1
|
Thomsen MK, Busk M. Pre-Clinical Models to Study Human Prostate Cancer. Cancers (Basel) 2023; 15:4212. [PMID: 37686488 PMCID: PMC10486646 DOI: 10.3390/cancers15174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer is a common cancer among men and typically progresses slowly for several decades before becoming aggressive and spreading to other organs, leaving few treatment options. While large animals have been studied, the dog's prostate is anatomically similar to humans and has been used to study spontaneous prostate cancer. However, most research currently focuses on the mouse as a model organism due to the ability to genetically modify their prostatic tissues for molecular analysis. One milestone in this research was the identification of the prostate-specific promoter Probasin, which allowed for the prostate-specific expression of transgenes. This has led to the generation of mice with aggressive prostatic tumors through overexpression of the SV40 oncogene. The Probasin promoter is also used to drive Cre expression and has allowed researchers to generate prostate-specific loss-of-function studies. Another landmark moment in the process of modeling prostate cancer in mice was the orthoptic delivery of viral particles. This technology allows the selective overexpression of oncogenes from lentivirus or the use of CRISPR to generate complex loss-of-function studies. These genetically modified models are complemented by classical xenografts of human prostate tumor cells in immune-deficient mice. Overall, pre-clinical models have provided a portfolio of model systems to study and address complex mechanisms in prostate cancer for improved treatment options. This review will focus on the advances in each technique.
Collapse
Affiliation(s)
| | - Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
2
|
Mai CW, Chin KY, Foong LC, Pang KL, Yu B, Shu Y, Chen S, Cheong SK, Chua CW. Modeling prostate cancer: What does it take to build an ideal tumor model? Cancer Lett 2022; 543:215794. [PMID: 35718268 DOI: 10.1016/j.canlet.2022.215794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is frequently characterized as a multifocal disease with great intratumoral heterogeneity as well as a high propensity to metastasize to bone. Consequently, modeling prostate tumor has remained a challenging task for researchers in this field. In the past decades, genomic advances have led to the identification of key molecular alterations in prostate cancer. Moreover, resistance towards second-generation androgen-deprivation therapy, namely abiraterone and enzalutamide has unveiled androgen receptor-independent diseases with distinctive histopathological and clinical features. In this review, we have critically evaluated the commonly used preclinical models of prostate cancer with respect to their capability of recapitulating the key genomic alterations, histopathological features and bone metastatic potential of human prostate tumors. In addition, we have also discussed the potential use of the emerging organoid models in prostate cancer research, which possess clear advantages over the commonly used preclinical tumor models. We anticipate that no single model can faithfully recapitulate the complexity of prostate cancer, and thus, propose the use of a cost- and time-efficient integrated tumor modeling approach for future prostate cancer investigations.
Collapse
Affiliation(s)
- Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Yong Chin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri, 79200, Malaysia
| | - Bin Yu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
3
|
Kouprianov VA, Selmek AA, Ferguson JL, Mo X, Shive HR. brca2-mutant zebrafish exhibit context- and tissue-dependent alterations in cell phenotypes and response to injury. Sci Rep 2022; 12:883. [PMID: 35042909 PMCID: PMC8766490 DOI: 10.1038/s41598-022-04878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Cancer cells frequently co-opt molecular programs that are normally activated in specific contexts, such as embryonic development and the response to injury. Determining the impact of cancer-associated mutations on cellular phenotypes within these discrete contexts can provide new insight into how such mutations lead to dysregulated cell behaviors and subsequent cancer onset. Here we assess the impact of heritable BRCA2 mutation on embryonic development and the injury response using a zebrafish model (Danio rerio). Unlike most mouse models for BRCA2 mutation, brca2-mutant zebrafish are fully viable and thus provide a unique tool for assessing both embryonic and adult phenotypes. We find that maternally provided brca2 is critical for normal oocyte development and embryonic survival in zebrafish, suggesting that embryonic lethality associated with BRCA2 mutation is likely to reflect defects in both meiotic and embryonic developmental programs. On the other hand, we find that adult brca2-mutant zebrafish exhibit aberrant proliferation of several cell types under basal conditions and in response to injury in tissues at high risk for cancer development. These divergent effects exemplify the often-paradoxical outcomes that occur in embryos (embryonic lethality) versus adult animals (cancer predisposition) with mutations in cancer susceptibility genes such as BRCA2. The altered cell behaviors identified in brca2-mutant embryonic and adult tissues, particularly in adult tissues at high risk for cancer, indicate that the effects of BRCA2 mutation on cellular phenotypes are both context- and tissue-dependent.
Collapse
Affiliation(s)
| | - Aubrie A Selmek
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jordan L Ferguson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Heather R Shive
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Shah S, Rachmat R, Enyioma S, Ghose A, Revythis A, Boussios S. BRCA Mutations in Prostate Cancer: Assessment, Implications and Treatment Considerations. Int J Mol Sci 2021; 22:12628. [PMID: 34884434 PMCID: PMC8657599 DOI: 10.3390/ijms222312628] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer ranks fifth in cancer-related mortality in men worldwide. DNA damage is implicated in cancer and DNA damage response (DDR) pathways are in place against this to maintain genomic stability. Impaired DDR pathways play a role in prostate carcinogenesis and germline or somatic mutations in DDR genes have been found in both primary and metastatic prostate cancer. Among these, BRCA mutations have been found to be especially clinically relevant with a role for germline or somatic testing. Prostate cancer with DDR defects may be sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors which target proteins in a process called PARylation. Initially they were used to target BRCA-mutated tumor cells in a process of synthetic lethality. However, recent studies have found potential for PARP inhibitors in a variety of other genetic settings. In this review, we explore the mechanisms of DNA repair, potential for genomic analysis of prostate cancer and therapeutics of PARP inhibitors along with their safety profile.
Collapse
Affiliation(s)
- Sidrah Shah
- Department of Palliative Care, Guy’s and St Thomas’ Hospital, Great Maze Pond, London SE1 9RT, UK;
| | - Rachelle Rachmat
- Department of Radiology, Guy’s and St Thomas’ Hospital, Great Maze Pond, London SE1 9RT, UK;
| | - Synthia Enyioma
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
| | - Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, W Smithfield, London EC1A 7BE, UK;
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Antonios Revythis
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.E.); (A.R.)
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
5
|
Nascimento-Gonçalves E, Seixas F, Ferreira R, Colaço B, Parada B, Oliveira PA. An overview of the latest in state-of-the-art murine models for prostate cancer. Expert Opin Drug Discov 2021; 16:1349-1364. [PMID: 34224283 DOI: 10.1080/17460441.2021.1943354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is a complex, heterogenous and multifocal disease, which is debilitating for patients and often fatal - due to bone metastasis and castration-resistant cancer. The use of murine models that mimic human disease has been crucial in the development of innovative therapies and for better understanding the mechanisms associated with initiation and progression of PCa. AREAS COVERED This review presents a critical analysis of murine models for the study of PCa, highlighting their strengths, weaknesses and applications. EXPERT OPINION In animal models, disease may not occur exactly as it does in humans, and sometimes the levels of efficacy that certain treatments obtain in animal models cannot be translated into clinical practice. To choose the most appropriate animal model for each research work, it is crucial to understand the anatomical and physiological differences between the mouse and the human prostate, while it is also important to identify biological similarities and differences between murine and human prostate tumors. Although significant progress has already been made, thanks to many years of research and study, the number of new challenges and obstacles to overcome mean there is a long and difficult road still to travel.
Collapse
Affiliation(s)
- Elisabete Nascimento-Gonçalves
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Fernanda Seixas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Animal and Veterinary Research Centre (CECAV), UTAD, Vila Real, Portugal
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (Laqv-requimte),department of Chemistry, University of Aveiro (UA), Portugal
| | - Bruno Colaço
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal.,Department of Zootechnics, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Belmiro Parada
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Urology and Renal Transplantation Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, UTAD, Vila Real, Portugal
| |
Collapse
|
6
|
Amsi PT, Yahaya JJ, Kalungi S, Odida M. Immunohistochemical expression of BRCA1 and BRCA2 in a cohort of Ugandan men with prostate cancer: an analytical cross-sectional study. AFRICAN JOURNAL OF UROLOGY 2020. [DOI: 10.1186/s12301-020-00079-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Mutation of the tumour suppressor genes BRCA1 and BRCA2 is thought to cause early development of prostate cancer which has poor prognosis. The purpose of this study was to determine the expression of BRCA1/2 and correlate it with clinicopathological factors for patients with prostate cancer in uganda.
Methods
Retrospectively, we used immunohistochemistry to evaluate the expression of BRCA1/2 antibodies in tissue blocks of 188 patients with prostate cancer who were diagnosed between January 2005 and December 2014 in the Department of Pathology, Makerere College of Health Sciences. The Chi-Square test was used to determine the association of the categorical variables, whereas t-test was used to compare groups of mean of the variables in the study.
Results
Expression of BRCA1 and BRCA2 was found in 26.1% and 22.9% cases, respectively. Co-expression of BRCA1 and BRCA2 was found in only 7.4%. Gleason score was associated with expression of BRCA1 and BRCA2 (P = 0.013, P = 0.041, respectively). Age was not associated with BRCA1 and BRCA2 expression; P = 0.543, P = 0.091, respectively. Likewise, PSA was not associated with BRCA1 and BRCA2 expression; P = 0.446, P = 0.399, respectively.
Conclusion
BRCA1 and BRCA2 proteins in this study were expressed more in cases with poorly differentiated prostate cancer than in cases with either well or moderately differentiated prostate cancer. Co-expression of BRCA1 and BRCA2 proteins in the same patient in our study was 3 times less than either BRCA1 or BRCA2 alone.
Collapse
|
7
|
Zhang W, van Gent DC, Incrocci L, van Weerden WM, Nonnekens J. Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis 2020; 23:24-37. [PMID: 31197228 PMCID: PMC8076026 DOI: 10.1038/s41391-019-0153-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/05/2019] [Accepted: 04/09/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Clinical and preclinical studies have revealed that alterations in DNA damage response (DDR) pathways may play an important role in prostate cancer (PCa) etiology and progression. These alterations can influence PCa responses to radiotherapy and anti-androgen treatment. The identification of DNA repair gene aberrations in PCa has driven the interest for further evaluation whether these genetic changes may serve as biomarkers for patient stratification. METHODS In this review, we summarize the current knowledge on DDR alterations in PCa, their potential impact on clinical interventions and prospects for improved management of PCa. We particularly focus on the influence of DDR gene mutations on PCa initiation and progression and describe the underlying mechanisms. RESULTS AND CONCLUSIONS A better understanding of these mechanisms, will contribute to better disease management as treatment strategies can be chosen based on the specific disease properties, since a growing number of treatments are targeting DDR pathway alterations (such as Poly(ADP-ribose) polymerase inhibitors). Furthermore, the recently discovered crosstalk between the DDR and androgen receptor signaling opens a new array of possible strategies to optimize treatment combinations. We discuss how these recent and ongoing studies will help to improve diagnostic, prognostic and therapeutic approaches for PCa management.
Collapse
Affiliation(s)
- Wenhao Zhang
- grid.5645.2000000040459992XDepartment of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Dik C. van Gent
- grid.5645.2000000040459992XDepartment of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands ,grid.5645.2000000040459992XOncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Luca Incrocci
- grid.508717.c0000 0004 0637 3764Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wytske M. van Weerden
- grid.5645.2000000040459992XDepartment of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Julie Nonnekens
- grid.5645.2000000040459992XDepartment of Molecular Genetics, Erasmus MC, Rotterdam, The Netherlands ,grid.5645.2000000040459992XDepartment of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Chakraborty G, Armenia J, Mazzu YZ, Nandakumar S, Stopsack KH, Atiq MO, Komura K, Jehane L, Hirani R, Chadalavada K, Yoshikawa Y, Khan NA, Chen Y, Abida W, Mucci LA, Lee GSM, Nanjangud GJ, Kantoff PW. Significance of BRCA2 and RB1 Co-loss in Aggressive Prostate Cancer Progression. Clin Cancer Res 2019; 26:2047-2064. [PMID: 31796516 DOI: 10.1158/1078-0432.ccr-19-1570] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Previous sequencing studies revealed that alterations of genes associated with DNA damage response (DDR) are enriched in men with metastatic castration-resistant prostate cancer (mCRPC). BRCA2, a DDR and cancer susceptibility gene, is frequently deleted (homozygous and heterozygous) in men with aggressive prostate cancer. Here we show that patients with prostate cancer who have lost a copy of BRCA2 frequently lose a copy of tumor suppressor gene RB1; importantly, for the first time, we demonstrate that co-loss of both genes in early prostate cancer is sufficient to induce a distinct biology that is likely associated with worse prognosis. EXPERIMENTAL DESIGN We prospectively investigated underlying molecular mechanisms and genomic consequences of co-loss of BRCA2 and RB1 in prostate cancer. We used CRISPR-Cas9 and RNAi-based methods to eliminate these two genes in prostate cancer cell lines and subjected them to in vitro studies and transcriptomic analyses. We developed a 3-color FISH assay to detect genomic deletions of BRCA2 and RB1 in prostate cancer cells and patient-derived mCRPC organoids. RESULTS In human prostate cancer cell lines (LNCaP and LAPC4), loss of BRCA2 leads to the castration-resistant phenotype. Co-loss of BRCA2-RB1 in human prostate cancer cells induces an epithelial-to-mesenchymal transition, which is associated with invasiveness and a more aggressive disease phenotype. Importantly, PARP inhibitors attenuate cell growth in human mCRPC-derived organoids and human CRPC cells harboring single-copy loss of both genes. CONCLUSIONS Our findings suggest that early identification of this aggressive form of prostate cancer offers potential for improved outcomes with early introduction of PARP inhibitor-based therapy.See related commentary by Mandigo and Knudsen, p. 1784.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua Armenia
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying Z Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mohammad O Atiq
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kazumasa Komura
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Urology, Osaka Medical College, Osaka, Japan
| | - Lina Jehane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rahim Hirani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kalyani Chadalavada
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuki Yoshikawa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nabeela A Khan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gwo-Shu Mary Lee
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gouri J Nanjangud
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
9
|
Laudato S, Aparicio A, Giancotti FG. Clonal Evolution and Epithelial Plasticity in the Emergence of AR-Independent Prostate Carcinoma. Trends Cancer 2019; 5:440-455. [PMID: 31311658 DOI: 10.1016/j.trecan.2019.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
In spite of an initial clinical response to androgen deprivation therapy (ADT), the majority of prostate cancer patients eventually develop castration-resistant prostate cancer (CRPC). Recent studies have highlighted the role of epithelial plasticity, including transdifferentiation and epithelial-to-mesenchymal transition (EMT), in the development of AR pathway-negative CRPC, a form of the disease that has increased in incidence after the introduction of potent AR inhibitors. In this review, we will discuss the switches between different cell fates that occur in response to AR blockade or acquisition of specific oncogenic mutations, such as those in TP53 and RB1, during the evolution to CRPC. We highlight the urgent need to dissect the mechanistic underpinnings of these transitions and identify novel vulnerabilities that can be targeted therapeutically.
Collapse
Affiliation(s)
- Sara Laudato
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. )
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Gorodetska I, Kozeretska I, Dubrovska A. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J Cancer 2019; 10:2109-2127. [PMID: 31205572 PMCID: PMC6548160 DOI: 10.7150/jca.30410] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Carcinogenesis is a multistep process, and tumors frequently harbor multiple mutations regulating genome integrity, cell division and death. The integrity of cellular genome is closely controlled by the mechanisms of DNA damage signaling and DNA repair. The association of breast cancer susceptibility genes BRCA1 and BRCA2 with breast and ovarian cancer development was first demonstrated over 20 years ago. Since then the germline mutations within these genes were linked to genomic instability and increased risk of many other cancer types. Genomic instability is an engine of the oncogenic transformation of non-tumorigenic cells into tumor-initiating cells and further tumor evolution. In this review we discuss the biological functions of BRCA1 and BRCA2 genes and the role of BRCA mutations in tumor initiation, regulation of cancer stemness, therapy resistance and tumor progression.
Collapse
Affiliation(s)
- Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Iryna Kozeretska
- Department of General and Medical Genetics, ESC "The Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Taylor RA, Fraser M, Rebello RJ, Boutros PC, Murphy DG, Bristow RG, Risbridger GP. The influence of BRCA2 mutation on localized prostate cancer. Nat Rev Urol 2019; 16:281-290. [DOI: 10.1038/s41585-019-0164-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Arriaga JM, Abate-Shen C. Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a030528. [PMID: 29661807 DOI: 10.1101/cshperspect.a030528] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent genomic sequencing analyses have unveiled the spectrum of genomic alterations that occur in primary and advanced prostate cancer, raising the question of whether the corresponding genes are functionally relevant for prostate tumorigenesis, and whether such functions are associated with particular disease stages. In this review, we describe genetically engineered mouse models (GEMMs) of prostate cancer, focusing on those that model genomic alterations known to occur in human prostate cancer. We consider whether the phenotypes of GEMMs based on gain or loss of function of the relevant genes provide reliable counterparts to study the predicted consequences of the corresponding genomic alterations as occur in human prostate cancer, and we discuss exceptions in which the GEMMs do not fully emulate the expected phenotypes. Last, we highlight future directions for the generation of new GEMMs of prostate cancer and consider how we can use GEMMs most effectively to decipher the biological and molecular mechanisms of disease progression, as well as to tackle clinically relevant questions.
Collapse
Affiliation(s)
- Juan M Arriaga
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
13
|
Conteduca V, Sigouros M, Sboner A, Pritchard CC, Beltran H. BRCA2-Associated Prostate Cancer in a Patient With Spinal and Bulbar Muscular Atrophy. JCO Precis Oncol 2018; 2. [DOI: 10.1200/po.18.00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Vincenza Conteduca
- Vincenza Conteduca, Michael Sigouros, Andrea Sboner, and Himisha Beltran, Weill Cornell Medicine; Andrea Sboner and Himisha Beltran, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY; Vincenza Conteduca, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy; and Colin C. Pritchard, University of Washington, Seattle, WA
| | - Michael Sigouros
- Vincenza Conteduca, Michael Sigouros, Andrea Sboner, and Himisha Beltran, Weill Cornell Medicine; Andrea Sboner and Himisha Beltran, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY; Vincenza Conteduca, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy; and Colin C. Pritchard, University of Washington, Seattle, WA
| | - Andrea Sboner
- Vincenza Conteduca, Michael Sigouros, Andrea Sboner, and Himisha Beltran, Weill Cornell Medicine; Andrea Sboner and Himisha Beltran, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY; Vincenza Conteduca, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy; and Colin C. Pritchard, University of Washington, Seattle, WA
| | - Colin C. Pritchard
- Vincenza Conteduca, Michael Sigouros, Andrea Sboner, and Himisha Beltran, Weill Cornell Medicine; Andrea Sboner and Himisha Beltran, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY; Vincenza Conteduca, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy; and Colin C. Pritchard, University of Washington, Seattle, WA
| | - Himisha Beltran
- Vincenza Conteduca, Michael Sigouros, Andrea Sboner, and Himisha Beltran, Weill Cornell Medicine; Andrea Sboner and Himisha Beltran, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY; Vincenza Conteduca, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Meldola, Italy; and Colin C. Pritchard, University of Washington, Seattle, WA
| |
Collapse
|
14
|
Shenoy TR, Boysen G, Wang MY, Xu QZ, Guo W, Koh FM, Wang C, Zhang LZ, Wang Y, Gil V, Aziz S, Christova R, Rodrigues DN, Crespo M, Rescigno P, Tunariu N, Riisnaes R, Zafeiriou Z, Flohr P, Yuan W, Knight E, Swain A, Ramalho-Santos M, Xu DY, de Bono J, Wu H. CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair. Ann Oncol 2018; 28:1495-1507. [PMID: 28383660 DOI: 10.1093/annonc/mdx165] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Indexed: 01/08/2023] Open
Abstract
Background Deletion of the chromatin remodeler chromodomain helicase DNA-binding protein 1 (CHD1) is a common genomic alteration found in human prostate cancers (PCas). CHD1 loss represents a distinct PCa subtype characterized by SPOP mutation and higher genomic instability. However, the role of CHD1 in PCa development in vivo and its clinical utility remain unclear. Patients and methods To study the role of CHD1 in PCa development and its loss in clinical management, we generated a genetically engineered mouse model with prostate-specific deletion of murine Chd1 as well as isogenic CHD1 wild-type and homozygous deleted human benign and PCa lines. We also developed patient-derived organoid cultures and screened patients with metastatic PCa for CHD1 loss. Results We demonstrate that CHD1 loss sensitizes cells to DNA damage and causes a synthetic lethal response to DNA damaging therapy in vitro, in vivo, ex vivo, in patient-derived organoid cultures and in a patient with metastatic PCa. Mechanistically, CHD1 regulates 53BP1 stability and CHD1 loss leads to decreased error-free homologous recombination (HR) repair, which is compensated by increased error-prone non-homologous end joining (NHEJ) repair for DNA double-strand break (DSB) repair. Conclusions Our study provides the first in vivo and in patient evidence supporting the role of CHD1 in DSB repair and in response to DNA damaging therapy. We uncover mechanistic insights that CHD1 modulates the choice between HR and NHEJ DSB repair and suggest that CHD1 loss may contribute to the genomic instability seen in this subset of PCas.
Collapse
Affiliation(s)
- T R Shenoy
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, USA
| | - G Boysen
- The Institute of Cancer Research, London, UK.,Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - M Y Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Q Z Xu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - W Guo
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - F M Koh
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - C Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, USA
| | - L Z Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Y Wang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, USA
| | - V Gil
- The Institute of Cancer Research, London, UK
| | - S Aziz
- The Institute of Cancer Research, London, UK
| | - R Christova
- The Institute of Cancer Research, London, UK
| | - D N Rodrigues
- The Institute of Cancer Research, London, UK.,Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - M Crespo
- The Institute of Cancer Research, London, UK.,Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - P Rescigno
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - N Tunariu
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - R Riisnaes
- The Institute of Cancer Research, London, UK.,Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Z Zafeiriou
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - P Flohr
- The Institute of Cancer Research, London, UK.,Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - W Yuan
- The Institute of Cancer Research, London, UK
| | - E Knight
- The Institute of Cancer Research, London, UK
| | - A Swain
- The Institute of Cancer Research, London, UK
| | - M Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - D Y Xu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - J de Bono
- The Institute of Cancer Research, London, UK.,Prostate Cancer Targeted Therapy Group and Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - H Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, USA.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
15
|
Lee S, Kim K, Ho JN, Jin H, Byun SS, Lee E. Analysis of resistance-associated gene expression in docetaxel-resistant prostate cancer cells. Oncol Lett 2017; 14:3011-3018. [PMID: 28928839 DOI: 10.3892/ol.2017.6541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/25/2017] [Indexed: 11/06/2022] Open
Abstract
Docetaxel-based chemotherapy is the standard treatment for metastatic castration-resistant prostate cancer (CRPC). However, a number of patients with metastatic CRPC are refractory to docetaxel or develop docetaxel resistance. The underlying molecular mechanisms of docetaxel resistance remain unclear, which is a significant burden to the management of metastatic prostate cancer. In the present study, the differential gene expression between docetaxel-sensitive (PC3) and docetaxel-resistant (PC3DR2) prostate cancer cells was identified using DNA microarrays, western blot analysis and reverse transcription-quantitative polymerase chain reaction. Of the genes implicated in cancer-associated pathways, insulin-like growth factor 1 receptor, DBF4 homolog, sterile α motif and leucine zipper-containing kinase AZK, Patched 1, serpin peptidase inhibitor, clade E, member 1 and breast cancer 2 (BRCA2) were >3-fold upregulated in PC3DR2 cells compared with PC3 cells. BRCA2 knockdown with small interfering RNA decreased the docetaxel resistance of PC3DR2 cells. These results suggest that BRCA2 serves an important role in the docetaxel resistance of prostate cancer cells. In addition, BRCA2 modulation may be a strategy to partially reverse docetaxel resistance in prostate cancer.
Collapse
Affiliation(s)
- Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Kwangtaek Kim
- Department of Urology, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Jin-Nyoung Ho
- Department of Urology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Hyunjin Jin
- Department of Urology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Eunsik Lee
- Department of Urology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| |
Collapse
|
16
|
Mouse Models in Prostate Cancer Translational Research: From Xenograft to PDX. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9750795. [PMID: 27294148 PMCID: PMC4887629 DOI: 10.1155/2016/9750795] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/21/2016] [Indexed: 12/20/2022]
Abstract
Despite the advancement of clinical and preclinical research on PCa, which resulted in the last five years in a decrement of disease incidence by 3-4%, it remains the most frequent cancer in men and the second for mortality rate. Based on this evidence we present a brief dissertation on numerous preclinical models, comparing their advantages and disadvantages; among this we report the PDX mouse models that show greater fidelity to the disease, in terms of histopathologic features of implanted tumor, gene and miRNA expression, and metastatic pattern, well describing all tumor progression stages; this characteristic encourages the translation of preclinical results. These models become particularly useful in meeting the need of new treatments identification that eradicate PCa bone metastases growing, clarifying pathway of angiogenesis, identifying castration-resistant stem-like cells, and studying the antiandrogen therapies. Also of considerable interest are the studies of 3D cell cultures derived from PDX, which have the ability to maintain PDX cell viability with continued native androgen receptor expression, also showing a differential sensitivity to drugs. 3D PDX PCa may represent a diagnostic platform for the rapid assessment of drugs and push personalized medicine. Today the development of preclinical models in vitro and in vivo is necessary in order to obtain increasingly reliable answers before reaching phase III of the drug discovery.
Collapse
|
17
|
Hayakawa Y, Kawada M, Nishikawa H, Ochiya T, Saya H, Seimiya H, Yao R, Hayashi M, Kai C, Matsuda A, Naoe T, Ohtsu A, Okazaki T, Saji H, Sata M, Sugimura H, Sugiyama Y, Toi M, Irimura T. Report on the use of non-clinical studies in the regulatory evaluation of oncology drugs. Cancer Sci 2016; 107:189-202. [PMID: 26919617 PMCID: PMC4768389 DOI: 10.1111/cas.12857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023] Open
Abstract
Non-clinical studies are necessary at each stage of the development of oncology drugs. Many experimental cancer models have been developed to investigate carcinogenesis, cancer progression, metastasis, and other aspects in cancer biology and these models turned out to be useful in the efficacy evaluation and the safety prediction of oncology drugs. While the diversity and the degree of engagement in genetic changes in the initiation of cancer cell growth and progression are widely accepted, it has become increasingly clear that the roles of host cells, tissue microenvironment, and the immune system also play important roles in cancer. Therefore, the methods used to develop oncology drugs should continuously be revised based on the advances in our understanding of cancer. In this review, we extensively summarize the effective use of those models, their advantages and disadvantages, ranges to be evaluated and limitations of the models currently used for the development and for the evaluation of oncology drugs.
Collapse
Affiliation(s)
- Yoshihiro Hayakawa
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Pathogenic BiochemistryDepartment of BioscienceInstitute of Natural MedicineUniversity of ToyamaToyamaJapan
| | - Manabu Kawada
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Institute of Microbial ChemistryMicrobial Chemistry Research FoundationNumazu‐shiJapan
| | - Hiroyoshi Nishikawa
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Cancer ImmunologyExploratory Oncology Research and Clinical Trial CenterNational Cancer CenterChibaJapan
| | - Takahiro Ochiya
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
| | - Hideyuki Saya
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Gene RegulationInstitute for Advanced Medical ResearchSchool of MedicineKeio UniversityTokyoJapan
| | - Hiroyuki Seimiya
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Molecular BiotherapyCancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Ryoji Yao
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Cell BiologyCancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| | - Masahiro Hayashi
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Department of PharmacyToranomon HospitalTokyoJapan
| | - Chieko Kai
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Laboratory Animal Research CenterInstitute of Medical ScienceThe University of TokyoTokyoJapan
| | - Akira Matsuda
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Department of Medicinal ChemistryFaculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Tomoki Naoe
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- National Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Atsushi Ohtsu
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterChibaJapan
| | - Taku Okazaki
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Division of Immune RegulationInstitute for Genome ResearchTokushima UniversityTokushimaJapan
| | - Hideo Saji
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Department of Patho‐Functional Bioanalysis, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Masataka Sata
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Department of Cardiovascular MedicineInstitute of Biomedical SciencesTokushima University Graduate SchoolTokushimaJapan
| | - Haruhiko Sugimura
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Department of Tumor PathologyHamamatsu University School of MedicineShizuokaJapan
| | - Yuichi Sugiyama
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Sugiyama LaboratoryRIKEN Innovation CenterRIKEN Cluster for Industry PartnershipsKanagawaJapan
| | - Masakazu Toi
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Department of Breast SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Tatsuro Irimura
- Subcommittee on Non‐clinical StudiesThe Science Board to the Pharmaceuticals and Medical Devices AgencyTokyoJapan
- Juntendo University School of MedicineTokyoJapan
| |
Collapse
|
18
|
Chandramouly G, McDevitt S, Sullivan K, Kent T, Luz A, Glickman JF, Andrake M, Skorski T, Pomerantz RT. Small-Molecule Disruption of RAD52 Rings as a Mechanism for Precision Medicine in BRCA-Deficient Cancers. ACTA ACUST UNITED AC 2015; 22:1491-1504. [PMID: 26548611 DOI: 10.1016/j.chembiol.2015.10.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/08/2015] [Accepted: 10/04/2015] [Indexed: 11/27/2022]
Abstract
Suppression of RAD52 causes synthetic lethality in BRCA-deficient cells. Yet pharmacological inhibition of RAD52, which binds single-strand DNA (ssDNA) and lacks enzymatic activity, has not been demonstrated. Here, we identify the small molecule 6-hydroxy-DL-dopa (6-OH-dopa) as a major allosteric inhibitor of the RAD52 ssDNA binding domain. For example, we find that multiple small molecules bind to and completely transform RAD52 undecamer rings into dimers, which abolishes the ssDNA binding channel observed in crystal structures. 6-OH-Dopa also disrupts RAD52 heptamer and undecamer ring superstructures, and suppresses RAD52 recruitment and recombination activity in cells with negligible effects on other double-strand break repair pathways. Importantly, we show that 6-OH-dopa selectively inhibits the proliferation of BRCA-deficient cancer cells, including those obtained from leukemia patients. Taken together, these data demonstrate small-molecule disruption of RAD52 rings as a promising mechanism for precision medicine in BRCA-deficient cancers.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Shane McDevitt
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Katherine Sullivan
- Department of Microbiology and Immunology, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Tatiana Kent
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Antonio Luz
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - J Fraser Glickman
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Mark Andrake
- Institute for Cancer Research, Fox Chase Cancer Center, Temple Health, Philadelphia, PA 19111, USA
| | - Tomasz Skorski
- Department of Microbiology and Immunology, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Richard T Pomerantz
- Department of Medical Genetics and Molecular Biochemistry, Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
19
|
Sun X, Xing C, Fu X, Li J, Zhang B, Frierson HF, Dong JT. Additive Effect of Zfhx3/Atbf1 and Pten Deletion on Mouse Prostatic Tumorigenesis. J Genet Genomics 2015; 42:373-82. [PMID: 26233892 DOI: 10.1016/j.jgg.2015.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 02/09/2023]
Abstract
The phosphatase and tensin homolog (PTEN) and the zinc finger homeobox 3 (ZFHX3)/AT-motif binding factor 1 (ATBF1) genes have been established as tumor suppressor genes in prostate cancer by their frequent deletions and mutations in human prostate cancer and by the formation of mouse prostatic intraepithelial neoplasia (mPIN) or tumor by their deletions in mouse prostates. However, whether ZFHX3/ATBF1 deletion together with PTEN deletion facilitates prostatic tumorigenesis is unknown. In this study, we simultaneously deleted both genes in mouse prostatic epithelia and performed histological and molecular analyses. While deletion of one Pten allele alone caused low-grade (LG) mPIN as previously reported, concurrent deletion of Zfhx3/Atbf1 promoted the progression to high-grade (HG) mPIN or early carcinoma. Zfhx3/Atbf1 and Pten deletions together increased cell proliferation, disrupted the smooth muscle layer between epithelium and stroma, and increased the number of apoptotic cells. Deletion of both genes also accelerated the activation of Akt and Erk1/2 oncoproteins. These results suggest an additive effect of ZFHX3/ATBF1 and PTEN deletions on the development and progression of prostate neoplasia.
Collapse
Affiliation(s)
- Xiaodong Sun
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta 30322, USA
| | - Changsheng Xing
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta 30322, USA
| | - Xiaoying Fu
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta 30322, USA; Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jie Li
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta 30322, USA
| | - Baotong Zhang
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta 30322, USA
| | - Henry F Frierson
- Department of Pathology, University of Virginia Health System, Charlottesville 22908, USA
| | - Jin-Tang Dong
- Winship Cancer Institute, Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta 30322, USA.
| |
Collapse
|
20
|
Abstract
INTRODUCTION The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials. AREAS COVERED The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field. EXPERT OPINION With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.
Collapse
Affiliation(s)
- Kenneth C Valkenburg
- The Johns Hopkins University, The James Buchanan Brady Urological Institute, Department of Urology , 600 North Wolfe Street, Baltimore, MD 21287 , USA
| | | |
Collapse
|
21
|
Thomsen MK, Bakiri L, Hasenfuss SC, Wu H, Morente M, Wagner EF. Loss of JUNB/AP-1 promotes invasive prostate cancer. Cell Death Differ 2014; 22:574-82. [PMID: 25526087 DOI: 10.1038/cdd.2014.213] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is a frequent cause of male death in the Western world. Relatively few genetic alterations have been identified, likely owing to disease heterogeneity. Here, we show that the transcription factor JUNB/AP-1 limits prostate cancer progression. JUNB expression is increased in low-grade prostate cancer compared with normal human prostate, but downregulated in high-grade samples and further decreased in all metastatic samples. To model the hypothesis that this downregulation is functionally significant, we genetically inactivated Junb in the prostate epithelium of mice. When combined with Pten (phosphatase and tensin homologue) loss, double-mutant mice were prone to invasive cancer development. Importantly, invasive tumours also developed when Junb and Pten were inactivated in a small cell population of the adult anterior prostate by topical Cre recombinase delivery. The resulting tumours displayed strong histological similarity with human prostate cancer. Loss of JunB expression led to increased proliferation and decreased senescence, likely owing to decreased p16(Ink4a) and p21(CIP1) in epithelial cells. Furthermore, the tumour stroma was altered with increased osteopontin and S100 calcium-binding protein A8/9 expression, which correlated with poor prognoses in patients. These data demonstrate that JUNB/AP-1 cooperates with PTEN signalling as barriers to invasive prostate cancer, whose concomitant genetic or epigenetic suppression induce malignant progression.
Collapse
Affiliation(s)
- M K Thomsen
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | - L Bakiri
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | - S C Hasenfuss
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | - H Wu
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| | - M Morente
- Biobank, National Cancer Research Centre (CNIO), Madrid, Spain
| | - E F Wagner
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
22
|
Sun X, Fu X, Li J, Xing C, Frierson HF, Wu H, Ding X, Ju T, Cummings RD, Dong JT. Deletion of atbf1/zfhx3 in mouse prostate causes neoplastic lesions, likely by attenuation of membrane and secretory proteins and multiple signaling pathways. Neoplasia 2014; 16:377-89. [PMID: 24934715 PMCID: PMC4198693 DOI: 10.1016/j.neo.2014.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 01/14/2023] Open
Abstract
The ATBF1/ZFHX3 gene at 16q22 is the second most frequently mutated gene in human prostate cancer and has reduced expression or mislocalization in several types of human tumors. Nonetheless, the hypothesis that ATBF1 has a tumor suppressor function in prostate cancer has not been tested. In this study, we examined the role of ATBF1 in prostatic carcinogenesis by specifically deleting Atbf1 in mouse prostatic epithelial cells. We also examined the effect of Atbf1 deletion on gene expression and signaling pathways in mouse prostates. Histopathologic analyses showed that Atbf1 deficiency caused hyperplasia and mouse prostatic intraepithelial neoplasia (mPIN) primarily in the dorsal prostate but also in other lobes. Hemizygous deletion of Atbf1 also increased the development of hyperplasia and mPIN, indicating a haploinsufficiency of Atbf1. The mPIN lesions expressed luminal cell markers and harbored molecular changes similar to those in human PIN and prostate cancer, including weaker expression of basal cell marker cytokeratin 5 (Ck5), cell adhesion protein E-cadherin, and the smooth muscle layer marker Sma; elevated expression of the oncoproteins phospho-Erk1/2, phospho-Akt and Muc1; and aberrant protein glycosylation. Gene expression profiling revealed a large number of genes that were dysregulated by Atbf1 deletion, particularly those that encode for secretory and cell membrane proteins. The four signaling networks that were most affected by Atbf1 deletion included those centered on Erk1/2 and IGF1, Akt and FSH, NF-κB and progesterone and β-estradiol. These findings provide in vivo evidence that ATBF1 is a tumor suppressor in the prostate, suggest that loss of Atbf1 contributes to tumorigenesis by dysregulating membrane and secretory proteins and multiple signaling pathways, and provide a new animal model for prostate cancer.
Collapse
Affiliation(s)
- Xiaodong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322; Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jie Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322
| | - Changsheng Xing
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322
| | - Henry F Frierson
- Department of Pathology, University of Virginia Health System, Charlottesville, VA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322
| | - Xiaokun Ding
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | | | - Jin-Tang Dong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA 30322.
| |
Collapse
|
23
|
Vourganti S, Donaldson J, Johnson L, Turkbey B, Bratslavsky G, Kotula L. Defining the radiobiology of prostate cancer progression: An important question in translational prostate cancer research. Exp Biol Med (Maywood) 2014; 239:805-812. [PMID: 24879423 DOI: 10.1177/1535370214536669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is one of the most common malignancies affecting men worldwide. High mortality rates from advanced and metastatic prostate cancer in the United States are contrasted by a relatively indolent course in the majority of cases. This gives hope for finding methods that could direct personalized diagnostic, preventative, and treatment approaches to patients with prostate cancer. Recent advances in multiparametric magnetic resonance imaging (MP-MRI) offer a noninvasive diagnostic intervention which allows correlation of prostate tumor image characteristics with underlying biologic evidence of tumor progression. The power of MP-MRI includes examination of both local invasion and nodal disease and might overcome the challenges of analyzing the multifocal nature of prostate cancer. Future directions include a careful analysis of the genomic signature of individual prostatic lesions utilizing image-guided biopsies. This review examines the diagnostic potential of MRI in prostate cancer.
Collapse
Affiliation(s)
- Srinivas Vourganti
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeffrey Donaldson
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Linda Johnson
- Molecular Imaging Program, Urologic Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baris Turkbey
- Molecular Imaging Program, Urologic Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
24
|
Abstract
Transgene expression from short promoters in transgenic animals can lead to unwanted transgene expression patterns, often as a byproduct of random integration of the expression cassette into the host genome. Here I demonstrate that the often used PB-Cre4 line (also referred to as “Probasin-Cre”), although expressing exclusively in the male prostate epithelium when transmitted through male mice, can lead to recombination of loxP-flanked alleles in a large variety of tissues when transmitted through female mice. This aberrant Cre activity due to Cre expression in the oocytes leads to different outcomes for maternally or paternally transmitted loxP-flanked alleles: Maternally inherited loxP-flanked alleles undergo recombination very efficiently, making female PB-Cre4 mice an efficient monoallelic “Cre deleter line”. However, paternally inherited loxP-flanked alleles are inefficiently recombined by maternal PB-Cre4, giving rise to mosaic expression patterns in the offspring. This mosaic recombination is difficult to detect with standard genotyping approaches of many mouse lines and should therefore caution researchers using PB-Cre4 to use additional approaches to exclude the presence of recombined alleles. However, mosaic recombination should also be useful in transgenic “knockout” approaches for mosaic gene deletion experiments.
Collapse
Affiliation(s)
- Andreas Birbach
- Department of Vascular Biology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
25
|
Romero D, Kawano Y, Bengoa N, Walker MM, Maltry N, Niehrs C, Waxman J, Kypta R. Downregulation of Dickkopf-3 disrupts prostate acinar morphogenesis through TGF-β/Smad signaling. J Cell Sci 2013; 126:1858-67. [DOI: 10.1242/jcs.119388] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Loss of tissue organization is a hallmark of the early stages of cancer, and there is considerable interest in proteins that maintain normal tissue architecture. Prostate epithelial cells cultured in Matrigel form three-dimensional acini that mimic aspects of prostate gland development. The organization of these structures requires the tumor suppressor Dickkopf-3 (Dkk-3), a divergent member of the Dkk family of secreted Wnt signaling antagonists that is frequently downregulated in prostate cancer. To gain further insight into the function of Dkk-3 in the prostate, we compared the prostates of Dkk3 null mice with those of control littermates. We found increased proliferation of prostate epithelial cells in the mutant mice and changes in prostate tissue organization. Consistent with these observations, cell proliferation was elevated in acini formed by human prostate epithelial cells stably silenced for Dkk-3. Silencing of Dkk-3 increased TGF-β/Smad signaling and inhibitors of TGF-β/Smad signaling rescued the defective acinar phenotype caused by loss of Dkk-3. These findings suggest that Dkk-3 maintains the structural integrity of the prostate gland by limiting TGF-β/Smad signaling.
Collapse
|
26
|
Castro E, Eeles R. The role of BRCA1 and BRCA2 in prostate cancer. Asian J Androl 2012; 14:409-14. [PMID: 22522501 PMCID: PMC3720154 DOI: 10.1038/aja.2011.150] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/23/2012] [Indexed: 12/19/2022] Open
Abstract
One of the strongest risk factors for prostate cancer is a family history of the disease. Germline mutations in the breast cancer predisposition gene 2 (BRCA2) are the genetic events known to date that confer the highest risk of prostate cancer (8.6-fold in men ≤65 years). Although the role of BRCA2 and BRCA1 in prostate tumorigenesis remains unrevealed, deleterious mutations in both genes have been associated with more aggressive disease and poor clinical outcomes. The increasing incidence of prostate cancer worldwide supports the need for new methods to predict outcome and identify patients with potentially lethal forms of the disease. As we present here, BRCA germline mutations, mainly in the BRCA2 gene, are one of those predictive factors. We will also discuss the implications of these mutations in the management of prostate cancer and hypothesize on the potential for the development of strategies for sporadic cases with similar characteristics.
Collapse
Affiliation(s)
- Elena Castro
- Oncogenetics Team, The Institute of Cancer Research, Sutton, UK
| | | |
Collapse
|
27
|
Thorne H, Willems AJ, Niedermayr E, Hoh IMY, Li J, Clouston D, Mitchell G, Fox S, Hopper JL, Bolton D. Decreased prostate cancer-specific survival of men with BRCA2 mutations from multiple breast cancer families. Cancer Prev Res (Phila) 2011; 4:1002-10. [PMID: 21733824 DOI: 10.1158/1940-6207.capr-10-0397] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The role of a germ-line BRCA2 mutation in the development of prostate cancer is established, but the clinical presentation linked to outcome for this group of men has not been well described. A total of 148 men from 1,423 families were ascertained from the kConFab consortium. Each participant met the following criteria: (i) a verified case of prostate cancer; (ii) confirmed as either a carrier or noncarrier of a family-specific BRCA pathogenic mutation; (iii) comprehensive clinical and treatment data were available. Clinical data were linked to treatment received and overall survival was analyzed by Kaplan-Meier. Prostate cancer in men from breast cancer-prone families has a high risk of disease progression, irrespective of mutation status. BRCA2 mutation carriers have an increased risk of death and prostate cancer-related death [HR (95% CI) 4.5 (2.12-9.52), P = 8.9 × 10(-5)] by comparison with noncarriers. Serum PSA readings taken prior to diagnosis in 90% of all men, age adjusted, were above clinical significance. Following D'Amico risk stratification, 77.5% of BRCA2 mutation carriers and 58.7% of noncarriers had high-risk disease. BRCA2 mutation status was also an independent prognostic indicator of overall survival. Furthermore, there was a poor overall survival outcome for both the BRCA2 mutation carriers and noncarriers given curative-intent treatment. All men in breast cancer-prone families are at risk of developing aggressive prostate cancer. This information is significant and should be included in discussions with genetic counselors and medical professionals when discussing prostate cancer treatment options for men in these families, irrespective of mutation status.
Collapse
Affiliation(s)
- Heather Thorne
- kConFab, Research Department, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia, 3002.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Taneja P, Zhu S, Maglic D, Fry EA, Kendig RD, Inoue K. Transgenic and knockout mice models to reveal the functions of tumor suppressor genes. Clin Med Insights Oncol 2011; 5:235-57. [PMID: 21836819 PMCID: PMC3153120 DOI: 10.4137/cmo.s7516] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cancer is caused by multiple genetic alterations leading to uncontrolled cell proliferation through multiple pathways. Malignant cells arise from a variety of genetic factors, such as mutations in tumor suppressor genes (TSGs) that are involved in regulating the cell cycle, apoptosis, or cell differentiation, or maintenance of genomic integrity. Tumor suppressor mouse models are the most frequently used animal models in cancer research. The anti-tumorigenic functions of TSGs, and their role in development and differentiation, and inhibition of oncogenes are discussed. In this review, we summarize some of the important transgenic and knockout mouse models for TSGs, including Rb, p53, Ink4a/Arf, Brca1/2, and their related genes.
Collapse
Affiliation(s)
| | - Sinan Zhu
- The Departments of Pathology
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Dejan Maglic
- The Departments of Pathology
- Cancer Biology
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | - Kazushi Inoue
- The Departments of Pathology
- Cancer Biology
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
29
|
Mouse models of prostate cancer. Prostate Cancer 2011; 2011:895238. [PMID: 22111002 PMCID: PMC3221286 DOI: 10.1155/2011/895238] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/12/2010] [Accepted: 01/04/2011] [Indexed: 02/07/2023] Open
Abstract
The development and optimization of high-throughput screening methods has identified a multitude of genetic changes associated with human disease. The use of immunodeficient and genetically engineered mouse models that mimic the human disease has been crucial in validating the importance of these genetic pathways in prostate cancer. These models provide a platform for finding novel therapies to treat human patients afflicted with prostate cancer as well as those who have debilitating bone metastases. In this paper, we focus on the historical development and phenotypic descriptions of mouse models used to study prostate cancer. We also comment on how closely each model recapitulates human prostate cancer.
Collapse
|