1
|
Takeuchi S, Matsuda T, Tsujimoto M, Fukumoto T, Ono R, Nishigori C. Replication-related genes are upregulated in XP-A cells after UV-C irradiation. J Dermatol Sci 2022; 105:152-158. [DOI: 10.1016/j.jdermsci.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
|
2
|
Liu TH, Dong XL, Chen P, Zhang Q, Zhou XL, Lu C, Pan MH. Geminin is essential for DNA re-replication in the silk gland cells of silkworms. Exp Cell Res 2022; 410:112951. [PMID: 34843715 DOI: 10.1016/j.yexcr.2021.112951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022]
Abstract
Endoreplication, known as endocycles or endoreduplication, is a cell cycle variant in which the genomic DNA is re-replicated without mitosis leading to polyploidy. Endoreplication is essential for the development and functioning of the different organs in animals and plants. Deletion of Geminin, a DNA replication licensing inhibitor, causes DNA re-replication or damage. However, the role of Geminin in endoreplication is still unclear. Here, we studied the role of Geminin in the endoreplication of the silk gland cells of silkworms by constructing two transgenic silkworm strains, including BmGeminin1-overexpression and BmGeminin1-RNA interference. Interference of BmGeminin1 led to body weight gain, increased silk gland volume, increased DNA content, and enhanced DNA re-replication activity relative to wild-type Dazao. Meanwhile, overexpression of BmGeminin1 showed an opposite phenotype compared to the BmGem1-RNAi strain. Furthermore, RNA-sequencing of the transgenic strains was carried out to explore how BmGeminin1 regulates DNA re-replication. Our data demonstrated a vital role of Geminin in the regulation of endoreplication in the silk gland of silkworms.
Collapse
Affiliation(s)
- Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Department of Bioinformatics, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District of Chongqing, 400015, China
| | - Xiao-Long Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China
| | - Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China
| | - Xiao-Lin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China.
| |
Collapse
|
3
|
Almeida Machado Costa C, Wang XF, Ellsworth C, Deng WM. Polyploidy in development and tumor models in Drosophila. Semin Cancer Biol 2021; 81:106-118. [PMID: 34562587 DOI: 10.1016/j.semcancer.2021.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
Polyploidy, a cell status defined as more than two sets of genomic DNA, is a conserved strategy across species that can increase cell size and biosynthetic production, but the functional aspects of polyploidy are nuanced and vary across cell types. Throughout Drosophila developmental stages (embryo, larva, pupa and adult), polyploid cells are present in numerous organs and help orchestrate development while contributing to normal growth, well-being and homeostasis of the organism. Conversely, increasing evidence has shown that polyploid cells are prevalent in Drosophila tumors and play important roles in tumor growth and invasiveness. Here, we summarize the genes and pathways involved in polyploidy during normal and tumorigenic development, the mechanisms underlying polyploidization, and the functional aspects of polyploidy in development, homeostasis and tumorigenesis in the Drosophila model.
Collapse
Affiliation(s)
- Caique Almeida Machado Costa
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States.
| |
Collapse
|
4
|
Patmanidi AL, Champeris Tsaniras S, Karamitros D, Kyrousi C, Lygerou Z, Taraviras S. Concise Review: Geminin-A Tale of Two Tails: DNA Replication and Transcriptional/Epigenetic Regulation in Stem Cells. Stem Cells 2016; 35:299-310. [DOI: 10.1002/stem.2529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/18/2016] [Accepted: 10/01/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Dimitris Karamitros
- Department of Physiology; Medical School, University of Patras; Rio Patras Greece
| | - Christina Kyrousi
- Department of Physiology; Medical School, University of Patras; Rio Patras Greece
| | - Zoi Lygerou
- Department of Biology; Medical School, University of Patras; Rio Patras Greece
| | - Stavros Taraviras
- Department of Physiology; Medical School, University of Patras; Rio Patras Greece
| |
Collapse
|
5
|
Li Y, Armstrong RL, Duronio RJ, MacAlpine DM. Methylation of histone H4 lysine 20 by PR-Set7 ensures the integrity of late replicating sequence domains in Drosophila. Nucleic Acids Res 2016; 44:7204-18. [PMID: 27131378 PMCID: PMC5009726 DOI: 10.1093/nar/gkw333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/15/2016] [Indexed: 12/16/2022] Open
Abstract
The methylation state of lysine 20 on histone H4 (H4K20) has been linked to chromatin compaction, transcription, DNA repair and DNA replication. Monomethylation of H4K20 (H4K20me1) is mediated by the cell cycle-regulated histone methyltransferase PR-Set7. PR-Set7 depletion in mammalian cells results in defective S phase progression and the accumulation of DNA damage, which has been partially attributed to defects in origin selection and activation. However, these studies were limited to only a handful of mammalian origins, and it remains unclear how PR-Set7 and H4K20 methylation impact the replication program on a genomic scale. We employed genetic, cytological, and genomic approaches to better understand the role of PR-Set7 and H4K20 methylation in regulating DNA replication and genome stability in Drosophila cells. We find that deregulation of H4K20 methylation had no impact on origin activation throughout the genome. Instead, depletion of PR-Set7 and loss of H4K20me1 results in the accumulation of DNA damage and an ATR-dependent cell cycle arrest. Coincident with the ATR-dependent cell cycle arrest, we find increased DNA damage that is specifically limited to late replicating regions of the Drosophila genome, suggesting that PR-Set7-mediated monomethylation of H4K20 is critical for maintaining the genomic integrity of late replicating domains.
Collapse
Affiliation(s)
- Yulong Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA Departments of Biology and Genetics, Lineberger Comprehensive Cancer Center, and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
6
|
Huang YY, Kaneko KJ, Pan H, DePamphilis ML. Geminin is Essential to Prevent DNA Re-Replication-Dependent Apoptosis in Pluripotent Cells, but not in Differentiated Cells. Stem Cells 2015; 33:3239-53. [PMID: 26140583 DOI: 10.1002/stem.2092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/11/2015] [Indexed: 01/17/2023]
Abstract
Geminin is a dual-function protein unique to multicellular animals with roles in modulating gene expression and preventing DNA re-replication. Here, we show that geminin is essential at the beginning of mammalian development to prevent DNA re-replication in pluripotent cells, exemplified by embryonic stem cells, as they undergo self-renewal and differentiation. Embryonic stem cells, embryonic fibroblasts, and immortalized fibroblasts were characterized before and after geminin was depleted either by gene ablation or siRNA. Depletion of geminin under conditions that promote either self-renewal or differentiation rapidly induced DNA re-replication, followed by DNA damage, then a DNA damage response, and finally apoptosis. Once differentiation had occurred, geminin was no longer essential for viability, although it continued to contribute to preventing DNA re-replication induced DNA damage. No relationship was detected between expression of geminin and genes associated with either pluripotency or differentiation. Thus, the primary role of geminin at the beginning of mammalian development is to prevent DNA re-replication-dependent apoptosis, a role previously believed essential only in cancer cells. These results suggest that regulation of gene expression by geminin occurs only after pluripotent cells differentiate into cells in which geminin is not essential for viability.
Collapse
Affiliation(s)
- Yi-Yuan Huang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Kotaro J Kaneko
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Haiyan Pan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Melvin L DePamphilis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Sequeira-Mendes J, Gutierrez C. Links between genome replication and chromatin landscapes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:38-51. [PMID: 25847096 DOI: 10.1111/tpj.12847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 05/07/2023]
Abstract
Post-embryonic organogenesis in plants requires the continuous production of cells in the organ primordia, their expansion and a coordinated exit to differentiation. Genome replication is one of the most important processes that occur during the cell cycle, as the maintenance of genomic integrity is of primary relevance for development. As it is chromatin that must be duplicated, a strict coordination occurs between DNA replication, the deposition of new histones, and the introduction of histone modifications and variants. In turn, the chromatin landscape affects several stages during genome replication. Thus, chromatin accessibility is crucial for the initial stages and to specify the location of DNA replication origins with different chromatin signatures. The chromatin landscape also determines the timing of activation during the S phase. Genome replication must occur fully, but only once during each cell cycle. The re-replication avoidance mechanisms rely primarily on restricting the availability of certain replication factors; however, the presence of specific histone modifications are also revealed as contributing to the mechanisms that avoid re-replication, in particular for heterochromatin replication. We provide here an update of genome replication mostly focused on data from Arabidopsis, and the advances that genomic approaches are likely to provide in the coming years. The data available, both in plants and animals, point to the relevance of the chromatin landscape in genome replication, and require a critical evaluation of the existing views about the nature of replication origins, the mechanisms of origin specification and the relevance of epigenetic modifications for genome replication.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
8
|
Abstract
The modENCODE (Model Organism Encyclopedia of DNA Elements) Consortium aimed to map functional elements-including transcripts, chromatin marks, regulatory factor binding sites, and origins of DNA replication-in the model organisms Drosophila melanogaster and Caenorhabditis elegans. During its five-year span, the consortium conducted more than 2,000 genome-wide assays in developmentally staged animals, dissected tissues, and homogeneous cell lines. Analysis of these data sets provided foundational insights into genome, epigenome, and transcriptome structure and the evolutionary turnover of regulatory pathways. These studies facilitated a comparative analysis with similar data types produced by the ENCODE Consortium for human cells. Genome organization differs drastically in these distant species, and yet quantitative relationships among chromatin state, transcription, and cotranscriptional RNA processing are deeply conserved. Of the many biological discoveries of the modENCODE Consortium, we highlight insights that emerged from integrative studies. We focus on operational and scientific lessons that may aid future projects of similar scale or aims in other, emerging model systems.
Collapse
Affiliation(s)
- James B Brown
- Department of Statistics, University of California, Berkeley, California 94720;
| | | |
Collapse
|
9
|
Re-replication of a centromere induces chromosomal instability and aneuploidy. PLoS Genet 2015; 11:e1005039. [PMID: 25901968 PMCID: PMC4406714 DOI: 10.1371/journal.pgen.1005039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022] Open
Abstract
The faithful inheritance of chromosomes during cell division requires their precise replication and segregation. Numerous mechanisms ensure that each of these fundamental cell cycle events is performed with a high degree of fidelity. The fidelity of chromosomal replication is maintained in part by re-replication controls that ensure there are no more than two copies of every genomic segment to distribute to the two daughter cells. This control is enforced by inhibiting replication initiation proteins from reinitiating replication origins within a single cell cycle. Here we show in Saccharomyces cerevisiae that re-replication control is important for the fidelity of chromosome segregation. In particular, we demonstrate that transient re-replication of centromeric DNA due to disruption of re-replication control greatly induces aneuploidy of the re-replicated chromosome. Some of this aneuploidy arises from missegregation of both sister chromatids to one daughter cell. Aneuploidy can also arise from the generation of an extra sister chromatid via homologous recombination, suggesting that centromeric re-replication can trigger breakage and repair events that expand chromosome number without causing chromosomal rearrangements. Thus, we have identified a potential new non-mitotic source of aneuploidy that can arise from a defect in re-replication control. Given the emerging connections between the deregulation of replication initiation proteins and oncogenesis, this finding may be relevant to the aneuploidy that is prevalent in cancer. The stable inheritance of genetic information requires an elaborate mitotic machinery that acts on the centromeres of chromosomes to ensure their precise segregation. Errors in this segregation can lead to aneuploidy, an unbalanced chromosomal state in which some chromosomes have different copy number than others. Because aneuploidy is associated with developmental abnormalities and diseases such as cancer, there is considerable interest in understanding how these segregation errors arise. Much of this interest has focused on identifying defects in proteins that make up the mitotic machinery. Here, we show that defects in a completely separate process, the control of DNA replication initiation, can lead to chromosome segregation errors as a result of inappropriate re-replication of centromeres. Similar deregulation of replication initiation proteins has been observed in primary human tumors and shown to promote oncogenesis in mouse models. Together, these results raise the possibility that centromeric re-replication may be an additional source of aneuploidy in cancer. In combination with our previous work showing that re-replication is a potent inducer of gene amplification, these results also highlight the versatility of re-replication as a source of genomic instability.
Collapse
|
10
|
Mazurczyk M, Rybaczek D. Replication and re-replication: Different implications of the same mechanism. Biochimie 2014; 108:25-32. [PMID: 25446651 DOI: 10.1016/j.biochi.2014.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/27/2014] [Indexed: 11/16/2022]
Abstract
Replication is a process which provides two copies of genetic material to a mother cell that are essential for passing complete genetic information to daughter cells. Despite the extremely precise control of this process, regulation of replication can be impaired. This may trigger e.g. re-replication which leads to an increase in the total DNA content in a cell and, depending on the intensity, may result in gene amplification, genomic instability or apoptosis. Both replication and re-replication require pre-replication complex assembly, licensing, firing and initiation of DNA synthesis. Implications of each process in a cell are very different and all such possibilities are under intensive research because in both processes the same protein apparatus is used to carry out DNA synthesis. Therefore this article is meant to show the consequences of the same mechanism underlying two different processes.
Collapse
Affiliation(s)
- Michalina Mazurczyk
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Dorota Rybaczek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland.
| |
Collapse
|
11
|
The dual roles of geminin during trophoblast proliferation and differentiation. Dev Biol 2014; 387:49-63. [PMID: 24412371 DOI: 10.1016/j.ydbio.2013.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/11/2013] [Accepted: 12/22/2013] [Indexed: 11/21/2022]
Abstract
Geminin is a protein involved in both DNA replication and cell fate acquisition. Although it is essential for mammalian preimplantation development, its role remains unclear. In one study, ablation of the geminin gene (Gmnn) in mouse preimplantation embryos resulted in apoptosis, suggesting that geminin prevents DNA re-replication, whereas in another study it resulted in differentiation of blastomeres into trophoblast giant cells (TGCs), suggesting that geminin regulates trophoblast specification and differentiation. Other studies concluded that trophoblast differentiation into TGCs is regulated by fibroblast growth factor-4 (FGF4), and that geminin is required to maintain endocycles. Here we show that ablation of Gmnn in trophoblast stem cells (TSCs) proliferating in the presence of FGF4 closely mimics the events triggered by FGF4 deprivation: arrest of cell proliferation, formation of giant cells, excessive DNA replication in the absence of DNA damage and apoptosis, and changes in gene expression that include loss of Chk1 with up-regulation of p57 and p21. Moreover, FGF4 deprivation of TSCs reduces geminin to a basal level that is required for maintaining endocycles in TGCs. Thus, geminin acts both like a component of the FGF4 signal transduction pathway that governs trophoblast proliferation and differentiation, and geminin is required to maintain endocycles.
Collapse
|
12
|
Desvoyes B, Fernández-Marcos M, Sequeira-Mendes J, Otero S, Vergara Z, Gutierrez C. Looking at plant cell cycle from the chromatin window. FRONTIERS IN PLANT SCIENCE 2014; 5:369. [PMID: 25120553 PMCID: PMC4110626 DOI: 10.3389/fpls.2014.00369] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/11/2014] [Indexed: 05/03/2023]
Abstract
The cell cycle is defined by a series of complex events, finely coordinated through hormonal, developmental and environmental signals, which occur in a unidirectional manner and end up in producing two daughter cells. Accumulating evidence reveals that chromatin is not a static entity throughout the cell cycle. In fact, there are many changes that include nucleosome remodeling, histone modifications, deposition and exchange, among others. Interestingly, it is possible to correlate the occurrence of several of these chromatin-related events with specific processes necessary for cell cycle progression, e.g., licensing of DNA replication origins, the E2F-dependent transcriptional wave in G1, the activation of replication origins in S-phase, the G2-specific transcription of genes required for mitosis or the chromatin packaging occurring in mitosis. Therefore, an emerging view is that chromatin dynamics must be considered as an intrinsic part of cell cycle regulation. In this article, we review the main features of several key chromatin events that occur at defined times throughout the cell cycle and discuss whether they are actually controlling the transit through specific cell cycle stages.
Collapse
Affiliation(s)
| | | | | | | | | | - Crisanto Gutierrez
- *Correspondence: Crisanto Gutierrez, Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Nicolas Cabrera 1, Cantoblanco, Madrid 28049, Spain e-mail:
| |
Collapse
|
13
|
Black JC, Manning AL, Van Rechem C, Kim J, Ladd B, Cho J, Pineda CM, Murphy N, Daniels DL, Montagna C, Lewis PW, Glass K, Allis CD, Dyson NJ, Getz G, Whetstine JR. KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors. Cell 2013; 154:541-55. [PMID: 23871696 DOI: 10.1016/j.cell.2013.06.051] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/08/2013] [Accepted: 06/28/2013] [Indexed: 11/26/2022]
Abstract
Acquired chromosomal instability and copy number alterations are hallmarks of cancer. Enzymes capable of promoting site-specific copy number changes have yet to be identified. Here, we demonstrate that H3K9/36me3 lysine demethylase KDM4A/JMJD2A overexpression leads to localized copy gain of 1q12, 1q21, and Xq13.1 without global chromosome instability. KDM4A-amplified tumors have increased copy gains for these same regions. 1q12h copy gain occurs within a single cell cycle, requires S phase, and is not stable but is regenerated each cell division. Sites with increased copy number are rereplicated and have increased KDM4A, MCM, and DNA polymerase occupancy. Suv39h1/KMT1A or HP1γ overexpression suppresses the copy gain, whereas H3K9/K36 methylation interference promotes gain. Our results demonstrate that overexpression of a chromatin modifier results in site-specific copy gains. This begins to establish how copy number changes could originate during tumorigenesis and demonstrates that transient overexpression of specific chromatin modulators could promote these events.
Collapse
Affiliation(s)
- Joshua C Black
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Méchali M, Yoshida K, Coulombe P, Pasero P. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr Opin Genet Dev 2013; 23:124-31. [PMID: 23541525 DOI: 10.1016/j.gde.2013.02.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/28/2022]
Abstract
In the genome of eukaryotic cells, DNA synthesis is initiated at multiple sites called origins of DNA replication. Origins must fire only once per cell cycle and how this is achieved is now well understood. However, little is known about the mechanisms that determine when and where replication initiates in a given cell. A large body of evidence indicates that origins are not equal in terms of efficiency and timing of activation. Origin usage also changes concomitantly with the different cell differentiation programs. As DNA replication occurs in the context of chromatin, initiation could be influenced by multiple parameters, such as nucleosome positioning, histone modifications, and three-dimensional (3D) organization of the nucleus. This view is supported by recent genome-wide studies showing that DNA replication profiles are shaped by genetic and epigenetic processes that act both at the local and global levels to regulate origin function in eukaryotic cells.
Collapse
Affiliation(s)
- Marcel Méchali
- Institute of Human Genetics, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
15
|
Sanchez MDLP, Costas C, Sequeira-Mendes J, Gutierrez C. Regulating DNA replication in plants. Cold Spring Harb Perspect Biol 2012; 4:a010140. [PMID: 23209151 PMCID: PMC3504439 DOI: 10.1101/cshperspect.a010140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromosomal DNA replication in plants has requirements and constraints similar to those in other eukaryotes. However, some aspects are plant-specific. Studies of DNA replication control in plants, which have unique developmental strategies, can offer unparalleled opportunities of comparing regulatory processes with yeast and, particularly, metazoa to identify common trends and basic rules. In addition to the comparative molecular and biochemical studies, genomic studies in plants that started with Arabidopsis thaliana in the year 2000 have now expanded to several dozens of species. This, together with the applicability of genomic approaches and the availability of a large collection of mutants, underscores the enormous potential to study DNA replication control in a whole developing organism. Recent advances in this field with particular focus on the DNA replication proteins, the nature of replication origins and their epigenetic landscape, and the control of endoreplication will be reviewed.
Collapse
Affiliation(s)
- Maria de la Paz Sanchez
- Centro de Biologia Molecular "Severo Ochoa," CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Klotz-Noack K, McIntosh D, Schurch N, Pratt N, Blow JJ. Re-replication induced by geminin depletion occurs from G2 and is enhanced by checkpoint activation. J Cell Sci 2012; 125:2436-45. [PMID: 22366459 PMCID: PMC3481538 DOI: 10.1242/jcs.100883] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To prevent re-replication of DNA in a single cell cycle, the licensing of replication origins by Mcm2-7 is prevented during S and G2 phases. Animal cells achieve this by cell-cycle-regulated proteolysis of the essential licensing factor Cdt1 and inhibition of Cdt1 by geminin. Here we investigate the consequences of ablating geminin in synchronised human U2OS cells. Following geminin loss, cells complete an apparently normal S phase, but a proportion arrest at the G2-M boundary. When Cdt1 accumulates in these cells, DNA re-replicates, suggesting that the key role of geminin is to prevent re-licensing in G2. If cell cycle checkpoints are inhibited in cells lacking geminin, cells progress through mitosis and less re-replication occurs. Checkpoint kinases thereby amplify re-replication into an all-or-nothing response by delaying geminin-depleted cells in G2. Deep DNA sequencing revealed no preferential re-replication of specific genomic regions after geminin depletion. This is consistent with the observation that cells in G2 have lost their replication timing information. By contrast, when Cdt1 is overexpressed or is stabilised by the neddylation inhibitor MLN4924, re-replication can occur throughout S phase.
Collapse
Affiliation(s)
- Kathleen Klotz-Noack
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Debbie McIntosh
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicholas Schurch
- Data Analysis Group, College of Life Sciences, University of Dundee DD1 5EH, UK
| | - Norman Pratt
- Department of Human Genetics, Ninewells Hospital, Dundee DD1 9SY, UK
| | - J. Julian Blow
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
17
|
Abstract
The duration of S phase in early embryos is often short, and then increases as development proceeds because of the appearance of late-replicating regions of the genome. In the April 1, 2012, issue of Genes & Development, Farrell and colleagues (pp. 714-725) demonstrate that the down-regulation of cyclin-dependent kinase 1 (Cdk1) activity triggers the onset of late-replicating DNA and an increase in S-phase length in Drosophila embryos, revealing an unexpected role for Cdk1 in replication control during development.
Collapse
Affiliation(s)
- Robert J Duronio
- Department of Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Sallé J, Campbell SD, Gho M, Audibert A. CycA is involved in the control of endoreplication dynamics in the Drosophila bristle lineage. Development 2012; 139:547-57. [PMID: 22223681 DOI: 10.1242/dev.069823] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endocycles, which are characterised by repeated rounds of DNA replication without intervening mitosis, are involved in developmental processes associated with an increase in metabolic cell activity and are part of terminal differentiation. Endocycles are currently viewed as a restriction of the canonical cell cycle. As such, mitotic cyclins have been omitted from the endocycle mechanism and their role in this process has not been specifically analysed. In order to study such a role, we focused on CycA, which has been described to function exclusively during mitosis in Drosophila. Using developing mechanosensory organs as model system and PCNA::GFP to follow endocycle dynamics, we show that (1) CycA proteins accumulate during the last period of endoreplication, (2) both CycA loss and gain of function induce changes in endoreplication dynamics and reduce the number of endocycles, and (3) heterochromatin localisation of ORC2, a member of the Pre-RC complex, depends on CycA. These results show for the first time that CycA is involved in endocycle dynamics in Drosophila. As such, CycA controls the final ploidy that cells reached during terminal differentiation. Furthermore, our data suggest that the control of endocycles by CycA involves the subnuclear relocalisation of pre-RC complex members. Our work therefore sheds new light on the mechanism underlying endocycles, implicating a process that involves remodelling of the entire cell cycle network rather than simply a restriction of the canonical cell cycle.
Collapse
Affiliation(s)
- Jérémy Sallé
- Université Pierre et Marie Curie-Paris 6, UMR 7622, Paris, France
| | | | | | | |
Collapse
|
19
|
Su TT. Safeguarding genetic information in Drosophila. Chromosoma 2011; 120:547-55. [PMID: 21927823 DOI: 10.1007/s00412-011-0342-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells employ a plethora of conserved proteins and mechanisms to ensure genome integrity. In metazoa, these mechanisms must operate in the context of organism development. This mini-review highlights two emerging features of DNA damage responses in Drosophila: a crosstalk between DNA damage responses and components of the spindle assembly checkpoint, and increasing evidence for the effect of DNA damage on the developmental program at multiple points during the Drosophila life cycle.
Collapse
Affiliation(s)
- Tin Tin Su
- MCD Biology, University of Colorado, Boulder, USA.
| |
Collapse
|
20
|
Costas C, Sanchez MDLP, Sequeira-Mendes J, Gutierrez C. Progress in understanding DNA replication control. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:203-9. [PMID: 21763530 DOI: 10.1016/j.plantsci.2011.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/07/2011] [Accepted: 04/24/2011] [Indexed: 05/19/2023]
Abstract
Completion of genome duplication during the S-phase of the cell cycle is crucial for the maintenance of genomic integrity. In eukaryotes, chromosomal DNA replication is accomplished by the activity of multiple origins of DNA replication scattered across the genome. Origin specification, selection and activity as well as the availability of replication factors and the regulation of DNA replication licensing, have unique and common features among eukaryotes. Although the initial studies on the semiconservative nature of chromosome duplication were carried out in the mid 1950s in Vicia faba, since then plant DNA replication studies have been scarce. However, they have received an unprecedented drive in the last decade after the completion of sequencing the Arabidopsis thaliana genome, and more recently of other plant genomes. In particular, the past year has witnessed major advances with the use of genomic approaches to study chromosomal replication timing, DNA replication origins and licensing control mechanisms. In this minireview article we discuss these recent discoveries in plants in the context of what is known at the genomic level in other eukaryotes. These studies constitute the basis for addressing in the future key questions about replication origin specification and function that will be of relevance not only for plants but also for the rest of multicellular organisms.
Collapse
Affiliation(s)
- Celina Costas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Costas C, Desvoyes B, Gutierrez C. A chromatin perspective of plant cell cycle progression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:379-87. [PMID: 21453801 DOI: 10.1016/j.bbagrm.2011.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/18/2011] [Accepted: 03/23/2011] [Indexed: 12/27/2022]
Abstract
The finely regulated series of events that span from the birth of a cell to the production of two new born cells encompass the cell cycle. Cell cycle progression occurs in a unidirectional manner and requires passing through a number of stages in response to cellular, developmental and environmental cues. In addition to these signaling cascades, transcriptional regulation plays a major role and acts coordinately with genome duplication during S-phase and chromosome segregation during mitosis. In this context, chromatin is revealing as a highly dynamic and major player in cell cycle regulation not only owing to the changes that occur as a consequence of cell cycle progression but also because some specific chromatin modifications are crucial to move across the cell cycle. These are particularly relevant for controlling transcriptional activation and repression as well as initiation of DNA replication and chromosome compaction. As a consequence the epigenetic landscape of a proliferating cell is very complex throughout the cell cycle. These aspects of chromatin dynamics together with the impact of epigenetic modifications on cell proliferation will be discussed in this article. This article is part of a Special Issue entitled: Epigenetic Control of cellular and developmental processes in plants.
Collapse
Affiliation(s)
- Celina Costas
- Centro de Biologia Molecukar Severo Ochoa, Madrid, Spain
| | | | | |
Collapse
|