1
|
Leventhal L, Ruffley M, Exposito-Alonso M. Planting Genomes in the Wild: Arabidopsis from Genetics History to the Ecology and Evolutionary Genomics Era. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:605-635. [PMID: 39971350 DOI: 10.1146/annurev-arplant-071123-095146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The genetics model system Arabidopsis thaliana (L.) Heynh. lives across a vast geographic range with contrasting climates, in response to which it has evolved diverse life histories and phenotypic adaptations. In the last decade, the cataloging of worldwide populations, DNA sequencing of whole genomes, and conducting of outdoor field experiments have transformed it into a powerful evolutionary ecology system to understand the genomic basis of adaptation. Here, we summarize new insights on Arabidopsis following the coordinated efforts of the 1001 Genomes Project, the latest reconstruction of biogeographic and demographic history, and the systematic genomic mapping of trait natural variation through 15 years of genome-wide association studies. We then put this in the context of local adaptation across climates by summarizing insights from 73 Arabidopsis outdoor common garden experiments conducted to date. We conclude by highlighting how molecular and genomic knowledge of adaptation can help us to understand species' (mal)adaptation under ongoing climate change.
Collapse
Affiliation(s)
- Laura Leventhal
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Megan Ruffley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA;
| |
Collapse
|
2
|
Alaniz-Fabián J, Xiang D, Del Toro-De León G, Gao P, Abreu-Goodger C, Datla R, Gillmor CS. A maternal transcriptome bias in early Arabidopsis embryogenesis. Development 2025; 152:dev204449. [PMID: 40067256 DOI: 10.1242/dev.204449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025]
Abstract
After fertilization in animals, maternal mRNAs and proteins regulate development until the onset of zygotic transcription. In plants, the extent of maternal regulation of early embryo development has been less clear: two hybrid combinations of rice zygotes have a strong maternal transcript bias, zygotes of a third rice hybrid produced by gamete fusion show a small percentage of maternally biased genes, while Arabidopsis Col/Cvi and Col/Ler hybrid embryos display symmetric and asymmetric parental genome activation, respectively. Here, we explore parent-of-origin transcriptome behavior in the Arabidopsis Col/Tsu hybrid, which was previously shown to display maternal effects for embryo defective mutants indistinguishable from those of the reference ecotype, Col. Analysis of Col/Tsu transcriptomes revealed a reciprocal maternal bias in thousands of genes in zygotes and octant stage embryos. Several lines of evidence suggest that this transient maternal bias is due to preferential transcription of maternal alleles in the zygote, rather than inheritance of transcripts from the egg. Our results extend previous observations that parent-of-origin contributions to early embryogenesis differ between hybrids of Arabidopsis, show that the maternal genome plays a predominant role in early embryos of Col/Tsu, and point to a maternal transcriptome bias in early embryos of the Arabidopsis reference ecotype Columbia.
Collapse
Affiliation(s)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | | | - Peng Gao
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - C Stewart Gillmor
- Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato 36824, Mexico
| |
Collapse
|
3
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. Evolution 2025; 79:342-363. [PMID: 39565285 PMCID: PMC11879154 DOI: 10.1093/evolut/qpae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, United States
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Ricou A, Simon M, Duflos R, Azzopardi M, Roux F, Budar F, Camilleri C. Identification of novel genes responsible for a pollen killer present in local natural populations of Arabidopsis thaliana. PLoS Genet 2025; 21:e1011451. [PMID: 39804925 PMCID: PMC11761171 DOI: 10.1371/journal.pgen.1011451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/24/2025] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Gamete killers are genetic loci that distort segregation in the progeny of hybrids because the killer allele promotes the elimination of the gametes that carry the sensitive allele. They are widely distributed in eukaryotes and are important for understanding genome evolution and speciation. We had previously identified a pollen killer in hybrids between two distant natural accessions of Arabidopsis thaliana. This pollen killer involves three genetically linked genes, and we previously reported the identification of the gene encoding the antidote that protects pollen grains from the killer activity. In this study, we identified the two other genes of the pollen killer by using CRISPR-Cas9 induced mutants. These two genes are necessary for the killer activity that we demonstrated to be specific to pollen. The cellular localization of the pollen killer encoded proteins suggests that the pollen killer activity involves the mitochondria. Sequence analyses reveal predicted domains from the same families in the killer proteins. In addition, the C-terminal half of one of the killer proteins is identical to the antidote, and one amino acid, crucial for the antidote activity, is also essential for the killer function. Investigating more than 700 worldwide accessions of A. thaliana, we confirmed that the locus is subject to important structural rearrangements and copy number variation. By exploiting available de novo genomic sequences, we propose a scenario for the emergence of this pollen killer in A. thaliana. Furthermore, we report the co-occurrence and behavior of killer and sensitive genotypes in several local populations, a prerequisite for studying gamete killer evolution in the wild. This highlights the potential of the Arabidopsis model not only for functional studies of gamete killers but also for investigating their evolutionary trajectories at complementary geographical scales.
Collapse
Affiliation(s)
- Anthony Ricou
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France
| | - Matthieu Simon
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France
| | - Rémi Duflos
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Marianne Azzopardi
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France
| | - Fabrice Roux
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Françoise Budar
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France
| | - Christine Camilleri
- Université Paris-Saclay, INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Versailles, France
| |
Collapse
|
5
|
Hulke JM, Criscione CD. Testing the Mating System Model of Parasite Complex Life Cycle Evolution Reveals Demographically Driven Mixed Mating. Am Nat 2024; 204:600-615. [PMID: 39556872 DOI: 10.1086/732807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
AbstractMany parasite species use multiple host species to complete development; however, empirical tests of models that seek to understand factors impacting evolutionary changes or maintenance of host number in parasite life cycles are scarce. Specifically, one model incorporating parasite mating systems that posits that multihost life cycles are an adaptation to prevent inbreeding in hermaphroditic parasites and thus preclude inbreeding depression remains untested. The model assumes that loss of a host results in parasite inbreeding and predicts that host loss can evolve only if there is no parasite inbreeding depression. We provide the first empirical tests of this model using a novel approach we developed for assessing inbreeding depression from field-collected parasite samples. The method compares genetically based selfing rate estimates to a demographic-based selfing rate, which was derived from the closed mating system experienced by endoparasites. Results from the hermaphroditic trematode Alloglossidium renale, which has a derived two-host life cycle, supported both the assumption and the prediction of the mating system model, as this highly inbred species had no indication of inbreeding depression. Additionally, comparisons of genetic and demographic selfing rates revealed a mixed mating system that could be explained completely by the parasite's demography (i.e., its infection intensities).
Collapse
|
6
|
Osmond M, Coop G. Estimating dispersal rates and locating genetic ancestors with genome-wide genealogies. eLife 2024; 13:e72177. [PMID: 39589398 DOI: 10.7554/elife.72177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/24/2024] [Indexed: 11/27/2024] Open
Abstract
Spatial patterns in genetic diversity are shaped by individuals dispersing from their parents and larger-scale population movements. It has long been appreciated that these patterns of movement shape the underlying genealogies along the genome leading to geographic patterns of isolation-by-distance in contemporary population genetic data. However, extracting the enormous amount of information contained in genealogies along recombining sequences has, until recently, not been computationally feasible. Here, we capitalize on important recent advances in genome-wide gene-genealogy reconstruction and develop methods to use thousands of trees to estimate per-generation dispersal rates and to locate the genetic ancestors of a sample back through time. We take a likelihood approach in continuous space using a simple approximate model (branching Brownian motion) as our prior distribution of spatial genealogies. After testing our method with simulations we apply it to Arabidopsis thaliana. We estimate a dispersal rate of roughly 60 km2/generation, slightly higher across latitude than across longitude, potentially reflecting a northward post-glacial expansion. Locating ancestors allows us to visualize major geographic movements, alternative geographic histories, and admixture. Our method highlights the huge amount of information about past dispersal events and population movements contained in genome-wide genealogies.
Collapse
Affiliation(s)
- Matthew Osmond
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Graham Coop
- Department of Evolution & Ecology and Center for Population Biology, University of California, Davis, Davis, United States
| |
Collapse
|
7
|
Wijfjes RY, Boesten R, Becker FFM, Theeuwen TPJM, Snoek BL, Mastoraki M, Verheijen JJ, Güvencli N, Denkers LAM, Koornneef M, van Eeuwijk FA, Smit S, de Ridder D, Aarts MGM. Allelic variants confer Arabidopsis adaptation to small regional environmental differences. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1662-1681. [PMID: 39400686 DOI: 10.1111/tpj.17067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Natural populations of Arabidopsis thaliana provide powerful systems to study the adaptation of wild plant species. Previous research has predominantly focused on global populations or accessions collected from regions with diverse climates. However, little is known about the genetics underlying adaptation in regions with mild environmental clines. We have examined a diversity panel consisting of 192 A. thaliana accessions collected from the Netherlands, a region with limited climatic variation. Despite the relatively uniform climate, we identified evidence of local adaptation within this population. Notably, semidwarf accessions, due to mutation of the GIBBERELLIC ACID REQUIRING 5 (GA5) gene, occur at a relatively high frequency near the coast and these displayed enhanced tolerance to high wind velocities. Additionally, we evaluated the performance of the population under iron deficiency conditions and found that allelic variation in the FE SUPEROXIDE DISMUTASE 3 (FSD3) gene affects tolerance to low iron levels. Moreover, we explored patterns of local adaptation to environmental clines in temperature and precipitation, observing that allelic variation at LA RELATED PROTEIN 1C (LARP1c) likely affects drought tolerance. Not only is the genetic variation observed in a diversity panel of A. thaliana collected in a region with mild environmental clines comparable to that in collections sampled over larger geographic ranges but it is also sufficiently rich to elucidate the genetic and environmental factors underlying natural plant adaptation.
Collapse
Affiliation(s)
- Raúl Y Wijfjes
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - René Boesten
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Tom P J M Theeuwen
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Maria Mastoraki
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Jelle J Verheijen
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Nuri Güvencli
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Lissy-Anne M Denkers
- Department of Plant Physiology, Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam, 1098 XH, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Fred A van Eeuwijk
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Sandra Smit
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
8
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579142. [PMID: 38370745 PMCID: PMC10871249 DOI: 10.1101/2024.02.06.579142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
9
|
Oberhofer G, Johnson ML, Ivy T, Antoshechkin I, Hay BA. Cleave and Rescue gamete killers create conditions for gene drive in plants. NATURE PLANTS 2024; 10:936-953. [PMID: 38886522 DOI: 10.1038/s41477-024-01701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/16/2024] [Indexed: 06/20/2024]
Abstract
Gene drive elements promote the spread of linked traits and can be used to change the composition or fate of wild populations. Cleave and Rescue (ClvR) drive elements sit at a fixed chromosomal position and include a DNA sequence-modifying enzyme such as Cas9/gRNAs that disrupts endogenous versions of an essential gene and a recoded version of the essential gene resistant to cleavage. ClvR spreads by creating conditions in which those lacking ClvR die because they lack functional versions of the essential gene. Here we demonstrate the essential features of the ClvR gene drive in the plant Arabidopsis thaliana through killing of gametes that fail to inherit a ClvR that targets the essential gene YKT61. Resistant alleles, which can slow or prevent drive, were not observed. Modelling shows plant ClvRs are robust to certain failure modes and can be used to rapidly drive population modification or suppression. Possible applications are discussed.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Johnson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
10
|
de la Mata R, Mollá-Morales A, Méndez-Vigo B, Torres-Pérez R, Oliveros JC, Gómez R, Marcer A, Castilla AR, Nordborg M, Alonso-Blanco C, Picó FX. Variation and plasticity in life-history traits and fitness of wild Arabidopsis thaliana populations are not related to their genotypic and ecological diversity. BMC Ecol Evol 2024; 24:56. [PMID: 38702598 PMCID: PMC11067129 DOI: 10.1186/s12862-024-02246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Despite its implications for population dynamics and evolution, the relationship between genetic and phenotypic variation in wild populations remains unclear. Here, we estimated variation and plasticity in life-history traits and fitness of the annual plant Arabidopsis thaliana in two common garden experiments that differed in environmental conditions. We used up to 306 maternal inbred lines from six Iberian populations characterized by low and high genotypic (based on whole-genome sequences) and ecological (vegetation type) diversity. RESULTS Low and high genotypic and ecological diversity was found in edge and core Iberian environments, respectively. Given that selection is expected to be stronger in edge environments and that ecological diversity may enhance both phenotypic variation and plasticity, we expected genotypic diversity to be positively associated with phenotypic variation and plasticity. However, maternal lines, irrespective of the genotypic and ecological diversity of their population of origin, exhibited a substantial amount of phenotypic variation and plasticity for all traits. Furthermore, all populations harbored maternal lines with canalization (robustness) or sensitivity in response to harsher environmental conditions in one of the two experiments. CONCLUSIONS Overall, we conclude that the environmental attributes of each population probably determine their genotypic diversity, but all populations maintain substantial phenotypic variation and plasticity for all traits, which represents an asset to endure in changing environments.
Collapse
Affiliation(s)
- Raul de la Mata
- Departamento de Biología Evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, 41092, Spain
- Faculty of Forestry, Institute of Dehesa Research (INDEHESA), Universidad de Extremadura, 10600, Plasencia, Spain
| | | | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Rafael Torres-Pérez
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Juan Carlos Oliveros
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Rocío Gómez
- Departamento de Biología Evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, 41092, Spain
| | - Arnald Marcer
- CREAF, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193, Catalonia, Spain
| | - Antonio R Castilla
- Department of Plant Biology, Ecology, and Evolution, College of Arts and Sciences, Oklahoma State University, Stillwater, OK, 74078-3031, USA
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - F Xavier Picó
- Departamento de Biología Evolutiva, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, 41092, Spain.
| |
Collapse
|
11
|
Dou S, Zhang T, Wang L, Yang C, Quan C, Liang X, Ma C, Dai C. The self-compatibility is acquired after polyploidization: a case study of Brassica napus self-incompatible trilinear hybrid breeding system. THE NEW PHYTOLOGIST 2024; 241:1690-1707. [PMID: 38037276 DOI: 10.1111/nph.19451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Self-incompatibility plays a vital role in angiosperms, by preventing inbreeding depression and maintaining genetic diversity within populations. Following polyploidization, many angiosperm species transition from self-incompatibility to self-compatibility. Here, we investigated the S-locus in Brassicaceae and identified distinct origins for the sRNA loci, SMI and SMI2 (SCR Methylation Inducer 1 and 2), within the S-locus. The SMI loci were found to be widespread in Cruciferae, whereas the SMI2 loci were exclusive to Brassica species. Additionally, we discovered four major S-haplotypes (BnS-1, BnS-6, BnS-7, and BnS-1300) in rapeseed. Overexpression of BnSMI-1 in self-incompatible Brassica napus ('S-70S1300S6 ') resulted in a significant increase in DNA methylation in the promoter regions of BnSCR-6 and BnSCR-1300, leading to self-compatibility. Conversely, by overexpressing a point mutation of BnSmi-1 in the 'S-70S1300S6 ' line, we observed lower levels of DNA methylation in BnSCR-6 and BnSCR-1300 promoters. Furthermore, the overexpression of BnSMI2-1300 in the 'SI-326S7S6 ' line inhibited the expression of BnSCR-7 through transcriptional repression of the Smi2 sRNA from the BnS-1300 haplotype. Our study demonstrates that the self-compatibility of rapeseed is determined by S-locus sRNA-mediated silencing of SCR after polyploidization, which helps to further breed self-incompatible or self-compatible rapeseed lines, thereby facilitating the utilization of heterosis.
Collapse
Affiliation(s)
- Shengwei Dou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tong Zhang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lulin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chuang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiaomei Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
12
|
Coffey ML, Simons AM. Latitudinal trends in mating system traits in the highly self-fertilizing Lobelia inflata revealed by community science. Ecol Evol 2023; 13:e10746. [PMID: 38034331 PMCID: PMC10682567 DOI: 10.1002/ece3.10746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Mating systems in angiosperms range from obligate outcrossing to highly self-fertilizing. The belief that obligate selfing does not exist is contradicted by genetic evidence in several populations of L. inflata, in which selfing is enforced by the anthers enclosing the style. However, whether the mating systems of these populations are typical, or an extreme across the species range is unknown. Such trends are hypothesized to result from selection for reproductive assurance under mate limitation at range margins. Here, we use ~7500 iNaturalist community science images, in which stylar exsertion can be observed, to test this hypothesis in L. inflata and, for comparison, in four typical congeneric Lobelias that express a staminate, then a pistillate phase (protandry). Specifically, we analyzed the effects of latitude and range marginality on the frequency of stylar exsertion and number of exserted flowers. Outcrossing capacity in L. inflata increased at low latitudes and near the overall range center, supporting our hypothesis, with exsertion frequencies significantly lower than in congenerics. Interestingly, in outcrossing capable individuals, the number of style-exserted flowers was consistent across the species range and among species, indicating outcrossing capable L. inflata individuals resemble congenerics. These findings suggest that variation in stylar exsertion is expressed among individuals rather than by all individuals within populations. However, whether this is a result of differences in exsertion allele frequencies or of differentiation in the induction of a threshold trait requires further study. Moreover, the trends in outcrossing capability revealed here imply the potential for geographic variation in L. inflata mating system.
Collapse
|
13
|
Kenchanmane Raju SK, Lensink M, Kliebenstein DJ, Niederhuth C, Monroe G. Epigenomic divergence correlates with sequence polymorphism in Arabidopsis paralogs. THE NEW PHYTOLOGIST 2023; 240:1292-1304. [PMID: 37614211 DOI: 10.1111/nph.19227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Processes affecting rates of sequence polymorphism are fundamental to the evolution of gene duplicates. The relationship between gene activity and sequence polymorphism can influence the likelihood that functionally redundant gene copies are co-maintained in stable evolutionary equilibria vs other outcomes such as neofunctionalization. Here, we investigate genic variation in epigenome-associated polymorphism rates in Arabidopsis thaliana and consider whether these affect the evolution of gene duplicates. We compared the frequency of sequence polymorphism and patterns of genetic differentiation between genes classified by exon methylation patterns: unmethylated (unM), gene-body methylated (gbM), and transposon-like methylated (teM) states, which reflect divergence in gene expression. We found that the frequency of polymorphism was higher in teM (transcriptionally repressed, tissue-specific) genes and lower in gbM (active, constitutively expressed) genes. Comparisons of gene duplicates were largely consistent with genome-wide patterns - gene copies that exhibit teM accumulate more variation, evolve faster, and are in chromatin states associated with reduced DNA repair. This relationship between expression, the epigenome, and polymorphism may lead to the breakdown of equilibrium states that would otherwise maintain genetic redundancies. Epigenome-mediated polymorphism rate variation may facilitate the evolution of novel gene functions in duplicate paralogs maintained over evolutionary time.
Collapse
Affiliation(s)
| | - Mariele Lensink
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Chad Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| | - Grey Monroe
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Neto C, Hancock A. Genetic Architecture of Flowering Time Differs Between Populations With Contrasting Demographic and Selective Histories. Mol Biol Evol 2023; 40:msad185. [PMID: 37603463 PMCID: PMC10461413 DOI: 10.1093/molbev/msad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Understanding the evolutionary factors that impact the genetic architecture of traits is a central goal of evolutionary genetics. Here, we investigate how quantitative trait variation accumulated over time in populations that colonized a novel environment. We compare the genetic architecture of flowering time in Arabidopsis populations from the drought-prone Cape Verde Islands and their closest outgroup population from North Africa. We find that trait polygenicity is severely reduced in the island populations compared to the continental North African population. Further, trait architectures and reconstructed allelic histories best fit a model of strong directional selection in the islands in accord with a Fisher-Orr adaptive walk. Consistent with this, we find that large-effect variants that disrupt major flowering time genes (FRI and FLC) arose first, followed by smaller effect variants, including ATX2 L125F, which is associated with a 4-day reduction in flowering time. The most recently arising flowering time-associated loci are not known to be directly involved in flowering time, consistent with an omnigenic signature developing as the population approaches its trait optimum. Surprisingly, we find no effect in the natural population of EDI-Cvi-0 (CRY2 V367M), an allele for which an effect was previously validated by introgression into a Eurasian line. Instead, our results suggest the previously observed effect of the EDI-Cvi-0 allele on flowering time likely depends on genetic background, due to an epistatic interaction. Altogether, our results provide an empirical example of the effects demographic history and selection has on trait architecture.
Collapse
Affiliation(s)
- Célia Neto
- Molecular Basis of Adaptation Research Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela Hancock
- Molecular Basis of Adaptation Research Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
15
|
Stetsenko R, Roze D. The evolution of recombination in self-fertilizing organisms. Genetics 2022; 222:6656355. [PMID: 35929790 PMCID: PMC9434187 DOI: 10.1093/genetics/iyac114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytological data from flowering plants suggest that the evolution of recombination rates is affected by the mating system of organisms, as higher chiasma frequencies are often observed in self-fertilizing species compared with their outcrossing relatives. Understanding the evolutionary cause of this effect is of particular interest, as it may shed light on the selective forces favoring recombination in natural populations. While previous models showed that inbreeding may have important effects on selection for recombination, existing analytical treatments are restricted to the case of loosely linked loci and weak selfing rates, and ignore the stochastic effect of genetic interference (Hill-Robertson effect), known to be an important component of selection for recombination in randomly mating populations. In this article, we derive general expressions quantifying the stochastic and deterministic components of selection acting on a mutation affecting the genetic map length of a whole chromosome along which deleterious mutations occur, valid for arbitrary selfing rates. The results show that selfing generally increases selection for recombination caused by interference among mutations as long as selection against deleterious alleles is sufficiently weak. While interference is often the main driver of selection for recombination under tight linkage or high selfing rates, deterministic effects can play a stronger role under intermediate selfing rates and high recombination, selecting against recombination in the absence of epistasis, but favoring recombination when epistasis is negative. Individual-based simulation results indicate that our analytical model often provides accurate predictions for the strength of selection on recombination under partial selfing.
Collapse
Affiliation(s)
- Roman Stetsenko
- CNRS, IRL 3614 Evolutionary Biology and Ecology of Algae, 29688 Roscoff, France.,Sorbonne Université, Station Biologique de Roscoff, 29688 Roscoff, France
| | - Denis Roze
- CNRS, IRL 3614 Evolutionary Biology and Ecology of Algae, 29688 Roscoff, France.,Sorbonne Université, Station Biologique de Roscoff, 29688 Roscoff, France
| |
Collapse
|
16
|
Tsuchimatsu T, Fujii S. The selfing syndrome and beyond: diverse evolutionary consequences of mating system transitions in plants. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200510. [PMID: 35634918 PMCID: PMC9149797 DOI: 10.1098/rstb.2020.0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/04/2021] [Indexed: 07/20/2023] Open
Abstract
The shift from outcrossing to self-fertilization (selfing) is considered one of the most prevalent evolutionary transitions in flowering plants. Selfing species tend to share similar reproductive traits in morphology and function, and such a set of traits is called the 'selfing syndrome'. Although the genetic basis of the selfing syndrome has been of great interest to evolutionary biologists, knowledge of the causative genes or mutations was limited until recently. Thanks to advances in population genomic methodologies combined with high-throughput sequencing technologies, several studies have successfully unravelled the molecular and genetic basis for evolution of the selfing syndrome in Capsella, Arabidopsis, Solanum and other genera. Here we first introduce recent research examples that have explored the loci, genes and mutations responsible for the selfing syndrome traits, such as reductions in petal size or in pollen production, that are mainly relevant to pre-pollination processes. Second, we review the relationship between the evolution of selfing and interspecific pollen transfer, highlighting the findings of post-pollination reproductive barriers at the molecular level. We then discuss the emerging view of patterns in evolution of the selfing syndrome, such as the pervasive involvement of loss-of-function mutations and the relative importance of selection versus neutral degradation. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-0033, Japan
| | - Sota Fujii
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku 113-8657, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE) Fellow, Bunkyo, Japan
| |
Collapse
|
17
|
Tergemina E, Elfarargi AF, Flis P, Fulgione A, Göktay M, Neto C, Scholle M, Flood PJ, Xerri SA, Zicola J, Döring N, Dinis H, Krämer U, Salt DE, Hancock AM. A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment. SCIENCE ADVANCES 2022; 8:eabm9385. [PMID: 35584228 PMCID: PMC9116884 DOI: 10.1126/sciadv.abm9385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Most well-characterized cases of adaptation involve single genetic loci. Theory suggests that multilocus adaptive walks should be common, but these are challenging to identify in natural populations. Here, we combine trait mapping with population genetic modeling to show that a two-step process rewired nutrient homeostasis in a population of Arabidopsis as it colonized the base of an active stratovolcano characterized by extremely low soil manganese (Mn). First, a variant that disrupted the primary iron (Fe) uptake transporter gene (IRT1) swept quickly to fixation in a hard selective sweep, increasing Mn but limiting Fe in the leaves. Second, multiple independent tandem duplications occurred at NRAMP1 and together rose to near fixation in the island population, compensating the loss of IRT1 by improving Fe homeostasis. This study provides a clear case of a multilocus adaptive walk and reveals how genetic variants reshaped a phenotype and spread over space and time.
Collapse
Affiliation(s)
- Emmanuel Tergemina
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ahmed F. Elfarargi
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Paulina Flis
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD Nottingham, UK
| | - Andrea Fulgione
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Mehmet Göktay
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Célia Neto
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Marleen Scholle
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Pádraic J. Flood
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Sophie-Asako Xerri
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Johan Zicola
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Nina Döring
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Herculano Dinis
- Parque Natural do Fogo, Direção Nacional do Ambiente, 115 Chã d’Areia, Praia, Santiago, Cabo Verde, Africa
- Associação Projecto Vitó, 8234, Xaguate, Cidade de São Filipe, Fogo, Cabo Verde, Africa
| | - Ute Krämer
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - David E. Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD Nottingham, UK
| | - Angela M. Hancock
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
18
|
Shalev O, Ashkenazy H, Neumann M, Weigel D. Commensal Pseudomonas protect Arabidopsis thaliana from a coexisting pathogen via multiple lineage-dependent mechanisms. THE ISME JOURNAL 2022; 16:1235-1244. [PMID: 34897280 PMCID: PMC9038753 DOI: 10.1038/s41396-021-01168-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022]
Abstract
AbstractPlants are protected from pathogens not only by their own immunity but often also by colonizing commensal microbes. In Arabidopsis thaliana, a group of cryptically pathogenic Pseudomonas strains often dominates local populations. This group coexists in nature with commensal Pseudomonas strains that can blunt the deleterious effects of the pathogens in the laboratory. We have investigated the interaction between one of the Pseudomonas pathogens and 99 naturally co-occurring commensals, finding plant protection to be common among non-pathogenic Pseudomonas. While protective ability is enriched in one specific lineage, there is also a substantial variation for this trait among isolates of this lineage. These functional differences do not align with core-genome phylogenies, suggesting repeated gene inactivation or loss as causal. Using genome-wide association, we discovered that different bacterial genes are linked to plant protection in each lineage. We validated a protective role of several lineage-specific genes by gene inactivation, highlighting iron acquisition and biofilm formation as prominent mechanisms of plant protection in this Pseudomonas lineage. Collectively, our work illustrates the importance of functional redundancy in plant protective traits across an important group of commensal bacteria.
Collapse
|
19
|
Commensal Pseudomonas strains facilitate protective response against pathogens in the host plant. Nat Ecol Evol 2022; 6:383-396. [PMID: 35210578 PMCID: PMC8986537 DOI: 10.1038/s41559-022-01673-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/07/2021] [Indexed: 12/31/2022]
Abstract
The community structure in the plant-associated microbiome depends collectively on host–microbe, microbe–microbe and host–microbe–microbe interactions. The ensemble of interactions between the host and microbial consortia may lead to outcomes that are not easily predicted from pairwise interactions. Plant–microbe–microbe interactions are important to plant health but could depend on both host and microbe strain variation. Here we study interactions between groups of naturally co-existing commensal and pathogenic Pseudomonas strains in the Arabidopsis thaliana phyllosphere. We find that commensal Pseudomonas prompt a host response that leads to selective inhibition of a specific pathogenic lineage, resulting in plant protection. The extent of protection depends on plant genotype, supporting that these effects are host-mediated. Strain-specific effects are also demonstrated by one individual Pseudomonas isolate eluding the plant protection provided by commensals. Our work highlights how within-species genetic differences in both hosts and microbes can affect host–microbe–microbe dynamics. The authors conduct competition experiments with multiple strains of Pseudomonas (some pathogenic and some commensal) in the phylosphere microbiome of Arabidopsis plants, showing that both the host and the commensal strains interact to inhibit the pathogenic strains.
Collapse
|
20
|
Fulgione A, Neto C, Elfarargi AF, Tergemina E, Ansari S, Göktay M, Dinis H, Döring N, Flood PJ, Rodriguez-Pacheco S, Walden N, Koch MA, Roux F, Hermisson J, Hancock AM. Parallel reduction in flowering time from de novo mutations enable evolutionary rescue in colonizing lineages. Nat Commun 2022; 13:1461. [PMID: 35304466 PMCID: PMC8933414 DOI: 10.1038/s41467-022-28800-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Understanding how populations adapt to abrupt environmental change is necessary to predict responses to future challenges, but identifying specific adaptive variants, quantifying their responses to selection and reconstructing their detailed histories is challenging in natural populations. Here, we use Arabidopsis from the Cape Verde Islands as a model to investigate the mechanisms of adaptation after a sudden shift to a more arid climate. We find genome-wide evidence of adaptation after a multivariate change in selection pressures. In particular, time to flowering is reduced in parallel across islands, substantially increasing fitness. This change is mediated by convergent de novo loss of function of two core flowering time genes: FRI on one island and FLC on the other. Evolutionary reconstructions reveal a case where expansion of the new populations coincided with the emergence and proliferation of these variants, consistent with models of rapid adaptation and evolutionary rescue. Detailing how populations adapted to environmental change is needed to predict future responses, but identifying adaptive variants and detailing their fitness effects is rare. Here, the authors show that parallel loss of FRI and FLC function reduces time to flowering and drives adaptation in a drought prone environment.
Collapse
Affiliation(s)
- Andrea Fulgione
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Mathematics and Bioscience, Department of Mathematics and Max F. Perutz Labs, University of Vienna, Vienna, Austria.,Vienna Graduate School for Population Genetics, Vienna, Austria
| | - Célia Neto
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | - Shifa Ansari
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mehmet Göktay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Herculano Dinis
- Parque Natural do Fogo, Direção Nacional do Ambiente, Praia, Santiago, Cabo Verde.,Associação Projecto Vitó, São Filipe, Fogo, Cabo Verde
| | - Nina Döring
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pádraic J Flood
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Nora Walden
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany.,Biosystematics, Wageningen University, Wageningen, The Netherlands
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, Germany
| | - Fabrice Roux
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Joachim Hermisson
- Mathematics and Bioscience, Department of Mathematics and Max F. Perutz Labs, University of Vienna, Vienna, Austria
| | - Angela M Hancock
- Max Planck Institute for Plant Breeding Research, Cologne, Germany. .,Mathematics and Bioscience, Department of Mathematics and Max F. Perutz Labs, University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Monroe JG, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M, Exposito-Alonso M, Klein M, Hildebrandt J, Neumann M, Kliebenstein D, Weng ML, Imbert E, Ågren J, Rutter MT, Fenster CB, Weigel D. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 2022; 602:101-105. [PMID: 35022609 PMCID: PMC8810380 DOI: 10.1038/s41586-021-04269-6] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
Since the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences1. Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome-mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Department of Plant Sciences, University of California Davis, Davis, CA, USA.
| | - Thanvi Srikant
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | | | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Faculty of Biology, Ludwig Maximilian University, Martinsried, Germany
| | - Mariele Lensink
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Marie Klein
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Julia Hildebrandt
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Daniel Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Mao-Lun Weng
- Department of Biology, Westfield State University, Westfield, MA, USA
| | - Eric Imbert
- ISEM, University of Montpellier, Montpellier, France
| | - Jon Ågren
- Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Matthew T Rutter
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Charles B Fenster
- Oak Lake Field Station, South Dakota State University, Brookings, SD, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Deng Y, Bossdorf O, Scheepens JF. Transgenerational effects of temperature fluctuations in Arabidopsis thaliana. AOB PLANTS 2021; 13:plab064. [PMID: 34950444 PMCID: PMC8691168 DOI: 10.1093/aobpla/plab064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Plant stress responses can extend into the following generations, a phenomenon called transgenerational effects. Heat stress, in particular, is known to affect plant offspring, but we do not know to what extent these effects depend on the temporal patterns of the stress, and whether transgenerational responses are adaptive and genetically variable within species. To address these questions, we carried out a two-generation experiment with nine Arabidopsis thaliana genotypes. We subjected the plants to heat stress regimes that varied in timing and frequency, but not in mean temperature, and we then grew the offspring of these plants under controlled conditions as well as under renewed heat stress. The stress treatments significantly carried over to the offspring generation, with timing having stronger effects on plant phenotypes than stress frequency. However, there was no evidence that transgenerational effects were adaptive. The magnitudes of transgenerational effects differed substantially among genotypes, and for some traits the strength of plant responses was significantly associated with the climatic variability at the sites of origin. In summary, timing of heat stress not only directly affects plants, but it can also cause transgenerational effects on offspring phenotypes. Genetic variation in transgenerational effects, as well as correlations between transgenerational effects and climatic variability, indicates that transgenerational effects can evolve, and have probably already done so in the past.
Collapse
Affiliation(s)
- Ying Deng
- Institute of Evolution and Ecology, University of Tübingen, Tübingen 72076, Germany
- Natural History Research Center, Shanghai Natural History Museum, Shanghai 200041, China
| | - Oliver Bossdorf
- Institute of Evolution and Ecology, University of Tübingen, Tübingen 72076, Germany
| | - J F Scheepens
- Institute of Evolution and Ecology, University of Tübingen, Tübingen 72076, Germany
- Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| |
Collapse
|
23
|
Jiao WB, Patel V, Klasen J, Liu F, Pecinkova P, Ferrand M, Gy I, Camilleri C, Effgen S, Koornneef M, Pecinka A, Loudet O, Schneeberger K. The Evolutionary Dynamics of Genetic Incompatibilities Introduced by Duplicated Genes in Arabidopsis thaliana. Mol Biol Evol 2021; 38:1225-1240. [PMID: 33247726 PMCID: PMC8042742 DOI: 10.1093/molbev/msaa306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although gene duplications provide genetic backup and allow genomic changes under relaxed selection, they may potentially limit gene flow. When different copies of a duplicated gene are pseudofunctionalized in different genotypes, genetic incompatibilities can arise in their hybrid offspring. Although such cases have been reported after manual crosses, it remains unclear whether they occur in nature and how they affect natural populations. Here, we identified four duplicated-gene based incompatibilities including one previously not reported within an artificial Arabidopsis intercross population. Unexpectedly, however, for each of the genetic incompatibilities we also identified the incompatible alleles in natural populations based on the genomes of 1,135 Arabidopsis accessions published by the 1001 Genomes Project. Using the presence of incompatible allele combinations as phenotypes for GWAS, we mapped genomic regions that included additional gene copies which likely rescue the genetic incompatibility. Reconstructing the geographic origins and evolutionary trajectories of the individual alleles suggested that incompatible alleles frequently coexist, even in geographically closed regions, and that their effects can be overcome by additional gene copies collectively shaping the evolutionary dynamics of duplicated genes during population history.
Collapse
Affiliation(s)
- Wen-Biao Jiao
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Vipul Patel
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonas Klasen
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Fang Liu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Petra Pecinkova
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marina Ferrand
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Isabelle Gy
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Christine Camilleri
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Sigi Effgen
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Maarten Koornneef
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Ales Pecinka
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc, Czech Republic
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
24
|
Subrahmaniam HJ, Roby D, Roux F. Toward Unifying Evolutionary Ecology and Genomics to Understand Positive Plant-Plant Interactions Within Wild Species. FRONTIERS IN PLANT SCIENCE 2021; 12:683373. [PMID: 34305981 PMCID: PMC8299075 DOI: 10.3389/fpls.2021.683373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/10/2021] [Indexed: 06/08/2023]
Abstract
In a local environment, plant networks include interactions among individuals of different species and among genotypes of the same species. While interspecific interactions are recognized as main drivers of plant community patterns, intraspecific interactions have recently gained attention in explaining plant community dynamics. However, an overview of intraspecific genotype-by-genotype interaction patterns within wild plant species is still missing. From the literature, we identified 91 experiments that were mainly designed to investigate the presence of positive interactions based on two contrasting hypotheses. Kin selection theory predicts partisan help given to a genealogical relative. The rationale behind this hypothesis relies on kin/non-kin recognition, with the positive outcome of kin cooperation substantiating it. On the other hand, the elbow-room hypothesis supports intraspecific niche partitioning leading to positive outcome when genetically distant genotypes interact. Positive diversity-productivity relationship rationalizes this hypothesis, notably with the outcome of overyielding. We found that both these hypotheses have been highly supported in experimental studies despite their opposite predictions between the extent of genetic relatedness among neighbors and the level of positive interactions. Interestingly, we identified a highly significant effect of breeding system, with a high proportion of selfing species associated with the presence of kin cooperation. Nonetheless, we identified several shortcomings regardless of the species considered, such as the lack of a reliable estimate of genetic relatedness among genotypes and ecological characterization of the natural habitats from which genotypes were collected, thereby impeding the identification of selective drivers of positive interactions. We therefore propose a framework combining evolutionary ecology and genomics to establish the eco-genomic landscape of positive GxG interactions in wild plant species.
Collapse
|
25
|
Van Rossum F, Raspé O, Vandelook F. Evidence of spontaneous selfing and disomic inheritance in Geranium robertianum. Ecol Evol 2021; 11:8640-8653. [PMID: 34257920 PMCID: PMC8258199 DOI: 10.1002/ece3.7677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 11/18/2022] Open
Abstract
Knowing species' breeding system and mating processes occurring in populations is important not only for understanding population dynamics, gene flow processes, and species' response to climate change, but also for designing control plans of invasive species. Geranium robertianum, a widespread biennial herbaceous species showing high morphological variation and wide ecological amplitude, can become invasive outside its distribution range. A mixed-mating system may be expected given the species' floral traits. However, autonomous selfing is considered as a common feature. Genetic variation and structure, and so population mating processes, have not been investigated in wild populations. We developed 15 polymorphic microsatellite markers to quantify genetic variation and structure in G. robertianum. To investigate whether selfing might be the main mating process in natural conditions, we sampled three generations of plants (adult, F1, and F2) for populations from the UK, Spain, Belgium, Germany, and Sweden, and compared open-pollinated with outcrossed hand-pollinated F2 progeny. The highly positive Wright's inbreeding coefficient (F IS) values in adults, F1, and open-pollinated F2 progeny and the low F IS values in outcross F2 progeny supported autonomous selfing as the main mating process for G. robertianum in wild conditions, despite the presence of attractive signals for insect pollination. Genetic differentiation among samples was found, showing some western-eastern longitudinal trend. Long-distance seed dispersal might have contributed to the low geographic structure. Local genetic differentiation may have resulted not only from genetic drift effects favored by spontaneous selfing, but also from ecological adaptation. The presence of duplicate loci with disomic inheritance is consistent with the hypothesis of allotetraploid origin of G. robertianum. The fact that most microsatellite markers behave as diploid loci with no evidence of duplication supports the hypothesis of ancient polyploidization. The differences in locus duplication and the relatively high genetic diversity across G. robertianum range despite spontaneous autonomous selfing suggest multiple events of polyploidization.
Collapse
Affiliation(s)
- Fabienne Van Rossum
- Meise Botanic GardenMeiseBelgium
- Service général de l'Enseignement supérieur et de la Recherche scientifiqueFédération Wallonie‐BruxellesBrusselsBelgium
| | - Olivier Raspé
- Meise Botanic GardenMeiseBelgium
- Service général de l'Enseignement supérieur et de la Recherche scientifiqueFédération Wallonie‐BruxellesBrusselsBelgium
- Present address:
School of ScienceMae Fah Luang UniversityChiang RaiThailand
| | - Filip Vandelook
- Meise Botanic GardenMeiseBelgium
- Biology DepartmentPhilipps Universität MarburgMarburgGermany
| |
Collapse
|
26
|
Göktay M, Fulgione A, Hancock AM. A New Catalog of Structural Variants in 1,301 A. thaliana Lines from Africa, Eurasia, and North America Reveals a Signature of Balancing Selection at Defense Response Genes. Mol Biol Evol 2021; 38:1498-1511. [PMID: 33247723 PMCID: PMC8042739 DOI: 10.1093/molbev/msaa309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genomic variation in the model plant Arabidopsis thaliana has been extensively used to understand evolutionary processes in natural populations, mainly focusing on single-nucleotide polymorphisms. Conversely, structural variation has been largely ignored in spite of its potential to dramatically affect phenotype. Here, we identify 155,440 indels and structural variants ranging in size from 1 bp to 10 kb, including presence/absence variants (PAVs), inversions, and tandem duplications in 1,301 A. thaliana natural accessions from Morocco, Madeira, Europe, Asia, and North America. We show evidence for strong purifying selection on PAVs in genes, in particular for housekeeping genes and homeobox genes, and we find that PAVs are concentrated in defense-related genes (R-genes, secondary metabolites) and F-box genes. This implies the presence of a "core" genome underlying basic cellular processes and a "flexible" genome that includes genes that may be important in spatially or temporally varying selection. Further, we find an excess of intermediate frequency PAVs in defense response genes in nearly all populations studied, consistent with a history of balancing selection on this class of genes. Finally, we find that PAVs in genes involved in the cold requirement for flowering (vernalization) and drought response are strongly associated with temperature at the sites of origin.
Collapse
Affiliation(s)
- Mehmet Göktay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Fulgione
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela M Hancock
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
27
|
Dixon A, Comont D, Slavov GT, Neve P. Population genomics of selectively neutral genetic structure and herbicide resistance in UK populations of Alopecurus myosuroides. PEST MANAGEMENT SCIENCE 2021; 77:1520-1529. [PMID: 33155426 DOI: 10.1002/ps.6174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 06/07/2023]
Abstract
BACKGROUND Alopecurus myosuroides (blackgrass) is a major weed in Europe with known resistance to multiple herbicide modes of action. In the UK, there is evidence that blackgrass has undergone a range expansion. In this paper, genotyping-by-sequencing and population-level herbicide resistance phenotypes are used to explore spatial patterns of selectively neutral genetic variation and resistance. We also perform a preliminary genome-wide association study (GWAS) and genomic prediction analysis to evaluate the potential of these approaches for investigating nontarget site herbicide resistance. RESULTS Blackgrass was collected from 47 fields across the British Isles and up to eight plants per field population (n = 369) were genotyped by Restriction site-associated DNA (RAD)-sequencing. A total of 20 426 polymorphic loci were identified and used for population genetic analyses. Phenotypic assays revealed significant variation in herbicide resistance between populations. Population structure was weak (FST = 0.024-0.048), but spatial patterns were consistent with an ongoing westward and northward range expansion. We detected strong and consistent Wahlund effects (FIS = 0.30). There were no spatial patterns of herbicide resistance or evidence for confounding with population structure. Using a combination of population-level GWAS and genomic prediction we found that the top 20, 200, and 2000 GWAS loci had higher predictive abilities for fenoxaprop resistance compared to all markers. CONCLUSION There is likely extensive human-mediated gene flow between field populations of the weed blackgrass at a national scale. The lack of confounding of adaptive and neutral genetic variation can enable future, more extensive GWAS analyses to identify the genetic architecture of evolved herbicide resistance. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrea Dixon
- Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - David Comont
- Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
| | - Gancho T Slavov
- Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
- Scion, Rotorua, New Zealand
| | - Paul Neve
- Rothamsted Research, West Common, Harpenden, Hertfordshire, UK
- Agriculture & Horticulture Development Board, Warwickshire, UK
| |
Collapse
|
28
|
Waller DM. Addressing Darwin's dilemma: Can pseudo-overdominance explain persistent inbreeding depression and load? Evolution 2021; 75:779-793. [PMID: 33598971 DOI: 10.1111/evo.14189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/06/2021] [Accepted: 01/30/2021] [Indexed: 01/01/2023]
Abstract
Darwin spent years investigating the effects of self-fertilization, concluding that "nature abhors perpetual self-fertilization." Given that selection purges inbred populations of strongly deleterious mutations and drift fixes mild mutations, why does inbreeding depression (ID) persist in highly inbred taxa and why do no purely selfing taxa exist? Background selection, associations and interference among loci, and drift within small inbred populations all limit selection while often increasing fixation. These mechanisms help to explain why more inbred populations in most species consistently show more fixed load. This drift load is manifest in the considerable heterosis regularly observed in between-population crosses. Such heterosis results in subsequent high ID, suggesting a mechanism by which small populations could retain variation and inbreeding load. Multiple deleterious recessive mutations linked in repulsion generate pseudo-overdominance. Many tightly linked load loci could generate a balanced segregating load high enough to sustain ID over many generations. Such pseudo-overdominance blocks (or "PODs") are more likely to occur in regions of low recombination. They should also result in clear genetic signatures including genomic hotspots of heterozygosity; distinct haplotypes supporting alleles at intermediate frequency; and high linkage disequilibrium in and around POD regions. Simulation and empirical studies tend to support these predictions. Additional simulations and comparative genomic analyses should explore POD dynamics in greater detail to resolve whether PODs exist in sufficient strength and number to account for why ID and load persist within inbred lineages.
Collapse
Affiliation(s)
- Donald M Waller
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
29
|
Jullien M, Ronfort J, Gay L. How and When Does Outcrossing Occur in the Predominantly Selfing Species Medicago truncatula? FRONTIERS IN PLANT SCIENCE 2021; 12:619154. [PMID: 33679833 PMCID: PMC7925993 DOI: 10.3389/fpls.2021.619154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Empirical studies on natural populations of Medicago truncatula revealed selfing rates higher than 80%, but never up to 100%. Similarly, several studies of predominantly selfing species show variability in the level of residual outcrossing between populations and also between temporal samples of the same population. However, these studies measure global selfing rates at the scale of the population and we do not know whether there is intra-population variation and how outcrossing events are distributed, between genotypes, plants, flowers, or seeds. Theoretical studies predict the maintenance of residual outcrossing in highly selfing species due to environmental (e.g., pollen biology) and/or genetic determinants and decompositions of the variation in outcrossing rate using experimental data can be very informative to test these hypotheses. Here, we focus on one natural population of M. truncatula in order to describe precisely its mating system. In particular, we investigated the determinants of the selfing rate by testing for seasonal variations (environmental determinism) and variations between genotypes (genetic determinism). We measured selfing rates in maternal progenies from plants collected widely across a natural population. For each plant, we collected pods from flowers produced at the beginning and at the end of the flowering season to test for a seasonal variation in the outcrossing rate. For each collected offspring, we also estimated the likelihood that it was issued from a self-fertilization event and assessed the genetic component of variation of this mating system measure. We found a significant, albeit small, increase in outcrossing rate in progenies collected at the end [t m = 0.137 (SD = 0.025)] compared to those collected at the beginning [t m = 0.083 (0.016)] of the flowering season. A significant between genotypes variation in selfing rate was also detected, resulting in a heritability of 9% for the rate of residual outcrossing. Altogether, our work shows that despite a predominantly selfing reproductive mode, M. truncatula displays variation in residual outcrossing rate, and that this trait is likely under a complex determinism combining environmental and genetic factors. We discuss the evolutionary implications of our results for the population.
Collapse
|
30
|
Barragan AC, Collenberg M, Wang J, Lee RRQ, Cher WY, Rabanal FA, Ashkenazy H, Weigel D, Chae E. A Truncated Singleton NLR Causes Hybrid Necrosis in Arabidopsis thaliana. Mol Biol Evol 2021; 38:557-574. [PMID: 32966577 PMCID: PMC7826191 DOI: 10.1093/molbev/msaa245] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hybrid necrosis in plants arises from conflict between divergent alleles of immunity genes contributed by different parents, resulting in autoimmunity. We investigate a severe hybrid necrosis case in Arabidopsis thaliana, where the hybrid does not develop past the cotyledon stage and dies 3 weeks after sowing. Massive transcriptional changes take place in the hybrid, including the upregulation of most NLR (nucleotide-binding site leucine-rich repeat) disease-resistance genes. This is due to an incompatible interaction between the singleton TIR-NLR gene DANGEROUS MIX 10 (DM10), which was recently relocated from a larger NLR cluster, and an unlinked locus, DANGEROUS MIX 11 (DM11). There are multiple DM10 allelic variants in the global A. thaliana population, several of which have premature stop codons. One of these, which has a truncated LRR-PL (leucine-rich repeat [LRR]-post-LRR) region, corresponds to the DM10 risk allele. The DM10 locus and the adjacent genomic region in the risk allele carriers are highly differentiated from those in the nonrisk carriers in the global A. thaliana population, suggesting that this allele became geographically widespread only relatively recently. The DM11 risk allele is much rarer and found only in two accessions from southwestern Spain-a region from which the DM10 risk haplotype is absent-indicating that the ranges of DM10 and DM11 risk alleles may be nonoverlapping.
Collapse
Affiliation(s)
- Ana Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maximilian Collenberg
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jinge Wang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Rachelle R Q Lee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Wei Yuan Cher
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fernando A Rabanal
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Haim Ashkenazy
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
31
|
Weng ML, Ågren J, Imbert E, Nottebrock H, Rutter MT, Fenster CB. Fitness effects of mutation in natural populations of Arabidopsis thaliana reveal a complex influence of local adaptation. Evolution 2020; 75:330-348. [PMID: 33340094 DOI: 10.1111/evo.14152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 12/22/2022]
Abstract
Little is empirically known about the contribution of mutations to fitness in natural environments. However, Fisher's Geometric Model (FGM) provides a conceptual foundation to consider the influence of the environment on mutational effects. To quantify mutational properties in the field, we established eight sets of MA lines (7-10 generations) derived from eight founders collected from natural populations of Arabidopsis thaliana from French and Swedish sites, representing the range margins of the species in Europe. We reciprocally planted the MA lines and their founders at French and Swedish sites, allowing us to test predictions of FGM under naturally occurring environmental conditions. The performance of the MA lines relative to each other and to their respective founders confirmed some and contradicted other predictions of the FGM: the contribution of mutation to fitness variance increased when the genotype was in an environment where its fitness was low, that is, in the away environment, but mutations were more likely to be beneficial when the genotype was in its home environment. Consequently, environmental context plays a large role in the contribution of mutations to the evolutionary process and local adaptation does not guarantee that a genotype is at or close to its optimum.
Collapse
Affiliation(s)
- Mao-Lun Weng
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.,Current address: Department of Biology, Westfield State University, Westfield, Massachusettes, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| | - Eric Imbert
- Institut des Sciences de la Évolution, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Henning Nottebrock
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.,Current address: Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | - Matthew T Rutter
- Department of Biology, College of Charleston, South Carolina, USA
| | - Charles B Fenster
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA.,Oak Lake Field Station, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
32
|
Turner KG, Lorts CM, Haile AT, Lasky JR. Effects of genomic and functional diversity on stand-level productivity and performance of non-native Arabidopsis. Proc Biol Sci 2020; 287:20202041. [PMID: 33081615 PMCID: PMC7661305 DOI: 10.1098/rspb.2020.2041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/30/2020] [Indexed: 12/25/2022] Open
Abstract
Biodiversity can affect the properties of groups of organisms, such as ecosystem function and the persistence of colonizing populations. Genomic data offer a newly available window to diversity, complementary to other measures like taxonomic or phenotypic diversity. We tested whether native genetic diversity in field experimental stands of Arabidopsis thaliana affected their aboveground biomass and fecundity in their colonized range. We constructed some stands of genotypes that we a priori predicted would differ in performance or show overyielding. We found no relationship between genetic diversity and stand total biomass. However, increasing stand genetic diversity increased fecundity in high-resource conditions. Polyculture (multiple genotype) stands consistently yielded less biomass than expected based on the yields of component genotypes in monoculture. This under-yielding was strongest in stands with late-flowering and high biomass genotypes, potentially due to interference competition by these genotypes. Using a new implementation of association mapping, we identified genetic loci whose diversity was associated with stand-level yield, revealing a major flowering time locus associated with under-yielding of polycultures. Our field experiment supports community ecology studies that find a range of diversity-function relationships. Nevertheless, our results suggest diversity in colonizing propagule pools can enhance population fitness. Furthermore, interference competition among genotypes differing in flowering time might limit the advantages of polyculture.
Collapse
Affiliation(s)
- Kathryn G. Turner
- Department of Biology, Pennsylvania State University, USA
- Department of Biological Sciences, Idaho State University, USA
| | | | - Asnake T. Haile
- Department of Biology, Pennsylvania State University, USA
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Ethiopia
| | - Jesse R. Lasky
- Department of Biology, Pennsylvania State University, USA
| |
Collapse
|
33
|
Miller CN, Dumenil J, Lu FH, Smith C, McKenzie N, Chapman V, Ball J, Box M, Bevan M. Variation in the expression of a transmembrane protein influences cell growth in Arabidopsis thaliana petals by altering auxin responses. BMC PLANT BIOLOGY 2020; 20:482. [PMID: 33092536 PMCID: PMC7584087 DOI: 10.1186/s12870-020-02698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The same species of plant can exhibit very diverse sizes and shapes of organs that are genetically determined. Characterising genetic variation underlying this morphological diversity is an important objective in evolutionary studies and it also helps identify the functions of genes influencing plant growth and development. Extensive screens of mutagenised Arabidopsis populations have identified multiple genes and mechanisms affecting organ size and shape, but relatively few studies have exploited the rich diversity of natural populations to identify genes involved in growth control. RESULTS We screened a relatively well characterised collection of Arabidopsis thaliana accessions for variation in petal size. Association analyses identified sequence and gene expression variation on chromosome 4 that made a substantial contribution to differences in petal area. Variation in the expression of a previously uncharacterised gene At4g16850 (named as KSK) had a substantial role on variation in organ size by influencing cell size. Over-expression of KSK led to larger petals with larger cells and promoted the formation of stamenoid features. The expression of auxin-responsive genes known to limit cell growth was reduced in response to KSK over-expression. ANT expression was also reduced in KSK over-expression lines, consistent with altered floral identities. Auxin responses were reduced in KSK over-expressing cells, consistent with changes in auxin-responsive gene expression. KSK may therefore influence auxin responses during petal development. CONCLUSIONS Understanding how genetic variation influences plant growth is important for both evolutionary and mechanistic studies. We used natural populations of Arabidopsis thaliana to identify sequence variation in a promoter region of Arabidopsis accessions that mediated differences in the expression of a previously uncharacterised membrane protein. This variation contributed to altered auxin responses and cell size during petal growth.
Collapse
Affiliation(s)
- Charlotte N Miller
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jack Dumenil
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Fu Hao Lu
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Caroline Smith
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Neil McKenzie
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Volodymyr Chapman
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Joshua Ball
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mathew Box
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Michael Bevan
- Cell and Developmental Biology Department John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
34
|
Blackwell AR, Dluzewska J, Szymanska-Lejman M, Desjardins S, Tock AJ, Kbiri N, Lambing C, Lawrence EJ, Bieluszewski T, Rowan B, Higgins JD, Ziolkowski PA, Henderson IR. MSH2 shapes the meiotic crossover landscape in relation to interhomolog polymorphism in Arabidopsis. EMBO J 2020; 39:e104858. [PMID: 32935357 PMCID: PMC7604573 DOI: 10.15252/embj.2020104858] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
During meiosis, DNA double-strand breaks undergo interhomolog repair to yield crossovers between homologous chromosomes. To investigate how interhomolog sequence polymorphism affects crossovers, we sequenced multiple recombinant populations of the model plant Arabidopsis thaliana. Crossovers were elevated in the diverse pericentromeric regions, showing a local preference for polymorphic regions. We provide evidence that crossover association with elevated diversity is mediated via the Class I crossover formation pathway, although very high levels of diversity suppress crossovers. Interhomolog polymorphism causes mismatches in recombining molecules, which can be detected by MutS homolog (MSH) mismatch repair protein heterodimers. Therefore, we mapped crossovers in a msh2 mutant, defective in mismatch recognition, using multiple hybrid backgrounds. Although total crossover numbers were unchanged in msh2 mutants, recombination was remodelled from the diverse pericentromeres towards the less-polymorphic sub-telomeric regions. Juxtaposition of megabase heterozygous and homozygous regions causes crossover remodelling towards the heterozygous regions in wild type Arabidopsis, but not in msh2 mutants. Immunostaining showed that MSH2 protein accumulates on meiotic chromosomes during prophase I, consistent with MSH2 regulating meiotic recombination. Our results reveal a pro-crossover role for MSH2 in regions of higher sequence diversity in A. thaliana.
Collapse
Affiliation(s)
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Stuart Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Nadia Kbiri
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tomasz Bieluszewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Beth Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Regalado J, Lundberg DS, Deusch O, Kersten S, Karasov T, Poersch K, Shirsekar G, Weigel D. Combining whole-genome shotgun sequencing and rRNA gene amplicon analyses to improve detection of microbe-microbe interaction networks in plant leaves. THE ISME JOURNAL 2020; 14:2116-2130. [PMID: 32405027 PMCID: PMC7368051 DOI: 10.1038/s41396-020-0665-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 12/23/2022]
Abstract
Microorganisms from all domains of life establish associations with plants. Although some harm the plant, others antagonize pathogens or prime the plant immune system, support the acquisition of nutrients, tune plant hormone levels, or perform additional services. Most culture-independent plant microbiome research has focused on amplicon sequencing of the 16S rRNA gene and/or the internal transcribed spacer (ITS) of rRNA genomic loci, which show the relative abundance of the microbes to each other. Here, we describe shotgun sequencing of 275 wild Arabidopsis thaliana leaf microbiomes from southwest Germany, with additional bacterial 16S and eukaryotic ITS1 rRNA amplicon data from 176 of these samples. Shotgun data, which unlike the amplicon data capture the ratio of microbe to plant DNA, enable scaling of microbial read abundances to reflect the microbial load on the host. In a more cost-effective hybrid strategy, we show they also allow a similar scaling of amplicon data to overcome compositionality problems. Our wild plants were dominated by bacterial sequences, with eukaryotes contributing only a minority of reads. Microbial membership showed weak associations with both site of origin and plant genotype, both of which were highly confounded in this dataset. There was large variation among microbiomes, with one extreme comprising samples of low complexity and a high load of microorganisms typical of infected plants, and the other extreme being samples of high complexity and a low microbial load. Critically, considering absolute microbial load led to fundamentally different conclusions about microbiome assembly and the interaction networks among major taxa.
Collapse
Affiliation(s)
- Julian Regalado
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Derek S Lundberg
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Oliver Deusch
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Sonja Kersten
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - Talia Karasov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Karin Poersch
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|
36
|
Hämälä T, Tiffin P. Biased Gene Conversion Constrains Adaptation in Arabidopsis thaliana. Genetics 2020; 215:831-846. [PMID: 32414868 PMCID: PMC7337087 DOI: 10.1534/genetics.120.303335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 02/01/2023] Open
Abstract
Reduction of fitness due to deleterious mutations imposes a limit to adaptive evolution. By characterizing features that influence this genetic load we may better understand constraints on responses to both natural and human-mediated selection. Here, using whole-genome, transcriptome, and methylome data from >600 Arabidopsis thaliana individuals, we set out to identify important features influencing selective constraint. Our analyses reveal that multiple factors underlie the accumulation of maladaptive mutations, including gene expression level, gene network connectivity, and gene-body methylation. We then focus on a feature with major effect, nucleotide composition. The ancestral vs. derived status of segregating alleles suggests that GC-biased gene conversion, a recombination-associated process that increases the frequency of G and C nucleotides regardless of their fitness effects, shapes sequence patterns in A. thaliana Through estimation of mutational effects, we present evidence that biased gene conversion hinders the purging of deleterious mutations and contributes to a genome-wide signal of decreased efficacy of selection. By comparing these results to two outcrossing relatives, Arabidopsis lyrata and Capsella grandiflora, we find that protein evolution in A. thaliana is as strongly affected by biased gene conversion as in the outcrossing species. Last, we perform simulations to show that natural levels of outcrossing in A. thaliana are sufficient to facilitate biased gene conversion despite increased homozygosity due to selfing. Together, our results show that even predominantly selfing taxa are susceptible to biased gene conversion, suggesting that it may constitute an important constraint to adaptation among plant species.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
37
|
Castilla AR, Méndez-Vigo B, Marcer A, Martínez-Minaya J, Conesa D, Picó FX, Alonso-Blanco C. Ecological, genetic and evolutionary drivers of regional genetic differentiation in Arabidopsis thaliana. BMC Evol Biol 2020; 20:71. [PMID: 32571210 PMCID: PMC7310121 DOI: 10.1186/s12862-020-01635-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Disentangling the drivers of genetic differentiation is one of the cornerstones in evolution. This is because genetic diversity, and the way in which it is partitioned within and among populations across space, is an important asset for the ability of populations to adapt and persist in changing environments. We tested three major hypotheses accounting for genetic differentiation-isolation-by-distance (IBD), isolation-by-environment (IBE) and isolation-by-resistance (IBR)-in the annual plant Arabidopsis thaliana across the Iberian Peninsula, the region with the largest genomic diversity. To that end, we sampled, genotyped with genome-wide SNPs, and analyzed 1772 individuals from 278 populations distributed across the Iberian Peninsula. RESULTS IBD, and to a lesser extent IBE, were the most important drivers of genetic differentiation in A. thaliana. In other words, dispersal limitation, genetic drift, and to a lesser extent local adaptation to environmental gradients, accounted for the within- and among-population distribution of genetic diversity. Analyses applied to the four Iberian genetic clusters, which represent the joint outcome of the long demographic and adaptive history of the species in the region, showed similar results except for one cluster, in which IBR (a function of landscape heterogeneity) was the most important driver of genetic differentiation. Using spatial hierarchical Bayesian models, we found that precipitation seasonality and topsoil pH chiefly accounted for the geographic distribution of genetic diversity in Iberian A. thaliana. CONCLUSIONS Overall, the interplay between the influence of precipitation seasonality on genetic diversity and the effect of restricted dispersal and genetic drift on genetic differentiation emerges as the major forces underlying the evolutionary trajectory of Iberian A. thaliana.
Collapse
Affiliation(s)
- Antonio R Castilla
- Centre for Applied Ecology "Prof. Baeta Neves", InBIO, School of Agriculture, University of Lisbon, Lisbon, Portugal
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Arnald Marcer
- CREAF, Centre de Recerca Ecològica i Aplicacions Forestals, Bellaterra, E08193, Cerdanyola de Vallès, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra, E08193, Cerdanyola de Vallès, Catalonia, Spain
| | | | - David Conesa
- Departament d'Estadística i Investigació Operativa, Universitat de València, Valencia, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
38
|
Mehraj H, Kawanabe T, Shimizu M, Miyaji N, Akter A, Dennis ES, Fujimoto R. In Arabidopsis thaliana Heterosis Level Varies among Individuals in an F 1 Hybrid Population. PLANTS 2020; 9:plants9040414. [PMID: 32230994 PMCID: PMC7238264 DOI: 10.3390/plants9040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 11/28/2022]
Abstract
Heterosis or hybrid vigour is a phenomenon in which hybrid progeny exhibit superior yield and biomass to parental lines and has been used to breed F1 hybrid cultivars in many crops. A similar level of heterosis in all F1 individuals is expected as they are genetically identical. However, we found variation in rosette size in individual F1 plants from a cross between C24 and Columbia-0 accessions of Arabidopsis thaliana. Big-sized F1 plants had 26.1% larger leaf area in the first and second leaves than medium-sized F1 plants at 14 days after sowing in spite of the identical genetic background. We identified differentially expressed genes between big- and medium-sized F1 plants by microarray; genes involved in the category of stress response were overrepresented. We made transgenic plants overexpressing 21 genes, which were differentially expressed between the two size classes, and some lines had increased plant size at 14 or 21 days after sowing but not at all time points during development. Change of expression levels in stress-responsive genes among individual F1 plants could generate the variation in plant size of individual F1 plants in A. thaliana.
Collapse
Affiliation(s)
- Hasan Mehraj
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; (H.M.); (N.M.); (A.A.)
| | - Takahiro Kawanabe
- School of Agriculture, Tokai University, Toroku, Higashi-ku, Kumamoto 862-8652, Japan
- Correspondence: (T.K.); (R.F.)
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Narita, Kitakami, Iwate 024-0003, Japan;
| | - Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; (H.M.); (N.M.); (A.A.)
| | - Ayasha Akter
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; (H.M.); (N.M.); (A.A.)
- Department of Horticulture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Elizabeth S. Dennis
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
- University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; (H.M.); (N.M.); (A.A.)
- Correspondence: (T.K.); (R.F.)
| |
Collapse
|
39
|
Zhang S, Li B, Chen Y, Shaibu AS, Zheng H, Sun J. Molecular-Assisted Distinctness and Uniformity Testing Using SLAF-Sequencing Approach in Soybean. Genes (Basel) 2020; 11:E175. [PMID: 32041312 PMCID: PMC7074437 DOI: 10.3390/genes11020175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/27/2022] Open
Abstract
Distinctness, uniformity and stability (DUS) testing of cultivars through morphological descriptors is an important and compulsory part of soybean breeding. Molecular markers are usually more effective and accurate in describing the genetic features for the identification and purity assessment of cultivars. In the present study, we assessed the distinctness and uniformity of five soybean cultivars using both single nucleotide polymorphism (SNP) markers developed by specific-locus amplified fragment sequencing (SLAF-seq) technology, and simple sequence repeat (SSR) markers. The phylogenetic tree and principal component analysis (PCA) from both the SLAF-seq and SSR methods showed a clear distinction among cultivars Zhonghuang 18, Zhonghuang 68 and Zhonghuang 35, while no clear distinction was observed between cultivars Zhonghuang 13 and Hedou 13. Using the SLAF-seq method, we determined the proportion of homozygous loci for the five soybean cultivars. The heterozygosity of each individual plant was estimated for the assessment of cultivar purity and the purity levels of the five soybean cultivars ranged from 91.89% to 93.96%. To further validate the applicability of the SLAF-seq approach for distinctness testing, we used the SNP information of 150 soybean cultivars with different origins. The cultivars were also distinguished clearly. Taken together, SLAF-seq can be used as an accurate and reliable method in the assessment of the distinctness and uniformity of soybean cultivars.
Collapse
Affiliation(s)
- Shengrui Zhang
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.Z.); (B.L.); (Y.C.); (A.S.S.)
| | - Bin Li
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.Z.); (B.L.); (Y.C.); (A.S.S.)
| | - Ying Chen
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.Z.); (B.L.); (Y.C.); (A.S.S.)
| | - Abdulwahab S. Shaibu
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.Z.); (B.L.); (Y.C.); (A.S.S.)
| | - Hongkun Zheng
- Biomarker Technologies Corporation, Beijing 101300, China;
| | - Junming Sun
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.Z.); (B.L.); (Y.C.); (A.S.S.)
| |
Collapse
|
40
|
Harrison MC, Mallon EB, Twell D, Hammond RL. Deleterious Mutation Accumulation in Arabidopsis thaliana Pollen Genes: A Role for a Recent Relaxation of Selection. Genome Biol Evol 2020; 11:1939-1951. [PMID: 31209485 PMCID: PMC6640295 DOI: 10.1093/gbe/evz127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
In many studies, sex-related genes have been found to evolve rapidly. We therefore expect plant pollen genes to evolve faster than sporophytic genes. In addition, pollen genes are expressed as haploids which can itself facilitate rapid evolution because recessive advantageous and deleterious alleles are not masked by dominant alleles. However, this mechanism is less straightforward to apply in the model plant species Arabidopsis thaliana. For 1 Myr, A. thaliana has been self-compatible, a life history switch that has caused: a reduction in pollen competition, increased homozygosity, and a dilution of masking in diploid expressed, sporophytic genes. In this study, we have investigated the relative strength of selection on pollen genes compared with sporophytic genes in A. thaliana. We present two major findings: 1) before becoming self-compatible, positive selection was stronger on pollen genes than sporophytic genes for A. thaliana and 2) current polymorphism data indicate that selection is weaker on pollen genes compared with sporophytic genes. This weaker selection on pollen genes can in part be explained by their higher tissue specificity, which in outbreeding plants can be outweighed by the effects of haploid expression and pollen competition. These results indicate that since A. thaliana has become self-compatible, selection on pollen genes has become more relaxed. This has led to higher polymorphism levels and a higher build-up of deleterious mutations in pollen genes compared with sporophytic genes.
Collapse
|
41
|
Mattila TM, Laenen B, Slotte T. Population Genomics of Transitions to Selfing in Brassicaceae Model Systems. Methods Mol Biol 2020; 2090:269-287. [PMID: 31975171 DOI: 10.1007/978-1-0716-0199-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many plants harbor complex mechanisms that promote outcrossing and efficient pollen transfer. These include floral adaptations as well as genetic mechanisms, such as molecular self-incompatibility (SI) systems. The maintenance of such systems over long evolutionary timescales suggests that outcrossing is favorable over a broad range of conditions. Conversely, SI has repeatedly been lost, often in association with transitions to self-fertilization (selfing). This transition is favored when the short-term advantages of selfing outweigh the costs, primarily inbreeding depression. The transition to selfing is expected to have major effects on population genetic variation and adaptive potential, as well as on genome evolution. In the Brassicaceae, many studies on the population genetic, gene regulatory, and genomic effects of selfing have centered on the model plant Arabidopsis thaliana and the crucifer genus Capsella. The accumulation of population genomics datasets have allowed detailed investigation of where, when and how the transition to selfing occurred. Future studies will take advantage of the development of population genetics theory on the impact of selfing, especially regarding positive selection. Furthermore, investigation of systems including recent transitions to selfing, mixed mating populations and/or multiple independent replicates of the same transition will facilitate dissecting the effects of mating system variation from processes driven by demography.
Collapse
Affiliation(s)
- Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Benjamin Laenen
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
42
|
Pucker B, Rückert C, Stracke R, Viehöver P, Kalinowski J, Weisshaar B. Twenty-Five Years of Propagation in Suspension Cell Culture Results in Substantial Alterations of the Arabidopsis Thaliana Genome. Genes (Basel) 2019; 10:E671. [PMID: 31480756 PMCID: PMC6770967 DOI: 10.3390/genes10090671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023] Open
Abstract
Arabidopsis thaliana is one of the best studied plant model organisms. Besides cultivation in greenhouses, cells of this plant can also be propagated in suspension cell culture. At7 is one such cell line that was established about 25 years ago. Here, we report the sequencing and the analysis of the At7 genome. Large scale duplications and deletions compared to the Columbia-0 (Col-0) reference sequence were detected. The number of deletions exceeds the number of insertions, thus indicating that a haploid genome size reduction is ongoing. Patterns of small sequence variants differ from the ones observed between A. thaliana accessions, e.g., the number of single nucleotide variants matches the number of insertions/deletions. RNA-Seq analysis reveals that disrupted alleles are less frequent in the transcriptome than the native ones.
Collapse
Affiliation(s)
- Boas Pucker
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany.
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Ralf Stracke
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| |
Collapse
|
43
|
Lawrence EJ, Gao H, Tock AJ, Lambing C, Blackwell AR, Feng X, Henderson IR. Natural Variation in TBP-ASSOCIATED FACTOR 4b Controls Meiotic Crossover and Germline Transcription in Arabidopsis. Curr Biol 2019; 29:2676-2686.e3. [PMID: 31378616 DOI: 10.1016/j.cub.2019.06.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
Meiotic crossover frequency varies within genomes, which influences genetic diversity and adaptation. In turn, genetic variation within populations can act to modify crossover frequency in cis and trans. To identify genetic variation that controls meiotic crossover frequency, we screened Arabidopsis accessions using fluorescent recombination reporters. We mapped a genetic modifier of crossover frequency in Col × Bur populations of Arabidopsis to a premature stop codon within TBP-ASSOCIATED FACTOR 4b (TAF4b), which encodes a subunit of the RNA polymerase II general transcription factor TFIID. The Arabidopsis taf4b mutation is a rare variant found in the British Isles, originating in South-West Ireland. Using genetics, genomics, and immunocytology, we demonstrate a genome-wide decrease in taf4b crossovers, with strongest reduction in the sub-telomeric regions. Using RNA sequencing (RNA-seq) from purified meiocytes, we show that TAF4b expression is meiocyte enriched, whereas its paralog TAF4 is broadly expressed. Consistent with the role of TFIID in promoting gene expression, RNA-seq of wild-type and taf4b meiocytes identified widespread transcriptional changes, including in genes that regulate the meiotic cell cycle and recombination. Therefore, TAF4b duplication is associated with acquisition of meiocyte-specific expression and promotion of germline transcription, which act directly or indirectly to elevate crossovers. This identifies a novel mode of meiotic recombination control via a general transcription factor.
Collapse
Affiliation(s)
- Emma J Lawrence
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Hongbo Gao
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Andrew J Tock
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Christophe Lambing
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Alexander R Blackwell
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.
| | - Ian R Henderson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK.
| |
Collapse
|
44
|
Tuteja R, McKeown PC, Ryan P, Morgan CC, Donoghue MTA, Downing T, O'Connell MJ, Spillane C. Paternally Expressed Imprinted Genes under Positive Darwinian Selection in Arabidopsis thaliana. Mol Biol Evol 2019; 36:1239-1253. [PMID: 30913563 PMCID: PMC6526901 DOI: 10.1093/molbev/msz063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon where autosomal genes display uniparental expression depending on whether they are maternally or paternally inherited. Genomic imprinting can arise from parental conflicts over resource allocation to the offspring, which could drive imprinted loci to evolve by positive selection. We investigate whether positive selection is associated with genomic imprinting in the inbreeding species Arabidopsis thaliana. Our analysis of 140 genes regulated by genomic imprinting in the A. thaliana seed endosperm demonstrates they are evolving more rapidly than expected. To investigate whether positive selection drives this evolutionary acceleration, we identified orthologs of each imprinted gene across 34 plant species and elucidated their evolutionary trajectories. Increased positive selection was sought by comparing its incidence among imprinted genes with nonimprinted controls. Strikingly, we find a statistically significant enrichment of imprinted paternally expressed genes (iPEGs) evolving under positive selection, 50.6% of the total, but no such enrichment for positive selection among imprinted maternally expressed genes (iMEGs). This suggests that maternally- and paternally expressed imprinted genes are subject to different selective pressures. Almost all positively selected amino acids were fixed across 80 sequenced A. thaliana accessions, suggestive of selective sweeps in the A. thaliana lineage. The imprinted genes under positive selection are involved in processes important for seed development including auxin biosynthesis and epigenetic regulation. Our findings support a genomic imprinting model for plants where positive selection can affect paternally expressed genes due to continued conflict with maternal sporophyte tissues, even when parental conflict is reduced in predominantly inbreeding species.
Collapse
Affiliation(s)
- Reetu Tuteja
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,Center for Genomics and Systems Biology, New York University, New York, NY
| | - Peter C McKeown
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Pat Ryan
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Claire C Morgan
- School of Biotechnology, Faculty of Biological Sciences, Dublin City University, Dublin, Ireland.,Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Mark T A Donoghue
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tim Downing
- School of Biotechnology, Faculty of Biological Sciences, Dublin City University, Dublin, Ireland
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, United Kingdom.,Computational and Molecular Evolutionary Biology Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Charles Spillane
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
45
|
Vasseur F, Fouqueau L, de Vienne D, Nidelet T, Violle C, Weigel D. Nonlinear phenotypic variation uncovers the emergence of heterosis in Arabidopsis thaliana. PLoS Biol 2019; 17:e3000214. [PMID: 31017902 PMCID: PMC6481775 DOI: 10.1371/journal.pbio.3000214] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Heterosis describes the phenotypic superiority of hybrids over their parents in traits related to agronomic performance and fitness. Understanding and predicting nonadditive inheritance such as heterosis is crucial for evolutionary biology as well as for plant and animal breeding. However, the physiological bases of heterosis remain debated. Moreover, empirical data in various species have shown that diverse genetic and molecular mechanisms are likely to explain heterosis, making it difficult to predict its emergence and amplitude from parental genotypes alone. In this study, we examined a model of physiological dominance initially proposed by Sewall Wright to explain the nonadditive inheritance of traits like metabolic fluxes at the cellular level. We evaluated Wright's model for two fitness-related traits at the whole-plant level, growth rate and fruit number, using 450 hybrids derived from crosses among natural accessions of A. thaliana. We found that allometric relationships between traits constrain phenotypic variation in a nonlinear and similar manner in hybrids and accessions. These allometric relationships behave predictably, explaining up to 75% of heterosis amplitude, while genetic distance among parents at best explains 7%. Thus, our findings are consistent with Wright's model of physiological dominance and suggest that the emergence of heterosis on plant performance is an intrinsic property of nonlinear relationships between traits. Furthermore, our study highlights the potential of a geometric approach of phenotypic relationships for predicting heterosis of major components of crop productivity and yield.
Collapse
Affiliation(s)
- François Vasseur
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, UMR759, Montpellier, France
| | - Louise Fouqueau
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | - Dominique de Vienne
- GQE–Le Moulon, INRA, Univ Paris-Sud, CNRS, AgroParisTech, Univ Paris-Saclay, Gif-sur-Yvette, France
| | - Thibault Nidelet
- SPO, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Cyrille Violle
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, EPHE, IRD, Montpellier, France
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
46
|
Alexandre CM, Urton JR, Jean-Baptiste K, Huddleston J, Dorrity MW, Cuperus JT, Sullivan AM, Bemm F, Jolic D, Arsovski AA, Thompson A, Nemhauser JL, Fields S, Weigel D, Bubb KL, Queitsch C. Complex Relationships between Chromatin Accessibility, Sequence Divergence, and Gene Expression in Arabidopsis thaliana. Mol Biol Evol 2019; 35:837-854. [PMID: 29272536 DOI: 10.1093/molbev/msx326] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Variation in regulatory DNA is thought to drive phenotypic variation, evolution, and disease. Prior studies of regulatory DNA and transcription factors across animal species highlighted a fundamental conundrum: Transcription factor binding domains and cognate binding sites are conserved, while regulatory DNA sequences are not. It remains unclear how conserved transcription factors and dynamic regulatory sites produce conserved expression patterns across species. Here, we explore regulatory DNA variation and its functional consequences within Arabidopsis thaliana, using chromatin accessibility to delineate regulatory DNA genome-wide. Unlike in previous cross-species comparisons, the positional homology of regulatory DNA is maintained among A. thaliana ecotypes and less nucleotide divergence has occurred. Of the ∼50,000 regulatory sites in A. thaliana, we found that 15% varied in accessibility among ecotypes. Some of these accessibility differences were associated with extensive, previously unannotated sequence variation, encompassing many deletions and ancient hypervariable alleles. Unexpectedly, for the majority of such regulatory sites, nearby gene expression was unaffected. Nevertheless, regulatory sites with high levels of sequence variation and differential chromatin accessibility were the most likely to be associated with differential gene expression. Finally, and most surprising, we found that the vast majority of differentially accessible sites show no underlying sequence variation. We argue that these surprising results highlight the necessity to consider higher-order regulatory context in evaluating regulatory variation and predicting its phenotypic consequences.
Collapse
Affiliation(s)
| | - James R Urton
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Ken Jean-Baptiste
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - John Huddleston
- Department of Genome Sciences, University of Washington, Seattle, WA.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
| | - Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA
| | | | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dino Jolic
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | - Stan Fields
- Department of Genome Sciences, University of Washington, Seattle, WA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Christin Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
47
|
Seymour DK, Chae E, Arioz BI, Koenig D, Weigel D. Transmission ratio distortion is frequent in Arabidopsis thaliana controlled crosses. Heredity (Edinb) 2019; 122:294-304. [PMID: 29955170 PMCID: PMC6169738 DOI: 10.1038/s41437-018-0107-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
The equal probability of transmission of alleles from either parent during sexual reproduction is a central tenet of genetics and evolutionary biology. Yet, there are many cases where this rule is violated. The preferential transmission of alleles or genotypes is termed transmission ratio distortion (TRD). Examples of TRD have been identified in many species, implying that they are universal, but the resolution of species-wide studies of TRD are limited. We have performed a species-wide screen for TRD in over 500 segregating F2 populations of Arabidopsis thaliana using pooled reduced-representation genome sequencing. TRD was evident in up to a quarter of surveyed populations. Most populations exhibited distortion at only one genomic region, with some regions being repeatedly affected in multiple populations. Our results begin to elucidate the species-level architecture of biased transmission of genetic material in A. thaliana, and serve as a springboard for future studies into the biological basis of TRD in this species.
Collapse
Affiliation(s)
- Danelle K Seymour
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Burak I Arioz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Daniel Koenig
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|
48
|
Takou M, Wieters B, Kopriva S, Coupland G, Linstädter A, De Meaux J. Linking genes with ecological strategies in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1141-1151. [PMID: 30561727 PMCID: PMC6382341 DOI: 10.1093/jxb/ery447] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 05/22/2023]
Abstract
Arabidopsis thaliana is the most prominent model system in plant molecular biology and genetics. Although its ecology was initially neglected, collections of various genotypes revealed a complex population structure, with high levels of genetic diversity and substantial levels of phenotypic variation. This helped identify the genes and gene pathways mediating phenotypic change. Population genetics studies further demonstrated that this variation generally contributes to local adaptation. Here, we review evidence showing that traits affecting plant life history, growth rate, and stress reactions are not only locally adapted, they also often co-vary. Co-variation between these traits indicates that they evolve as trait syndromes, and reveals the ecological diversification that took place within A. thaliana. We argue that examining traits and the gene that control them within the context of global summary schemes that describe major ecological strategies will contribute to resolve important questions in both molecular biology and ecology.
Collapse
Affiliation(s)
| | | | | | - George Coupland
- Max Planck Institute of Plant Breeding Research, Cologne, Germany
| | - Anja Linstädter
- Institute of Botany, University of Cologne, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Germany
| | | |
Collapse
|
49
|
Jullien M, Navascués M, Ronfort J, Loridon K, Gay L. Structure of multilocus genetic diversity in predominantly selfing populations. Heredity (Edinb) 2019; 123:176-191. [PMID: 30670844 DOI: 10.1038/s41437-019-0182-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 11/09/2022] Open
Abstract
Predominantly selfing populations are expected to have reduced effective population sizes due to nonrandom sampling of gametes, demographic stochasticity (bottlenecks or extinction-recolonization), and large scale hitchhiking (reduced effective recombination). Thus, they are expected to display low genetic diversity, which was confirmed by empirical studies. The structure of genetic diversity in predominantly selfing species is dramatically different from outcrossing ones, with populations often dominated by one or a few multilocus genotypes (MLGs) coexisting with several rare genotypes. Therefore, multilocus diversity indices are relevant to describe diversity in selfing populations. Here, we use simulations to provide analytical expectations for multilocus indices and examine whether selfing alone can be responsible for the high-frequency MLGs persistent through time in the absence of selection. We then examine how combining single and multilocus indices of diversity may be insightful to distinguish the effects of selfing, population size, and more complex demographic events (bottlenecks, migration, admixture, or extinction-recolonization). Finally, we examine how temporal changes in MLG frequencies can be insightful to understand the evolutionary trajectory of a given population. We show that combinations of selfing and small demographic sizes can result in high-frequency MLGs, as observed in natural populations. We also show how different demographic scenarios can be distinguished by the parallel analysis of single and multilocus indices of diversity, and we emphasize the importance of temporal data for the study of predominantly selfing populations. Finally, the comparison of our simulations with empirical data on populations of Medicago truncatula confirms the pertinence of our simulation framework.
Collapse
Affiliation(s)
- Margaux Jullien
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Miguel Navascués
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,Institut de Biologie Computationnelle IBC, Montpellier, France
| | - Joëlle Ronfort
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Karine Loridon
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Laurène Gay
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
50
|
Abdelaziz M, Bakkali M, Gómez JM, Olivieri E, Perfectti F. Anther Rubbing, a New Mechanism That Actively Promotes Selfing in Plants. Am Nat 2019; 193:140-147. [PMID: 30624113 DOI: 10.1086/700875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Self-fertilization has recurrently evolved in plants, involving different strategies and traits and often loss of attractive functions, collectively known as the selfing syndrome. However, few traits that actively promote self-fertilization have been described. Here we describe a novel mechanism promoting self-fertilization in the Brassicaceae species Erysimum incanum. This mechanism, which we called "anther rubbing," consists of autonomous, repeated, and coordinated movements of the stamens over the stigma during flower opening. We have documented anther rubbing by time-lapse videos and experimentally show that it causes self-pollen deposition on stigmas and is sufficient to achieve maximal reproductive output in E. incanum. We predict that these movements should occur in species with limited inbreeding depression, and indeed we find that inbreeding depression in seed production is negligible in this species. While many studies have documented complex floral traits that promote outcrossing, the occurrence of anther rubbing demonstrates that plants can evolve elaborate and underappreciated adaptations to promote self-fertilization.
Collapse
|