET2 loss-of-function to increase differentiation to the myeloid lineage in vivo. Our data raise the possibility that ASXL1 truncation mutations confer gain-of-function on the ASXL-BAP1 complex.
Collapse
|
18
|
Abstract
In multicellular organisms differentiated cells must maintain their cellular memory, which will be faithfully inherited and maintained by their progeny. In addition, these specialized cells are exposed to specific environmental and cell-intrinsic signals and will have to appropriately respond to them. Some of these stimuli lead to changes in a subset of genes or to a genome-wide reprogramming of the cells that will remain after stimuli removal and, in some instances, will be inherited by the daughter cells. The molecular substrate that integrates cellular memory and plasticity is the chromatin, a complex of DNA and histones unique to eukaryotes. The nucleosome is the fundamental unit of the chromatin and nucleosomal organization defines different chromatin conformations. Chromatin regulators affect chromatin conformation and accessibility by covalently modifying the DNA or the histones, substituting histone variants, remodeling the nucleosome position or modulating chromatin looping and folding. These regulators frequently act in multiprotein complexes and highly specific interplays among chromatin marks and different chromatin regulators allow a remarkable array of possibilities. Therefore, chromatin regulator nets act to propagate the conformation of different chromatin regions through DNA replication and mitosis, and to remodel the chromatin fiber to regulate the accessibility of the DNA to transcription factors and to the transcription and repair machineries. Here, the state-of-the-art of the best-known chromatin regulators is reviewed.
Collapse
|
19
|
Affiliation(s)
- He Huang
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shu Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Abstract
Correct expression of specific sets of genes in time and space ensures the establishment and maintenance of cell identity, which is required for proper development of multicellular organisms. Polycomb and Trithorax group proteins form multisubunit complexes that antagonistically act in epigenetic gene repression and activation, respectively. The traditional view of Polycomb repressive complexes (PRCs) as executors of long-lasting and stable gene repression is being extended by evidence of flexible repression in response to developmental and environmental cues, increasing the complexity of mechanisms that ensure selective and properly timed PRC targeting and release of Polycomb repression. Here, we review advances in understanding of the composition, mechanisms of targeting, and function of plant PRCs and discuss the parallels and differences between plant and animal models.
Collapse
Affiliation(s)
- Iva Mozgova
- Department of Plant Biology, Uppsala BioCenter, and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; ,
| | | |
Collapse
|
21
|
Shi X, Zhang Z, Zhan X, Cao M, Satoh T, Akira S, Shpargel K, Magnuson T, Li Q, Wang R, Wang C, Ge K, Wu J. An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth. Nat Commun 2014; 5:5425. [PMID: 25370275 DOI: 10.1038/ncomms6425] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 09/30/2014] [Indexed: 12/15/2022] Open
Abstract
The Sonic hedgehog (Shh) signalling pathway plays important roles during development and in cancer. Here we report a Shh-induced epigenetic switch that cooperates with Gli to control transcription outcomes. Before induction, poised Shh target genes are marked by a bivalent chromatin domain containing a repressive histone H3K27me3 mark and an active H3K4me3 mark. Shh activation induces a local switch of epigenetic cofactors from the H3K27 methyltransferase polycomb repressive complex 2 (PRC2) to an H3K27me3 demethylase Jmjd3/Kdm6b-centred coactivator complex. We also find that non-enzymatic activities of Jmjd3 are important and that Jmjd3 recruits the Set1/MLL H3K4 methyltransferase complexes in a Shh-dependent manner to resolve the bivalent domain. In vivo, changes of the bivalent domain accompanied Shh-activated cerebellar progenitor proliferation. Overall, our results reveal a regulatory mechanism that underlies the activation of Shh target genes and provides insight into the causes of various diseases and cancers exhibiting altered Shh signalling.
Collapse
Affiliation(s)
- Xuanming Shi
- Department of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zilai Zhang
- Department of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xiaoming Zhan
- Department of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mou Cao
- Department of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Takashi Satoh
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center and Department of Host Defense, RIMD, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center and Department of Host Defense, RIMD, Osaka University, Osaka, Japan
| | - Karl Shpargel
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Terry Magnuson
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Qingtian Li
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas 77030, USA
| | - Rongfu Wang
- Center for Inflammation and Epigenetics, The Methodist Hospital Research Institute, Houston, Texas 77030, USA
| | | | - Kai Ge
- NIDDK, NIH, Bethesda, Maryland 20892, USA
| | - Jiang Wu
- Department of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
22
|
Zhao L, Sun MA, Li Z, Bai X, Yu M, Wang M, Liang L, Shao X, Arnovitz S, Wang Q, He C, Lu X, Chen J, Xie H. The dynamics of DNA methylation fidelity during mouse embryonic stem cell self-renewal and differentiation. Genome Res 2014; 24:1296-307. [PMID: 24835587 PMCID: PMC4120083 DOI: 10.1101/gr.163147.113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The faithful transmission of DNA methylation patterns through cell divisions is essential for the daughter cells to retain a proper cell identity. To achieve a comprehensive assessment of methylation fidelity, we implemented a genome-scale hairpin bisulfite sequencing approach to generate methylation data for DNA double strands simultaneously. We show here that methylation fidelity increases globally during differentiation of mouse embryonic stem cells (mESCs), and is particularly high in the promoter regions of actively expressed genes and positively correlated with active histone modification marks and binding of transcription factors. The majority of intermediately (40%–60%) methylated CpG dinucleotides are hemi-methylated and have low methylation fidelity, particularly in the differentiating mESCs. While 5-hmC and 5-mC tend to coexist, there is no significant correlation between 5-hmC levels and methylation fidelity. Our findings may shed new light on our understanding of the origins of methylation variations and the mechanisms underlying DNA methylation transmission.
Collapse
Affiliation(s)
- Lei Zhao
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming-An Sun
- Epigenomics and Computational Biology Lab, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24060, USA
| | - Zejuan Li
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xue Bai
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Miao Yu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Min Wang
- Epigenomics and Computational Biology Lab, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24060, USA
| | - Liji Liang
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojian Shao
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Stephen Arnovitz
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Qianfei Wang
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xuemei Lu
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Chen
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | - Hehuang Xie
- Laboratory of Genome Variation and Precision Biomedicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Epigenomics and Computational Biology Lab, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24060, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24060, USA
| |
Collapse
|
23
|
The histone H2A deubiquitinase Usp16 regulates embryonic stem cell gene expression and lineage commitment. Nat Commun 2014; 5:3818. [PMID: 24784029 PMCID: PMC4060806 DOI: 10.1038/ncomms4818] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/07/2014] [Indexed: 11/09/2022] Open
Abstract
Polycomb Repressive Complex 1 and histone H2A ubiquitination (ubH2A) contribute to embryonic stem cell (ESC) pluripotency by repressing lineage-specific gene expression. However, whether active deubiquitination co-regulates ubH2A levels in ESCs and during differentiation is not known. Here we report that Usp16, a histone H2A deubiquitinase, regulates H2A deubiquitination and gene expression in ESCs, and importantly, is required for ESC differentiation. Usp16 knockout is embryonic lethal in mice, but does not affect ESC viability or identity. Usp16 binds to the promoter regions of a large number of genes in ESCs, and Usp16 binding is inversely correlated with ubH2A levels, and positively correlates with gene expression levels. Intriguingly, Usp16−/− ESCs fail to differentiate due to ubH2A-mediated repression of lineage-specific genes. Finally, Usp16, but not a catalytically inactive mutant, rescues the differentiation defects of Usp16−/− ESCs. Therefore, this study identifies Usp16 and H2A deubiquitination as critical regulators of ESC gene expression and differentiation.
Collapse
|
24
|
Belle JI, Nijnik A. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology. Int J Biochem Cell Biol 2014; 50:161-74. [PMID: 24647359 DOI: 10.1016/j.biocel.2014.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 12/16/2022]
Abstract
Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology.
Collapse
Affiliation(s)
- Jad I Belle
- Department of Physiology, McGill University, Canada; Complex Traits Group, McGill University, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Canada; Complex Traits Group, McGill University, Canada.
| |
Collapse
|
25
|
Yuan G, Ma B, Yuan W, Zhang Z, Chen P, Ding X, Feng L, Shen X, Chen S, Li G, Zhu B. Histone H2A ubiquitination inhibits the enzymatic activity of H3 lysine 36 methyltransferases. J Biol Chem 2013; 288:30832-42. [PMID: 24019522 DOI: 10.1074/jbc.m113.475996] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Histone H3 lysine 27 (H3K27) methylation and H2A monoubiquitination (ubH2A) are two closely related histone modifications that regulate Polycomb silencing. Previous studies reported that H3K27 trimethylation (H3K27me3) rarely coexists with H3K36 di- or tri-methylation (H3K36me2/3) on the same histone H3 tails, which is partially controlled by the direct inhibition of the enzymatic activity of H3K27-specific methyltransferase PRC2. By contrast, H3K27 methylation does not affect the catalytic activity of H3K36-specific methyltransferases, suggesting other Polycomb mechanism(s) may negatively regulate the H3K36-specific methyltransferase(s). In this study, we established a simple protocol to purify milligram quantities of ubH2A from mammalian cells, which were used to reconstitute nucleosome substrates with fully ubiquitinated H2A. A number of histone methyltransferases were then tested on these nucleosome substrates. Notably, all of the H3K36-specific methyltransferases, including ASH1L, HYPB, NSD1, and NSD2 were inhibited by ubH2A, whereas the other histone methyltransferases, including PRC2, G9a, and Pr-Set7 were not affected by ubH2A. Together with previous reports, these findings collectively explain the mutual repulsion of H3K36me2/3 and Polycomb modifications.
Collapse
Affiliation(s)
- Gang Yuan
- From the College of Life Sciences, Beijing Normal University, Beijing, 100875
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hosogane M, Funayama R, Nishida Y, Nagashima T, Nakayama K. Ras-induced changes in H3K27me3 occur after those in transcriptional activity. PLoS Genet 2013; 9:e1003698. [PMID: 24009517 PMCID: PMC3757056 DOI: 10.1371/journal.pgen.1003698] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 06/20/2013] [Indexed: 01/14/2023] Open
Abstract
Oncogenic signaling pathways regulate gene expression in part through epigenetic modification of chromatin including DNA methylation and histone modification. Trimethylation of histone H3 at lysine-27 (H3K27), which correlates with transcriptional repression, is regulated by an oncogenic form of the small GTPase Ras. Although accumulation of trimethylated H3K27 (H3K27me3) has been implicated in transcriptional regulation, it remains unclear whether Ras-induced changes in H3K27me3 are a trigger for or a consequence of changes in transcriptional activity. We have now examined the relation between H3K27 trimethylation and transcriptional regulation by Ras. Genome-wide analysis of H3K27me3 distribution and transcription at various times after expression of oncogenic Ras in mouse NIH 3T3 cells identified 115 genes for which H3K27me3 level at the gene body and transcription were both regulated by Ras. Similarly, 196 genes showed Ras-induced changes in transcription and H3K27me3 level in the region around the transcription start site. The Ras-induced changes in transcription occurred before those in H3K27me3 at the genome-wide level, a finding that was validated by analysis of individual genes. Depletion of H3K27me3 either before or after activation of Ras signaling did not affect the transcriptional regulation of these genes. Furthermore, given that H3K27me3 enrichment was dependent on Ras signaling, neither it nor transcriptional repression was maintained after inactivation of such signaling. Unexpectedly, we detected unannotated transcripts derived from intergenic regions at which the H3K27me3 level is regulated by Ras, with the changes in transcript abundance again preceding those in H3K27me3. Our results thus indicate that changes in H3K27me3 level in the gene body or in the region around the transcription start site are not a trigger for, but rather a consequence of, changes in transcriptional activity. Trimethylation of histone H3 at lysine-27 (H3K27) has been associated with silencing of gene expression. Abnormalities of this modification are thought to contribute to the epigenetic silencing of tumor suppressor genes and are regarded as a hallmark of cancer. It has remained unclear, however, whether the production of trimethylated H3K27 (H3K27me3) is the cause or the consequence of gene silencing. To address this issue, we examined the time courses of changes in H3K27me3 level and those in gene transcription induced by an oncogenic form of the Ras protein, the gene for which is one of the most frequently mutated in human cancer. We found that the amount of H3K27me3 was inversely related to transcriptional activity both at the genome-wide level and at the level of individual genes. However, we also found that the Ras-induced changes in H3K27me3 level occurred after those in transcriptional activity. Our results thus demonstrate that changes in H3K27me3 abundance are a consequence rather than a cause of transcriptional regulation, and they suggest that oncoprotein-driven changes in gene transcription can alter the pattern of histone modification in cancer cells.
Collapse
Affiliation(s)
- Masaki Hosogane
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Ryo Funayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Yuichiro Nishida
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Takeshi Nagashima
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Keiko Nakayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Japan
- * E-mail:
| |
Collapse
|
27
|
Variable requirements for DNA-binding proteins at polycomb-dependent repressive regions in human HOX clusters. Mol Cell Biol 2013; 33:3274-85. [PMID: 23775117 DOI: 10.1128/mcb.00275-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Polycomb group (PcG)-mediated repression is an evolutionarily conserved process critical for cell fate determination and maintenance of gene expression during embryonic development. However, the mechanisms underlying PcG recruitment in mammals remain unclear since few regulatory sites have been identified. We report two novel prospective PcG-dependent regulatory elements within the human HOXB and HOXC clusters and compare their repressive activities to a previously identified element in the HOXD cluster. These regions recruited the PcG proteins BMI1 and SUZ12 to a reporter construct in mesenchymal stem cells and conferred repression that was dependent upon PcG expression. Furthermore, we examined the potential of two DNA-binding proteins, JARID2 and YY1, to regulate PcG activity at these three elements. JARID2 has differential requirements, whereas YY1 appears to be required for repressive activity at all 3 sites. We conclude that distinct elements of the mammalian HOX clusters can recruit components of the PcG complexes and confer repression, similar to what has been seen in Drosophila. These elements, however, have diverse requirements for binding factors, which, combined with previous data on other loci, speaks to the complexity of PcG targeting in mammals.
Collapse
|
28
|
Huang C, Xu M, Zhu B. Epigenetic inheritance mediated by histone lysine methylation: maintaining transcriptional states without the precise restoration of marks? Philos Trans R Soc Lond B Biol Sci 2013; 368:20110332. [PMID: 23166395 DOI: 10.1098/rstb.2011.0332] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
'Epigenetics' has been defined as the study of 'mitotically and/or meiotically heritable changes in gene function that cannot be explained by changes in DNA sequence'. Chromatin modifications are major carriers of epigenetic information that both reflect and affect the transcriptional states of underlying genes. Several histone modifications are key players that are responsible for classical epigenetic phenomena. However, the mechanisms by which cells pass their histone modifications to daughter cells through mitotic division remain to be unveiled. Here, we review recent progress in the field and conclude that epigenetic modifications are not precisely maintained at a near-mononucleosome level of precision. We also suggest that transcription repression may be maintained by a buffer system that can tolerate a certain degree of fluctuation in repressive histone modification levels. This buffer system protects the repressed genes from potential improper derepression triggered by chromatin modification-level fluctuation resulting from cellular events, such as the cell-cycle-dependent dilution of the chromatin modifications and local responses to environmental cues.
Collapse
Affiliation(s)
- Chang Huang
- College of Biological Sciences, China Agricultural University, Beijing 100094, Republic of China
| | | | | |
Collapse
|
29
|
Retinal degeneration depends on Bmi1 function and reactivation of cell cycle proteins. Proc Natl Acad Sci U S A 2013; 110:E593-601. [PMID: 23359713 DOI: 10.1073/pnas.1108297110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The epigenetic regulator Bmi1 controls proliferation in many organs. Reexpression of cell cycle proteins such as cyclin-dependent kinases (CDKs) is a hallmark of neuronal apoptosis in neurodegenerative diseases. Here we address the potential role of Bmi1 as a key regulator of cell cycle proteins during neuronal apoptosis. We show that several cell cycle proteins are expressed in different models of retinal degeneration and required in the Rd1 photoreceptor death process. Deleting E2f1, a downstream target of CDKs, provided temporary protection in Rd1 mice. Most importantly, genetic ablation of Bmi1 provided extensive photoreceptor survival and improvement of retinal function in Rd1 mice, mediated by a decrease in cell cycle markers and regulators independent of p16(Ink4a) and p19(Arf). These data reveal that Bmi1 controls the cell cycle-related death process, highlighting this pathway as a promising therapeutic target for neuroprotection in retinal dystrophies.
Collapse
|
30
|
Jin B, Ernst J, Tiedemann RL, Xu H, Sureshchandra S, Kellis M, Dalton S, Liu C, Choi JH, Robertson KD. Linking DNA methyltransferases to epigenetic marks and nucleosome structure genome-wide in human tumor cells. Cell Rep 2012; 2:1411-24. [PMID: 23177624 PMCID: PMC3625945 DOI: 10.1016/j.celrep.2012.10.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/30/2012] [Accepted: 10/22/2012] [Indexed: 12/23/2022] Open
Abstract
DNA methylation, mediated by the combined action of three DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), is essential for mammalian development and is a major contributor to cellular transformation. To elucidate how DNA methylation is targeted, we mapped the genome-wide localization of all DNMTs and methylation, and examined the relationships among these markers, histone modifications, and nucleosome structure in a pluripotent human tumor cell line in its undifferentiated and differentiated states. Our findings reveal a strong link between DNMTs and transcribed loci, and that DNA methylation is not a simple sum of DNMT localization patterns. A comparison of the epigenomes of normal and cancerous stem cells, and pluripotent and differentiated states shows that the presence of at least two DNMTs is strongly associated with loci targeted for DNA hypermethylation. Taken together, these results shed important light on the determinants of DNA methylation and how it may become disrupted in cancer cells.
Collapse
Affiliation(s)
- Bilian Jin
- Georgia Health Sciences University, Cancer Research Center, 1410 Laney Walker Blvd., Augusta, GA 30912
| | - Jason Ernst
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139
| | - Rochelle L. Tiedemann
- Georgia Health Sciences University, Cancer Research Center, 1410 Laney Walker Blvd., Augusta, GA 30912
| | - Hongyan Xu
- Georgia Health Sciences University, Cancer Research Center, 1410 Laney Walker Blvd., Augusta, GA 30912
- Georgia Health Sciences University, Dept. of Biostatistics, Augusta, GA 30912
| | - Suhas Sureshchandra
- Georgia Health Sciences University, Cancer Research Center, 1410 Laney Walker Blvd., Augusta, GA 30912
- Georgia Health Sciences University, Dept. of Biostatistics, Augusta, GA 30912
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139
| | - Stephen Dalton
- Paul D. Coverdell Center for Biomedical and Health Sciences, University of Georgia, Athens, GA 30602
| | - Chen Liu
- University of Florida, Dept. of Pathology, Immunology & Laboratory Medicine, 1600 S.W. Archer Rd., Gainesville, FL 32610
| | - Jeong-Hyeon Choi
- Georgia Health Sciences University, Cancer Research Center, 1410 Laney Walker Blvd., Augusta, GA 30912
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Keith D. Robertson
- Georgia Health Sciences University, Cancer Research Center, 1410 Laney Walker Blvd., Augusta, GA 30912
| |
Collapse
|
31
|
Chromatin regulators in mammalian epidermis. Semin Cell Dev Biol 2012; 23:897-905. [DOI: 10.1016/j.semcdb.2012.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/09/2012] [Accepted: 08/24/2012] [Indexed: 12/17/2022]
|
32
|
Endoh M, Endo TA, Endoh T, Isono KI, Sharif J, Ohara O, Toyoda T, Ito T, Eskeland R, Bickmore WA, Vidal M, Bernstein BE, Koseki H. Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet 2012; 8:e1002774. [PMID: 22844243 PMCID: PMC3405999 DOI: 10.1371/journal.pgen.1002774] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/04/2012] [Indexed: 01/08/2023] Open
Abstract
Two distinct Polycomb complexes, PRC1 and PRC2, collaborate to maintain epigenetic repression of key developmental loci in embryonic stem cells (ESCs). PRC1 and PRC2 have histone modifying activities, catalyzing mono-ubiquitination of histone H2A (H2AK119u1) and trimethylation of H3 lysine 27 (H3K27me3), respectively. Compared to H3K27me3, localization and the role of H2AK119u1 are not fully understood in ESCs. Here we present genome-wide H2AK119u1 maps in ESCs and identify a group of genes at which H2AK119u1 is deposited in a Ring1-dependent manner. These genes are a distinctive subset of genes with H3K27me3 enrichment and are the central targets of Polycomb silencing that are required to maintain ESC identity. We further show that the H2A ubiquitination activity of PRC1 is dispensable for its target binding and its activity to compact chromatin at Hox loci, but is indispensable for efficient repression of target genes and thereby ESC maintenance. These data demonstrate that multiple effector mechanisms including H2A ubiquitination and chromatin compaction combine to mediate PRC1-dependent repression of genes that are crucial for the maintenance of ESC identity. Utilization of these diverse effector mechanisms might provide a means to maintain a repressive state that is robust yet highly responsive to developmental cues during ES cell self-renewal and differentiation. Polycomb-group (PcG) proteins play essential roles in the epigenetic regulation of gene expression during development. PcG proteins form two distinct multimeric complexes, PRC1 and PRC2. In the widely accepted hierarchical model, PRC2 is recruited to specific genomic locations and catalyzes trimethylation of H3 lysine 27 (H3K27me3), thereby creating binding sites for PRC1, which then catalyzes mono-ubiquitination of histone H2A (H2AK119u1). Recently, PRC1 has been shown to be able to compact chromatin structure at target loci independently of its histone ubiquitination activity. Therefore, the role of H2AK119u1 still remains unclear. To gain insight into this issue, we used ChIP-on-chip analysis to map H2AK119u1 genome-wide in mouse ES cells (ESCs). The data demonstrate that H2AK119u1 occupies a distinctive subset of genes with H3K27me3 enrichment. These genes are the central targets of Polycomb silencing to maintain ESC identity. We further show that the H2A ubiquitination activity of PRC1 is dispensable for its target binding and its activity to compact chromatin at Hox loci, but is indispensable for efficient repression of target genes and therefore ESC maintenance. We propose that multiple effector mechanisms including H2A ubiquitination and chromatin compaction combine to mediate PRC1-dependent repression of developmental genes to maintain the identity of ESCs.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Yokohama, Japan
- * E-mail: (ME); (HK)
| | - Takaho A. Endo
- RIKEN Bioinformatics and System Engineering Division, Yokohama, Japan
| | - Tamie Endoh
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Kyo-ichi Isono
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Osamu Ohara
- Laboratories for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Tetsuro Toyoda
- RIKEN Bioinformatics and System Engineering Division, Yokohama, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Ragnhild Eskeland
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Miguel Vidal
- Cell Proliferation and Development, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Research Unit for Immunoepigenetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Bradley E. Bernstein
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Yokohama, Japan
- * E-mail: (ME); (HK)
| |
Collapse
|
33
|
Kim SY, Lee J, Eshed-Williams L, Zilberman D, Sung ZR. EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development. PLoS Genet 2012; 8:e1002512. [PMID: 22457632 PMCID: PMC3310727 DOI: 10.1371/journal.pgen.1002512] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/13/2011] [Indexed: 11/28/2022] Open
Abstract
EMBRYONIC FLOWER1 (EMF1) is a plant-specific gene crucial to Arabidopsis vegetative development. Loss of function mutants in the EMF1 gene mimic the phenotype caused by mutations in Polycomb Group protein (PcG) genes, which encode epigenetic repressors that regulate many aspects of eukaryotic development. In Arabidopsis, Polycomb Repressor Complex 2 (PRC2), made of PcG proteins, catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3) and PRC1-like proteins catalyze H2AK119 ubiquitination. Despite functional similarity to PcG proteins, EMF1 lacks sequence homology with known PcG proteins; thus, its role in the PcG mechanism is unclear. To study the EMF1 functions and its mechanism of action, we performed genome-wide mapping of EMF1 binding and H3K27me3 modification sites in Arabidopsis seedlings. The EMF1 binding pattern is similar to that of H3K27me3 modification on the chromosomal and genic level. ChIPOTLe peak finding and clustering analyses both show that the highly trimethylated genes also have high enrichment levels of EMF1 binding, termed EMF1_K27 genes. EMF1 interacts with regulatory genes, which are silenced to allow vegetative growth, and with genes specifying cell fates during growth and differentiation. H3K27me3 marks not only these genes but also some genes that are involved in endosperm development and maternal effects. Transcriptome analysis, coupled with the H3K27me3 pattern, of EMF1_K27 genes in emf1 and PRC2 mutants showed that EMF1 represses gene activities via diverse mechanisms and plays a novel role in the PcG mechanism. Polycomb group (PcG) proteins are epigenetic repressors maintaining developmental states in eukaryotic organisms. Plant PcG proteins are expected to be general epigenetic repressors; however, their overall impact on growth and differentiation and their mechanism of repression are still unclear. Here we identified several thousand target genes of the EMBRYONIC FLOWER 1 (EMF1) protein, which shares no sequence homology with known PcG proteins. EMF1 regulates developmental phase transitions as well as specifies cell fates during vegetative development. Trimethylation of histone 3 lysine 27 (H3K27me3) and ubiqutination of lysine 119 of histone H2A are carried out by different PcG protein complexes. EMF1 is required for both histone modifications on genes specifying stem cell fate in plants, thus revealing a novel role of EMF1 in linking the PcG protein complexes. Our results have important implications for the evolution of PcG regulatory mechanisms.
Collapse
Affiliation(s)
- Sang Yeol Kim
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Jungeun Lee
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Leor Eshed-Williams
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail: (DZ); (ZRS)
| | - Z. Renee Sung
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail: (DZ); (ZRS)
| |
Collapse
|
34
|
Identification and characterization of Polycomb group genes in the silkworm, Bombyx mori. Mol Biol Rep 2011; 39:5575-88. [PMID: 22187347 DOI: 10.1007/s11033-011-1362-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 12/12/2011] [Indexed: 12/21/2022]
Abstract
Polycomb group (PcG) proteins are involved in chromatin modifications for maintaining gene repression that play important roles in the regulation of gene expression, tumorigenesis, chromosome X-inactivation, and genomic imprinting in Drosophila melanogaster, mammals, and even plants. To characterize the orthologs of PcG genes in the silkworm, Bombyx mori, 13 candidates were identified from the updated silkworm genome sequence by using the fruit fly PcG genes as queries. Comparison of the silkworm PcG proteins with those from other insect species revealed that the insect PcG proteins shared high sequence similarity. High-level expressions of all the silkworm PcG genes were maintained through day 2 to day 7 of embryogenesis, and tissue microarray data on day 3 of the fifth instar larvae showed that their expression levels were relatively low in somatic tissues, except for Enhancer of zeste (E(Z)). In addition, knockdown of each PRC2 component, such as E(Z), Extra sex combs (ESC), and Suppressor of zeste 12 (SU(Z)12), considerably decreased the global levels of H3K27me3 but not of H3K27me2. Taken together, these results suggest that insect PcG proteins are highly conserved during evolution and might play similar roles in embryogenesis.
Collapse
|
35
|
Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2011; 2:607-17. [PMID: 21941617 DOI: 10.1177/1947601910393957] [Citation(s) in RCA: 503] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications are heritable changes in gene expression not encoded by the DNA sequence. In the past decade, great strides have been made in characterizing epigenetic changes during normal development and in disease states like cancer. However, the epigenetic landscape has grown increasingly complicated, encompassing DNA methylation, the histone code, noncoding RNA, and nucleosome positioning, along with DNA sequence. As a stable repressive mark, DNA methylation, catalyzed by the DNA methyltransferases (DNMTs), is regarded as a key player in epigenetic silencing of transcription. DNA methylation may coordinately regulate the chromatin status via the interaction of DNMTs with other modifications and with components of the machinery mediating those marks. In this review, we will comprehensively examine the current understanding of the connections between DNA methylation and other epigenetic marks and discuss molecular mechanisms of transcriptional repression in development and in carcinogenesis.
Collapse
Affiliation(s)
- Bilian Jin
- Department of Biochemistry & Molecular Biology, Medical College of Georgia Cancer Center, Augusta, GA, USA
| | | | | |
Collapse
|
36
|
Hammond-Martel I, Yu H, Affar EB. Roles of ubiquitin signaling in transcription regulation. Cell Signal 2011; 24:410-421. [PMID: 22033037 DOI: 10.1016/j.cellsig.2011.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
Abstract
Rivaling or cooperating with other post-translational modifications, ubiquitination plays central roles in regulating numerous cellular processes. Not surprisingly, gain- or loss-of-function mutations in several components of the ubiquitin system are causally linked to human pathologies including cancer. The covalent attachment of ubiquitin to target proteins occurs in sequential steps and involves ubiquitin ligases (E3s) which are the most abundant enzymes of the ubiquitin system. Although often associated with proteasomal degradation, ubiquitination is also involved in regulatory events in a proteasome-independent manner. Moreover, ubiquitination is reversible and specific proteases, termed deubiquitinases (DUBs), remove ubiquitin from protein substrates. While we now appreciate the importance of ubiquitin signaling in coordinating a plethora of physio-pathological processes, the molecular mechanisms are not fully understood. This review summarizes current findings on the critical functions exerted by E3s and DUBs in transcriptional control, particularly chromatin remodeling and transcription initiation/elongation.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - Helen Yu
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada.
| |
Collapse
|
37
|
BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 2011; 477:179-84. [PMID: 21901007 PMCID: PMC3240576 DOI: 10.1038/nature10371] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 07/15/2011] [Indexed: 12/24/2022]
Abstract
Mutations in tumor suppressor BRCA1 lead to breast and/or ovarian cancer. Here we show that loss of BRCA1 in mice results in transcriptional derepression of the tandemly repeated satellite DNA. BRCA1 deficiency is accompanied by reduction of condensed DNA regions in the genome and loss of ubiquitylation of histone H2A at satellite repeats. BRCA1 binds to satellite DNA regions in vivo and ubiquitylates H2A in vitro. Ectopic expression of an H2A fused to ubiquitin reverses the effects of BRCA1 loss, suggesting that BRCA1 maintains heterochromatin structure via ubiquitylation of histone H2A. Satellite DNA derepression was also observed mouse and human BRCA1 deficient breast cancers. Ectopic expression of satellite DNA can phenocopy BRCA1 loss in centrosome amplification, cell cycle checkpoint defects, DNA damage and genomic instability. We propose that the role of BRCA1 in maintaining global heterochromatin integrity accounts for many of its tumor suppressor functions.
Collapse
|
38
|
Delgado-Olguín P, Recillas-Targa F. Chromatin structure of pluripotent stem cells and induced pluripotent stem cells. Brief Funct Genomics 2011; 10:37-49. [PMID: 21325400 DOI: 10.1093/bfgp/elq038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pluripotent embryonic stem (ES) cells are specialized cells with a dynamic chromatin structure, which is intimately connected with their pluripotency and physiology. In recent years somatic cells have been reprogrammed to a pluripotent state through over-expression of a defined set of transcription factors. These cells, known as induced pluripotent stem (iPS) cells, recapitulate ES cell properties and can be differentiated to apparently all cell lineages, making iPS cells a suitable replacement for ES cells in future regenerative medicine. Chromatin modifiers play a key function in establishing and maintaining pluripotency, therefore, elucidating the mechanisms controlling chromatin structure in both ES and iPS cells is of utmost importance to understanding their properties and harnessing their therapeutic potential. In this review, we discuss recent studies that provide a genome-wide view of the chromatin structure signature in ES cells and iPS cells and that highlight the central role of histone modifiers and chromatin remodelers in pluripotency maintenance and induction.
Collapse
Affiliation(s)
- Paul Delgado-Olguín
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, 1650 Owens street, San Francisco, CA 94158, USA.
| | | |
Collapse
|
39
|
Herrera BM, Keildson S, Lindgren CM. Genetics and epigenetics of obesity. Maturitas 2011; 69:41-9. [PMID: 21466928 PMCID: PMC3213306 DOI: 10.1016/j.maturitas.2011.02.018] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 01/05/2023]
Abstract
Obesity results from interactions between environmental and genetic factors. Despite a relatively high heritability of common, non-syndromic obesity (40-70%), the search for genetic variants contributing to susceptibility has been a challenging task. Genome wide association (GWA) studies have dramatically changed the pace of detection of common genetic susceptibility variants. To date, more than 40 genetic variants have been associated with obesity and fat distribution. However, since these variants do not fully explain the heritability of obesity, other forms of variation, such as epigenetics marks, must be considered. Epigenetic marks, or "imprinting", affect gene expression without actually changing the DNA sequence. Failures in imprinting are known to cause extreme forms of obesity (e.g. Prader-Willi syndrome), but have also been convincingly associated with susceptibility to obesity. Furthermore, environmental exposures during critical developmental periods can affect the profile of epigenetic marks and result in obesity. We review the most recent evidence for genetic and epigenetic mechanisms involved in the susceptibility and development of obesity. Only a comprehensive understanding of the underlying genetic and epigenetic mechanisms, and the metabolic processes they govern, will allow us to manage, and eventually prevent, obesity.
Collapse
Affiliation(s)
- Blanca M. Herrera
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Sarah Keildson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Cecilia M. Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism University of Oxford, United Kingdom
| |
Collapse
|
40
|
BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol 2011; 31:1972-82. [PMID: 21383063 DOI: 10.1128/mcb.00981-10] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA damage activates signaling pathways that lead to modification of local chromatin and recruitment of DNA repair proteins. Multiple DNA repair proteins having ubiquitin ligase activity are recruited to sites of DNA damage, where they ubiquitinate histones and other substrates. This DNA damage-induced histone ubiquitination is thought to play a critical role in mediating the DNA damage response. We now report that the polycomb protein BMI1 is rapidly recruited to sites of DNA damage, where it persists for more than 8 h. The sustained localization of BMI1 to damage sites is dependent on intact ATM and ATR and requires H2AX phosphorylation and recruitment of RNF8. BMI1 is required for DNA damage-induced ubiquitination of histone H2A at lysine 119. Loss of BMI1 leads to impaired repair of DNA double-strand breaks by homologous recombination and the accumulation of cells in G(2)/M. These data support a crucial role for BMI1 in the cellular response to DNA damage.
Collapse
|
41
|
Radioprotective effects of Bmi-1 involve epigenetic silencing of oxidase genes and enhanced DNA repair in normal human keratinocytes. J Invest Dermatol 2011; 131:1216-25. [PMID: 21307872 DOI: 10.1038/jid.2011.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Normal human keratinocytes (NHKs) undergo premature senescence following exposure to ionizing radiation (IR). This study investigates the effect of Bmi-1, a polycomb group protein, on radiation-induced senescence response. When exposed to IR, NHK transduced with Bmi-1 (NHK/Bmi-1) showed reduced senescent phenotype and enhanced proliferation compared with control cells (NHK/B0). To investigate the underlying mechanism, we determined the production of reactive oxygen species (ROS), expression of ROS-generating enzymes, and DNA repair activities in cells. ROS level was increased upon irradiation but notably reduced by Bmi-1 transduction. Irradiation led to strong induction of oxidase genes, e.g., Lpo (lactoperoxidase), p22-phox, p47-phox, and Gp91, in NHK/B0 but their expression was almost completely silenced in NHK/Bmi-1. Induction of oxidase genes upon irradiation was linked with loss of trimethylated histone 3 at lysine 27 (H3K27Me3), but NHK/Bmi-1 expressed a higher level of H3K27Me3 compared with NHK/B0. Bmi-1 transduction suppressed IR-associated induction of jumanji domain containing 3 while enhancing the expression of EZH2, thereby preventing the loss of H3K27Me3 in the irradiated cells. Furthermore, NHK/Bmi-1 demonstrated increased repair of IR-induced DNA damage compared with NHK/B0. These results indicate that Bmi-1 elicits radioprotective effects on NHK by mitigating the genotoxicity of IR through epigenetic mechanisms.
Collapse
|
42
|
Surface LE, Thornton SR, Boyer LA. Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell 2010; 7:288-98. [PMID: 20804966 DOI: 10.1016/j.stem.2010.08.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 12/15/2022]
Abstract
Precise control of gene expression patterns is critical for the specification of cellular diversity during metazoan development. Polycomb group (PcG) proteins comprise a class of transcriptional modifiers that have dynamic and essential roles in regulating a number of key processes including lineage commitment. How this is accomplished during mammalian development is incompletely understood. Here, we discuss recent studies in embryonic stem cells (ESCs) that provide critical new insights into how PcG proteins may be targeted to genomic sites as well as the mechanisms by which these regulators influence gene expression and multilineage differentiation in mammals.
Collapse
Affiliation(s)
- Lauren E Surface
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
43
|
Richly H, Rocha-Viegas L, Ribeiro JD, Demajo S, Gundem G, Lopez-Bigas N, Nakagawa T, Rospert S, Ito T, Di Croce L. Transcriptional activation of polycomb-repressed genes by ZRF1. Nature 2010; 468:1124-8. [DOI: 10.1038/nature09574] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 10/12/2010] [Indexed: 12/24/2022]
|
44
|
Abstract
Many Polycomb group (PcG) proteins assemble into complexes containing histone-modifying enzymes that act in concert to control developmental regulators. In a recent study in Nature, Scheuermann et al. report the identification of a PcG complex with histone H2A-specific deubiquitinase activity that may be a key player in PcG-target gene regulation.
Collapse
Affiliation(s)
- Bernd Schuettengruber
- Institut de Génétique Humaine, CNRS, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | |
Collapse
|
45
|
Abstract
Once thought to be transcriptional noise, large non-coding RNAs (lncRNAs) have recently been demonstrated to be functional molecules. Cell-type specific expression patterns of lncRNAs suggest that their transcription may be regulated epigenetically. Using a custom-designed microarray, here we examine the expression profile of lncRNAs in embryonic stem (ES) cells, lineage-restricted neuronal progenitor cells (NPC), and terminally differentiated fibroblasts. In addition, we also analyze the relationship between their expression and their promoter H3K4 and H3K27 methylation patterns. We find that numerous lncRNAs in these cell types undergo changes in the levels of expression and promoter H3K4me3 and H3K27me3. Interestingly, lncRNAs that are expressed at lower levels in ES cells exhibit higher levels of H3K27me3 at their promoters. Consistent with this result, knockdown of the H3K27me3 methyltransferase Ezh2 results in derepression of these lncRNAs in ES cells. Thus, our results establish a role for Ezh2-mediated H3K27 methylation in lncRNA silencing in ES cells and reveal that lncRNAs are subject to epigenetic regulation in a similar manner to that of protein coding genes.
Collapse
Affiliation(s)
- Susan C Wu
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|
46
|
Pérez-Losada J, Sanchez-Garcia I. New functions for the Snail family of transcription factors: Two-faced proteins. Cell Cycle 2010; 9:2706-8. [PMID: 20676033 PMCID: PMC3233522 DOI: 10.4161/cc.9.14.12322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
47
|
Wilbanks EG, Facciotti MT. Evaluation of algorithm performance in ChIP-seq peak detection. PLoS One 2010; 5:e11471. [PMID: 20628599 PMCID: PMC2900203 DOI: 10.1371/journal.pone.0011471] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/14/2010] [Indexed: 01/08/2023] Open
Abstract
Next-generation DNA sequencing coupled with chromatin immunoprecipitation (ChIP-seq) is revolutionizing our ability to interrogate whole genome protein-DNA interactions. Identification of protein binding sites from ChIP-seq data has required novel computational tools, distinct from those used for the analysis of ChIP-Chip experiments. The growing popularity of ChIP-seq spurred the development of many different analytical programs (at last count, we noted 31 open source methods), each with some purported advantage. Given that the literature is dense and empirical benchmarking challenging, selecting an appropriate method for ChIP-seq analysis has become a daunting task. Herein we compare the performance of eleven different peak calling programs on common empirical, transcription factor datasets and measure their sensitivity, accuracy and usability. Our analysis provides an unbiased critical assessment of available technologies, and should assist researchers in choosing a suitable tool for handling ChIP-seq data.
Collapse
Affiliation(s)
- Elizabeth G Wilbanks
- Graduate Group in Microbiology, University of California Davis, Davis, California, United States of America
| | | |
Collapse
|
48
|
Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells. Curr Opin Hematol 2010; 17:294-9. [DOI: 10.1097/moh.0b013e328338c439] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Zhu Q, Wani AA. Histone modifications: crucial elements for damage response and chromatin restoration. J Cell Physiol 2010; 223:283-8. [PMID: 20112283 DOI: 10.1002/jcp.22060] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Eukaryotic genomes are packaged into chromatin from repeated nucleosome arrays in which DNA sequences wrap around histones. Chromatin organization has profound influence on DNA-templated processes such as transcription, DNA replication, and repair. Recent studies have also revealed chromatin dynamics as an active contributor to diverse DNA damage responses (DDR). Here, we review recent progress in histone modification related to DDR and post-repair chromatin restoration at the sites of DNA damage. We discuss how the timing and features of histone modifications would provide the initial as well as the final guidance for DDR, and the prospect that modifications may challenge the epigenetic stability of repaired cells and serve as damage memory in chromatin.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, Ohio 43240-1000, USA.
| | | |
Collapse
|
50
|
Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells. Blood 2010; 116:731-9. [PMID: 20445021 DOI: 10.1182/blood-2009-12-260760] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polycomb group (PcG) proteins are transcriptional repressors with a central role in the establishment and maintenance of gene expression patterns during development. We have investigated the role of polycomb repressive complexes (PRCs) in hematopoietic stem cells (HSCs) and progenitor populations. We show that mice with loss of function mutations in PRC2 components display enhanced HSC/progenitor population activity, whereas mutations that disrupt PRC1 or pleiohomeotic repressive complex are associated with HSC/progenitor cell defects. Because the hierarchical model of PRC action would predict synergistic effects of PRC1 and PRC2 mutation, these opposing effects suggest this model does not hold true in HSC/progenitor cells. To investigate the molecular targets of each complex in HSC/progenitor cells, we measured genome-wide expression changes associated with PRC deficiency, and identified transcriptional networks that are differentially regulated by PRC1 and PRC2. These studies provide new insights into the mechanistic interplay between distinct PRCs and have important implications for approaching PcG proteins as therapeutic targets.
Collapse
|