1
|
Veglia AJ, Bistolas KSI, Voolstra CR, Hume BCC, Ruscheweyh HJ, Planes S, Allemand D, Boissin E, Wincker P, Poulain J, Moulin C, Bourdin G, Iwankow G, Romac S, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Galand PE, Gilson E, Lombard F, Pesant S, Reynaud S, Sunagawa S, Thomas OP, Troublé R, Zoccola D, Correa AMS, Vega Thurber RL. Endogenous viral elements reveal associations between a non-retroviral RNA virus and symbiotic dinoflagellate genomes. Commun Biol 2023; 6:566. [PMID: 37264063 DOI: 10.1038/s42003-023-04917-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.
Collapse
Affiliation(s)
- Alex J Veglia
- BioSciences Department, Rice University, Houston, TX, USA
| | | | | | | | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, F-06230, Villefranche-sur-Mer, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road H91 TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | | | | |
Collapse
|
2
|
Cheng RL, Li XF, Zhang CX. Nudivirus Remnants in the Genomes of Arthropods. Genome Biol Evol 2021; 12:578-588. [PMID: 32282886 PMCID: PMC7250505 DOI: 10.1093/gbe/evaa074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
Endogenous viral elements (EVEs), derived from all major types of viruses, have been discovered in many eukaryotic genomes, representing "fossil records" of past viral infections. The endogenization of nudiviruses has been reported in several insects, leading to the question of whether genomic integration is a common phenomenon for these viruses. In this study, genomic assemblies of insects and other arthropods were analyzed to identify endogenous sequences related to Nudiviridae. A total of 359 nudivirus-like genes were identified in 43 species belonging to different groups; however, none of these genes were detected in the known hosts of nudiviruses. A large proportion of the putative EVEs identified in this study encode intact open reading frames or are transcribed as mRNAs, suggesting that they result from recent endogenization of nudiviruses. Phylogenetic analyses of the identified EVEs and inspections of their flanking regions indicated that integration of nudiviruses has occurred recurrently during the evolution of arthropods. This is the first report of a comprehensive screening for nudivirus-derived EVEs in arthropod genomes. The results of this study demonstrated that a large variety of arthropods, especially hemipteran and hymenopteran insects, have previously been or are still infected by nudiviruses. These findings have greatly extended the host range of Nudiviridae and provide new insights into viral diversity, evolution, and host-virus interactions.
Collapse
Affiliation(s)
- Ruo-Lin Cheng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.,Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Xiao-Feng Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Chuan-Xi Zhang
- Institute of Plant Virology, Ningbo University, China.,Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Guterres A, de Oliveira RC, Fernandes J, de Lemos ERS, Schrago CG. New bunya-like viruses: Highlighting their relations. INFECTION GENETICS AND EVOLUTION 2017; 49:164-173. [PMID: 28111322 DOI: 10.1016/j.meegid.2017.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/18/2022]
Abstract
The standard virus classification scheme for arenaviruses and bunyaviruses shifted dramatically when several groups reported the detection and isolation of divergent groups of viruses in a variety of insect collections. Although these viral families can differ in terms of morphology, structure and genetics, recent findings indicate these viruses may have a shared evolutionary origin. To determine the phylogenetic relations among these families, we inferred phylogenetic trees using three methods. The Maximum Likelihood and Bayesian trees were rooted as suggested by the (molecular clock-rooted) BEAST tree. Our results highlight a noteworthy relation among these viral supergroups of different genome organizations. Our study suggests that the best scenario is the existence of at least three monophyletic supergroups, all of them well supported. The recent data indicate that these viruses are evolutionarily and genetically interconnected. While these supergroups appear to be closely related in our phylogenetic analysis, other viruses should be investigated in future research. In sum, our results also provide insights into the classification scheme, thereby providing a new perspective about the fundamental questions of family origins, diversity and genome evolution.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Renata Carvalho de Oliveira
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Jorlan Fernandes
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Elba Regina Sampaio de Lemos
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Carlos Guerra Schrago
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Guterres A, de Oliveira RC, Fernandes J, de Lemos ERS. Is the evolution of Hantavirus driven by its host? INFECTION GENETICS AND EVOLUTION 2015; 35:142-3. [DOI: 10.1016/j.meegid.2015.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022]
|
5
|
Aswad A, Katzourakis A. Convergent capture of retroviral superantigens by mammalian herpesviruses. Nat Commun 2015; 6:8299. [PMID: 26400439 PMCID: PMC4667437 DOI: 10.1038/ncomms9299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/07/2015] [Indexed: 12/23/2022] Open
Abstract
Horizontal gene transfer from retroviruses to mammals is well documented and extensive, but is rare between unrelated viruses with distinct genome types. Three herpesviruses encode a gene with similarity to a retroviral superantigen gene (sag) of the unrelated mouse mammary tumour virus (MMTV). We uncover ancient retroviral sags in over 20 mammals to reconstruct their shared history with herpesviral sags, revealing that the acquisition is a convergent evolutionary event. A retrovirus circulating in South American primates over 10 million years ago was the source of sag in two monkey herpesviruses, and a different retrovirus was the source of sag in a Peruvian rodent herpesvirus. We further show through a timescaled phylogenetic analysis that a cross-species transmission of monkey herpesviruses occurred after the acquisition of sag. These results reveal that a diverse range of ancient sag-containing retroviruses independently donated sag twice from two separate lineages that are distinct from MMTV. Horizontal gene transfer from retroviruses to mammals is rare between unrelated viruses. Here the authors show the convergent acquisition by herpesviruses of a virulence gene of ancient retroviruses, which occurred at least twice from different donor lineages, to distinct herpesviruses that infect mammals.
Collapse
Affiliation(s)
- Amr Aswad
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | | |
Collapse
|
6
|
Abstract
Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.
Collapse
Affiliation(s)
- Welkin E Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467;
| |
Collapse
|
7
|
Suh A, Weber CC, Kehlmaier C, Braun EL, Green RE, Fritz U, Ray DA, Ellegren H. Early mesozoic coexistence of amniotes and hepadnaviridae. PLoS Genet 2014; 10:e1004559. [PMID: 25501991 PMCID: PMC4263362 DOI: 10.1371/journal.pgen.1004559] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/24/2014] [Indexed: 12/16/2022] Open
Abstract
Hepadnaviridae are double-stranded DNA viruses that infect some species of birds and mammals. This includes humans, where hepatitis B viruses (HBVs) are prevalent pathogens in considerable parts of the global population. Recently, endogenized sequences of HBVs (eHBVs) have been discovered in bird genomes where they constitute direct evidence for the coexistence of these viruses and their hosts from the late Mesozoic until present. Nevertheless, virtually nothing is known about the ancient host range of this virus family in other animals. Here we report the first eHBVs from crocodilian, snake, and turtle genomes, including a turtle eHBV that endogenized >207 million years ago. This genomic “fossil” is >125 million years older than the oldest avian eHBV and provides the first direct evidence that Hepadnaviridae already existed during the Early Mesozoic. This implies that the Mesozoic fossil record of HBV infection spans three of the five major groups of land vertebrates, namely birds, crocodilians, and turtles. We show that the deep phylogenetic relationships of HBVs are largely congruent with the deep phylogeny of their amniote hosts, which suggests an ancient amniote–HBV coexistence and codivergence, at least since the Early Mesozoic. Notably, the organization of overlapping genes as well as the structure of elements involved in viral replication has remained highly conserved among HBVs along that time span, except for the presence of the X gene. We provide multiple lines of evidence that the tumor-promoting X protein of mammalian HBVs lacks a homolog in all other hepadnaviruses and propose a novel scenario for the emergence of X via segmental duplication and overprinting of pre-existing reading frames in the ancestor of mammalian HBVs. Our study reveals an unforeseen host range of prehistoric HBVs and provides novel insights into the genome evolution of hepadnaviruses throughout their long-lasting association with amniote hosts. Viruses are not known to leave physical fossil traces, which makes our understanding of their evolutionary prehistory crucially dependent on the detection of endogenous viruses. Ancient endogenous viruses, also known as paleoviruses, are relics of viral genomes or fragments thereof that once infiltrated their host's germline and then remained as molecular “fossils” within the host genome. The massive genome sequencing of recent years has unearthed vast numbers of paleoviruses from various animal genomes, including the first endogenous hepatitis B viruses (eHBVs) in bird genomes. We screened genomes of land vertebrates (amniotes) for the presence of paleoviruses and identified ancient eHBVs in the recently sequenced genomes of crocodilians, snakes, and turtles. We report an eHBV that is >207 million years old, making it the oldest endogenous virus currently known. Furthermore, our results provide direct evidence that the Hepadnaviridae virus family infected birds, crocodilians and turtles during the Mesozoic Era, and suggest a long-lasting coexistence of these viruses and their amniote hosts at least since the Early Mesozoic. We challenge previous views on the origin of the oncogenic X gene and provide an evolutionary explanation as to why only mammalian hepatitis B infection leads to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Alexander Suh
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Claudia C. Weber
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
| | - Christian Kehlmaier
- Museum of Zoology, Senckenberg Research Institute and Natural History Museum, Dresden, Germany
| | - Edward L. Braun
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Uwe Fritz
- Museum of Zoology, Senckenberg Research Institute and Natural History Museum, Dresden, Germany
| | - David A. Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Hans Ellegren
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Taylor DJ, Ballinger MJ, Zhan JJ, Hanzly LE, Bruenn JA. Evidence that ebolaviruses and cuevaviruses have been diverging from marburgviruses since the Miocene. PeerJ 2014; 2:e556. [PMID: 25237605 PMCID: PMC4157239 DOI: 10.7717/peerj.556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/12/2014] [Indexed: 01/10/2023] Open
Abstract
An understanding of the timescale of evolution is critical for comparative virology but remains elusive for many RNA viruses. Age estimates based on mutation rates can severely underestimate divergences for ancient viral genes that are evolving under strong purifying selection. Paleoviral dating, however, can provide minimum age estimates for ancient divergence, but few orthologous paleoviruses are known within clades of extant viruses. For example, ebolaviruses and marburgviruses are well-studied mammalian pathogens, but their comparative biology is difficult to interpret because the existing estimates of divergence are controversial. Here we provide evidence that paleoviral elements of two genes (ebolavirus-like VP35 and NP) in cricetid rodent genomes originated after the divergence of ebolaviruses and cuevaviruses from marburgviruses. We provide evidence of orthology by identifying common paleoviral insertion sites among the rodent genomes. Our findings indicate that ebolaviruses and cuevaviruses have been diverging from marburgviruses since the early Miocene.
Collapse
Affiliation(s)
- Derek J. Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Matthew J. Ballinger
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jack J. Zhan
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Laura E. Hanzly
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jeremy A. Bruenn
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
9
|
Suh A, Brosius J, Schmitz J, Kriegs JO. The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses. Nat Commun 2013; 4:1791. [PMID: 23653203 DOI: 10.1038/ncomms2798] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/26/2013] [Indexed: 12/26/2022] Open
Abstract
Paleovirology involves the identification of ancient endogenous viral elements within eukaryotic genomes. The evolutionary origins of the reverse-transcribing hepatitis B viruses, however, remain elusive, due to the small number of endogenized sequences present in host genomes. Here we report a comprehensively dated genomic record of hepatitis B virus endogenizations that spans bird evolution from >82 to <12.1 million years ago. The oldest virus relic extends over a 99% complete hepatitis B virus genome sequence and constitutes the first discovery of a Mesozoic paleovirus genome. We show that Hepadnaviridae are >63 million years older than previously known and provide direct evidence for coexistence of hepatitis B viruses and birds during the Mesozoic and Cenozoic Eras. Finally, phylogenetic analyses and distribution of hepatitis B virus relics suggest that birds potentially are the ancestral hosts of Hepadnaviridae and mammalian hepatitis B viruses probably emerged after a bird-mammal host switch. Our study reveals previously undiscovered and multi-faceted insights into prehistoric hepatitis B virus evolution and provides valuable resources for future studies, such as in-vitro resurrection of Mesozoic hepadnaviruses.
Collapse
Affiliation(s)
- Alexander Suh
- Institute of Experimental Pathology (ZMBE), University of Münster, Von-Esmarch-Straße 56, D-48149 Münster, Germany.
| | | | | | | |
Collapse
|
10
|
Johnson WE. Rapid adversarial co-evolution of viruses and cellular restriction factors. Curr Top Microbiol Immunol 2013; 371:123-51. [PMID: 23686234 DOI: 10.1007/978-3-642-37765-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the discovery of viruses over a century ago, virologists have recognized that host genetics plays a major role in viral tropism and the distribution of viruses in nature. Traditionally, studies of tropism have centered on identification of cellular factors required for viral replication, such as cell-surface entry receptors. However, over the past 20 years, there has been a steady increase in the identification and characterization of restriction factors (RFs), here defined as dominant cellular factors that have evolved specifically to interfere with viral replication. Genetic studies suggest that restriction factors impose significant barriers to interspecies movement of viruses and are therefore critical determinants of viral tropism. Furthermore, the scope of the ever-expanding list of restriction factors, and the variety of antiviral mechanisms they represent, testifies to the extraordinary impact viruses have had on organismal evolution-an impact hitherto underappreciated by evolutionary biologists and virologists alike. Recent studies of RF-encoding genes that combine molecular evolutionary analysis with functional assays illustrate the potential for asking questions about virus-host interactions as they play out in natural populations and across evolutionary timescales. Most notably, it has become common to apply tests of positive selection to RF genes and couple these analyses with virological assays, to reveal evidence for antagonistic virus-host co-evolution. Herein, I summarize recent work on the evolutionary genetics of mammalian RFs, particularly those of humans, non-human primates, and model organisms, and how RFs can reveal the influence of virus-host interactions on organismal evolution. Because intensive investigation of RF evolution is fairly new (and because there is still much to learn), the discussion is organized around five broad, outstanding questions that will need to be answered before we can fully appreciate the evolutionary biology of restriction.
Collapse
|
11
|
Dimijian GG. Darwinian natural selection: its enduring explanatory power. Proc (Bayl Univ Med Cent) 2012; 25:139-47. [PMID: 22481845 DOI: 10.1080/08998280.2012.11928811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Evolutionary theory has never had a stronger scientific foundation than it does today. In a short review I hope to portray the deep commitment of today's biologists to Darwinian natural selection and to discoveries made since Darwin's time. In spite of the scientific advances in the century and a half since the publication of On the Origin of Species, Darwin still remains the principal author of modern evolutionary theory. He is one of the greatest contributors of all time to our understanding of nature.
Collapse
Affiliation(s)
- Gregory G Dimijian
- Department of Psychiatry, The University of Texas Southwestern Medical School at Dallas
| |
Collapse
|
12
|
Abstract
Recent years have seen a significant increase in understanding of the host genetic and genomic determinants of susceptibility to HIV-1 infection and disease progression, driven in large part by candidate gene studies, genome-wide association studies, genome-wide transcriptome analyses, and large-scale in vitro genome screens. These studies have identified common variants in some host loci that clearly influence disease progression, characterized the scale and dynamics of gene and protein expression changes in response to infection, and provided the first comprehensive catalogs of genes and pathways involved in viral replication. Experimental models of AIDS and studies in natural hosts of primate lentiviruses have complemented and in some cases extended these findings. As the relevant technology continues to progress, the expectation is that such studies will increase in depth (e.g., to include host whole exome and whole genome sequencing) and in breadth (in particular, by integrating multiple data types).
Collapse
Affiliation(s)
- Amalio Telenti
- Institute of Microbiology, University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.
| | | |
Collapse
|
13
|
Abstract
Endogenous retroviruses are a common component of the eukaryotic genome, and their evolution and potential function have attracted considerable interest. More surprising was the recent discovery that eukaryotic genomes contain sequences from RNA viruses that have no DNA stage in their life cycle. Similarly, several single-stranded DNA viruses have left integrated copies in their host genomes. This review explores some major evolutionary aspects arising from the discovery of these endogenous viral elements (EVEs). In particular, the reasons for the bias toward EVEs derived from negative-sense RNA viruses are considered, as well as what they tell us about the long-term "arms races" between hosts and viruses, characterized by episodes of selection and counter-selection. Most dramatically, the presence of orthologous EVEs in divergent hosts demonstrates that some viral families have ancestries dating back almost 100 million years, and hence are far older than expected from the phylogenetic analysis of their exogenous relatives.
Collapse
Affiliation(s)
- Edward C Holmes
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
14
|
Rappoport N, Linial M. Viral proteins acquired from a host converge to simplified domain architectures. PLoS Comput Biol 2012; 8:e1002364. [PMID: 22319434 PMCID: PMC3271019 DOI: 10.1371/journal.pcbi.1002364] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 12/09/2011] [Indexed: 01/17/2023] Open
Abstract
The infection cycle of viruses creates many opportunities for the exchange of genetic material with the host. Many viruses integrate their sequences into the genome of their host for replication. These processes may lead to the virus acquisition of host sequences. Such sequences are prone to accumulation of mutations and deletions. However, in rare instances, sequences acquired from a host become beneficial for the virus. We searched for unexpected sequence similarity among the 900,000 viral proteins and all proteins from cellular organisms. Here, we focus on viruses that infect metazoa. The high-conservation analysis yielded 187 instances of highly similar viral-host sequences. Only a small number of them represent viruses that hijacked host sequences. The low-conservation sequence analysis utilizes the Pfam family collection. About 5% of the 12,000 statistical models archived in Pfam are composed of viral-metazoan proteins. In about half of Pfam families, we provide indirect support for the directionality from the host to the virus. The other families are either wrongly annotated or reflect an extensive sequence exchange between the viruses and their hosts. In about 75% of cross-taxa Pfam families, the viral proteins are significantly shorter than their metazoan counterparts. The tendency for shorter viral proteins relative to their related host proteins accounts for the acquisition of only a fragment of the host gene, the elimination of an internal domain and shortening of the linkers between domains. We conclude that, along viral evolution, the host-originated sequences accommodate simplified domain compositions. We postulate that the trimmed proteins act by interfering with the fundamental function of the host including intracellular signaling, post-translational modification, protein-protein interaction networks and cellular trafficking. We compiled a collection of hijacked protein sequences. These sequences are attractive targets for manipulation of viral infection. Many studies focused on the exchange of genetic material between viruses and cellular hosts. The diversity of viruses argues that, along the evolutionary history, viruses have shaped the host genomes. While most viruses have many opportunities to exchange genetic material with their hosts, tracing such events is challenging as the origin of the sequences is masked by the high mutation rate of many viruses. On the other end, for completing a successful infection cycle the viruses must cope with the cell machinery for entry, replication and translation while hiding from the host immune system. We collected evidence for instances of viral protein sequences that were most probably “stolen” from the hosts. Additionally, a shared ancestry with metazoa is associated with 670 Pfam domain families. For half of these families, the origin of the viral proteins from its host is supported. For about 75% of the cross virus-metazoa families, the viral proteins are significantly shorter than their counterpart host proteins. Most of these cross-taxa viral proteins are single domain proteins and proteins with a simple domain composition relative to the proteins of their hosts. These viral proteins provide insights on the overlooked intimacy of viruses and their multicellular hosts.
Collapse
Affiliation(s)
- Nadav Rappoport
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Sudarsky Center for Computational Biology, Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
15
|
Abstract
Mammalian genes and genomes have been shaped by ancient and ongoing challenges from viruses. These genetic imprints can be identified via evolutionary analyses to reveal fundamental details about when (how old), where (which protein domains), and how (what are the functional consequences of adaptive changes) host-virus arms races alter the proteins involved. Just as extreme amino acid conservation can serve to identify key immutable residues in enzymes, positively selected residues point to molecular recognition interfaces between host and viral proteins that have adapted and counter-adapted in a long series of classical Red Queen conflicts. Common rules for the strategies employed by both hosts and viruses have emerged from case studies of innate immunity genes in primates. We are now poised to use these rules to transition from a retrospective view of host-virus arms races to specific predictions about which host genes face pathogen antagonism and how those genetic conflicts transform host and virus evolution.
Collapse
Affiliation(s)
- Matthew D Daugherty
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
16
|
Abstract
Bornaviridae is an enveloped animal virus carrying an 8.9 kb non-segmented, negative-strand RNA genome. The genus bornavirus contains two members infecting vertebrates, Borna disease virus (BDV) and avian bornavirus (ABV), which could preferably infect the nervous systems. BDV causes classical Borna disease, a progressive meningoencephalomyelitis, in horses and sheep, and ABV is known to induce proventricular dilatation disease, a fatal disease characterized by a lymphocytic, plasmacytic inflammation of central and peripheral nervous tissues, in multiple avian species. Recent evidences have demonstrated that bornavirus is unique among RNA viruses as they not only establish a long-lasting, persistent infection in the nucleus, but also integrate their own DNA genome copy into the host chromosome. In this review, I outline the recent knowledge about the unique virological characteristics of bornaviruses, as well as the diseases caused by the infection of BDV and ABV.
Collapse
Affiliation(s)
- Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University
| |
Collapse
|
17
|
Gifford RJ. Viral evolution in deep time: lentiviruses and mammals. Trends Genet 2011; 28:89-100. [PMID: 22197521 DOI: 10.1016/j.tig.2011.11.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/29/2022]
Abstract
Lentiviruses are a distinctive genus of retroviruses that cause chronic, persistent infections in mammals, including humans. The emergence of pandemic HIV type-1 (HIV-1) infection during the late 20th century shaped a view of lentiviruses as 'modern' viruses. However, recent research has revealed an entirely different perspective, elucidating aspects of an evolutionary relationship with mammals that extends across many millions of years. Such deep evolutionary history is likely to be typical of many host-virus systems, fundamentally underpinning their interactions in the present day. For this reason, establishing the deep history of virus and host interaction is key to developing a fully informed approach to tackling viral diseases. Here, I use the example of lentiviruses to illustrate how paleovirological, geographic and genetic calibrations allow observations of virus and host interaction across a wide range of temporal and spatial scales to be integrated into a coherent ecological and evolutionary framework.
Collapse
Affiliation(s)
- Robert J Gifford
- Aaron Diamond AIDS Research Center, 455 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
18
|
Nahmias AJ, Schollin J, Abramowsky C. Evolutionary-developmental perspectives on immune system interactions among the pregnant woman, placenta, and fetus, and responses to sexually transmitted infectious agents. Ann N Y Acad Sci 2011; 1230:25-47. [PMID: 21824164 DOI: 10.1111/j.1749-6632.2011.06137.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A balance has evolved over deep time between the various immune systems of the "triad" that is linked together for a short period: the pregnant woman, the fetus, and the placenta. This balance is affected by, and helps to determine, the immune responses to maternal infectious agents that may be transmitted to the fetus/infant transplacentally, intrapartum, or via breast milk. This review identifies newer evolutionary concepts and processes related particularly to the human placenta, innate and adaptive immune systems involved in tolerance, and in responses to sexually transmitted infectious (STI) agents that may be pathogenic to the fetus/infant at different gestational periods and in the first year of life. An evolutionary-developmental (EVO-DEVO) perspective has been applied to the complexities within, and among, the different actors and their beneficial or deleterious outcomes. Such a phylogenetic and ontogenic approach has helped to stimulate several basic questions and suggested possible explanations and novel practical interventions.
Collapse
|
19
|
Sharp PM, Simmonds P. Evaluating the evidence for virus/host co-evolution. Curr Opin Virol 2011; 1:436-41. [DOI: 10.1016/j.coviro.2011.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 01/04/2023]
|
20
|
Meyerson NR, Sawyer SL. Two-stepping through time: mammals and viruses. Trends Microbiol 2011; 19:286-94. [PMID: 21531564 DOI: 10.1016/j.tim.2011.03.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/08/2011] [Accepted: 03/16/2011] [Indexed: 12/14/2022]
Abstract
Recent studies have identified ancient virus genomes preserved as fossils within diverse animal genomes. These fossils have led to the revelation that a broad range of mammalian virus families are older and more ubiquitous than previously appreciated. Long-term interactions between viruses and their hosts often develop into genetic arms races where both parties continually jockey for evolutionary dominance. It is difficult to imagine how mammalian hosts have kept pace in the evolutionary race against rapidly evolving viruses over large expanses of time, given their much slower evolutionary rates. However, recent data has begun to reveal the evolutionary strategy of slowly-evolving hosts. We review these data and suggest a modified arms race model where the evolutionary possibilities of viruses are relatively constrained. Such a model could allow more accurate forecasting of virus evolution.
Collapse
Affiliation(s)
- Nicholas R Meyerson
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
21
|
Abstract
DNA transposons are mobile genetic elements that have shaped the genomes of eukaryotes for millions of years, yet their origins remain obscure. We discovered a virophage that, on the basis of genetic homology, likely represents an evolutionary link between double-stranded DNA viruses and Maverick/Polinton eukaryotic DNA transposons. The Mavirus virophage parasitizes the giant Cafeteria roenbergensis virus and encodes 20 predicted proteins, including a retroviral integrase and a protein-primed DNA polymerase B. On the basis of our data, we conclude that Maverick/Polinton transposons may have originated from ancient relatives of Mavirus, and thereby influenced the evolution of eukaryotic genomes, although we cannot rule out alternative evolutionary scenarios.
Collapse
Affiliation(s)
- Matthias G Fischer
- Department of Microbiology and Immunology, 1365-2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | |
Collapse
|