1
|
Yin EP, Dieriks BV. Rethinking 'rare' PINK1 Parkinson's disease: A meta-analysis of geographical prevalence, phenotypic diversity, and α-synuclein pathology. JOURNAL OF PARKINSON'S DISEASE 2025; 15:41-65. [PMID: 39973502 DOI: 10.1177/1877718x241304814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
PTEN-induced kinase 1 (PINK1)-related Parkinson's disease (PD) is traditionally considered a rare autosomal recessive form of early-onset PD (EOPD), lacking classical Lewy body pathology. However, this characterization underestimates and oversimplifies PINK1-PD, largely due to a lack of extensive studies in diverse ethnic populations. This review and meta-analysis explores considerable variations in PINK1 variant rates and the wide heterogeneity influenced by patient- and variant-specific factors, delineating a more precise disease profile. Our findings reveal that PINK1-PD is more common than previously thought, with geographic 'hotspots' where up to 9% of EOPD cases are linked to PINK1 variants, including the pathogenic p.Leu347Pro variant affecting 1 in 1300 West Polynesians. Homozygous PINK1-PD typically manifests around age 35, predominantly affecting the lower limbs, with an excellent response to levodopa. Heterozygous PINK1-PD presents an 'intermediate' phenotype, with a later onset age (around 43 years) than homozygous PINK1-PD but earlier than idiopathic PD (typically after age 65). The severity of the phenotype is influenced by variant zygosity and pathogenicity, interacting with genetic and environmental factors to push some individuals beyond the disease threshold. Notably, females with PINK1-PD have earlier onset age than males, particularly in homozygous cases and when variants occur in the first half of PINK1's kinase domain. Contrary to traditional views, α-synuclein pathology is present in 87.5% of PINK1-PD postmortem cases across ages and variants. We challenge conventional views on PINK1-PD, highlighting distinct phenotypes influenced by zygosity, sex, and a role for α-synuclein pathology, urging for increased recognition and research of this not-so-rare disease.
Collapse
Affiliation(s)
- Eden Paige Yin
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Tahmasebinia F, Tang Y, Tang R, Zhang Y, Bonderer W, de Oliveira M, Laboret B, Chen S, Jian R, Jiang L, Snyder M, Chen CH, Shen Y, Liu Q, Liu B, Wu Z. The 40S ribosomal subunit recycling complex modulates mitochondrial dynamics and endoplasmic reticulum - mitochondria tethering at mitochondrial fission/fusion hotspots. Nat Commun 2025; 16:1021. [PMID: 39863576 PMCID: PMC11762756 DOI: 10.1038/s41467-025-56346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function. The complex binds to fission-fusion proteins located at mitochondrial hotspots, regulating the functional assembly of endoplasmic reticulum-mitochondria contact sites (ERMCSs). Furthermore, it alters the activity of mTORC1/2 pathways, suggesting a link between quality control and energy fluctuations. Effective communication is essential for resolving proteostasis-related stresses. Our study illustrates that the USP10-G3BP1 complex acts as a hub that interacts with various pathways to adapt to environmental stimuli promptly. It advances our molecular understanding of RQC regulation and helps explain the pathogenesis of human proteostasis and mitochondrial dysfunction diseases.
Collapse
Affiliation(s)
- Foozhan Tahmasebinia
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Yinglu Tang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Rushi Tang
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yi Zhang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Will Bonderer
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Maisa de Oliveira
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Bretton Laboret
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Yawei Shen
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Boxiang Liu
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore.
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|
3
|
Zhang R, Yang H, Guo M, Niu S, Xue Y. Mitophagy and its regulatory mechanisms in the biological effects of nanomaterials. J Appl Toxicol 2024; 44:1834-1853. [PMID: 38642013 DOI: 10.1002/jat.4609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
Mitophagy is a selective cellular process critical for the removal of damaged mitochondria. It is essential in regulating mitochondrial number, ensuring mitochondrial functionality, and maintaining cellular equilibrium, ultimately influencing cell destiny. Numerous pathologies, such as neurodegenerative diseases, cardiovascular disorders, cancers, and various other conditions, are associated with mitochondrial dysfunctions. Thus, a detailed exploration of the regulatory mechanisms of mitophagy is pivotal for enhancing our understanding and for the discovery of novel preventive and therapeutic options for these diseases. Nanomaterials have become integral in biomedicine and various other sectors, offering advanced solutions for medical uses including biological imaging, drug delivery, and disease diagnostics and therapy. Mitophagy is vital in managing the cellular effects elicited by nanomaterials. This review provides a comprehensive analysis of the molecular mechanisms underpinning mitophagy, underscoring its significant influence on the biological responses of cells to nanomaterials. Nanoparticles can initiate mitophagy via various pathways, among which the PINK1-Parkin pathway is critical for cellular defense against nanomaterial-induced damage by promoting mitophagy. The role of mitophagy in biological effects was induced by nanomaterials, which are associated with alterations in Ca2+ levels, the production of reactive oxygen species, endoplasmic reticulum stress, and lysosomal damage.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Nithianandam V, Sarkar S, Feany MB. Pathways controlling neurotoxicity and proteostasis in mitochondrial complex I deficiency. Hum Mol Genet 2024; 33:860-871. [PMID: 38324746 PMCID: PMC11070137 DOI: 10.1093/hmg/ddae018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Neuromuscular disorders caused by dysfunction of the mitochondrial respiratory chain are common, severe and untreatable. We recovered a number of mitochondrial genes, including electron transport chain components, in a large forward genetic screen for mutations causing age-related neurodegeneration in the context of proteostasis dysfunction. We created a model of complex I deficiency in the Drosophila retina to probe the role of protein degradation abnormalities in mitochondrial encephalomyopathies. Using our genetic model, we found that complex I deficiency regulates both the ubiquitin/proteasome and autophagy/lysosome arms of the proteostasis machinery. We further performed an in vivo kinome screen to uncover new and potentially druggable mechanisms contributing to complex I related neurodegeneration and proteostasis failure. Reduction of RIOK kinases and the innate immune signaling kinase pelle prevented neurodegeneration in complex I deficiency animals. Genetically targeting oxidative stress, but not RIOK1 or pelle knockdown, normalized proteostasis markers. Our findings outline distinct pathways controlling neurodegeneration and protein degradation in complex I deficiency and introduce an experimentally facile model in which to study these debilitating and currently treatment-refractory disorders.
Collapse
Affiliation(s)
- Vanitha Nithianandam
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| | - Mel B Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, 5425 Wisconsin Avenue, Chevy Chase, MD 20815, United States
| |
Collapse
|
5
|
Jia X, He X, Huang C, Li J, Dong Z, Liu K. Protein translation: biological processes and therapeutic strategies for human diseases. Signal Transduct Target Ther 2024; 9:44. [PMID: 38388452 PMCID: PMC10884018 DOI: 10.1038/s41392-024-01749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Protein translation is a tightly regulated cellular process that is essential for gene expression and protein synthesis. The deregulation of this process is increasingly recognized as a critical factor in the pathogenesis of various human diseases. In this review, we discuss how deregulated translation can lead to aberrant protein synthesis, altered cellular functions, and disease progression. We explore the key mechanisms contributing to the deregulation of protein translation, including functional alterations in translation factors, tRNA, mRNA, and ribosome function. Deregulated translation leads to abnormal protein expression, disrupted cellular signaling, and perturbed cellular functions- all of which contribute to disease pathogenesis. The development of ribosome profiling techniques along with mass spectrometry-based proteomics, mRNA sequencing and single-cell approaches have opened new avenues for detecting diseases related to translation errors. Importantly, we highlight recent advances in therapies targeting translation-related disorders and their potential applications in neurodegenerative diseases, cancer, infectious diseases, and cardiovascular diseases. Moreover, the growing interest lies in targeted therapies aimed at restoring precise control over translation in diseased cells is discussed. In conclusion, this comprehensive review underscores the critical role of protein translation in disease and its potential as a therapeutic target. Advancements in understanding the molecular mechanisms of protein translation deregulation, coupled with the development of targeted therapies, offer promising avenues for improving disease outcomes in various human diseases. Additionally, it will unlock doors to the possibility of precision medicine by offering personalized therapies and a deeper understanding of the molecular underpinnings of diseases in the future.
Collapse
Affiliation(s)
- Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Xinyu He
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Chuntian Huang
- Department of Pathology and Pathophysiology, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, 450052, China.
- Research Center for Basic Medicine Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450000, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, Henan, 450052, China.
- Research Center for Basic Medicine Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, 450000, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
6
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
7
|
Maddison DC, Mattedi F, Vagnoni A, Smith GA. Analysis of Mitochondrial Dynamics in Adult Drosophila Axons. Cold Spring Harb Protoc 2023; 2023:75-83. [PMID: 36180217 DOI: 10.1101/pdb.top107819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuronal survival depends on the generation of ATP from an ever-changing mitochondrial network. This requires a fine balance between the constant degradation of damaged mitochondria, biogenesis of new mitochondria, movement along microtubules, dynamic processes, and adequate functional capacity to meet firing demands. The distribution of mitochondria needs to be tightly controlled throughout the entire neuron, including its projections. Axons in particular can be enormous structures compared to the size of the cell soma, and how mitochondria are maintained in these compartments is poorly defined. Mitochondrial dysfunction in neurons is associated with aging and neurodegenerative diseases, with the axon being preferentially vulnerable to destruction. Drosophila offer a unique way to study these organelles in fully differentiated adult neurons in vivo. Here, we briefly review the regulation of neuronal mitochondria in health, aging, and disease and introduce two methodological approaches to study mitochondrial dynamics and transport in axons using the Drosophila wing system.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Gaynor Ann Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
8
|
Kim HS, Pickering AM. Protein translation paradox: Implications in translational regulation of aging. Front Cell Dev Biol 2023; 11:1129281. [PMID: 36711035 PMCID: PMC9880214 DOI: 10.3389/fcell.2023.1129281] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Protein translation is an essential cellular process playing key roles in growth and development. Protein translation declines over the course of age in multiple animal species, including nematodes, fruit flies, mice, rats, and even humans. In all these species, protein translation transiently peaks in early adulthood with a subsequent drop over the course of age. Conversely, lifelong reductions in protein translation have been found to extend lifespan and healthspan in multiple animal models. These findings raise the protein synthesis paradox: age-related declines in protein synthesis should be detrimental, but life-long reductions in protein translation paradoxically slow down aging and prolong lifespan. This article discusses the nature of this paradox and complies an extensive body of work demonstrating protein translation as a modulator of lifespan and healthspan.
Collapse
Affiliation(s)
- Harper S. Kim
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Medical Scientist Training Program, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew M. Pickering
- Center for Neurodegeneration and Experimental Therapeutics (CNET), Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Coleman C, Martin I. Unraveling Parkinson's Disease Neurodegeneration: Does Aging Hold the Clues? JOURNAL OF PARKINSON'S DISEASE 2022; 12:2321-2338. [PMID: 36278358 PMCID: PMC9837701 DOI: 10.3233/jpd-223363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aging is the greatest risk factor for Parkinson's disease (PD), suggesting that mechanisms driving the aging process promote PD neurodegeneration. Several lines of evidence support a role for aging in PD. First, hallmarks of brain aging such as mitochondrial dysfunction and oxidative stress, loss of protein homeostasis, and neuroinflammation are centrally implicated in PD development. Second, mutations that cause monogenic PD are present from conception, yet typically only cause disease following a period of aging. Third, lifespan-extending genetic, dietary, or pharmacological interventions frequently attenuate PD-related neurodegeneration. These observations support a central role for aging in disease development and suggest that new discoveries in the biology of aging could be leveraged to elucidate novel mechanisms of PD pathophysiology. A recent rapid growth in our understanding of conserved molecular pathways that govern model organism lifespan and healthspan has highlighted a key role for metabolism and nutrient sensing pathways. Uncovering how metabolic pathways involving NAD+ consumption, insulin, and mTOR signaling link to the development of PD is underway and implicates metabolism in disease etiology. Here, we assess areas of convergence between nervous system aging and PD, evaluate the link between metabolism, aging, and PD and address the potential of metabolic interventions to slow or halt the onset of PD-related neurodegeneration drawing on evidence from cellular and animal models.
Collapse
Affiliation(s)
- Colin Coleman
- Department of Neurology, Jungers Center for Neurosciences, Oregon Health and Science University, Portland, OR, USA
| | - Ian Martin
- Department of Neurology, Jungers Center for Neurosciences, Oregon Health and Science University, Portland, OR, USA,Correspondence to: Ian Martin, Jungers Center for Neurosciences Research, Department of Neurology - Mail Code L623, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Tel.: +1 503 494 9140; E-mail:
| |
Collapse
|
10
|
Usher JL, Sanchez‐Martinez A, Terriente‐Felix A, Chen P, Lee JJ, Chen C, Whitworth AJ. Parkin drives pS65-Ub turnover independently of canonical autophagy in Drosophila. EMBO Rep 2022; 23:e53552. [PMID: 36250243 PMCID: PMC9724668 DOI: 10.15252/embr.202153552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease-related proteins, PINK1 and Parkin, act in a common pathway to maintain mitochondrial quality control. While the PINK1-Parkin pathway can promote autophagic mitochondrial turnover (mitophagy) following mitochondrial toxification in cell culture, alternative quality control pathways are suggested. To analyse the mechanisms by which the PINK1-Parkin pathway operates in vivo, we developed methods to detect Ser65-phosphorylated ubiquitin (pS65-Ub) in Drosophila. Exposure to the oxidant paraquat led to robust, Pink1-dependent pS65-Ub production, while pS65-Ub accumulates in unstimulated parkin-null flies, consistent with blocked degradation. Additionally, we show that pS65-Ub specifically accumulates on disrupted mitochondria in vivo. Depletion of the core autophagy proteins Atg1, Atg5 and Atg8a did not cause pS65-Ub accumulation to the same extent as loss of parkin, and overexpression of parkin promoted turnover of both basal and paraquat-induced pS65-Ub in an Atg5-null background. Thus, we have established that pS65-Ub immunodetection can be used to analyse Pink1-Parkin function in vivo as an alternative to reporter constructs. Moreover, our findings suggest that the Pink1-Parkin pathway can promote mitochondrial turnover independently of canonical autophagy in vivo.
Collapse
Affiliation(s)
- Joanne L Usher
- MRC Mitochondrial Biology UnitCambridgeUK
- PNAC Division, MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
MSD R&D Innovation CentreLondonUK
| | | | | | - Po‐Lin Chen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesZhunanTaiwan
| | | | - Chun‐Hong Chen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesZhunanTaiwan
| | | |
Collapse
|
11
|
Huang Y, Wan Z, Tang Y, Xu J, Laboret B, Nallamothu S, Yang C, Liu B, Lu RO, Lu B, Feng J, Cao J, Hayflick S, Wu Z, Zhou B. Pantothenate kinase 2 interacts with PINK1 to regulate mitochondrial quality control via acetyl-CoA metabolism. Nat Commun 2022; 13:2412. [PMID: 35504872 PMCID: PMC9065001 DOI: 10.1038/s41467-022-30178-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Human neurodegenerative disorders often exhibit similar pathologies, suggesting a shared aetiology. Key pathological features of Parkinson's disease (PD) are also observed in other neurodegenerative diseases. Pantothenate Kinase-Associated Neurodegeneration (PKAN) is caused by mutations in the human PANK2 gene, which catalyzes the initial step of de novo CoA synthesis. Here, we show that fumble (fbl), the human PANK2 homolog in Drosophila, interacts with PINK1 genetically. fbl and PINK1 mutants display similar mitochondrial abnormalities, and overexpression of mitochondrial Fbl rescues PINK1 loss-of-function (LOF) defects. Dietary vitamin B5 derivatives effectively rescue CoA/acetyl-CoA levels and mitochondrial function, reversing the PINK1 deficiency phenotype. Mechanistically, Fbl regulates Ref(2)P (p62/SQSTM1 homolog) by acetylation to promote mitophagy, whereas PINK1 regulates fbl translation by anchoring mRNA molecules to the outer mitochondrial membrane. In conclusion, Fbl (or PANK2) acts downstream of PINK1, regulating CoA/acetyl-CoA metabolism to promote mitophagy, uncovering a potential therapeutic intervention strategy in PD treatment.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhihui Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Yinglu Tang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Junxuan Xu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bretton Laboret
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Sree Nallamothu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Chenyu Yang
- Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Boxiang Liu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rongze Olivia Lu
- Department of Neurosurgery, Dell Medical School, University of Texas Austin, Austin, TX, 78712, USA
- Department of Neurological Surgery, Brain Tumor Center, University of California San Francisco, California, CA, 94143, USA
| | - Bingwei Lu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Juan Feng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jing Cao
- Department of Statistical Science, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Susan Hayflick
- Department of Molecular & Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Xue J, Li G, Ji X, Liu ZH, Wang HL, Xiao G. Drosophila ZIP13 overexpression or transferrin1 RNAi influences the muscle degeneration of Pink1 RNAi by elevating iron levels in mitochondria. J Neurochem 2022; 160:540-555. [PMID: 35038358 DOI: 10.1111/jnc.15574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/01/2022]
Abstract
Disruption of iron homeostasis in the brain of Parkinson's disease (PD) patients has been reported for many years, but the underlying mechanisms remain unclear. To investigate iron metabolism genes related to PTEN-induced kinase 1 (Pink1) and parkin (E3 ubiquitin ligase), two PD-associated proteins that function to coordinate mitochondrial turnover via induction of selective mitophagy, we conducted a genetic screen in Drosophila and found that altered expression of genes involved in iron metabolism, such as Drosophila ZIP13 (dZIP13) or transferrin1 (Tsf1), significantly influences the disease progression related to Pink1 but not parkin. Several phenotypes of Pink1 mutant and Pink1 RNAi but not parkin mutant were significantly rescued by overexpression (OE) of dZIP13 (dZIP13 OE) or silencing of Tsf1 (Tsf1 RNAi) in the flight muscles. The rescue effects of dZIP13 OE or Tsf1 RNAi were not exerted through mitochondrial disruption or mitophagy, instead, the iron levels in mitochondira were significantly increased, resulting in enhanced activity of enzymes participating in respiration and increased ATP synthesis. Consistently, the rescue effects of dZIP13 OE or Tsf1 RNAi on Pink1 RNAi can be inhibited by decreasing the iron levels in mitochondria through mitoferrin (dmfrn) RNAi. This study suggests that dZIP13, Tsf1 and dmfrn might act independently of parkin in a parallel pathway downstream of Pink1 by modulating respiration and indicates that manipulation of iron levels in mitochondria may provide a novel therapeutic strategy for PD associated with Pink1.
Collapse
Affiliation(s)
- Jinsong Xue
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Guangying Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Xiaowen Ji
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhi-Hua Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Hui-Li Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Guiran Xiao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
13
|
Tzou FY, Wen JK, Yeh JY, Huang SY, Chen GC, Chan CC. Drosophila as a model to study autophagy in neurodegenerative diseases and digestive tract. IUBMB Life 2021; 74:339-360. [PMID: 34874101 DOI: 10.1002/iub.2583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Autophagy regulates cellular homeostasis by degrading and recycling cytosolic components and damaged organelles. Disruption of autophagic flux has been shown to induce or facilitate neurodegeneration and accumulation of autophagic vesicles is overt in neurodegenerative diseases. The fruit fly Drosophila has been used as a model system to identify new factors that regulate physiology and disease. Here we provide a historical perspective of how the fly models have offered mechanistic evidence to understand the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Charcot-Marie-Tooth neuropathy, and polyglutamine disorders. Autophagy also plays a pivotal role in maintaining tissue homeostasis and protecting organism health. The gastrointestinal tract regulates organism health by modulating food intake, energy balance, and immunity. Growing evidence is strengthening the link between autophagy and digestive tract health in recent years. Here, we also discuss how the fly models have advanced the understanding of digestive physiology regulated by autophagy.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jui-Yu Yeh
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Pirooznia SK, Rosenthal LS, Dawson VL, Dawson TM. Parkinson Disease: Translating Insights from Molecular Mechanisms to Neuroprotection. Pharmacol Rev 2021; 73:33-97. [PMID: 34663684 DOI: 10.1124/pharmrev.120.000189] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson disease (PD) used to be considered a nongenetic condition. However, the identification of several autosomal dominant and recessive mutations linked to monogenic PD has changed this view. Clinically manifest PD is then thought to occur through a complex interplay between genetic mutations, many of which have incomplete penetrance, and environmental factors, both neuroprotective and increasing susceptibility, which variably interact to reach a threshold over which PD becomes clinically manifested. Functional studies of PD gene products have identified many cellular and molecular pathways, providing crucial insights into the nature and causes of PD. PD originates from multiple causes and a range of pathogenic processes at play, ultimately culminating in nigral dopaminergic loss and motor dysfunction. An in-depth understanding of these complex and possibly convergent pathways will pave the way for therapeutic approaches to alleviate the disease symptoms and neuroprotective strategies to prevent disease manifestations. This review is aimed at providing a comprehensive understanding of advances made in PD research based on leveraging genetic insights into the pathogenesis of PD. It further discusses novel perspectives to facilitate identification of critical molecular pathways that are central to neurodegeneration that hold the potential to develop neuroprotective and/or neurorestorative therapeutic strategies for PD. SIGNIFICANCE STATEMENT: A comprehensive review of PD pathophysiology is provided on the complex interplay of genetic and environmental factors and biologic processes that contribute to PD pathogenesis. This knowledge identifies new targets that could be leveraged into disease-modifying therapies to prevent or slow neurodegeneration in PD.
Collapse
Affiliation(s)
- Sheila K Pirooznia
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Liana S Rosenthal
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (S.K.P., V.L.D., T.M.D.), Departments of Neurology (S.K.P., L.S.R., V.L.D., T.M.D.), Departments of Physiology (V.L.D.), Solomon H. Snyder Department of Neuroscience (V.L.D., T.M.D.), Department of Pharmacology and Molecular Sciences (T.M.D.), Johns Hopkins University School of Medicine, Baltimore, Maryland; Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.); and Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana (S.K.P., V.L.D., T.M.D.)
| |
Collapse
|
15
|
Zhang L, Buhr S, Voigt A, Methner A. The Evolutionary Conserved Transmembrane BAX Inhibitor Motif (TMBIM) Containing Protein Family Members 5 and 6 Are Essential for the Development and Survival of Drosophila melanogaster. Front Cell Dev Biol 2021; 9:666484. [PMID: 34540824 PMCID: PMC8446389 DOI: 10.3389/fcell.2021.666484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian Transmembrane BAX Inhibitor Motif (TMBIM) protein family consists of six evolutionarily conserved hydrophobic proteins that affect programmed cell death and the regulation of intracellular calcium levels. The bacterial ortholog BsYetJ is a pH-dependent calcium channel. We here identified seven TMBIM family members in Drosophila melanogaster and describe their expression levels in diverse tissues and developmental stages. A phylogenetic analysis revealed that CG30379 represents the ortholog of human TMBIM4 although these two proteins are much less related than TMBIM5 (CG2076 and CG1287/Mics1) and TMBIM6 (CG7188/Bi-1) to their respective orthologs. For TMBIM1-3 the assignment is more dubious because the fly and the human proteins cluster together. We conducted a functional analysis based on expression levels and the availability of RNAi lines. This revealed that the ubiquitous knockdown of CG3798/Nmda1 and CG3814/Lfg had no effect on development while knockdown of CG2076/dTmbim5 resulted in death at the pupa stage and knockdown of CG7188/dTmbim6 in death at the embryonic stage. Ubiquitous knockdown of the second TMBIM5 paralog CG1287/Mics1 ensued in male sterility. Knockdown of dTmbim5 and 6 in muscle and neural tissue also greatly reduced lifespan through different mechanisms. Knockdown of the mitochondrial family member dTmbim5 resulted in reduced ATP production and a pro-apoptotic expression profile while knockdown of the ER protein dTmbim6 increased the ER calcium levels similar to findings in mammalian cells. Our data demonstrate that dTmbim5 and 6 are essential for fly development and survival but affect cell survival through different mechanisms.
Collapse
Affiliation(s)
- Li Zhang
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Buhr
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,Forschungszentrum Jülich GmbH, JARA-Institute Molecular Neuroscience and Neuroimaging, RWTH Aachen University, Aachen, Germany
| | - Axel Methner
- University Medical Center, Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
16
|
Howard CJ, Frost A. Ribosome-associated quality control and CAT tailing. Crit Rev Biochem Mol Biol 2021; 56:603-620. [PMID: 34233554 DOI: 10.1080/10409238.2021.1938507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Translation is the set of mechanisms by which ribosomes decode genetic messages as they synthesize polypeptides of a defined amino acid sequence. While the ribosome has been honed by evolution for high-fidelity translation, errors are inevitable. Aberrant mRNAs, mRNA structure, defective ribosomes, interactions between nascent proteins and the ribosomal exit tunnel, and insufficient cellular resources, including low tRNA levels, can lead to functionally irreversible stalls. Life thus depends on quality control mechanisms that detect, disassemble and recycle stalled translation intermediates. Ribosome-associated Quality Control (RQC) recognizes aberrant ribosome states and targets their potentially toxic polypeptides for degradation. Here we review recent advances in our understanding of RQC in bacteria, fungi, and metazoans. We focus in particular on an unusual modification made to the nascent chain known as a "CAT tail", or Carboxy-terminal Alanine and Threonine tail, and the mechanisms by which ancient RQC proteins catalyze CAT-tail synthesis.
Collapse
Affiliation(s)
- Conor J Howard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| |
Collapse
|
17
|
Ebanks B, Ingram TL, Katyal G, Ingram JR, Moisoi N, Chakrabarti L. The dysregulated Pink1- Drosophila mitochondrial proteome is partially corrected with exercise. Aging (Albany NY) 2021; 13:14709-14728. [PMID: 34074800 PMCID: PMC8221352 DOI: 10.18632/aging.203128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
One of the genes which has been linked to the onset of juvenile/early onset Parkinson’s disease (PD) is PINK1. There is evidence that supports the therapeutic potential of exercise in the alleviation of PD symptoms. It is possible that exercise may enhance synaptic plasticity, protect against neuro-inflammation and modulate L-Dopa regulated signalling pathways. We explored the effects of exercise on Pink1 deficient Drosophila melanogaster which undergo neurodegeneration and muscle degeneration. We used a ‘power-tower’ type exercise platform to deliver exercise activity to Pink1- and age matched wild-type Drosophila. Mitochondrial proteomic profiles responding to exercise were obtained. Of the 516 proteins identified, 105 proteins had different levels between Pink1- and wild-type non-exercised Drosophila. Gene ontology enrichment analysis and STRING network analysis highlighted proteins and pathways with altered expression within the mitochondrial proteome. Comparison of the Pink1- exercised proteome to wild-type proteomes showed that exercising the Pink1- Drosophila caused their proteomic profile to return towards wild-type levels.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Thomas L Ingram
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Gunjan Katyal
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - John R Ingram
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK
| |
Collapse
|
18
|
Prasuhn J, Davis RL, Kumar KR. Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front Cell Dev Biol 2021; 8:615461. [PMID: 33469539 PMCID: PMC7813753 DOI: 10.3389/fcell.2020.615461] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The underlying pathophysiology of Parkinson's disease is complex, but mitochondrial dysfunction has an established and prominent role. This is supported by an already large and rapidly growing body of evidence showing that the role of mitochondrial (dys)function is central and multifaceted. However, there are clear gaps in knowledge, including the dilemma of explaining why inherited mitochondriopathies do not usually present with parkinsonian symptoms. Many aspects of mitochondrial function are potential therapeutic targets, including reactive oxygen species production, mitophagy, mitochondrial biogenesis, mitochondrial dynamics and trafficking, mitochondrial metal ion homeostasis, sirtuins, and endoplasmic reticulum links with mitochondria. Potential therapeutic strategies may also incorporate exercise, microRNAs, mitochondrial transplantation, stem cell therapies, and photobiomodulation. Despite multiple studies adopting numerous treatment strategies, clinical trials to date have generally failed to show benefit. To overcome this hurdle, more accurate biomarkers of mitochondrial dysfunction are required to detect subtle beneficial effects. Furthermore, selecting study participants early in the disease course, studying them for suitable durations, and stratifying them according to genetic and neuroimaging findings may increase the likelihood of successful clinical trials. Moreover, treatments involving combined approaches will likely better address the complexity of mitochondrial dysfunction in Parkinson's disease. Therefore, selecting the right patients, at the right time, and using targeted combination treatments, may offer the best chance for development of an effective novel therapy targeting mitochondrial dysfunction in Parkinson's disease.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ryan L Davis
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, Sydney, NSW, Australia.,Department of Neurogenetics, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
19
|
Wan Z, Xu J, Huang Y, Zhai Y, Ma Z, Zhou B, Cao Z. Elevating bioavailable iron levels in mitochondria suppresses the defective phenotypes caused by PINK1 loss-of-function in Drosophila melanogaster. Biochem Biophys Res Commun 2020; 532:285-291. [DOI: 10.1016/j.bbrc.2020.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 01/12/2023]
|
20
|
Lin J, Chen K, Chen W, Yao Y, Ni S, Ye M, Zhuang G, Hu M, Gao J, Gao C, Liu Y, Yang M, Zhang Z, Zhang X, Huang J, Chen F, Sun L, Zhang X, Yu S, Chen Y, Jiang Y, Wang S, Yang X, Liu K, Zhou HM, Ji Z, Deng H, Haque ME, Li J, Mi LZ, Li Y, Yang Y. Paradoxical Mitophagy Regulation by PINK1 and TUFm. Mol Cell 2020; 80:607-620.e12. [PMID: 33113344 DOI: 10.1016/j.molcel.2020.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/25/2020] [Accepted: 10/06/2020] [Indexed: 01/19/2023]
Abstract
Aberrant mitophagy has been implicated in a broad spectrum of disorders. PINK1, Parkin, and ubiquitin have pivotal roles in priming mitophagy. However, the entire regulatory landscape and the precise control mechanisms of mitophagy remain to be elucidated. Here, we uncover fundamental mitophagy regulation involving PINK1 and a non-canonical role of the mitochondrial Tu translation elongation factor (TUFm). The mitochondrion-cytosol dual-localized TUFm interacts with PINK1 biochemically and genetically, which is an evolutionarily conserved Parkin-independent route toward mitophagy. A PINK1-dependent TUFm phosphoswitch at Ser222 determines conversion from activating to suppressing mitophagy. PINK1 modulates differential translocation of TUFm because p-S222-TUFm is restricted predominantly to the cytosol, where it inhibits mitophagy by impeding Atg5-Atg12 formation. The self-antagonizing feature of PINK1/TUFm is critical for the robustness of mitophagy regulation, achieved by the unique kinetic parameters of p-S222-TUFm, p-S65-ubiquitin, and their common kinase PINK1. Our findings provide new mechanistic insights into mitophagy and mitophagy-associated disorders.
Collapse
Affiliation(s)
- Jingjing Lin
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kai Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wenfeng Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yizhou Yao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shiwei Ni
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Meina Ye
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Guifeng Zhuang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Minhuang Hu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jun Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Caixi Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan Liu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mingjuan Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhenkun Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xiaohui Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiexiang Huang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Fei Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ling Sun
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xi Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Suhong Yu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yating Jiang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shujuan Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xiaozhen Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Ke Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hai-Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang Jiaxing 314006, China
| | - Zhiliang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - M Emdadul Haque
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, PO Box 17666, United Arab Emirates
| | - Junxiang Li
- AgeCode R&D Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang Jiaxing 314006, China
| | - Li-Zhi Mi
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yuexi Li
- Huadong Research Institute for Medicine and Biotechniques, 293 East Zhongshan Road, Nanjing 210002, China.
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
21
|
Han H, Tan J, Wang R, Wan H, He Y, Yan X, Guo J, Gao Q, Li J, Shang S, Chen F, Tian R, Liu W, Liao L, Tang B, Zhang Z. PINK1 phosphorylates Drp1 S616 to regulate mitophagy-independent mitochondrial dynamics. EMBO Rep 2020; 21:e48686. [PMID: 32484300 PMCID: PMC7403662 DOI: 10.15252/embr.201948686] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 11/09/2022] Open
Abstract
Impairment of PINK1/parkin-mediated mitophagy is currently proposed to be the molecular basis of mitochondrial abnormality in Parkinson's disease (PD). We here demonstrate that PINK1 directly phosphorylates Drp1 on S616. Drp1S616 phosphorylation is significantly reduced in cells and mouse tissues deficient for PINK1, but unaffected by parkin inactivation. PINK1-mediated mitochondrial fission is Drp1S616 phosphorylation dependent. Overexpression of either wild-type Drp1 or of the phosphomimetic mutant Drp1S616D , but not a dephosphorylation-mimic mutant Drp1S616A , rescues PINK1 deficiency-associated phenotypes in Drosophila. Moreover, Drp1 restores PINK1-dependent mitochondrial fission in ATG5-null cells and ATG7-null Drosophila. Reduced Drp1S616 phosphorylation is detected in fibroblasts derived from 4 PD patients harboring PINK1 mutations and in 4 out of 7 sporadic PD cases. Taken together, we have identified Drp1 as a substrate of PINK1 and a novel mechanism how PINK1 regulates mitochondrial fission independent of parkin and autophagy. Our results further link impaired PINK1-mediated Drp1S616 phosphorylation with the pathogenesis of both familial and sporadic PD.
Collapse
Affiliation(s)
- Hailong Han
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical GeneticsInstitute of Molecular Precision MedicineXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jieqiong Tan
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical GeneticsInstitute of Molecular Precision MedicineXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Ruoxi Wang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical GeneticsInstitute of Molecular Precision MedicineXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Huida Wan
- Shanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yaohui He
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Xinxiang Yan
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jifeng Guo
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Qingtao Gao
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical GeneticsInstitute of Molecular Precision MedicineXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Jie Li
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical GeneticsInstitute of Molecular Precision MedicineXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Shuai Shang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical GeneticsInstitute of Molecular Precision MedicineXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Fang Chen
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical GeneticsInstitute of Molecular Precision MedicineXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Runyi Tian
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical GeneticsInstitute of Molecular Precision MedicineXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory BiologySchool of Life SciencesEast China Normal UniversityShanghaiChina
| | - Beisha Tang
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical GeneticsInstitute of Molecular Precision MedicineXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurologyXiangya HospitalCentral South UniversityChangshaChina
- Department of NeurosciencesUniversity of South China Medical SchoolHengyangChina
| |
Collapse
|
22
|
Xu Y, Xie M, Xue J, Xiang L, Li Y, Xiao J, Xiao G, Wang HL. EGCG ameliorates neuronal and behavioral defects by remodeling gut microbiota and TotM expression in Drosophila models of Parkinson's disease. FASEB J 2020; 34:5931-5950. [PMID: 32157731 DOI: 10.1096/fj.201903125rr] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Eigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, is known to exert a beneficial effect on PD patients. Although some mechanisms were suggested to underlie this intervention, it remains unknown if the EGCG-mediated protection was achieved by remodeling gut microbiota. In the present study, 0.1 mM or 0.5 mM EGCG was administered to the Drosophila melanogaster with PINK1 (PTEN induced putative kinase 1) mutations, a prototype PD model, and their behavioral performances, as well as neuronal/mitochondrial morphology (only for 0.5 mM EGCG treatment) were determined. According to the results, the mutant PINK1B9 flies exhibited dopaminergic, survival, and behavioral deficits, which were rescued by EGCG supplementation. Meanwhile, EGCG resulted in profound changes in gut microbial compositions in PINK1B9 flies, restoring the abundance of a set of bacteria. Notably, EGCG protection was blunted when gut microbiota was disrupted by antibiotics. We further isolated four bacterial strains from fly guts and the supplementation of individual Lactobacillus plantarum or Acetobacter pomorum strain exacerbated the neuronal and behavioral dysfunction of PD flies, which could not be rescued by EGCG. Transcriptomic analysis identified TotM as the central gene responding to EGCG or microbial manipulations. Genetic ablation of TotM blocked the recovery activity of EGCG, suggesting that EGCG-mediated protection warrants TotM. Apart from familial form, EGCG was also potent in improving sporadic PD symptoms induced by rotenone treatment, wherein gut microbiota shared regulatory roles. Together, our results suggest the relevance of the gut microbiota-TotM pathway in EGCG-mediated neuroprotection, providing insight into indirect mechanisms underlying nutritional intervention of Parkinson's disease.
Collapse
Affiliation(s)
- Yi Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Mengmeng Xie
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Jinsong Xue
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Ling Xiang
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Yali Li
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Jie Xiao
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| | - Hui-Li Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
23
|
Pathways of protein synthesis and degradation in PD pathogenesis. PROGRESS IN BRAIN RESEARCH 2020; 252:217-270. [PMID: 32247365 DOI: 10.1016/bs.pbr.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of protein aggregates in the brains of individuals with Parkinson's disease (PD) in the early 20th century, the scientific community has been interested in the role of dysfunctional protein metabolism in PD etiology. Recent advances in the field have implicated defective protein handling underlying PD through genetic, in vitro, and in vivo studies incorporating many disease models alongside neuropathological evidence. Here, we discuss the existing body of research focused on understanding cellular pathways of protein synthesis and degradation, and how aberrations in either system could engender PD pathology with special attention to α-synuclein-related consequences. We consider transcription, translation, and post-translational modification to constitute protein synthesis, and protein degradation to encompass proteasome-, lysosome- and endoplasmic reticulum-dependent mechanisms. Novel findings connecting each of these steps in protein metabolism to development of PD indicate that deregulation of protein production and turnover remains an exciting area in PD research.
Collapse
|
24
|
Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease. Acta Neuropathol 2020; 139:319-345. [PMID: 31768670 DOI: 10.1007/s00401-019-02099-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the gradual appearance of α-synuclein (α-syn)-containing neuronal protein aggregates. Although the exact mechanism of α-syn-mediated cell death remains elusive, recent research suggests that α-syn-induced alterations in neuronal excitability contribute to cell death in PD. Because the fragile X mental retardation protein (FMRP) controls the expression and function of numerous neuronal genes related to neuronal excitability and synaptic function, we here investigated the role of FMRP in α-syn-associated pathological changes in cell culture and mouse models of PD as well as in post-mortem human brain tissue from PD patients. We found FMRP to be decreased in cultured DA neurons and in the mouse brain in response to α-syn overexpression. FMRP was, furthermore, lost in the SNc of PD patients and in patients with early stages of incidental Lewy body disease (iLBD). Unlike fragile X syndrome (FXS), FMR1 expression in response to α-syn was regulated by a mechanism involving Protein Kinase C (PKC) and cAMP response element-binding protein (CREB). Reminiscent of FXS neurons, α-syn-overexpressing cells exhibited an increase in membrane N-type calcium channels, increased phosphorylation of ERK1/2, eIF4E and S6, increased overall protein synthesis, and increased expression of Matrix Metalloproteinase 9 (MMP9). FMRP affected neuronal function in a PD animal model, because FMRP-KO mice were resistant to the effect of α-syn on striatal dopamine release. In summary, our results thus reveal a new role of FMRP in PD and support the examination of FMRP-regulated genes in PD disease progression.
Collapse
|
25
|
Wu Z, Tantray I, Lim J, Chen S, Li Y, Davis Z, Sitron C, Dong J, Gispert S, Auburger G, Brandman O, Bi X, Snyder M, Lu B. MISTERMINATE Mechanistically Links Mitochondrial Dysfunction with Proteostasis Failure. Mol Cell 2019; 75:835-848.e8. [PMID: 31378462 DOI: 10.1016/j.molcel.2019.06.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
Mitochondrial dysfunction and proteostasis failure frequently coexist as hallmarks of neurodegenerative disease. How these pathologies are related is not well understood. Here, we describe a phenomenon termed MISTERMINATE (mitochondrial-stress-induced translational termination impairment and protein carboxyl terminal extension), which mechanistically links mitochondrial dysfunction with proteostasis failure. We show that mitochondrial dysfunction impairs translational termination of nuclear-encoded mitochondrial mRNAs, including complex-I 30kD subunit (C-I30) mRNA, occurring on the mitochondrial surface in Drosophila and mammalian cells. Ribosomes stalled at the normal stop codon continue to add to the C terminus of C-I30 certain amino acids non-coded by mRNA template. C-terminally extended C-I30 is toxic when assembled into C-I and forms aggregates in the cytosol. Enhancing co-translational quality control prevents C-I30 C-terminal extension and rescues mitochondrial and neuromuscular degeneration in a Parkinson's disease model. These findings emphasize the importance of efficient translation termination and reveal unexpected link between mitochondrial health and proteome homeostasis mediated by MISTERMINATE.
Collapse
Affiliation(s)
- Zhihao Wu
- Department of Pathology and Programs in Cancer Biology and Neurosciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ishaq Tantray
- Department of Pathology and Programs in Cancer Biology and Neurosciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Junghyun Lim
- Department of Pathology and Programs in Cancer Biology and Neurosciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Cancer Biology, Genentech Inc., South San Francisco, CA, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Li
- Department of Pathology and Programs in Cancer Biology and Neurosciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Zoe Davis
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Cole Sitron
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Dong
- Department of Pathology and Programs in Cancer Biology and Neurosciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, Goethe, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, Goethe, Germany
| | - Onn Brandman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaolin Bi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Bingwei Lu
- Department of Pathology and Programs in Cancer Biology and Neurosciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
26
|
Correddu D, Leung IK. Targeting mRNA translation in Parkinson’s disease. Drug Discov Today 2019; 24:1295-1303. [DOI: 10.1016/j.drudis.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/23/2019] [Accepted: 04/02/2019] [Indexed: 01/22/2023]
|
27
|
Samluk L, Urbanska M, Kisielewska K, Mohanraj K, Kim MJ, Machnicka K, Liszewska E, Jaworski J, Chacinska A. Cytosolic translational responses differ under conditions of severe short-term and long-term mitochondrial stress. Mol Biol Cell 2019; 30:1864-1877. [PMID: 31116686 PMCID: PMC6727742 DOI: 10.1091/mbc.e18-10-0628] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies demonstrated that cells inhibit protein synthesis as a compensatory mechanism for mitochondrial dysfunction. Protein synthesis can be attenuated by 1) the inhibition of mTOR kinase, which results in a decrease in the phosphorylation of S6K1 and 4E-BP1 proteins, and 2) an increase in the phosphorylation of eIF2α protein. The present study investigated both of these pathways under conditions of short-term acute and long-term mitochondrial stress. Short-term responses were triggered in mammalian cells by treatment with menadione, antimycin A, or CCCP. Long-term mitochondrial stress was induced by prolonged treatment with menadione or rotenone and expression of genetic alterations, such as knocking down the MIA40 oxidoreductase or knocking out NDUFA11 protein. Short-term menadione, antimycin A, or CCCP cell treatment led to the inhibition of protein synthesis, accompanied by a decrease in mTOR kinase activity, an increase in the phosphorylation of eIF2α (Ser51), and an increase in the level of ATF4 transcription factor. Conversely, long-term stress led to a decrease in eIF2α (Ser51) phosphorylation and ATF4 expression and to an increase in S6K1 (Thr389) phosphorylation. Thus, under long-term mitochondrial stress, cells trigger long-lasting adaptive responses for protection against excessive inhibition of protein synthesis.
Collapse
Affiliation(s)
- Lukasz Samluk
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.,International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Malgorzata Urbanska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw 04-730, Poland
| | | | - Karthik Mohanraj
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.,ReMedy International Research Agenda Unit, University of Warsaw, Warsaw 02-097, Poland
| | - Min-Ji Kim
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
| | - Katarzyna Machnicka
- International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Ewa Liszewska
- International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Agnieszka Chacinska
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.,International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland.,ReMedy International Research Agenda Unit, University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
28
|
Guaragnella N, Coyne LP, Chen XJ, Giannattasio S. Mitochondria-cytosol-nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:5066171. [PMID: 30165482 DOI: 10.1093/femsyr/foy088] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are key cell organelles with a prominent role in both energetic metabolism and the maintenance of cellular homeostasis. Since mitochondria harbor their own genome, which encodes a limited number of proteins critical for oxidative phosphorylation and protein translation, their function and biogenesis strictly depend upon nuclear control. The yeast Saccharomyces cerevisiae has been a unique model for understanding mitochondrial DNA organization and inheritance as well as for deciphering the process of assembly of mitochondrial components. In the last three decades, yeast also provided a powerful tool for unveiling the communication network that coordinates the functions of the nucleus, the cytosol and mitochondria. This crosstalk regulates how cells respond to extra- and intracellular changes either to maintain cellular homeostasis or to activate cell death. This review is focused on the key pathways that mediate nucleus-cytosol-mitochondria communications through both transcriptional regulation and proteostatic signaling. We aim to highlight yeast that likely continues to serve as a productive model organism for mitochondrial research in the years to come.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - Liam P Coyne
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
29
|
Zhou ZD, Selvaratnam T, Lee JCT, Chao YX, Tan EK. Molecular targets for modulating the protein translation vital to proteostasis and neuron degeneration in Parkinson's disease. Transl Neurodegener 2019; 8:6. [PMID: 30740222 PMCID: PMC6360798 DOI: 10.1186/s40035-019-0145-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, which is characterized by the progressive loss of dopaminergic neurons in the Substantia Nigra pars compacta concomitant with Lewy body formation in affected brain areas. The detailed pathogenic mechanisms underlying the selective loss of dopaminergic neurons in PD are unclear, and no drugs or treatments have been developed to alleviate progressive dopaminergic neuron degeneration in PD. However, the formation of α-synuclein-positive protein aggregates in Lewy body has been identified as a common pathological feature of PD, possibly stemming from the consequence of protein misfolding and dysfunctional proteostasis. Proteostasis is the mechanism for maintaining protein homeostasis via modulation of protein translation, enhancement of chaperone capacity and the prompt clearance of misfolded protein by the ubiquitin proteasome system and autophagy. Deregulated protein translation and impaired capacities of chaperone or protein degradation can disturb proteostasis processes, leading to pathological protein aggregation and neurodegeneration in PD. In recent years, multiple molecular targets in the modulation of protein translation vital to proteostasis and dopaminergic neuron degeneration have been identified. The potential pathophysiological and therapeutic significance of these molecular targets to neurodegeneration in PD is highlighted.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School Singapore, 8 College Road, Singapore, Singapore
| | - Thevapriya Selvaratnam
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Ji Chao Tristan Lee
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Yin Xia Chao
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Eng-King Tan
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608 Singapore
- Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School Singapore, 8 College Road, Singapore, Singapore
| |
Collapse
|
30
|
Zhang Y, Wang L, Meng L, Cao G, Wu Y. Sirtuin 6 overexpression relieves sepsis-induced acute kidney injury by promoting autophagy. Cell Cycle 2019; 18:425-436. [PMID: 30700227 DOI: 10.1080/15384101.2019.1568746] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sirtuin 6 (SIRT6) has the function of regulating autophagy. The aim of this study was to investigate the mechanism through which SIRT6 relieved acute kidney injury (AKI) caused by sepsis. The AKI model was established with lipopolysaccharides (LPS) using mice. Hematoxylin-eosin (HE) staining and streptavidin-perosidase (SP) staining was used to observe kidney tissue and test SIRT6 and LC3B proteins in kidney. Enzyme-linked immunosorbent assay (ELISA) was performed to detected the tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) concentrations. Cell counting kit-8 (CCK-8) assay and flow cytometry were carried out to test the cell viability and apoptosis rate respectively. Protein and mRNA were determined by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). AKI induced by LPS had self-repairing ability. At 12 h after modeling, the expression levels of TNF-α, IL-6, SIRT6 and LC3B-II/LC3B-I were first significantly increased and were then significantly decreased at 48 h after modeling. LPS inhibited the growth of HK-2 cells and promoted the expressions of TNF-α, IL-6, SIRT6 and LC3B. Overexpression of SIRT6 down-regulated the secretion of TNF-α and IL-6 induced by LPS. SIRT6 overexpression inhibited apoptosis induced by LPS and promoted autophagy in HK-2 cells. Silencing of the SIRT6 gene not only promoted the secretion of TNF-α and IL-6 by HK-2 cells, but also promoted apoptosis and reduced autophagy. LPS up-regulated the expression of SIRT6 gene in HK-2 cells. Overexpression of the SIRT6 gene could inhibit apoptosis and induce autophagy, which might be involved in repairing kidney damage caused by LPS.
Collapse
Affiliation(s)
- Yang Zhang
- a College of Anesthesia , Xuzhou Medical University , Xuzhou , China
| | - Ling Wang
- b Department of Nephrology , Xuzhou No.1 People's Hospital , Xuzhou , China
| | - Lei Meng
- c Department of Intensive Care Unit , The Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Guangke Cao
- d Department of Intensive Care Unit , Xuzhou No.1 People's Hospital , Xuzhou , China
| | - Yu Wu
- b Department of Nephrology , Xuzhou No.1 People's Hospital , Xuzhou , China
| |
Collapse
|
31
|
Abstract
Autophagy is a conserved process that degrades intracellular components through lysosomes, thereby maintaining energy homeostasis and renewal of organelles. Mounting evidence indicates that autophagy plays a key role in aging and aging-related diseases. Enhanced autophagy can delay aging and prolong life span. The absence of autophagy leads to the accumulation of mutant and misfolded proteins in the cell, which is the basis for the emergence and development of neurodegenerative diseases and other aging-related diseases. It will be of importance to develop approaches to extend the lifespan and improve the health of elderly individuals through the modulation of autophagy.
Collapse
Affiliation(s)
- Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Zheng-Hong Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Department of Pharmacology and Laboratory of Aging and Nervous Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
32
|
Wu Z, Wu A, Dong J, Sigears A, Lu B. Grape skin extract improves muscle function and extends lifespan of a Drosophila model of Parkinson's disease through activation of mitophagy. Exp Gerontol 2018; 113:10-17. [PMID: 30248358 DOI: 10.1016/j.exger.2018.09.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022]
Abstract
Recent studies suggest that moderate red wine consumption may confer several health benefits, including protection against heart disease, certain cancers and multiple age-related neurological diseases such as Alzheimer's disease. These health benefits are assumed to come from a compound from grape skin called resveratrol, which has been proposed to be a pro-longevity agent. Whether resveratrol accounts for all the health benefits of grape-derived nutrients and the molecular and cellular mechanisms underlying the beneficial effects of such nutrients are not well understood. Here we investigated the effect of supplementing grape skin extract (GSE) left from red wine-production process to the daily food intake of a Drosophila melanogaster model of Parkinson's disease (PD) associated with PTEN-induced kinase 1 (PINK1) loss-of-function. Consumption of GSE resulted in rescue of mitochondrial morphological defects, improvement of indirect flight muscle function and health-span, and prolonged lifespan of the PINK1 mutant flies. Further biochemical and genetic studies revealed a link between activation of mitophagy and the beneficial effects of GSE. Our results indicate that GSE can promote autophagy activation, preserve mitochondria function, and protect against PD pathogenesis, and that the beneficial effect of GSE in mitophagy activation is not accounted for by resveratrol alone.
Collapse
Affiliation(s)
- Zhihao Wu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94303, United States of America.
| | - Alan Wu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94303, United States of America; Crystal Springs Uplands School, Hillsborough, CA 94010, United States of America
| | - Jason Dong
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94303, United States of America
| | - Andy Sigears
- Crystal Springs Uplands School, Hillsborough, CA 94010, United States of America
| | - Bingwei Lu
- Department of Pathology and Programs in Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94303, United States of America.
| |
Collapse
|
33
|
Chiku T, Hayashishita M, Saito T, Oka M, Shinno K, Ohtake Y, Shimizu S, Asada A, Hisanaga SI, Iijima KM, Ando K. S6K/p70S6K1 protects against tau-mediated neurodegeneration by decreasing the level of tau phosphorylated at Ser262 in a Drosophila model of tauopathy. Neurobiol Aging 2018; 71:255-264. [DOI: 10.1016/j.neurobiolaging.2018.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 02/08/2023]
|
34
|
Ma P, Yun J, Deng H, Guo M. Atg1-mediated autophagy suppresses tissue degeneration in pink1/parkin mutants by promoting mitochondrial fission in Drosophila. Mol Biol Cell 2018; 29:3082-3092. [PMID: 30354903 PMCID: PMC6340213 DOI: 10.1091/mbc.e18-04-0243] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial dysfunction is considered a hallmark of multiple neurodegenerative diseases, including Parkinson’s disease (PD). The PD familial genes pink1 and parkin function in a conserved pathway that regulates mitochondrial function, including dynamics (fusion and fission). Mammalian cell culture studies suggested that the pink1/parkin pathway promotes mitophagy (mitochondrial autophagy). Mitophagy through mitochondrial fission and autolysosomal recycling was considered a quality control system at the organelle level. Whether defects in this quality control machinery lead to pathogenesis in vivo in PD remains elusive. Here, we found that elevating autophagy by atg1 overexpression can significantly rescue mitochondrial defects and apoptotic cell death in pink1 and parkin mutants in Drosophila. Surprisingly, the rescue effect relied both on the autophagy–lysosome machinery and on drp1, a mitochondrial fission molecule. We further showed that Atg1 promotes mitochondrial fission by posttranscriptional increase in the Drp1 protein level. In contrast, increasing fission (by drp1 overexpression) or inhibiting fusion (by knocking down mitofusin [mfn]) rescues pink1 mutants when lysosomal or proteasomal machinery is impaired. Taken together, our results identified Atg1 as a dual-function node that controls mitochondrial quality by promoting mitochondria fission and autophagy, which makes it a potential therapeutic target for treatment of mitochondrial dysfunction–related diseases, including PD.
Collapse
Affiliation(s)
- Peng Ma
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 20092, China
| | - Jina Yun
- Department of Neurology, Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, and California NanoSystems Institute at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Hansong Deng
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 20092, China.,Department of Neurology, Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, and California NanoSystems Institute at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ming Guo
- Department of Neurology, Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, and California NanoSystems Institute at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
35
|
Monnier V, Llorens JV, Navarro JA. Impact of Drosophila Models in the Study and Treatment of Friedreich's Ataxia. Int J Mol Sci 2018; 19:E1989. [PMID: 29986523 PMCID: PMC6073496 DOI: 10.3390/ijms19071989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila melanogaster has been for over a century the model of choice of several neurobiologists to decipher the formation and development of the nervous system as well as to mirror the pathophysiological conditions of many human neurodegenerative diseases. The rare disease Friedreich’s ataxia (FRDA) is not an exception. Since the isolation of the responsible gene more than two decades ago, the analysis of the fly orthologue has proven to be an excellent avenue to understand the development and progression of the disease, to unravel pivotal mechanisms underpinning the pathology and to identify genes and molecules that might well be either disease biomarkers or promising targets for therapeutic interventions. In this review, we aim to summarize the collection of findings provided by the Drosophila models but also to go one step beyond and propose the implications of these discoveries for the study and cure of this disorder. We will present the physiological, cellular and molecular phenotypes described in the fly, highlighting those that have given insight into the pathology and we will show how the ability of Drosophila to perform genetic and pharmacological screens has provided valuable information that is not easily within reach of other cellular or mammalian models.
Collapse
Affiliation(s)
- Véronique Monnier
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Sorbonne Paris Cité, Université Paris Diderot, UMR8251 CNRS, 75013 Paris, France.
| | - Jose Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 96100 Valencia, Spain.
| | - Juan Antonio Navarro
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
36
|
Franco-Iborra S, Vila M, Perier C. Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson's Disease and Huntington's Disease. Front Neurosci 2018; 12:342. [PMID: 29875626 PMCID: PMC5974257 DOI: 10.3389/fnins.2018.00342] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
In recent years, several important advances have been made in our understanding of the pathways that lead to cell dysfunction and death in Parkinson's disease (PD) and Huntington's disease (HD). Despite distinct clinical and pathological features, these two neurodegenerative diseases share critical processes, such as the presence of misfolded and/or aggregated proteins, oxidative stress, and mitochondrial anomalies. Even though the mitochondria are commonly regarded as the "powerhouses" of the cell, they are involved in a multitude of cellular events such as heme metabolism, calcium homeostasis, and apoptosis. Disruption of mitochondrial homeostasis and subsequent mitochondrial dysfunction play a key role in the pathophysiology of neurodegenerative diseases, further highlighting the importance of these organelles, especially in neurons. The maintenance of mitochondrial integrity through different surveillance mechanisms is thus critical for neuron survival. Mitochondria display a wide range of quality control mechanisms, from the molecular to the organellar level. Interestingly, many of these lines of defense have been found to be altered in neurodegenerative diseases such as PD and HD. Current knowledge and further elucidation of the novel pathways that protect the cell through mitochondrial quality control may offer unique opportunities for disease therapy in situations where ongoing mitochondrial damage occurs. In this review, we discuss the involvement of mitochondrial dysfunction in neurodegeneration with a special focus on the recent findings regarding mitochondrial quality control pathways, beyond the classical effects of increased production of reactive oxygen species (ROS) and bioenergetic alterations. We also discuss how disturbances in these processes underlie the pathophysiology of neurodegenerative disorders such as PD and HD.
Collapse
Affiliation(s)
- Sandra Franco-Iborra
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Miquel Vila
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Celine Perier
- Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| |
Collapse
|
37
|
Hernando-Rodríguez B, Erinjeri AP, Rodríguez-Palero MJ, Millar V, González-Hernández S, Olmedo M, Schulze B, Baumeister R, Muñoz MJ, Askjaer P, Artal-Sanz M. Combined flow cytometry and high-throughput image analysis for the study of essential genes in Caenorhabditis elegans. BMC Biol 2018; 16:36. [PMID: 29598825 PMCID: PMC5875015 DOI: 10.1186/s12915-018-0496-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/06/2018] [Indexed: 12/28/2022] Open
Abstract
Background Advances in automated image-based microscopy platforms coupled with high-throughput liquid workflows have facilitated the design of large-scale screens utilising multicellular model organisms such as Caenorhabditis elegans to identify genetic interactions, therapeutic drugs or disease modifiers. However, the analysis of essential genes has lagged behind because lethal or sterile mutations pose a bottleneck for high-throughput approaches, and a systematic way to analyse genetic interactions of essential genes in multicellular organisms has been lacking. Results In C. elegans, non-conditional lethal mutations can be maintained in heterozygosity using chromosome balancers, commonly expressing green fluorescent protein (GFP) in the pharynx. However, gene expression or function is typically monitored by the use of fluorescent reporters marked with the same fluorophore, presenting a challenge to sort worm populations of interest, particularly at early larval stages. Here, we develop a sorting strategy capable of selecting homozygous mutants carrying a GFP stress reporter from GFP-balanced animals at the second larval stage. Because sorting is not completely error-free, we develop an automated high-throughput image analysis protocol that identifies and discards animals carrying the chromosome balancer. We demonstrate the experimental usefulness of combining sorting of homozygous lethal mutants and automated image analysis in a functional genomic RNA interference (RNAi) screen for genes that genetically interact with mitochondrial prohibitin (PHB). Lack of PHB results in embryonic lethality, while homozygous PHB deletion mutants develop into sterile adults due to maternal contribution and strongly induce the mitochondrial unfolded protein response (UPRmt). In a chromosome-wide RNAi screen for C. elegans genes having human orthologues, we uncover both known and new PHB genetic interactors affecting the UPRmt and growth. Conclusions The method presented here allows the study of balanced lethal mutations in a high-throughput manner. It can be easily adapted depending on the user’s requirements and should serve as a useful resource for the C. elegans community for probing new biological aspects of essential nematode genes as well as the generation of more comprehensive genetic networks. Electronic supplementary material The online version of this article (10.1186/s12915-018-0496-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Blanca Hernando-Rodríguez
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Annmary Paul Erinjeri
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - María Jesús Rodríguez-Palero
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Val Millar
- GE Healthcare Life Sciences, Maynard Centre, Forest Farm, Whitchurch, Cardiff, UK.,Present address: Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sara González-Hernández
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Present address: Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Olmedo
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.,Present address: Department of Genetics, University of Seville, Seville, Spain
| | - Bettina Schulze
- Centre for Biological Signalling Studies (BIOSS), Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, and ZBMZ Center for Biochemistry and Molecular Cell Biology (Faculty of Medicine), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ralf Baumeister
- Centre for Biological Signalling Studies (BIOSS), Laboratory for Bioinformatics and Molecular Genetics, Faculty of Biology, and ZBMZ Center for Biochemistry and Molecular Cell Biology (Faculty of Medicine), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Manuel J Muñoz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide, Seville, Spain. .,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain.
| |
Collapse
|
38
|
Edenharter O, Schneuwly S, Navarro JA. Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Drosophila Model of Friedreich's Ataxia. Front Mol Neurosci 2018; 11:38. [PMID: 29563863 PMCID: PMC5845754 DOI: 10.3389/fnmol.2018.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most important recessive ataxia in the Caucasian population. It is caused by a deficit of the mitochondrial protein frataxin. Despite its pivotal effect on biosynthesis of iron-sulfur clusters and mitochondrial energy production, little is known about the influence of frataxin depletion on homeostasis of the cellular mitochondrial network. We have carried out a forward genetic screen to analyze genetic interactions between genes controlling mitochondrial homeostasis and Drosophila frataxin. Our screen has identified silencing of Drosophila mitofusin (Marf) as a suppressor of FRDA phenotypes in glia. Drosophila Marf is known to play crucial roles in mitochondrial fusion, mitochondrial degradation and in the interface between mitochondria and endoplasmic reticulum (ER). Thus, we have analyzed the effects of frataxin knockdown on mitochondrial morphology, mitophagy and ER function in our fly FRDA model using different histological and molecular markers such as tetramethylrhodamine, ethyl ester (TMRE), mitochondria-targeted GFP (mitoGFP), p62, ATG8a, LAMP1, Xbp1 and BiP/GRP78. Furthermore, we have generated the first Drosophila transgenic line containing the mtRosella construct under the UAS control to study the progression of the mitophagy process in vivo. Our results indicated that frataxin-deficiency had a small impact on mitochondrial morphology but enhanced mitochondrial clearance and altered the ER stress response in Drosophila. Remarkably, we demonstrate that downregulation of Marf suppresses ER stress in frataxin-deficient cells and this is sufficient to improve locomotor dysfunction, brain degeneration and lipid dyshomeostasis in our FRDA model. In agreement, chemical reduction of ER stress by means of two different compounds was sufficient to ameliorate the effects of frataxin deficiency in three different fly FRDA models. Altogether, our results strongly suggest that the protection mediated by Marf knockdown in glia is mainly linked to its role in the mitochondrial-ER tethering and not to mitochondrial dynamics or mitochondrial degradation and that ER stress is a novel and pivotal player in the progression and etiology of FRDA. This work might define a new pathological mechanism in FRDA, linking mitochondrial dysfunction due to frataxin deficiency and mitofusin-mediated ER stress, which might be responsible for characteristic cellular features of the disease and also suggests ER stress as a therapeutic target.
Collapse
Affiliation(s)
- Oliver Edenharter
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
39
|
Zanon A, Kalvakuri S, Rakovic A, Foco L, Guida M, Schwienbacher C, Serafin A, Rudolph F, Trilck M, Grünewald A, Stanslowsky N, Wegner F, Giorgio V, Lavdas AA, Bodmer R, Pramstaller PP, Klein C, Hicks AA, Pichler I, Seibler P. SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila. Hum Mol Genet 2017; 26:2412-2425. [PMID: 28379402 DOI: 10.1093/hmg/ddx132] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/16/2017] [Indexed: 12/26/2022] Open
Abstract
Mutations in the Parkin gene (PARK2) have been linked to a recessive form of Parkinson's disease (PD) characterized by the loss of dopaminergic neurons in the substantia nigra. Deficiencies of mitochondrial respiratory chain complex I activity have been observed in the substantia nigra of PD patients, and loss of Parkin results in the reduction of complex I activity shown in various cell and animal models. Using co-immunoprecipitation and proximity ligation assays on endogenous proteins, we demonstrate that Parkin interacts with mitochondrial Stomatin-like protein 2 (SLP-2), which also binds the mitochondrial lipid cardiolipin and functions in the assembly of respiratory chain proteins. SH-SY5Y cells with a stable knockdown of Parkin or SLP-2, as well as induced pluripotent stem cell-derived neurons from Parkin mutation carriers, showed decreased complex I activity and altered mitochondrial network morphology. Importantly, induced expression of SLP-2 corrected for these mitochondrial alterations caused by reduced Parkin function in these cells. In-vivo Drosophila studies showed a genetic interaction of Parkin and SLP-2, and further, tissue-specific or global overexpression of SLP-2 transgenes rescued parkin mutant phenotypes, in particular loss of dopaminergic neurons, mitochondrial network structure, reduced ATP production, and flight and motor dysfunction. The physical and genetic interaction between Parkin and SLP-2 and the compensatory potential of SLP-2 suggest a functional epistatic relationship to Parkin and a protective role of SLP-2 in neurons. This finding places further emphasis on the significance of Parkin for the maintenance of mitochondrial function in neurons and provides a novel target for therapeutic strategies.
Collapse
Affiliation(s)
- Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Sreehari Kalvakuri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Luisa Foco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Marianna Guida
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Christine Schwienbacher
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Alice Serafin
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Franziska Rudolph
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Michaela Trilck
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany.,Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Nancy Stanslowsky
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Alexandros A Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy.,Department of Neurology, General Central Hospital, 39100 Bolzano, Italy.,Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, 39100 Bolzano, Italy
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
40
|
D’Amico D, Sorrentino V, Auwerx J. Cytosolic Proteostasis Networks of the Mitochondrial Stress Response. Trends Biochem Sci 2017; 42:712-725. [DOI: 10.1016/j.tibs.2017.05.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
|
41
|
Evsyukov V, Domanskyi A, Bierhoff H, Gispert S, Mustafa R, Schlaudraff F, Liss B, Parlato R. Genetic mutations linked to Parkinson's disease differentially control nucleolar activity in pre-symptomatic mouse models. Dis Model Mech 2017; 10:633-643. [PMID: 28360124 PMCID: PMC5451170 DOI: 10.1242/dmm.028092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Genetic mutations underlying neurodegenerative disorders impair ribosomal DNA (rDNA) transcription suggesting that nucleolar dysfunction could be a novel pathomechanism in polyglutamine diseases and in certain forms of amyotrophic lateral sclerosis/frontotemporal dementia. Here, we investigated nucleolar activity in pre-symptomatic digenic models of Parkinson's disease (PD) that model the multifactorial aetiology of this disease. To this end, we analysed a novel mouse model mildly overexpressing mutant human α-synuclein (hA53T-SNCA) in a PTEN-induced kinase 1 (PINK1/PARK6) knockout background and mutant mice lacking both DJ-1 (also known as PARK7) and PINK1. We showed that overexpressed hA53T-SNCA localizes to the nucleolus. Moreover, these mutants show a progressive reduction of rDNA transcription linked to a reduced mouse lifespan. By contrast, rDNA transcription is preserved in DJ-1/PINK1 double knockout (DKO) mice. mRNA levels of the nucleolar transcription initiation factor 1A (TIF-IA, also known as RRN3) decrease in the substantia nigra of individuals with PD. Because loss of TIF-IA, as a tool to mimic nucleolar stress, increases oxidative stress and because DJ-1 and PINK1 mutations result in higher vulnerability to oxidative stress, we further explored the synergism between these PD-associated genes and impaired nucleolar function. By the conditional ablation of TIF-IA, we blocked ribosomal RNA (rRNA) synthesis in adult dopaminergic neurons in a DJ-1/PINK1 DKO background. However, the early phenotype of these triple knockout mice was similar to those mice exclusively lacking TIF-IA. These data sustain a model in which loss of DJ-1 and PINK1 does not impair nucleolar activity in a pre-symptomatic stage. This is the first study to analyse nucleolar function in digenic PD models. We can conclude that, at least in these models, the nucleolus is not as severely disrupted as previously shown in DA neurons from PD patients and neurotoxin-based PD mouse models. The results also show that the early increase in rDNA transcription and nucleolar integrity may represent specific homeostatic responses in these digenic pre-symptomatic PD models. Summary: Genetic mutations linked to Parkinson's disease lead to stage-specific deregulation of the nucleolus, a major integrator of the cellular stress response.
Collapse
Affiliation(s)
- Valentin Evsyukov
- Institute of Anatomy and Medical Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Andrii Domanskyi
- German Cancer Research Center, Molecular Biology of the Cell I, 69120 Heidelberg, Germany.,Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Holger Bierhoff
- German Cancer Research Center, Molecular Biology of the Cell II, 69120 Heidelberg, Germany.,Department of Biochemistry, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, 07743 Jena, Germany.,Leibniz-Institute on Aging - Fritz Lipmann Institute (FLI), 07743 Jena, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Rasem Mustafa
- Institute of Anatomy and Medical Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany.,Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Falk Schlaudraff
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Rosanna Parlato
- Institute of Anatomy and Medical Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany .,Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| |
Collapse
|
42
|
Zhang Y, Nguyen DT, Olzomer EM, Poon GP, Cole NJ, Puvanendran A, Phillips BR, Hesselson D. Rescue of Pink1 Deficiency by Stress-Dependent Activation of Autophagy. Cell Chem Biol 2017; 24:471-480.e4. [PMID: 28366621 DOI: 10.1016/j.chembiol.2017.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/02/2017] [Accepted: 03/02/2017] [Indexed: 10/19/2022]
Abstract
Stimulating autophagy is a promising therapeutic strategy for slowing the progression of neurodegenerative disease. Neurons are insensitive to current approaches based on mTOR inhibition for activating autophagy, and instead may rely on the Parkinson's disease-associated proteins PINK1 and PARKIN to activate the autophagy-lysosomal pathway in response to mitochondrial damage. We developed a multifactorial zebrafish drug-screening platform combining Pink1 deficiency with an environmental toxin to compromise mitochondrial function and trigger dopaminergic neuron loss. Using a phenotypic screening strategy, we identified a series of piperazine phenothiazines, including trifluoperazine, which rescued Pink1 deficiency by activating autophagy selectively in stressed zebrafish and human cells. We show that trifluoperazine acts downstream of, or parallel to, PINK1/PARKIN to stimulate transcription factor EB nuclear translocation and the expression of autophagy-lysosomal target genes. These data suggest that stress-dependent pharmacological reactivation of autophagy could prevent the loss of vulnerable neurons to slow neurodegeneration.
Collapse
Affiliation(s)
- Yuxi Zhang
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - David T Nguyen
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Ellen M Olzomer
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Gin P Poon
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nicholas J Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Anita Puvanendran
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Brigitte R Phillips
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Australia, Sydney, NSW 2010, Australia.
| |
Collapse
|
43
|
Tsuyama T, Tsubouchi A, Usui T, Imamura H, Uemura T. Mitochondrial dysfunction induces dendritic loss via eIF2α phosphorylation. J Cell Biol 2017; 216:815-834. [PMID: 28209644 PMCID: PMC5346966 DOI: 10.1083/jcb.201604065] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 11/30/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Mitochondria are key contributors to the etiology of diseases associated with neuromuscular defects or neurodegeneration. How changes in cellular metabolism specifically impact neuronal intracellular processes and cause neuropathological events is still unclear. We here dissect the molecular mechanism by which mitochondrial dysfunction induced by Prel aberrant function mediates selective dendritic loss in Drosophila melanogaster class IV dendritic arborization neurons. Using in vivo ATP imaging, we found that neuronal cellular ATP levels during development are not correlated with the progression of dendritic loss. We searched for mitochondrial stress signaling pathways that induce dendritic loss and found that mitochondrial dysfunction is associated with increased eIF2α phosphorylation, which is sufficient to induce dendritic pathology in class IV arborization neurons. We also observed that eIF2α phosphorylation mediates dendritic loss when mitochondrial dysfunction results from other genetic perturbations. Furthermore, mitochondrial dysfunction induces translation repression in class IV neurons in an eIF2α phosphorylation-dependent manner, suggesting that differential translation attenuation among neuron subtypes is a determinant of preferential vulnerability.
Collapse
Affiliation(s)
- Taiichi Tsuyama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Asako Tsubouchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
44
|
Martin I. Decoding Parkinson's Disease Pathogenesis: The Role of Deregulated mRNA Translation. JOURNAL OF PARKINSONS DISEASE 2017; 6:17-27. [PMID: 26889638 PMCID: PMC4927901 DOI: 10.3233/jpd-150738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mutations in a number of genes cause rare familial forms of Parkinson’s disease and provide profound insight into potential mechanisms governing disease pathogenesis. Recently, a role for translation and metabolism of mRNA has emerged in the development of various neurodegenerative disorders including Parkinson’s disease (PD). In PD, preliminary evidence supports a role for aberrant translation in the disease process stemming from mutations in several genes. Translation control is central to maintaining organism homeostasis under variable environmental conditions and deregulation of this may predispose to certain stressors. Hypothetically, deregulated translation may be detrimental to neuronal viability in PD through the misexpression of a subset of transcripts or through the impact of excessive bulk translation on energy consumption and burden on protein homeostatic mechanisms. While compelling preliminary evidence exists to support a role for translation in PD, much more work is required to identify specific mechanisms linking altered translation to the disease process.
Collapse
Affiliation(s)
- Ian Martin
- Correspondence to: Ian Martin, PhD Jungers Center for Neurosciences Research Parkinson Center of Oregon Department of Neurology - Mail Code L623 Oregon Health and Science University 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Tel.: +1 503 494 9140; Fax: +1 503 494 7358; E-mail:
| |
Collapse
|
45
|
Wei Y, Reveal B, Cai W, Lilly MA. The GATOR1 Complex Regulates Metabolic Homeostasis and the Response to Nutrient Stress in Drosophila melanogaster. G3 (BETHESDA, MD.) 2016; 6:3859-3867. [PMID: 27672113 PMCID: PMC5144957 DOI: 10.1534/g3.116.035337] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023]
Abstract
TORC1 regulates metabolism and growth in response to a large array of upstream inputs. The evolutionarily conserved trimeric GATOR1 complex inhibits TORC1 activity in response to amino acid limitation. In humans, the GATOR1 complex has been implicated in a wide array of pathologies including cancer and hereditary forms of epilepsy. However, the precise role of GATOR1 in animal physiology remains largely undefined. Here, we characterize null mutants of the GATOR1 components nprl2, nprl3, and iml1 in Drosophila melanogaster We demonstrate that all three mutants have inappropriately high baseline levels of TORC1 activity and decreased adult viability. Consistent with increased TORC1 activity, GATOR1 mutants exhibit a cell autonomous increase in cell growth. Notably, escaper nprl2 and nprl3 mutant adults have a profound locomotion defect. In line with a nonautonomous role in the regulation of systemic metabolism, expressing the Nprl3 protein in the fat body, a nutrient storage organ, and hemocytes but not muscles and neurons rescues the motility of nprl3 mutants. Finally, we show that nprl2 and nprl3 mutants fail to activate autophagy in response to amino acid limitation and are extremely sensitive to both amino acid and complete starvation. Thus, in Drosophila, in addition to maintaining baseline levels of TORC1 activity, the GATOR1 complex has retained a critical role in the response to nutrient stress. In summary, the TORC1 inhibitor GATOR1 contributes to multiple aspects of the development and physiology of Drosophila.
Collapse
Affiliation(s)
- Youheng Wei
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Brad Reveal
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Weili Cai
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Mary A Lilly
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
46
|
Choong CJ, Mochizuki H. Gene therapy targeting mitochondrial pathway in Parkinson's disease. J Neural Transm (Vienna) 2016; 124:193-207. [PMID: 27638713 DOI: 10.1007/s00702-016-1616-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/31/2016] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) presents a relative selective localization of pathology to substantia nigra and well-defined motor symptoms caused by dopaminergic degeneration that makes it an ideal target for gene therapy. Parallel progress in viral vector systems enables the delivery of therapeutic genes directly into brain with reasonable safety along with sustained transgene expression. To date, gene therapy for PD that has reached clinical trial evaluation is mainly based on symptomatic approach that involves enzyme replacement strategy and restorative approach that depends on the addition of neurotrophic factors. Mitochondrial dysregulation, such as reduced complex I activity, increased mitochondria-derived reactive oxygen species (ROS) production, ROS-mediated mitochondrial DNA damage, bioenergetic failure, and perturbation of mitochondrial dynamics and mitophagy, has long been implicated in the pathogenesis of PD. Many of mutated genes linked to familial forms of PD affect these mitochondrial features. In this review, we discuss the recent progress that has been made in preclinical development of gene therapy targeting the mitochondrial pathway as disease modifying approach for PD. This review focuses on the potential therapeutic efficacy of candidate genes, including Parkin, PINK1, alpha synuclein, PGC-1 alpha, and anti-apoptotic molecules.
Collapse
Affiliation(s)
- Chi-Jing Choong
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
47
|
Abstract
The power of Drosophila genetics has attracted attention in tackling important biomedical challenges such as the understanding and prevention of neurodegenerative diseases. Parkinson's disease (PD) is the most common neurodegenerative movement disorder which results from the relentless degeneration of midbrain dopaminergic neurons. Over the past two decades tremendous advances have been made in identifying genes responsible for inherited forms of PD. The ease of genetic manipulation in Drosophila has spurred the development of numerous models of PD, including expression of human genes carrying pathogenic mutations or the targeted mutation of conserved orthologs. The genetic and cellular analysis of these models is beginning to reveal fundamental insights into the pathogenic mechanisms. Numerous pathways and processes are disrupted in these models but some common themes are emerging. These often implicate aberrant synaptic function, protein aggregation, autophagy, oxidative stress, and mitochondrial dysfunction. Moreover, an impressive list of small molecule compounds have been identified as effective in reversing pathogenic phenotypes, paving the way to explore these for therapeutic interventions.
Collapse
Affiliation(s)
- V L Hewitt
- Medical Research Council Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - A J Whitworth
- Medical Research Council Mitochondrial Biology Unit, Cambridge, United Kingdom.
| |
Collapse
|
48
|
Wang ZH, Clark C, Geisbrecht ER. Drosophila clueless is involved in Parkin-dependent mitophagy by promoting VCP-mediated Marf degradation. Hum Mol Genet 2016; 25:1946-1964. [PMID: 26931463 PMCID: PMC5062585 DOI: 10.1093/hmg/ddw067] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/22/2016] [Indexed: 12/31/2022] Open
Abstract
PINK1/Parkin-mediated mitochondrial quality control (MQC) requires valosin-containing protein (VCP)-dependent Mitofusin/Marf degradation to prevent damaged organelles from fusing with the healthy mitochondrial pool, facilitating mitochondrial clearance by autophagy. Drosophila clueless (clu) was found to interact genetically with PINK1 and parkin to regulate mitochondrial clustering in germ cells. However, whether Clu acts in MQC has not been investigated. Here, we show that overexpression of Drosophila Clu complements PINK1, but not parkin, mutant muscles. Loss of clu leads to the recruitment of Parkin, VCP/p97, p62/Ref(2)P and Atg8a to depolarized swollen mitochondria. However, clearance of damaged mitochondria is impeded. This paradox is resolved by the findings that excessive mitochondrial fission or inhibition of fusion alleviates mitochondrial defects and impaired mitophagy caused by clu depletion. Furthermore, Clu is upstream of and binds to VCP in vivo and promotes VCP-dependent Marf degradation in vitro Marf accumulates in whole muscle lysates of clu-deficient flies and is destabilized upon Clu overexpression. Thus, Clu is essential for mitochondrial homeostasis and functions in concert with Parkin and VCP for Marf degradation to promote damaged mitochondrial clearance.
Collapse
Affiliation(s)
- Zong-Heng Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA and
| | - Cheryl Clark
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Erika R Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
49
|
Huang Z, Ren S, Jiang Y, Wang T. PINK1 and Parkin cooperatively protect neurons against constitutively active TRP channel-induced retinal degeneration in Drosophila. Cell Death Dis 2016; 7:e2179. [PMID: 27054334 PMCID: PMC4855661 DOI: 10.1038/cddis.2016.82] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 01/28/2023]
Abstract
Calcium has an important role in regulating numerous cellular activities. However, extremely high levels of intracellular calcium can lead to neurotoxicity, a process commonly associated with degenerative diseases. Despite the clear role of calcium cytotoxicity in mediating neuronal cell death in this context, the pathological mechanisms remain controversial. We used a well-established Drosophila model of retinal degeneration, which involves the constitutively active TRPP365 channels, to study calcium-induced neurotoxicity. We found that the disruption of mitochondrial function was associated with the degenerative process. Further, increasing autophagy flux prevented cell death in TrpP365 mutant flies, and this depended on the PINK1/Parkin pathway. In addition, the retinal degeneration process was also suppressed by the coexpression of PINK1 and Parkin. Our results provide genetic evidence that mitochondrial dysfunction has a key role in the pathology of cellular calcium neurotoxicity. In addition, the results demonstrated that maintaining mitochondrial homeostasis via PINK1/Parkin-dependent mitochondrial quality control can potentially alleviate cell death in a wide range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Z Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,National Institute of Biological Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - S Ren
- National Institute of Biological Sciences, Beijing, China.,College of Biological Sciences, China Agricultural University, Beijing, China
| | - Y Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - T Wang
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
50
|
Ivanov DK, Escott-Price V, Ziehm M, Magwire MM, Mackay TFC, Partridge L, Thornton JM. Longevity GWAS Using the Drosophila Genetic Reference Panel. J Gerontol A Biol Sci Med Sci 2015; 70:1470-8. [PMID: 25922346 PMCID: PMC4631106 DOI: 10.1093/gerona/glv047] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Abstract
We used 197 Drosophila melanogaster Genetic Reference Panel (DGRP) lines to perform a genome-wide association analysis for virgin female lifespan, using ~2M common single nucleotide polymorphisms (SNPs). We found considerable genetic variation in lifespan in the DGRP, with a broad-sense heritability of 0.413. There was little power to detect signals at a genome-wide level in single-SNP and gene-based analyses. Polygenic score analysis revealed that a small proportion of the variation in lifespan (~4.7%) was explicable in terms of additive effects of common SNPs (≥2% minor allele frequency). However, several of the top associated genes are involved in the processes previously shown to impact ageing (eg, carbohydrate-related metabolism, regulation of cell death, proteolysis). Other top-ranked genes are of unknown function and provide promising candidates for experimental examination. Genes in the target of rapamycin pathway (TOR; Chrb, slif, mipp2, dredd, RpS9, dm) contributed to the significant enrichment of this pathway among the top-ranked 100 genes (p = 4.79×10(-06)). Gene Ontology analysis suggested that genes involved in carbohydrate metabolism are important for lifespan; including the InterPro term DUF227, which has been previously associated with lifespan determination. This analysis suggests that our understanding of the genetic basis of natural variation in lifespan from induced mutations is incomplete.
Collapse
Affiliation(s)
- Dobril K Ivanov
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Valentina Escott-Price
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Matthias Ziehm
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK. Department of Genetics Evolution and Environment, The Institute of Healthy Ageing, University College London, UK
| | - Michael M Magwire
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh. Syngenta, Research Triangle Park, North Carolina
| | - Trudy F C Mackay
- Department of Biological Sciences, Program in Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh
| | - Linda Partridge
- Department of Genetics Evolution and Environment, The Institute of Healthy Ageing, University College London, UK. Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|