1
|
Yeon J, Chen L, Krishnan N, Bates S, Porwal C, Sengupta P. An enteric neuron-expressed variant ionotropic receptor detects ingested salts to regulate salt stress resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.11.648259. [PMID: 40391324 PMCID: PMC12087990 DOI: 10.1101/2025.04.11.648259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The detection of internal chemicals by interoceptive chemosensory pathways is critical for regulating metabolism and physiology. The molecular identities of interoceptors, and the functional consequences of chemosensation by specific interoceptive neurons remain to be fully described. The C. elegans pharyngeal neuronal network is anatomically and functionally homologous to the mammalian enteric nervous system. Here, we show that the I3 pharyngeal enteric neuron responds to cations via an I3-specific variant ionotropic receptor (IR) to regulate salt stress tolerance. The GLR-9 IR, located at the gut lumen-exposed sensory end of I3, is necessary and sufficient for salt sensation, establishing a chemosensory function for IRs beyond insects. Salt detection by I3 protects specifically against high salt stress, as glr-9 mutants show reduced tolerance of hypertonic salt but not sugar solutions, with or without prior acclimation. While cholinergic signaling from I3 promotes tolerance to acute high salt stress, peptidergic signaling from I3 during acclimation is essential for resistance to a subsequent high salt challenge. Transcriptomic analyses show that I3 regulates salt tolerance in part via regulating the expression of osmotic stress response genes in distal tissues. Our results describe the mechanisms by which chemosensation mediated by a defined enteric neuron regulates physiological homeostasis in response to a specific abiotic stress.
Collapse
|
2
|
Kuo JCH, Colville MJ, Sorkin MR, Kuo JLK, Huang LT, Thornlow DN, Beacham GM, Hollopeter G, DeLisa MP, Alabi CA, Paszek MJ. Bio-orthogonal Glycan Imaging of Cultured Cells and Whole Animal C. elegans with Expansion Microscopy. ACS CENTRAL SCIENCE 2025; 11:193-207. [PMID: 40028367 PMCID: PMC11868961 DOI: 10.1021/acscentsci.4c01061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 03/05/2025]
Abstract
Complex carbohydrates called glycans play crucial roles in regulating cell and tissue physiology, but how they map to nanoscale anatomical features must still be resolved. Here, we present the first nanoscale map of mucin-type O-glycans throughout the entirety of the Caenorhabditis elegans model organism. We constructed a library of multifunctional linkers to probe and anchor metabolically labeled glycans in expansion microscopy (ExM). A flexible strategy was demonstrated for the chemical synthesis of linkers with a broad inventory of bio-orthogonal functional groups, fluorophores, anchorage chemistries, and linker arms. Employing C. elegans as a test bed, metabolically labeled O-glycans were resolved on the gut microvilli and other nanoscale anatomical features. Transmission electron microscopy images of C. elegans nanoanatomy validated the fidelity and isotropy of gel expansion. Whole organism maps of C. elegans O-glycosylation in the first larval stage revealed O-glycan "hotspots" in unexpected anatomical locations, including the body wall furrows. Beyond C. elegans, we validated ExM protocols for nanoscale imaging of metabolically labeled glycans on cultured mammalian cells. Together, our results suggest the broad applicability of the multifunctional reagents for imaging glycans and other metabolically labeled biomolecules at enhanced resolutions with ExM.
Collapse
Affiliation(s)
- Joe Chin-Hun Kuo
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Marshall J. Colville
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michelle R. Sorkin
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jacky Lok Ka Kuo
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ling Ting Huang
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dana N. Thornlow
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Gwendolyn M. Beacham
- Department
of Molecular Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Gunther Hollopeter
- Department
of Molecular Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14853, United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Matthew J. Paszek
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig
School of Biomedical Engineering, Cornell
University, Ithaca, New York 14853, United States
- Field
of Biophysics, Cornell University, Ithaca, New York 14853, United States
- Kavli
Institute
at Cornell for Nanoscale Science, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Snoozy J, Bhattacharya S, Fettig RR, Van Asma A, Brede C, Warnhoff K. XDH-1 inactivation causes xanthine stone formation in C. elegans which is inhibited by SULP-4-mediated anion exchange in the excretory cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634556. [PMID: 39975063 PMCID: PMC11838210 DOI: 10.1101/2025.01.24.634556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Xanthine dehydrogenase (XDH-1) is a molybdenum cofactor (Moco) requiring enzyme that catabolizes hypoxanthine into xanthine and xanthine into uric acid, the final steps in purine catabolism. Human patients with mutations in xdh-1 develop xanthinuria which can lead to xanthine stones in the kidney, recurrent urinary tract infections, and renal failure. Currently there are no therapies for treating human XDH-1 deficiency. Thus, understanding mechanisms that maintain purine homeostasis is an important goal of human health. Here, we used the nematode C. elegans to model human XDH-1 deficiency using 2 clinically relevant paradigms, Moco deficiency or loss-of-function mutations in xdh-1. Both Moco deficiency and xdh-1 mutations caused the formation of autofluorescent xanthine stones in C. elegans. Surprisingly, only 2% of xdh-1 null mutant C. elegans developed a xanthine stone, suggesting additional pathways may regulate this process. To uncover such pathways, we performed a forward genetic screen for mutations that enhance the penetrance of xanthine stone formation in xdh-1 null mutant C. elegans. We isolated multiple loss-of-function mutations in the gene sulp-4 which encodes a transmembrane transport protein homologous to human SLC26 anion exchange proteins. We demonstrated that SULP-4 acts cell-nonautonomously in the excretory cell to limit xanthine stone accumulation. Interestingly, sulp-4 mutant phenotypes were suppressed by mutations in genes that encode for cystathionase (cth-2) or cysteine dioxygenase (cdo-1), members of the sulfur amino acid metabolism pathway required for production of the osmolyte taurine. Furthermore, cdo-1 mRNA accumulated in sulp-4 mutant animals, mirroring cdo-1 activation observed during hyperosmotic stress in C. elegans and mammals. We propose that loss of SULP-4-mediated anion exchange causes osmotic stress and cdo-1 activation, a maladaptive response that promotes xanthine stone accumulation. Supporting the model that the osmotic stress response impacts xanthine stone accumulation, a mutation in osm-8 that constitutively activates the osmotic stress response, also promoted xanthine stone accumulation in an xdh-1 mutant background. Thus, our work establishes a C. elegans model for human XDH-1 deficiency and identifies sulp-4 and the osmotic stress response governed by cdo-1 as critical players in controlling xanthine stone accumulation.
Collapse
Affiliation(s)
- Jennifer Snoozy
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Sushila Bhattacharya
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Robin R. Fettig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | | - Chloe Brede
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Kurt Warnhoff
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105 USA
| |
Collapse
|
4
|
Medrano E, Jendrick K, McQuirter J, Moxham C, Rajic D, Rosendorf L, Stilman L, Wilright D, Collins KM. Osmolarity regulates C. elegans egg-laying behavior via parallel chemosensory and biophysical mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630790. [PMID: 39803577 PMCID: PMC11722301 DOI: 10.1101/2024.12.30.630790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm C. elegans initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited. We analyzed egg-laying behavior after acute and chronic shifts to and from hyperosmotic media. Animals on 400 mM sorbitol stop laying eggs immediately but then resume ~3 hours later, after accumulating additional eggs in the uterus. Surprisingly, the hyperosmotic cessation of egg laying did not require known osmotic avoidance signaling pathways. Acute hyperosmotic shifts in hyperosmotic-resistant mutants overproducing glycerol also blocked egg laying, but these animals resumed egg laying more quickly than similarly treated wild-type animals. These results suggest that hyperosmotic conditions disrupt a 'high-inside' hydrostatic pressure gradient required for egg laying. Consistent with this hypothesis, animals adapted to hyperosmotic conditions laid more eggs after acute shifts back to normosmic conditions. Optogenetic stimulation of the HSN egg-laying command neurons in hyper-osmotic treated animals led to fewer and slower egg-laying events, an effect not seen following direct optogenetic stimulation of the postsynaptic vulval muscles. Hyperosmotic conditions also affected egg-laying circuit activity with the vulval muscles showing reduced Ca2+ transient amplitudes and frequency even after egg-laying resumes. Together, these results indicate that hyperosmotic conditions regulate egg-laying via two parallel mechanisms: a sensory pathway that acts to reduce HSN excitability and neurotransmitter release, and a biophysical mechanism where a hydrostatic pressure gradient reports egg accumulation in the uterus.
Collapse
Affiliation(s)
- Emmanuel Medrano
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
| | - Karen Jendrick
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Julian McQuirter
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Claire Moxham
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Dominique Rajic
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Lila Rosendorf
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Liraz Stilman
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Dontrel Wilright
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
- These authors contributed equally and are listed in alphabetical order
| | - Kevin M Collins
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146
| |
Collapse
|
5
|
Wu J, Shao Y, Hua X, Wang D. Activated hedgehog and insulin ligands by decreased transcriptional factor DAF-16 mediate transgenerational nanoplastic toxicity in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135909. [PMID: 39303612 DOI: 10.1016/j.jhazmat.2024.135909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
In Caenorhabditis elegans, transcriptional factor DAF-16 in insulin signaling pathway played important role in regulating transgenerational nanoplastic toxicity. Activation of insulin signals mediated transgenerational toxicity of polystyrene nanoparticle (PS-NP) by inhibiting DAF-16. Among identified germline ligands, expression of wrt-3 encoding hedgehog ligand was increased by RNAi of daf-16 in PS-NP exposed C. elegans. In PS-NP exposed C. elegans, expressions of 4 other germline hedgehog ligand genes and 10 hedgehog receptor genes were increased by daf-16 RNAi. Among these candidate genes, expressions of hedgehog ligand genes (grl-15, grl-16, qua-1, and wrt-1) and hedgehog receptor genes (ptr-23, scp-1, ptd-2, and ncr-1) could be increased by PS-NP (1-100 μg/L), and their transgenerational expressions were observed after PS-NP exposure. RNAi of grl-15, grl-16, qua-1, wrt-1, ptr-23, scp-1, ptd-2, and ncr-1 caused resistance to transgenerational PS-NP toxicity. In nematodes exposed to PS-NPs, RNAi of wrt-3, grl-15, grl-16, qua-1, and wrt-1 at parental generation (P0-G) inhibited expressions of ptr-23, scp-1, ptd-2, and ncr-1 in their offspring. Moreover, we observed increased expressions of insulin peptides genes (ins-3, ins-39, and daf-28) in PS-NP exposed daf-16(RNAi) nematodes, suggesting formation of feedback loop. We raise the molecular basis for formation of toxicity on multiple generations after nanoplastic exposure at P0-G.
Collapse
Affiliation(s)
- Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yuting Shao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
6
|
Molière A, Park JYC, Goyala A, Vayndorf EM, Zhang B, Hsiung KC, Jung Y, Kwon S, Statzer C, Meyer D, Nguyen R, Chadwick J, Thompson MA, Schumacher B, Lee SJV, Essmann CL, MacArthur MR, Kaeberlein M, David D, Gems D, Ewald CY. Improved resilience and proteostasis mediate longevity upon DAF-2 degradation in old age. GeroScience 2024; 46:5015-5036. [PMID: 38900346 PMCID: PMC11335714 DOI: 10.1007/s11357-024-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Little is known about the possibility of reversing age-related biological changes when they have already occurred. To explore this, we have characterized the effects of reducing insulin/IGF-1 signaling (IIS) during old age. Reduction of IIS throughout life slows age-related decline in diverse species, most strikingly in the nematode Caenorhabditis elegans. Here we show that even at advanced ages, auxin-induced degradation of DAF-2 in single tissues, including neurons and the intestine, is still able to markedly increase C. elegans lifespan. We describe how reversibility varies among senescent changes. While senescent pathologies that develop in mid-life were not reversed, there was a rejuvenation of the proteostasis network, manifesting as a restoration of the capacity to eliminate otherwise intractable protein aggregates that accumulate with age. Moreover, resistance to several stressors was restored. These results support several new conclusions. (1) Loss of resilience is not solely a consequence of pathologies that develop in earlier life. (2) Restoration of proteostasis and resilience by inhibiting IIS is a plausible cause of the increase in lifespan. And (3), most interestingly, some aspects of the age-related transition from resilience to frailty can be reversed to a certain extent. This raises the possibility that the effect of IIS and related pathways on resilience and frailty during aging in higher animals might possess some degree of reversibility.
Collapse
Affiliation(s)
- Adrian Molière
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Elena M Vayndorf
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kuei Ching Hsiung
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - David Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Richard Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | | | | | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Clara L Essmann
- Bioinformatics and Molecular Genetics, Institute of Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79108, Freiburg, Germany
| | - Michael R MacArthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | | | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
7
|
Kiontke KC, Herrera RA, Mason DA, Woronik A, Vernooy S, Patel Y, Fitch DHA. Tissue-specific RNA-seq defines genes governing male tail tip morphogenesis in C. elegans. Development 2024; 151:dev202787. [PMID: 39253748 PMCID: PMC11449441 DOI: 10.1242/dev.202787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Caenorhabditis elegans males undergo sex-specific tail tip morphogenesis (TTM) under the control of the DM-domain transcription factor DMD-3. To find genes regulated by DMD-3, we performed RNA-seq of laser-dissected tail tips. We identified 564 genes differentially expressed (DE) in wild-type males versus dmd-3(-) males and hermaphrodites. The transcription profile of dmd-3(-) tail tips is similar to that in hermaphrodites. For validation, we analyzed transcriptional reporters for 49 genes and found male-specific or male-biased expression for 26 genes. Only 11 DE genes overlapped with genes found in a previous RNAi screen for defective TTM. GO enrichment analysis of DE genes finds upregulation of genes within the unfolded protein response pathway and downregulation of genes involved in cuticle maintenance. Of the DE genes, 40 are transcription factors, indicating that the gene network downstream of DMD-3 is complex and potentially modular. We propose modules of genes that act together in TTM and are co-regulated by DMD-3, among them the chondroitin synthesis pathway and the hypertonic stress response.
Collapse
Affiliation(s)
- Karin C. Kiontke
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | - D. Adam Mason
- Biology Department, Siena College, 515 Loudon Road, Loudonville, NY 12211, USA
| | - Alyssa Woronik
- Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825, USA
| | - Stephanie Vernooy
- Biology Department, Siena College, 515 Loudon Road, Loudonville, NY 12211, USA
| | - Yash Patel
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - David H. A. Fitch
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
8
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
9
|
Kuo JCH, Colville MJ, Sorkin MR, Kuo JLK, Huang LT, Thornlow DN, Beacham GM, Hollopeter G, DeLisa MP, Alabi CA, Paszek MJ. Bio-orthogonal Glycan Imaging of Culture Cells and Whole Animal C. elegans with Expansion Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578333. [PMID: 38352588 PMCID: PMC10862801 DOI: 10.1101/2024.02.01.578333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Complex carbohydrates called glycans play crucial roles in the regulation of cell and tissue physiology, but how glycans map to nanoscale anatomical features must still be resolved. Here, we present the first nanoscale map of mucin-type O -glycans throughout the entirety of the Caenorhabditis elegans model organism. We construct a library of multifunctional linkers to probe and anchor metabolically labelled glycans in expansion microscopy (ExM), an imaging modality that overcomes the diffraction limit of conventional optical microscopes through the physical expansion of samples embedded in a polyelectrolyte gel matrix. A flexible strategy is demonstrated for the chemical synthesis of linkers with a broad inventory of bio-orthogonal functional groups, fluorophores, anchorage chemistries, and linker arms. Employing C. elegans as a test bed, we resolve metabolically labelled O -glycans on the gut microvilli and other nanoscale anatomical features using our ExM reagents and optimized protocols. We use transmission electron microscopy images of C. elegans nano-anatomy as ground truth data to validate the fidelity and isotropy of gel expansion. We construct whole organism maps of C. elegans O -glycosylation in the first larval stage and identify O -glycan "hotspots" in unexpected anatomical locations, including the body wall furrows. Beyond C. elegans , we provide validated ExM protocols for nanoscale imaging of metabolically labelled glycans on cultured mammalian cells. Together, our results suggest the broad applicability of the multifunctional reagents for imaging glycans and other metabolically labelled biomolecules at enhanced resolutions with ExM. Graphical abstract
Collapse
|
10
|
Kiontke K, Herrera RA, Mason DA, Woronik A, Vernooy S, Patel Y, Fitch DHA. Tissue-specific RNA-seq defines genes governing male tail tip morphogenesis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575210. [PMID: 38260477 PMCID: PMC10802606 DOI: 10.1101/2024.01.12.575210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Caenorhabditis elegans males undergo sex-specific tail tip morphogenesis (TTM) under the control of the transcription factor DMD-3. To find genes regulated by DMD-3, We performed RNA-seq of laser-dissected tail tips. We identified 564 genes differentially expressed (DE) in wild-type males vs. dmd-3(-) males and hermaphrodites. The transcription profile of dmd-3(-) tail tips is similar to that in hermaphrodites. For validation, we analyzed transcriptional reporters for 49 genes and found male-specific or male-biased expression for 26 genes. Only 11 DE genes overlapped with genes found in a previous RNAi screen for defective TTM. GO enrichment analysis of DE genes finds upregulation of genes within the UPR (unfolded protein response) pathway and downregulation of genes involved in cuticle maintenance. Of the DE genes, 40 are transcription factors, indicating that the gene network downstream of DMD-3 is complex and potentially modular. We propose modules of genes that act together in TTM and are coregulated by DMD-3, among them the chondroitin synthesis pathway and the hypertonic stress response.
Collapse
Affiliation(s)
- Karin Kiontke
- Department of Biology, New York University, 100 Washington Square E., New York, NY 10003
| | | | - D Adam Mason
- Biology Department, Siena College, 515 Loudon Road, Loudonville, NY 12211
| | - Alyssa Woronik
- Sacred Heart University, 5151 Park Avenue, Fairfield, CT 06825
| | - Stephanie Vernooy
- Biology Department, Siena College, 515 Loudon Road, Loudonville, NY 12211
| | - Yash Patel
- Department of Biology, New York University, 100 Washington Square E., New York, NY 10003
| | - David H A Fitch
- Department of Biology, New York University, 100 Washington Square E., New York, NY 10003
| |
Collapse
|
11
|
Venkatesh SR, Siddiqui R, Sandhu A, Ramani M, Houston IR, Watts JL, Singh V. Homeostatic control of stearoyl desaturase expression via patched-like receptor PTR-23 ensures the survival of C. elegans during heat stress. PLoS Genet 2023; 19:e1011067. [PMID: 38109437 PMCID: PMC10727360 DOI: 10.1371/journal.pgen.1011067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Organismal responses to temperature fluctuations include an evolutionarily conserved cytosolic chaperone machinery as well as adaptive alterations in lipid constituents of cellular membranes. Using C. elegans as a model system, we asked whether adaptable lipid homeostasis is required for survival during physiologically relevant heat stress. By systematic analyses of lipid composition in worms during and before heat stress, we found that unsaturated fatty acids are reduced in heat-stressed animals. This is accompanied by the transcriptional downregulation of fatty acid desaturase enzymes encoded by fat-1, fat-3, fat-4, fat-5, fat-6, and fat-7 genes. Conversely, overexpression of the Δ9 desaturase FAT-7, responsible for the synthesis of PUFA precursor oleic acid, and supplementation of oleic acid causes accelerated death of worms during heat stress. Interestingly, heat stress causes permeability defects in the worm's cuticle. We show that fat-7 expression is reduced in the permeability defective collagen (PDC) mutant, dpy-10, known to have enhanced heat stress resistance (HSR). Further, we show that the HSR of dpy-10 animals is dependent on the upregulation of PTR-23, a patched-like receptor in the epidermis, and that PTR-23 downregulates the expression of fat-7. Consequently, abrogation of ptr-23 in wild type animals affects its survival during heat stress. This study provides evidence for the negative regulation of fatty acid desaturase expression in the soma of C. elegans via the non-canonical role of a patched receptor signaling component. Taken together, this constitutes a skin-gut axis for the regulation of lipid desaturation to promote the survival of worms during heat stress.
Collapse
Affiliation(s)
- Siddharth R Venkatesh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Ritika Siddiqui
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Anjali Sandhu
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Malvika Ramani
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Isabel R Houston
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Varsha Singh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
12
|
Urso SJ, Sathaseevan A, Brent Derry W, Lamitina T. Regulation of the hypertonic stress response by the 3' mRNA cleavage and polyadenylation complex. Genetics 2023; 224:iyad051. [PMID: 36972377 PMCID: PMC10490458 DOI: 10.1093/genetics/iyad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Maintenance of osmotic homeostasis is one of the most aggressively defended homeostatic set points in physiology. One major mechanism of osmotic homeostasis involves the upregulation of proteins that catalyze the accumulation of solutes called organic osmolytes. To better understand how osmolyte accumulation proteins are regulated, we conducted a forward genetic screen in Caenorhabditis elegans for mutants with no induction of osmolyte biosynthesis gene expression (Nio mutants). The nio-3 mutant encoded a missense mutation in cpf-2/CstF64, while the nio-7 mutant encoded a missense mutation in symk-1/Symplekin. Both cpf-2 and symk-1 are nuclear components of the highly conserved 3' mRNA cleavage and polyadenylation complex. cpf-2 and symk-1 block the hypertonic induction of gpdh-1 and other osmotically induced mRNAs, suggesting they act at the transcriptional level. We generated a functional auxin-inducible degron (AID) allele for symk-1 and found that acute, post-developmental degradation in the intestine and hypodermis was sufficient to cause the Nio phenotype. symk-1 and cpf-2 exhibit genetic interactions that strongly suggest they function through alterations in 3' mRNA cleavage and/or alternative polyadenylation. Consistent with this hypothesis, we find that inhibition of several other components of the mRNA cleavage complex also cause a Nio phenotype. cpf-2 and symk-1 specifically affect the osmotic stress response since heat shock-induced upregulation of a hsp-16.2::GFP reporter is normal in these mutants. Our data suggest a model in which alternative polyadenylation of 1 or more mRNAs is essential to regulate the hypertonic stress response.
Collapse
Affiliation(s)
- Sarel J Urso
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Anson Sathaseevan
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - W Brent Derry
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Todd Lamitina
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| |
Collapse
|
13
|
Veroli MV, Lamitina T. Endogenous gpdh-1 transcriptional reporters as new tools for the study of the osmotic stress response. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000818. [PMID: 37033710 PMCID: PMC10077060 DOI: 10.17912/micropub.biology.000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023]
Abstract
In vivo monitoring of gpdh-1 gene expression using standard transcriptional reporters is a powerful and commonly used tool for genetic dissection of the osmotic stress response in C. elegans . Like all transgene reporters, these gpdh-1 reporters have important limitations that restrict their utility. To overcome these limitations, we created three different gpdh-1 reporters using CRISPR/Cas9 methods to insert several variants of GFP into the endogenous gpdh-1 locus. These new strains provide a more powerful and accurate tool for the analysis of gpdh-1 regulatory pathways.
Collapse
Affiliation(s)
- María Victoria Veroli
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Todd Lamitina
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Correspondence to: Todd Lamitina (
)
| |
Collapse
|
14
|
Chandler LM, Rodriguez M, Choe KP. RNAi screening for modulators of an osmo-sensitive gene response to extracellular matrix damage reveals negative feedback and interactions with translation inhibition. PLoS One 2023; 18:e0285328. [PMID: 37155688 PMCID: PMC10166495 DOI: 10.1371/journal.pone.0285328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
In epidermal tissues, extracellular matrices (ECMs) function as barriers between the organism and environment. Despite being at the interface with the environment, little is known about the role of animal barrier ECMs in sensing stress and communicating with cytoprotective gene pathways in neighboring cells. We and others have identified a putative damage sensor in the C. elegans cuticle that regulates osmotic, detoxification, and innate immune response genes. This pathway is associated with circumferential collagen bands called annular furrows; mutation or loss of furrow collagens causes constitutive activation of osmotic, detoxification, and innate immune response genes. Here, we performed a genome-wide RNAi screen for modulators of osmotic stress response gene gpdh-1 in a furrow collagen mutant strain. RNAi of six genes identified in this screen were tested under other conditions and for effects on other stress responses. The functions of these genes suggest negative feedback within osmolyte accumulation pathways and interactions with ATP homeostasis and protein synthesis. Loss of these gpdh-1 modulators had distinct effects on canonical detoxification and innate immune response genes.
Collapse
Affiliation(s)
- Luke M Chandler
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - Michael Rodriguez
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
15
|
Rodriguez Mendoza V, Chandler L, Liu Z, Buddendorff L, Al-Rajhi A, Choi T, Gibb G, Harvey J, Mihalik A, Moravec S, Pilcher W, Raju V, Choe KP. Extracellular proteins OSM-7 and OSM-8 are required for stress response gene regulation at all post-embryonic stages. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000688. [PMID: 36606078 PMCID: PMC9807463 DOI: 10.17912/micropub.biology.000688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023]
Abstract
Nematode cuticles are extracellular matrices (ECMs) that function as structural support and permeability barriers. Genetic disruption of specific cuticle collagen structures or secreted epidermal proteins in C. elegans activates stress response genes in epithelial cells suggesting the presence of an extracellular damage signaling mechanism. Cuticles are replaced during development via molting but investigations of extracellular signaling to stress responses have focused on adults. In our current study, we measured cuticle phenotypes and stress response gene expression in all post-embryonic stages of mutant strains for a collagen and two secreted epidermal proteins to gain insights into developmental patterns.
Collapse
Affiliation(s)
| | - Luke Chandler
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL USA
| | - Zhexin Liu
- University of Florida, Gainesville, FL USA
| | | | | | - Thine Choi
- University of Florida, Gainesville, FL USA
| | | | | | | | | | | | | | - Keith Patrick Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL USA
| |
Collapse
|
16
|
Greiffer L, Liebau E, Herrmann FC, Spiegler V. Condensed tannins act as anthelmintics by increasing the rigidity of the nematode cuticle. Sci Rep 2022; 12:18850. [PMID: 36344622 PMCID: PMC9640668 DOI: 10.1038/s41598-022-23566-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Tannins and tanniferous plant extracts have been discussed as sustainable means for helminth control in the past two decades in response to a dramatic increase of resistances towards standard anthelmintics. While their bioactivities have been broadly investigated in vitro and in vivo, less is known about their mode of action in nematodes, apart from their protein binding properties. In the current study we therefore investigated the impact of a phytochemically well characterized plant extract from Combretum mucronatum, known to contain procyanidins as the active compounds, on the model organism Caenorhabditis elegans. By different microscopic techniques, the cuticle was identified as the main binding site for tannins, whereas underlying tissues did not seem to be affected. In addition to disruptions of the cuticle structure, molting defects occurred at all larval stages. Finally, an increased rigidity of the nematodes' cuticle due to binding of tannins was confirmed by force spectroscopic measurements. This could be a key finding to explain several anthelmintic activities reported for tannins, especially impairment of molting or exsheathment as well as locomotion.
Collapse
Affiliation(s)
- Luise Greiffer
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Eva Liebau
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Fabian C Herrmann
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany
| | - Verena Spiegler
- Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Münster, Germany.
| |
Collapse
|
17
|
Transcriptomic and Proteomic Analysis of Marine Nematode Litoditis marina Acclimated to Different Salinities. Genes (Basel) 2022; 13:genes13040651. [PMID: 35456458 PMCID: PMC9025465 DOI: 10.3390/genes13040651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Salinity is a critical abiotic factor for all living organisms. The ability to adapt to different salinity environments determines an organism’s survival and ecological niches. Litoditis marina is a euryhaline marine nematode widely distributed in coastal ecosystems all over the world, although numerous genes involved in its salinity response have been reported, the adaptive mechanisms underlying its euryhalinity remain unexplored. Here, we utilized worms which have been acclimated to either low-salinity or high-salinity conditions and evaluated their basal gene expression at both transcriptomic and proteomic levels. We found that several conserved regulators, including osmolytes biosynthesis genes, transthyretin-like family genes, V-type H+-transporting ATPase and potassium channel genes, were involved in both short-term salinity stress response and long-term acclimation processes. In addition, we identified genes related to cell volume regulation, such as actin regulatory genes, Rho family small GTPases and diverse ion transporters, which might contribute to hyposaline acclimation, while the glycerol biosynthesis genes gpdh-1 and gpdh-2 accompanied hypersaline acclimation in L. marina. This study paves the way for further in-depth exploration of the adaptive mechanisms underlying euryhalinity and may also contribute to the study of healthy ecosystems in the context of global climate change.
Collapse
|
18
|
Wimberly K, Choe KP. An extracellular matrix damage sensor signals through membrane-associated kinase DRL-1 to mediate cytoprotective responses in Caenorhabditis elegans. Genetics 2022; 220:iyab217. [PMID: 34849856 PMCID: PMC9208646 DOI: 10.1093/genetics/iyab217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
We and others previously identified circumferential bands of collagen named annular furrows as key components of a damage sensor in the cuticle of Caenorhabditis elegans that regulates cytoprotective genes. Mutation or loss of noncollagen secreted proteins OSM-7, OSM-8, and OSM-11 activate the same cytoprotective responses without obvious changes to the cuticle indicating that other extracellular proteins are involved. Here, we used RNAi screening to identify protein kinase DRL-1 as a key modulator of cytoprotective gene expression and stress resistance in furrow and extracellular OSM protein mutants. DRL-1 functions downstream from furrow disruption and is expressed in cells that induce cytoprotective genes. DRL-1 is not required for the expression of cytoprotective genes under basal or oxidative stress conditions consistent with specificity to extracellular signals. DRL-1 was previously shown to regulate longevity via a "Dietary Restriction-Like" state, but it functions downstream from furrow disruption by a distinct mechanism. The kinase domain of DRL-1 is related to mammalian MEKK3, and MEKK3 is recruited to a plasma membrane osmosensor complex by a scaffold protein. In C. elegans, DRL-1 contains an atypical hydrophobic C-terminus with predicted transmembrane domains and is constitutively expressed at or near the plasma membrane where it could function to receive extracellular damage signals for cells that mount cytoprotective responses.
Collapse
Affiliation(s)
- Keon Wimberly
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
19
|
Burton NO, Willis A, Fisher K, Braukmann F, Price J, Stevens L, Baugh LR, Reinke A, Miska EA. Intergenerational adaptations to stress are evolutionarily conserved, stress-specific, and have deleterious trade-offs. eLife 2021; 10:e73425. [PMID: 34622777 PMCID: PMC8570697 DOI: 10.7554/elife.73425] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Despite reports of parental exposure to stress promoting physiological adaptations in progeny in diverse organisms, there remains considerable debate over the significance and evolutionary conservation of such multigenerational effects. Here, we investigate four independent models of intergenerational adaptations to stress in Caenorhabditis elegans - bacterial infection, eukaryotic infection, osmotic stress, and nutrient stress - across multiple species. We found that all four intergenerational physiological adaptations are conserved in at least one other species, that they are stress -specific, and that they have deleterious tradeoffs in mismatched environments. By profiling the effects of parental bacterial infection and osmotic stress exposure on progeny gene expression across species, we established a core set of 587 genes that exhibited a greater than twofold intergenerational change in expression in response to stress in C. elegans and at least one other species, as well as a set of 37 highly conserved genes that exhibited a greater than twofold intergenerational change in expression in all four species tested. Furthermore, we provide evidence suggesting that presumed adaptive and deleterious intergenerational effects are molecularly related at the gene expression level. Lastly, we found that none of the effects we detected of these stresses on C. elegans F1 progeny gene expression persisted transgenerationally three generations after stress exposure. We conclude that intergenerational responses to stress play a substantial and evolutionarily conserved role in regulating animal physiology and that the vast majority of the effects of parental stress on progeny gene expression are reversible and not maintained transgenerationally.
Collapse
Affiliation(s)
- Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
- Van Andel InstituteGrand RapidsUnited States
| | - Alexandra Willis
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Kinsey Fisher
- Department of Biology, Duke UniversityDurhamUnited States
| | - Fabian Braukmann
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Jonathan Price
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Lewis Stevens
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - L Ryan Baugh
- Department of Biology, Duke UniversityDurhamUnited States
- Center for Genomic and Computational Biology, Duke UniversityDurhamUnited States
| | - Aaron Reinke
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Eric A Miska
- Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
20
|
The nuclear ubiquitin ligase adaptor SPOP is a conserved regulator of C9orf72 dipeptide toxicity. Proc Natl Acad Sci U S A 2021; 118:2104664118. [PMID: 34593637 DOI: 10.1073/pnas.2104664118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
A hexanucleotide repeat expansion in the C9orf72 gene is the most common cause of inherited amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Unconventional translation of the C9orf72 repeat produces dipeptide repeat proteins (DPRs). Previously, we showed that the DPRs PR50 and GR50 are highly toxic when expressed in Caenorhabditis elegans, and this toxicity depends on nuclear localization of the DPR. In an unbiased genome-wide RNA interference (RNAi) screen for suppressors of PR50 toxicity, we identified 12 genes that consistently suppressed either the developmental arrest and/or paralysis phenotype evoked by PR50 expression. All of these genes have vertebrate homologs, and 7 of 12 contain predicted nuclear localization signals. One of these genes was spop-1, the C. elegans homolog of SPOP, a nuclear localized E3 ubiquitin ligase adaptor only found in metazoans. SPOP is also required for GR50 toxicity and functions in a genetic pathway that includes cul-3, which is the canonical E3 ligase partner for SPOP Genetic or pharmacological inhibition of SPOP in mammalian primary spinal cord motor neurons suppressed DPR toxicity without affecting DPR expression levels. Finally, we find that knockdown of bromodomain proteins in both C. elegans and mammalian neurons, which are known SPOP ubiquitination targets, suppresses the protective effect of SPOP inhibition. Together, these data suggest a model in which SPOP promotes the DPR-dependent ubiquitination and degradation of BRD proteins. We speculate the pharmacological manipulation of this pathway, which is currently underway for multiple cancer subtypes, could also represent an entry point for therapeutic intervention to treat C9orf72 FTD/ALS.
Collapse
|
21
|
Abstract
Establishment of neural circuits requires reproducible and precise interactions between growing axons, dendrites and their tissue environment. Cell adhesion molecules and guidance factors are involved in the process, but how specificity is achieved remains poorly understood. Glycans are the third major class of biopolymers besides nucleic acids and proteins, and are usually covalently linked to proteins to form glycoconjugates. Common to most glycans is an extraordinary level of molecular diversity, making them attractive candidates to contribute specificity during neural development. Indeed, many genes important for neural development encode glycoproteins, or enzymes involved in synthesizing or modifying glycans. Glycoconjugates are classified based on both the types of glycans and type of attachment that link them to proteins. Here I discuss progress in understanding the function of glycans, glycan modifications and glycoconjugates during neural development in Caenorhabditis elegans. I will also highlight relevance to human disease and known roles of glycoconjugates in regeneration.
Collapse
Affiliation(s)
- Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
22
|
Urso SJ, Lamitina T. The C. elegans Hypertonic Stress Response: Big Insights from Shrinking Worms. Cell Physiol Biochem 2021; 55:89-105. [PMID: 33626269 DOI: 10.33594/000000332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
Cell volume is one of the most aggressively defended physiological set points in biology. Changes in intracellular ion and water concentrations, which are induced by changes in metabolism or environmental exposures, disrupt protein folding, enzymatic activity, and macromolecular assemblies. To counter these challenges, cells and organisms have evolved multifaceted, evolutionarily conserved molecular mechanisms to restore cell volume and repair stress induced damage. However, many unanswered questions remain regarding the nature of cell volume 'sensing' as well as the molecular signaling pathways involved in activating physiological response mechanisms. Unbiased genetic screening in the model organism C. elegans is providing new and unexpected insights into these questions, particularly questions relating to the hypertonic stress response (HTSR) pathway. One surprising characteristic of the HTSR pathway in C. elegans is that it is under strong negative regulation by proteins involved in protein homeostasis and the extracellular matrix (ECM). The role of the ECM in particular highlights the importance of studying the HTSR in the context of a live organism where native ECM-tissue associations are preserved. A second novel and recently discovered characteristic is that the HTSR is regulated at the post-transcriptional level. The goal of this review is to describe these discoveries, to provide context for their implications, and to raise outstanding questions to guide future research.
Collapse
Affiliation(s)
- Sarel J Urso
- University of Pittsburgh, Graduate Program in Cell Biology and Physiology, Pittsburgh, PA, USA.,University of Pittsburgh, Departments of Pediatrics and Cell Biology, Pittsburgh, PA, USA
| | - Todd Lamitina
- University of Pittsburgh, Graduate Program in Cell Biology and Physiology, Pittsburgh, PA, USA, .,University of Pittsburgh, Departments of Pediatrics and Cell Biology, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Urso SJ, Comly M, Hanover JA, Lamitina T. The O-GlcNAc transferase OGT is a conserved and essential regulator of the cellular and organismal response to hypertonic stress. PLoS Genet 2020; 16:e1008821. [PMID: 33006972 PMCID: PMC7556452 DOI: 10.1371/journal.pgen.1008821] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/14/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
The conserved O-GlcNAc transferase OGT O-GlcNAcylates serine and threonine residues of intracellular proteins to regulate their function. OGT is required for viability in mammalian cells, but its specific roles in cellular physiology are poorly understood. Here we describe a conserved requirement for OGT in an essential aspect of cell physiology: the hypertonic stress response. Through a forward genetic screen in Caenorhabditis elegans, we discovered OGT is acutely required for osmoprotective protein expression and adaptation to hypertonic stress. Gene expression analysis shows that ogt-1 functions through a post-transcriptional mechanism. Human OGT partially rescues the C. elegans phenotypes, suggesting that the osmoregulatory functions of OGT are ancient. Intriguingly, expression of O-GlcNAcylation-deficient forms of human or worm OGT rescue the hypertonic stress response phenotype. However, expression of an OGT protein lacking the tetracopeptide repeat (TPR) domain does not rescue. Our findings are among the first to demonstrate a specific physiological role for OGT at the organismal level and demonstrate that OGT engages in important molecular functions outside of its well described roles in post-translational O-GlcNAcylation of intracellular proteins.
Collapse
Affiliation(s)
- Sarel J. Urso
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Marcella Comly
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - Todd Lamitina
- Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
24
|
Olgun A. Selective targeting of signet ring cell adenocarcinomas. Med Hypotheses 2019; 133:109380. [PMID: 31454636 DOI: 10.1016/j.mehy.2019.109380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/21/2019] [Indexed: 01/28/2023]
Abstract
Many epithelial tumors, especially signet-ring cell adenocarcinomas, produce huge amounts of mucin glycoproteins that fill cytoplasm and push nucleus to the periphery, giving a signet ring like structure to the cell. Mucin proteins are very rich of l-threonine which is essential in humans. L-threonine content can reach up to 35% of total amino acid composition of some mucin proteins. Therefore l-threonine can be the Achilles heel of signet ring cell adenocarcinomas which are one of the most malignant and agressive cancers. A modified bioisoster of l-threonine, 4-fluoro l-threonine (its fluorine can be radioactive or not), can be used to selectively kill signet ring cancer cells without harming normal cells or for diagnostic purposes.
Collapse
Affiliation(s)
- Abdullah Olgun
- Istinye University, Faculty of Pharmacy, İstinye Üniversitesi Topkapı Kampüsü, (Maltepe Mah., Edirne Çırpıcı Yolu, No. 9 Zeytinburnu), İstanbul 34010, Turkey.
| |
Collapse
|
25
|
A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis elegans. Genetics 2018; 208:1467-1482. [PMID: 29487136 PMCID: PMC5887142 DOI: 10.1534/genetics.118.300827] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/08/2018] [Indexed: 12/24/2022] Open
Abstract
Although extracellular matrices function as protective barriers to many types of environmental insult, their role in sensing stress and regulating adaptive gene induction responses has not been studied carefully... Extracellular matrix barriers and inducible cytoprotective genes form successive lines of defense against chemical and microbial environmental stressors. The barrier in nematodes is a collagenous extracellular matrix called the cuticle. In Caenorhabditis elegans, disruption of some cuticle collagen genes activates osmolyte and antimicrobial response genes. Physical damage to the epidermis also activates antimicrobial responses. Here, we assayed the effect of knocking down genes required for cuticle and epidermal integrity on diverse cellular stress responses. We found that disruption of specific bands of collagen, called annular furrows, coactivates detoxification, hyperosmotic, and antimicrobial response genes, but not other stress responses. Disruption of other cuticle structures and epidermal integrity does not have the same effect. Several transcription factors act downstream of furrow loss. SKN-1/Nrf and ELT-3/GATA are required for detoxification, SKN-1/Nrf is partially required for the osmolyte response, and STA-2/Stat and ELT-3/GATA for antimicrobial gene expression. Our results are consistent with a cuticle-associated damage sensor that coordinates detoxification, hyperosmotic, and antimicrobial responses through overlapping, but distinct, downstream signaling.
Collapse
|
26
|
Igual Gil C, Jarius M, von Kries JP, Rohlfing AK. Neuronal Chemosensation and Osmotic Stress Response Converge in the Regulation of aqp-8 in C. elegans. Front Physiol 2017. [PMID: 28649202 PMCID: PMC5465262 DOI: 10.3389/fphys.2017.00380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aquaporins occupy an essential role in sustaining the salt/water balance in various cells types and tissues. Here, we present new insights into aqp-8 expression and regulation in Caenorhabditis elegans. We show, that upon exposure to osmotic stress, aqp-8 exhibits a distinct expression pattern within the excretory cell compared to other C. elegans aquaporins expressed. This expression is correlated to the osmolarity of the surrounding medium and can be activated physiologically by osmotic stress or genetically in mutants with constitutively active osmotic stress response. In addition, we found aqp-8 expression to be constitutively active in the TRPV channel mutant osm-9(ok1677). In a genome-wide RNAi screen we identified additional regulators of aqp-8. Many of these regulators are connected to chemosensation by the amphid neurons, e.g., odr-10 and gpa-6, and act as suppressors of aqp-8 expression. We postulate from our results, that aqp-8 plays an important role in sustaining the salt/water balance during a secondary response to hyper-osmotic stress. Upon its activation aqp-8 promotes vesicle docking to the lumen of the excretory cell and thereby enhances the ability to secrete water and transport osmotic active substances or waste products caused by protein damage. In summary, aqp-8 expression and function is tightly regulated by a network consisting of the osmotic stress response, neuronal chemosensation as well as the response to protein damage. These new insights in maintaining the salt/water balance in C. elegans will help to reveal the complex homeostasis network preserved throughout species.
Collapse
Affiliation(s)
- Carla Igual Gil
- Zoophysiology, Institute for Biochemistry and Biology, University PotsdamPotsdam, Germany
| | - Mirko Jarius
- Zoophysiology, Institute for Biochemistry and Biology, University PotsdamPotsdam, Germany
| | - Jens P von Kries
- Leibniz-Institut für Molekulare Pharmakologie (FMP)Berlin, Germany
| | - Anne-Katrin Rohlfing
- Zoophysiology, Institute for Biochemistry and Biology, University PotsdamPotsdam, Germany
| |
Collapse
|
27
|
Zugasti O, Thakur N, Belougne J, Squiban B, Kurz CL, Soulé J, Omi S, Tichit L, Pujol N, Ewbank JJ. A quantitative genome-wide RNAi screen in C. elegans for antifungal innate immunity genes. BMC Biol 2016; 14:35. [PMID: 27129311 PMCID: PMC4850687 DOI: 10.1186/s12915-016-0256-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/18/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Caenorhabditis elegans has emerged over the last decade as a useful model for the study of innate immunity. Its infection with the pathogenic fungus Drechmeria coniospora leads to the rapid up-regulation in the epidermis of genes encoding antimicrobial peptides. The molecular basis of antimicrobial peptide gene regulation has been previously characterized through forward genetic screens. Reverse genetics, based on RNAi, provide a complementary approach to dissect the worm's immune defenses. RESULTS We report here the full results of a quantitative whole-genome RNAi screen in C. elegans for genes involved in regulating antimicrobial peptide gene expression. The results will be a valuable resource for those contemplating similar RNAi-based screens and also reveal the limitations of such an approach. We present several strategies, including a comprehensive class clustering method, to overcome these limitations and which allowed us to characterize the different steps of the interaction between C. elegans and the fungus D. coniospora, leading to a complete description of the MAPK pathway central to innate immunity in C. elegans. The results further revealed a cross-tissue signaling, triggered by mitochondrial dysfunction in the intestine, that suppresses antimicrobial peptide gene expression in the nematode epidermis. CONCLUSIONS Overall, our results provide an unprecedented system's level insight into the regulation of C. elegans innate immunity. They represent a significant contribution to our understanding of host defenses and will lead to a better comprehension of the function and evolution of animal innate immunity.
Collapse
Affiliation(s)
- Olivier Zugasti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Biologie du Développement de Marseille, CNRS, UMR6216, Case 907, Marseille, France
| | - Nishant Thakur
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Jérôme Belougne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Barbara Squiban
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Section of Hematology/Oncology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C Léopold Kurz
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Biologie du Développement de Marseille, CNRS, UMR6216, Case 907, Marseille, France
| | - Julien Soulé
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
- Present address: Institut de Genomique Fonctionnelle, 141, rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Shizue Omi
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Laurent Tichit
- Institut de Mathématiques de Marseille, Aix Marseille Université, I2M Centrale Marseille, CNRS UMR 7373, 13453, Marseille, France
| | - Nathalie Pujol
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| | - Jonathan J Ewbank
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| |
Collapse
|
28
|
Lee EC, Kim H, Ditano J, Manion D, King BL, Strange K. Abnormal Osmotic Avoidance Behavior in C. elegans Is Associated with Increased Hypertonic Stress Resistance and Improved Proteostasis. PLoS One 2016; 11:e0154156. [PMID: 27111894 PMCID: PMC4844114 DOI: 10.1371/journal.pone.0154156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/09/2016] [Indexed: 11/19/2022] Open
Abstract
Protein function is controlled by the cellular proteostasis network. Proteostasis is energetically costly and those costs must be balanced with the energy needs of other physiological functions. Hypertonic stress causes widespread protein damage in C. elegans. Suppression and management of protein damage is essential for optimal survival under hypertonic conditions. ASH chemosensory neurons allow C. elegans to detect and avoid strongly hypertonic environments. We demonstrate that mutations in osm-9 and osm-12 that disrupt ASH mediated hypertonic avoidance behavior or genetic ablation of ASH neurons are associated with enhanced survival during hypertonic stress. Improved survival is not due to altered systemic volume homeostasis or organic osmolyte accumulation. Instead, we find that osm-9(ok1677) mutant and osm-9(RNAi) worms exhibit reductions in hypertonicity induced protein damage in non-neuronal cells suggesting that enhanced proteostasis capacity may account for improved hypertonic stress resistance in worms with defects in osmotic avoidance behavior. RNA-seq analysis revealed that genes that play roles in managing protein damage are upregulated in osm-9(ok1677) worms. Our findings are consistent with a growing body of work demonstrating that intercellular communication between neuronal and non-neuronal cells plays a critical role in integrating cellular stress resistance with other organismal physiological demands and associated energy costs.
Collapse
Affiliation(s)
- Elaine C. Lee
- MDI Biological Laboratory, Salisbury Cove, ME, 04672, United States of America
- University of Connecticut, Storrs, CT, 06269, United States of America
| | - Heejung Kim
- MDI Biological Laboratory, Salisbury Cove, ME, 04672, United States of America
| | - Jennifer Ditano
- MDI Biological Laboratory, Salisbury Cove, ME, 04672, United States of America
| | - Dacie Manion
- MDI Biological Laboratory, Salisbury Cove, ME, 04672, United States of America
| | - Benjamin L. King
- MDI Biological Laboratory, Salisbury Cove, ME, 04672, United States of America
| | - Kevin Strange
- MDI Biological Laboratory, Salisbury Cove, ME, 04672, United States of America
- * E-mail:
| |
Collapse
|
29
|
Possik E, Pause A. Glycogen: A must have storage to survive stressful emergencies. WORM 2016; 5:e1156831. [PMID: 27383221 PMCID: PMC4911973 DOI: 10.1080/21624054.2016.1156831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Mechanisms of adaptation to acute changes in osmolarity are fundamental for life. When exposed to hyperosmotic stress, cells and organisms utilize conserved strategies to prevent water loss and maintain cellular integrity and viability. The production of glycerol is a common strategy utilized by the nematode Caenorhabditis elegans (C. elegans) and many other organisms to survive hyperosmotic stress. Specifically, the transcriptional upregulation of glycerol-3-phosphate dehydrogenase, a rate-limiting enzyme in the production of glycerol, has been previously implicated in many model organisms. However, what fuels this massive and rapid production of glycerol upon hyperosmotic stress has not been clearly elucidated. We have recently discovered an AMPK-dependent pathway that mediates hyperosmotic stress resistance in C. elegans. Specifically, we demonstrated that the chronic activation of AMPK leads to glycogen accumulation, which under hyperosmotic stress exposure, is rapidly degraded to mediate glycerol production. Importantly, we demonstrate that this strategy is utilized by flcn-1 mutant C. elegans nematodes in an AMPK-dependent manner. FLCN-1 is the worm homolog of the human renal tumor suppressor Folliculin (FLCN) responsible for the Birt-Hogg-Dubé neoplastic syndrome. Here, we comment on the dual role for glycogen in stress resistance: it serves as an energy store and a fuel for osmolyte production. We further discuss the potential utilization of this mechanism by organisms in general and by human cancer cells in order to survive harsh environmental conditions and notably hyperosmotic stress.
Collapse
Affiliation(s)
- Elite Possik
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
30
|
Maintenance of Membrane Integrity and Permeability Depends on a Patched-Related Protein in Caenorhabditis elegans. Genetics 2016; 202:1411-20. [PMID: 26857627 DOI: 10.1534/genetics.115.179705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Membrane integrity is critical for cell survival, defects of which cause pathological symptoms such as metabolic diseases. In this study, we used ethanol sensitivity of the nematode Caenorhabditis elegans to identify genetic factors involved in membrane integrity. InC. elegans, acute exposure to a high concentration (7% v/v) of ethanol changes membrane permeability, as measured by propidium iodide staining, and causes paralysis. We used the timing of complete paralysis as an indicator for alteration of membrane integrity in our genetic screen, and identified ptr-6 as a gene that confers ethanol resistance when mutated. PTR-6 is a patched-related protein and contains a sterol sensing domain. Inhibition of two PTR-encoding genes,ptr-15 and ptr-23, and mboa-1, encoding an Acyl Co-A: cholesterol acyltransferase homolog, restored ethanol sensitivity of the ptr-6 mutant, suggesting that these ptr genes and mboa-1 are involved in the maintenance of membrane integrity and permeability. Our results suggest that C. elegans can be used as a model system to identify factors involved in metabolic diseases and to screen for therapeutic drugs.
Collapse
|
31
|
Ballesteros C, Tritten L, O’Neill M, Burkman E, Zaky WI, Xia J, Moorhead A, Williams SA, Geary TG. The Effect of In Vitro Cultivation on the Transcriptome of Adult Brugia malayi. PLoS Negl Trop Dis 2016; 10:e0004311. [PMID: 26727204 PMCID: PMC4699822 DOI: 10.1371/journal.pntd.0004311] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Filarial nematodes cause serious and debilitating infections in human populations of tropical countries, contributing to an entrenched cycle of poverty. Only one human filarial parasite, Brugia malayi, can be maintained in rodents in the laboratory setting. It has been a widely used model organism in experiments that employ culture systems, the impact of which on the worms is unknown. METHODOLOGY/PRINCIPAL FINDINGS Using Illumina RNA sequencing, we characterized changes in gene expression upon in vitro maintenance of adult B. malayi female worms at four time points: immediately upon removal from the host, immediately after receipt following shipment, and after 48 h and 5 days in liquid culture media. The dramatic environmental change and the 24 h time lapse between removal from the host and establishment in culture caused a globally dysregulated gene expression profile. We found a maximum of 562 differentially expressed genes based on pairwise comparison between time points. After an initial shock upon removal from the host and shipping, a few stress fingerprints remained after 48 h in culture and until the experiment was stopped. This was best illustrated by a strong and persistent up-regulation of several genes encoding cuticle collagens, as well as serpins. CONCLUSIONS/SIGNIFICANCE These findings suggest that B. malayi can be maintained in culture as a valid system for pharmacological and biological studies, at least for several days after removal from the host and adaptation to the new environment. However, genes encoding several stress indicators remained dysregulated until the experiment was stopped.
Collapse
Affiliation(s)
- Cristina Ballesteros
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Lucienne Tritten
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Maeghan O’Neill
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Erica Burkman
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Filariasis Research Reagent Resource Center, Northampton, Massachusetts, United States of America
| | - Weam I. Zaky
- Filariasis Research Reagent Resource Center, Northampton, Massachusetts, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Jianguo Xia
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Andrew Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Filariasis Research Reagent Resource Center, Northampton, Massachusetts, United States of America
| | - Steven A. Williams
- Filariasis Research Reagent Resource Center, Northampton, Massachusetts, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Timothy G. Geary
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
32
|
Possik E, Ajisebutu A, Manteghi S, Gingras MC, Vijayaraghavan T, Flamand M, Coull B, Schmeisser K, Duchaine T, van Steensel M, Hall DH, Pause A. FLCN and AMPK Confer Resistance to Hyperosmotic Stress via Remodeling of Glycogen Stores. PLoS Genet 2015; 11:e1005520. [PMID: 26439621 PMCID: PMC4595296 DOI: 10.1371/journal.pgen.1005520] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/21/2015] [Indexed: 01/06/2023] Open
Abstract
Mechanisms of adaptation to environmental changes in osmolarity are fundamental for cellular and organismal survival. Here we identify a novel osmotic stress resistance pathway in Caenorhabditis elegans (C. elegans), which is dependent on the metabolic master regulator 5'-AMP-activated protein kinase (AMPK) and its negative regulator Folliculin (FLCN). FLCN-1 is the nematode ortholog of the tumor suppressor FLCN, responsible for the Birt-Hogg-Dubé (BHD) tumor syndrome. We show that flcn-1 mutants exhibit increased resistance to hyperosmotic stress via constitutive AMPK-dependent accumulation of glycogen reserves. Upon hyperosmotic stress exposure, glycogen stores are rapidly degraded, leading to a significant accumulation of the organic osmolyte glycerol through transcriptional upregulation of glycerol-3-phosphate dehydrogenase enzymes (gpdh-1 and gpdh-2). Importantly, the hyperosmotic stress resistance in flcn-1 mutant and wild-type animals is strongly suppressed by loss of AMPK, glycogen synthase, glycogen phosphorylase, or simultaneous loss of gpdh-1 and gpdh-2 enzymes. Our studies show for the first time that animals normally exhibit AMPK-dependent glycogen stores, which can be utilized for rapid adaptation to either energy stress or hyperosmotic stress. Importantly, we show that glycogen accumulates in kidneys from mice lacking FLCN and in renal tumors from a BHD patient. Our findings suggest a dual role for glycogen, acting as a reservoir for energy supply and osmolyte production, and both processes might be supporting tumorigenesis.
Collapse
Affiliation(s)
- Elite Possik
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Andrew Ajisebutu
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Sanaz Manteghi
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Marie-Claude Gingras
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Tarika Vijayaraghavan
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Mathieu Flamand
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Barry Coull
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kathrin Schmeisser
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Thomas Duchaine
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Maurice van Steensel
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
- Institute of Medical Biology, Singapore, Singapore
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
33
|
Levi-Ferber M, Gian H, Dudkevich R, Henis-Korenblit S. Transdifferentiation mediated tumor suppression by the endoplasmic reticulum stress sensor IRE-1 in C. elegans. eLife 2015; 4. [PMID: 26192965 PMCID: PMC4507713 DOI: 10.7554/elife.08005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/02/2015] [Indexed: 12/18/2022] Open
Abstract
Deciphering effective ways to suppress tumor progression and to overcome acquired apoptosis resistance of tumor cells are major challenges in the tumor therapy field. We propose a new concept by which tumor progression can be suppressed by manipulating tumor cell identity. In this study, we examined the effect of ER stress on apoptosis resistant tumorous cells in a Caenorhabditis elegans germline tumor model. We discovered that ER stress suppressed the progression of the lethal germline tumor by activating the ER stress sensor IRE-1. This suppression was associated with the induction of germ cell transdifferentiation into ectopic somatic cells. Strikingly, transdifferentiation of the tumorous germ cells restored their ability to execute apoptosis and enabled their subsequent removal from the gonad. Our results indicate that tumor cell transdifferentiation has the potential to combat cancer and overcome the escape of tumor cells from the cell death machinery. DOI:http://dx.doi.org/10.7554/eLife.08005.001 If a cell in the body becomes damaged or stops working properly, it can trigger its own destruction. This helps to prevent the accumulation of damaged cells. However, cancer cells can often tolerate much greater damage than normal cells. Toxic chemotherapies, which are often used to treat cancer, work by severely damaging the cells to help trigger their self-destruction. Unfortunately, chemotherapy does not work on all cancer cells, and the remaining treatment-resistant cells may continue to grow and spread in more aggressive ways. Now, Levi-Ferber et al. have found a way to change the identity of cancer cells, which makes them more likely to self-destruct. The experiments used roundworms called Caenorhabditis elegans that had a genetic mutation that causes them to develop tumors in their reproductive organs. Normally, the cells in these tumors do not self-destruct. Levi-Ferber et al. exposed tumor cells from the worms to chemicals or to genetic modifications that cause unfolded proteins to accumulate inside the cell. This build-up of proteins stresses a structure in the cell called the endoplasmic reticulum. Normally, if endoplasmic reticulum stress gets too high, the cell activates various pathways to relieve the stress, and if these fail, the cell self-destructs. Levi-Ferber et al. showed that a protein called IRE-1, which senses endoplasmic reticulum stress, caused the tumor cells to change into a type of non-cancerous cell. After the change, the cells were also more sensitive to self-destruction. This meant that tumors grew more slowly and ended up smaller, allowing the animals to survive longer. Together, the experiments suggest that treatments that force cancer cells to become a different cell type might be one way to prevent the emergence of treatment-resistant tumor cells. Future research will be needed to investigate exactly how IRE-1 causes the identity of the cell to change, and to see if this process could treat other kinds of cancer. DOI:http://dx.doi.org/10.7554/eLife.08005.002
Collapse
Affiliation(s)
- Mor Levi-Ferber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hai Gian
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Reut Dudkevich
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
34
|
Choe KP. Physiological and molecular mechanisms of salt and water homeostasis in the nematode Caenorhabditis elegans. Am J Physiol Regul Integr Comp Physiol 2013; 305:R175-86. [PMID: 23739341 DOI: 10.1152/ajpregu.00109.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intracellular salt and water homeostasis is essential for all cellular life. Extracellular salt and water homeostasis is also important for multicellular organisms. Many fundamental mechanisms of compensation for osmotic perturbations are well defined and conserved. Alternatively, molecular mechanisms of detecting salt and water imbalances and regulating compensatory responses are generally poorly defined for animals. Throughout the last century, researchers studying vertebrates and vertebrate cells made critical contributions to our understanding of osmoregulation, especially mechanisms of salt and water transport and organic osmolyte accumulation. Researchers have more recently started using invertebrate model organisms with defined genomes and well-established methods of genetic manipulation to begin defining the genes and integrated regulatory networks that respond to osmotic stress. The nematode Caenorhabditis elegans is well suited to these studies. Here, I introduce osmoregulatory mechanisms in this model, discuss experimental advantages and limitations, and review important findings. Key discoveries include defining genetic mechanisms of osmolarity sensing in neurons, identifying protein damage as a sensor and principle determinant of hypertonic stress resistance, and identification of a putative sensor for hypertonic stress associated with the extracellular matrix. Many of these processes and pathways are conserved and, therefore, provide new insights into salt and water homeostasis in other animals, including mammals.
Collapse
Affiliation(s)
- Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
35
|
Rodriguez M, Snoek LB, De Bono M, Kammenga JE. Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genet 2013; 29:367-74. [PMID: 23428113 DOI: 10.1016/j.tig.2013.01.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/14/2013] [Accepted: 01/25/2013] [Indexed: 12/24/2022]
Abstract
Many organisms have stress response pathways, components of which share homology with players in complex human disease pathways. Research on stress response in the nematode worm Caenorhabditis elegans has provided detailed insights into the genetic and molecular mechanisms underlying complex human diseases. In this review we focus on four different types of environmental stress responses - heat shock, oxidative stress, hypoxia, and osmotic stress - and on how these can be used to study the genetics of complex human diseases. All four types of responses involve the genetic machineries that underlie a number of complex human diseases such as cancer and neurodegenerative diseases, including Alzheimer's and Parkinson's. We highlight the types of stress response experiments required to detect the genes and pathways underlying human disease and suggest that studying stress biology in worms can be translated to understanding human disease and provide potential targets for drug discovery.
Collapse
Affiliation(s)
- Miriam Rodriguez
- Laboratory of Nematology, Wageningen University, 6708 PD, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
36
|
Lee ECH, Strange K. GCN-2 dependent inhibition of protein synthesis activates osmosensitive gene transcription via WNK and Ste20 kinase signaling. Am J Physiol Cell Physiol 2012; 303:C1269-77. [PMID: 23076791 DOI: 10.1152/ajpcell.00294.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increased gpdh-1 transcription is required for accumulation of the organic osmolyte glycerol and survival of Caenorhabditis elegans during hypertonic stress. Our previous work has shown that regulators of gpdh-1 (rgpd) gene knockdown constitutively activates gpdh-1 expression. Fifty-five rgpd genes play essential roles in translation suggesting that inhibition of protein synthesis is an important signal for regulating osmoprotective gene transcription. We demonstrate here that translation is reduced dramatically by hypertonic stress or knockdown of rgpd genes encoding aminoacyl-tRNA synthetases and eukaryotic translation initiation factors (eIFs). Toxin-induced inhibition of translation also activates gpdh-1 expression. Hypertonicity-induced translation inhibition is mediated by general control nonderepressible (GCN)-2 kinase signaling and eIF-2α phosphoryation. Loss of gcn-1 or gcn-2 function prevents eIF-2α phosphorylation, completely blocks reductions in translation, and inhibits gpdh-1 transcription. gpdh-1 expression is regulated by the highly conserved with-no-lysine kinase (WNK) and Ste20 kinases WNK-1 and GCK-3, which function in the GCN-2 signaling pathway downstream from eIF-2α phosphorylation. Our previous work has shown that hypertonic stress causes rapid and dramatic protein damage in C. elegans and that inhibition of translation reduces this damage. The current studies demonstrate that reduced translation also serves as an essential signal for activation of WNK-1/GCK-3 kinase signaling and subsequent transcription of gpdh-1 and possibly other osmoprotective genes.
Collapse
Affiliation(s)
- Elaine Choung-Hee Lee
- Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | | |
Collapse
|
37
|
Chisholm AD, Xu S. The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:879-902. [PMID: 23539358 DOI: 10.1002/wdev.77] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Caenorhabditis elegans epidermis forms one of the principal barrier epithelia of the animal. Differentiation of the epidermis begins in mid embryogenesis and involves apical-basal polarization of the cytoskeletal and secretory systems as well as cellular junction formation. Secretion of the external cuticle layers is one of the major developmental and physiological specializations of the epidermal epithelium. The four post-embryonic larval stages are separated by periodic moults, in which the epidermis generates a new cuticle with stage-specific characteristics. The differentiated epidermis also plays key roles in endocrine signaling, fat storage, and ionic homeostasis. The epidermis is intimately associated with the development and function of the nervous system, and may have glial-like roles in modulating neuronal function. The epidermis provides passive and active defenses against skin-penetrating pathogens and can repair small wounds. Finally, age-dependent deterioration of the epidermis is a prominent feature of aging and may affect organismal aging and lifespan.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
38
|
Oligoarray comparative genomic hybridization-mediated mapping of suppressor mutations generated in a deletion-biased mutagenesis screen. G3-GENES GENOMES GENETICS 2012; 2:657-63. [PMID: 22690375 PMCID: PMC3362295 DOI: 10.1534/g3.112.002238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/26/2012] [Indexed: 11/18/2022]
Abstract
Suppressor screens are an invaluable method for identifying novel genetic interactions between genes in the model organism Caenorhabditis elegans. However, traditionally this approach has suffered from the laborious and protracted process of mapping mutations at the molecular level. Using a mutagen known to generate small deletions, coupled with oligoarray comparative genomic hybridization (aCGH), we have identified mutations in two genes that suppress the lethality associated with a mutation of the essential receptor tyrosine kinase rol-3. First, we find that deletion of the Bicaudal-C ortholog, bcc-1, suppresses rol-3-associated lethality. Second, we identify several duplications that also suppress rol-3-associated lethality. We establish that overexpression of srap-1, a single gene present in these duplications, mediates the suppression. This study demonstrates the suitability of deletion-biased mutagenesis screening in combination with aCGH characterization for the rapid identification of novel suppressor mutations. In addition to detecting small deletions, this approach is suitable for identifying copy number suppressor mutations, a class of suppressor not easily characterized using alternative approaches.
Collapse
|
39
|
Stress and aging induce distinct polyQ protein aggregation states. Proc Natl Acad Sci U S A 2012; 109:10587-92. [PMID: 22645345 DOI: 10.1073/pnas.1108766109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many age-related diseases are known to elicit protein misfolding and aggregation. Whereas environmental stressors, such as temperature, oxidative stress, and osmotic stress, can also damage proteins, it is not known whether aging and the environment impact protein folding in the same or different ways. Using polyQ reporters of protein folding in both Caenorhabditis elegans and mammalian cell culture, we show that osmotic stress, but not other proteotoxic stressors, induces rapid (minutes) cytoplasmic polyQ aggregation. Osmotic stress-induced polyQ aggregates could be distinguished from aging-induced polyQ aggregates based on morphological, biophysical, cell biological, and biochemical criteria, suggesting that they are a unique misfolded-protein species. The insulin-like growth factor signaling mutant daf-2, which inhibits age-induced polyQ aggregation and protects C. elegans from stress, did not prevent the formation of stress-induced polyQ aggregates. However, osmotic stress resistance mutants, which genetically activate the osmotic stress response, strongly inhibited the formation of osmotic polyQ aggregates. Our findings show that in vivo, the same protein can adopt distinct aggregation states depending on the initiating stressor and that stress and aging impact the proteome in related but distinct ways.
Collapse
|
40
|
He L, Skirkanich J, Moronetti L, Lewis R, Lamitina T. The cystic-fibrosis-associated ΔF508 mutation confers post-transcriptional destabilization on the C. elegans ABC transporter PGP-3. Dis Model Mech 2012; 5:930-9. [PMID: 22569626 PMCID: PMC3484874 DOI: 10.1242/dmm.008987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Membrane proteins make up ∼30% of the proteome. During the early stages of maturation, this class of proteins can experience localized misfolding in distinct cellular compartments, such as the cytoplasm, endoplasmic reticulum (ER) lumen and ER membrane. ER quality control (ERQC) mechanisms monitor folding and determine whether a membrane protein is appropriately folded or is misfolded and warrants degradation. ERQC plays crucial roles in human diseases, such as cystic fibrosis, in which deletion of a single amino acid (F508) results in the misfolding and degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel. We introduced the ΔF508 mutation into Caenorhabditis elegans PGP-3, a 12-transmembrane ABC transporter with 15% identity to CFTR. When expressed in intestinal epithelial cells, PGP-3wt was stable and efficiently trafficked to the apical plasma membrane through a COPII-dependent mechanism. However, PGP-3ΔF508 was post-transcriptionally destabilized, resulting in reduced total and apical membrane protein levels. Genetic or physiological activation of the osmotic stress response pathway, which causes accumulation of the chemical chaperone glycerol, stabilized PGP-3ΔF508. Efficient degradation of PGP-3ΔF508 required the function of several C. elegans ER-associated degradation (ERAD) homologs, suggesting that destabilization occurs through an ERAD-type mechanism. Our studies show that the ΔF508 mutation causes post-transcriptional destabilization and degradation of PGP-3 in C. elegans epithelial cells. This model, combined with the power of C. elegans genetics, provides a new opportunity to genetically dissect metazoan ERQC.
Collapse
Affiliation(s)
- Liping He
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|