1
|
Sauvé R, Morin S, Yam PT, Charron F. β-arrestins Are Scaffolding Proteins Required for Shh-Mediated Axon Guidance. J Neurosci 2024; 44:e0261242024. [PMID: 38886055 PMCID: PMC11270522 DOI: 10.1523/jneurosci.0261-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
During nervous system development, Sonic hedgehog (Shh) guides developing commissural axons toward the floor plate of the spinal cord. To guide axons, Shh binds to its receptor Boc and activates downstream effectors such as Smoothened (Smo) and Src family kinases (SFKs). SFK activation requires Smo activity and is also required for Shh-mediated axon guidance. Here we report that β-arrestin1 and β-arrestin2 (β-arrestins) serve as scaffolding proteins that link Smo and SFKs in Shh-mediated axon guidance. We found that β-arrestins are expressed in rat commissural neurons. We also found that Smo, β-arrestins, and SFKs form a tripartite complex, with the complex formation dependent on β-arrestins. β-arrestin knockdown blocked the Shh-mediated increase in Src phosphorylation, demonstrating that β-arrestins are required to activate Src kinase downstream of Shh. β-arrestin knockdown also led to the loss of Shh-mediated attraction of rat commissural axons in axon turning assays. Expression of two different dominant-negative β-arrestins, β-arrestin1 V53D which blocks the internalization of Smo and β-arrestin1 P91G-P121E which blocks its interaction with SFKs, also led to the loss of Shh-mediated attraction of commissural axons. In vivo, the expression of these dominant-negative β-arrestins caused defects in commissural axon guidance in the spinal cord of chick embryos of mixed sexes. Thus we show that β-arrestins are essential scaffolding proteins that connect Smo to SFKs and are required for Shh-mediated axon guidance.
Collapse
Affiliation(s)
- Rachelle Sauvé
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Steves Morin
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Patricia T Yam
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
2
|
Fan J, Tong G, Chen X, Li S, Yu Y, Zhu S, Zhu K, Hu Z, Dong Y, Chen R, Zhu J, Gong W, Hu Z, Zhou B, Chen Y, Jin L, Cong W. CK2 blockade alleviates liver fibrosis by suppressing activation of hepatic stellate cells via the Hedgehog pathway. Br J Pharmacol 2023; 180:44-61. [PMID: 36070072 DOI: 10.1111/bph.15945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is a serious cause of morbidity and mortality worldwide characterized by accumulation of extracellular matrix produced by hepatic stellate cells (HSCs). The protein kinase CK2 is a pro-survival kinase overexpressed in human tumours. However, the biological role of CK2 in liver fibrosis is largely unknown. We aimed to investigate the mechanism by which CK2 promotes liver fibrosis. EXPERIMENTAL APPROACH In vitro, LX-2 cells were stimulated with transforming growth factor-β (TGF-β). HSCs were also isolated for research. In vivo, the adeno-associated virus AAV-sh-csnk2a1 was used to knockdown CK2α specifically in HSCs, and CX-4945 was used to pharmacologically inhibit the enzymatic activity of CK2 in murine models of fibrosis induced by carbon tetrachloride (CCl4 ) and a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet. Histological and biochemical analyses were performed to study the involvement of CK2 in regulation of fibrogenic and fibrolytic factors as well as activation properties of HSCs. KEY RESULTS HSC-specific genetic invalidation of CK2α or pharmacological inhibition of CK2 protected mice treated with CCl4 or fed a DDC diet against liver fibrosis and HSC accumulation. Mechanistically, CK2α, which bound to Smoothened (SMO), was a positive regulator of the Hedgehog signal transduction pathway. CK2 prevented ubiquitination and proteasomal degradation of SMO, which was abolished by knockdown of CK2α or pharmacological inhibition of CK2. CONCLUSIONS AND IMPLICATIONS CK2 activation is critical to sustain the activated and fibrogenic phenotype of HSCs via SMO stabilization. Therefore, inactivation of CK2 by CX-4945 may be of therapeutic interest for liver fibrotic diseases.
Collapse
Affiliation(s)
- Junfu Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaozan Tong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xixi Chen
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Santie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Yu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shunan Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kunxuan Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zijing Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yonggan Dong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Zhou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiming Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Smylla TK, Wagner K, Huber A. The Role of Reversible Phosphorylation of Drosophila Rhodopsin. Int J Mol Sci 2022; 23:ijms232314674. [PMID: 36499010 PMCID: PMC9740569 DOI: 10.3390/ijms232314674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Vertebrate and fly rhodopsins are prototypical GPCRs that have served for a long time as model systems for understanding GPCR signaling. Although all rhodopsins seem to become phosphorylated at their C-terminal region following activation by light, the role of this phosphorylation is not uniform. Two major functions of rhodopsin phosphorylation have been described: (1) inactivation of the activated rhodopsin either directly or by facilitating binding of arrestins in order to shut down the visual signaling cascade and thus eventually enabling a high-temporal resolution of the visual system. (2) Facilitating endocytosis of activated receptors via arrestin binding that in turn recruits clathrin to the membrane for clathrin-mediated endocytosis. In vertebrate rhodopsins the shutdown of the signaling cascade may be the main function of rhodopsin phosphorylation, as phosphorylation alone already quenches transducin activation and, in addition, strongly enhances arrestin binding. In the Drosophila visual system rhodopsin phosphorylation is not needed for receptor inactivation. Its role here may rather lie in the recruitment of arrestin 1 and subsequent endocytosis of the activated receptor. In this review, we summarize investigations of fly rhodopsin phosphorylation spanning four decades and contextualize them with regard to the most recent insights from vertebrate phosphorylation barcode theory.
Collapse
|
4
|
Taghert PH. The incidence of candidate binding sites for β-arrestin in Drosophila neuropeptide GPCRs. PLoS One 2022; 17:e0275410. [PMID: 36318573 PMCID: PMC9624432 DOI: 10.1371/journal.pone.0275410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
To support studies of neuropeptide neuromodulation, I have studied beta-arrestin binding sites (BBS's) by evaluating the incidence of BBS sequences among the C terminal tails (CTs) of each of the 49 Drosophila melanogaster neuropeptide GPCRs. BBS were identified by matches with a prediction derived from structural analysis of rhodopsin:arrestin and vasopressin receptor: arrestin complexes [1]. To increase the rigor of the identification, I determined the conservation of BBS sequences between two long-diverged species D. melanogaster and D. virilis. There is great diversity in the profile of BBS's in this group of GPCRs. I present evidence for conserved BBS's in a majority of the Drosophila neuropeptide GPCRs; notably some have no conserved BBS sequences. In addition, certain GPCRs display numerous conserved compound BBS's, and many GPCRs display BBS-like sequences in their intracellular loop (ICL) domains as well. Finally, 20 of the neuropeptide GPCRs are expressed as protein isoforms that vary in their CT domains. BBS profiles are typically different across related isoforms suggesting a need to diversify and regulate the extent and nature of GPCR:arrestin interactions. This work provides the initial basis to initiate future in vivo, genetic analyses in Drosophila to evaluate the roles of arrestins in neuropeptide GPCR desensitization, trafficking and signaling.
Collapse
Affiliation(s)
- Paul H. Taghert
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
5
|
Salim S, Banu A, Alwa A, Gowda SBM, Mohammad F. The gut-microbiota-brain axis in autism: what Drosophila models can offer? J Neurodev Disord 2021; 13:37. [PMID: 34525941 PMCID: PMC8442445 DOI: 10.1186/s11689-021-09378-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar.
| |
Collapse
|
6
|
Hatori R, Wood BM, Oliveira Barbosa G, Kornberg TB. Regulated delivery controls Drosophila Hedgehog, Wingless, and Decapentaplegic signaling. eLife 2021; 10:71744. [PMID: 34292155 PMCID: PMC8376250 DOI: 10.7554/elife.71744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Morphogen signaling proteins disperse across tissues to activate signal transduction in target cells. We investigated dispersion of Hedgehog (Hh), Wnt homolog Wingless (Wg), and Bone morphogenic protein homolog Decapentaplegic (Dpp) in the Drosophila wing imaginal disc. We discovered that delivery of Hh, Wg, and Dpp to their respective targets is regulated. We found that <5% of Hh and <25% of Wg are taken up by disc cells and activate signaling. The amount of morphogen that is taken up and initiates signaling did not change when the level of morphogen expression was varied between 50 and 200% (Hh) or 50 and 350% (Wg). Similar properties were observed for Dpp. We analyzed an area of 150 μm×150 μm that includes Hh-responding cells of the disc as well as overlying tracheal cells and myoblasts that are also activated by disc-produced Hh. We found that the extent of signaling in the disc was unaffected by the presence or absence of the tracheal and myoblast cells, suggesting that the mechanism that disperses Hh specifies its destinations to particular cells, and that target cells do not take up Hh from a common pool.
Collapse
Affiliation(s)
- Ryo Hatori
- Cardiovascular Research Institute University of California, San Francisco, San Francisco, United States
| | - Brent M Wood
- Cardiovascular Research Institute University of California, San Francisco, San Francisco, United States
| | | | - Thomas B Kornberg
- Cardiovascular Research Institute University of California, San Francisco, San Francisco, United States
| |
Collapse
|
7
|
Kim JH, Hanlon CD, Vohra S, Devreotes PN, Andrew DJ. Hedgehog signaling and Tre1 regulate actin dynamics through PI(4,5)P 2 to direct migration of Drosophila embryonic germ cells. Cell Rep 2021; 34:108799. [PMID: 33657369 PMCID: PMC8023404 DOI: 10.1016/j.celrep.2021.108799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 01/09/2023] Open
Abstract
The Tre1 G-protein coupled receptor (GPCR) was discovered to be required for Drosophila germ cell (GC) coalescence almost two decades ago, yet the molecular events both upstream and downstream of Tre1 activation remain poorly understood. To gain insight into these events, we describe a bona fide null allele and both untagged and tagged versions of Tre1. We find that the primary defect with complete Tre1 loss is the failure of GCs to properly navigate, with GC mis-migration occurring from early stages. We find that Tre1 localizes with F-actin at the migration front, along with PI(4,5)P2; dPIP5K, an enzyme that generates PI(4,5)P2; and dWIP, a protein that binds activated Wiskott-Aldrich syndrome protein (WASP), which stimulates F-actin polymerization. We show that Tre1 is required for polarized accumulation of F-actin, PI(4,5)P2, and dPIP5K. Smoothened also localizes with F-actin at the migration front, and Hh, through Smo, increases levels of Tre1 at the plasma membrane and Tre1’s association with dPIP5K. Kim et al. uncover molecular and cellular events upstream and downstream of the Tre1 G-protein coupled receptor (GPCR), which is required for germ cell navigation in Drosophila. Hedgehog signaling through Smoothened localizes Tre1 to activate F-actin assembly through dPIP5K, PI(4,5)P2, and WASP.
Collapse
Affiliation(s)
- Ji Hoon Kim
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin D Hanlon
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunaina Vohra
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Jiang W, Yao X, Shan Z, Li W, Gao Y, Zhang Q. E3 ligase Herc4 regulates Hedgehog signalling through promoting Smoothened degradation. J Mol Cell Biol 2020; 11:791-803. [PMID: 30925584 PMCID: PMC7261483 DOI: 10.1093/jmcb/mjz024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/24/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Hedgehog (Hh) signalling plays conserved roles in controlling embryonic development; its dysregulation causes many diseases including cancers. The G protein-coupled receptor Smoothened (Smo) is the key signal transducer of the Hh pathway, whose posttranslational regulation has been shown to be critical for its accumulation and activation. Ubiquitination has been reported an essential posttranslational regulation of Smo. Here, we identify a novel E3 ligase of Smo, Herc4, which binds to Smo, and regulates Hh signalling by controlling Smo ubiquitination and degradation. Interestingly, our data suggest that Herc4-mediated Smo degradation is regulated by Hh in PKA-primed phosphorylation-dependent and independent manners.
Collapse
Affiliation(s)
- Weirong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Xia Yao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Zhaoliang Shan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Wenting Li
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Yuxue Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Structure-function analysis of β-arrestin Kurtz reveals a critical role of receptor interactions in downregulation of GPCR signaling in vivo. Dev Biol 2019; 455:409-419. [PMID: 31325455 DOI: 10.1016/j.ydbio.2019.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/15/2019] [Accepted: 07/16/2019] [Indexed: 01/14/2023]
Abstract
Arrestins control signaling via the G protein coupled receptors (GPCRs), serving as both signal terminators and transducers. Previous studies identified several structural elements in arrestins that contribute to their functions as GPCR regulators. However, the importance of these elements in vivo is unclear, and the developmental roles of arrestins are not well understood. We carried out an in vivo structure-function analysis of Kurtz (Krz), the single ortholog of mammalian β-arrestins in the Drosophila genome. A combination of Krz mutations affecting the GPCR-phosphosensing and receptor core-binding ("finger loop") functions (Krz-KKVL/A) resulted in a complete loss of Krz activity during development. Endosome recruitment and bioluminescence resonance energy transfer (BRET) assays revealed that the KKVL/A mutations abolished the GPCR-binding ability of Krz. We found that the isolated "finger loop" mutation (Krz-VL/A), while having a negligible effect on GPCR internalization, severely affected Krz function, suggesting that tight receptor interactions are necessary for proper termination of signaling in vivo. Genetic analysis as well as live imaging demonstrated that mutations in Krz led to hyperactivity of the GPCR Mist (also known as Mthl1), which is activated by its ligand Folded gastrulation (Fog) and is responsible for cellular contractility and epithelial morphogenesis. Krz mutations affected two developmental events that are under the control of Fog-Mist signaling: gastrulation and morphogenesis of the wing. Overall, our data reveal the functional importance in vivo of direct β-arrestin/GPCR binding, which is mediated by the recognition of the phosphorylated receptor tail and receptor core interaction. These Krz-GPCR interactions are critical for setting the correct level of Fog-Mist signaling during epithelial morphogenesis.
Collapse
|
10
|
Karam CS, Jones SK, Javitch JA. Come Fly with Me: An overview of dopamine receptors in Drosophila melanogaster. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:56-65. [PMID: 31219669 DOI: 10.1111/bcpt.13277] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
Abstract
Dopamine (DA) receptors play critical roles in a wide range of behaviours, including sensory processing, motor function, reward and arousal. As such, aberrant DA signalling is associated with numerous neurological and psychiatric disorders. Therefore, understanding the mechanisms by which DA neurotransmission drives intracellular signalling pathways that modulate behaviour can provide critical insights to guide the development of targeted therapeutics. Drosophila melanogaster has emerged as a powerful model with unique advantages to study the mechanisms underlying DA neurotransmission and associated behaviours in a controlled and systematic manner. Many regions in the fly brain innervated by dopaminergic neurons have been mapped and linked to specific behaviours, including associative learning and arousal. Here, we provide an overview of the homology between human and Drosophila dopaminergic systems and review the current literature on the pharmacology, molecular signalling mechanisms and behavioural outcome of DA receptor activation in the Drosophila brain.
Collapse
Affiliation(s)
- Caline S Karam
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York City, New York, USA
| | - Sandra K Jones
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York City, New York, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York City, New York, USA.,Department of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA
| |
Collapse
|
11
|
Liu A. Proteostasis in the Hedgehog signaling pathway. Semin Cell Dev Biol 2018; 93:153-163. [PMID: 31429406 DOI: 10.1016/j.semcdb.2018.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
Abstract
The Hedgehog (Hh) signaling pathway is crucial for the development of vertebrate and invertebrate animals alike. Hh ligand binds its receptor Patched (Ptc), allowing the activation of the obligate signal transducer Smoothened (Smo). The levels and localizations of both Ptc and Smo are regulated by ubiquitination, and Smo is under additional regulation by phosphorylation and SUMOylation. Downstream of Smo, the Ci/Gli family of transcription factors regulates the transcriptional responses to Hh. Phosphorylation, ubiquitination and SUMOylation are important for the stability and localization of Ci/Gli proteins and Hh signaling output. Finally, Suppressor of Fused directly regulates Ci/Gli proteins and itself is under proteolytic regulation that is critical for normal Hh signaling.
Collapse
Affiliation(s)
- Aimin Liu
- Department of Biology, Eberly College of Science, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
12
|
Li S, Li S, Wang B, Jiang J. Hedgehog reciprocally controls trafficking of Smo and Ptc through the Smurf family of E3 ubiquitin ligases. Sci Signal 2018; 11:11/516/eaan8660. [PMID: 29438012 DOI: 10.1126/scisignal.aan8660] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hedgehog (Hh) induces signaling by promoting the reciprocal trafficking of its receptor Patched (Ptc) and the signal transducer Smoothened (Smo), which is inhibited by Ptc, at the cell surface. We identified Smurf family E3 ubiquitin ligases as essential for Smo ubiquitylation and cell surface clearance and demonstrated that Smurf family members mediate the reciprocal trafficking of Ptc and Smo in Drosophila melanogaster G protein-coupled receptor kinase 2 (Gprk2)-mediated phosphorylation of Smurf promoted Smo ubiquitylation by increasing the recruitment of Smurf to Smo, whereas protein kinase A (PKA)-mediated phosphorylation of Smo caused Smurf to dissociate from Smo, thereby inhibiting Smo ubiquitylation. Smo and Ptc competed for the same pool of Smurf family E3 ubiquitin ligases, and Hh promoted Ptc ubiquitylation and degradation by disrupting the association of Smurf family E3 ubiquitin ligases with Smo and stimulating their binding to Ptc. Our study identifies the E3 ubiquitin ligases that target Smo and provides insight into how Hh regulates the reciprocal trafficking of its receptor and signal transducer.
Collapse
Affiliation(s)
- Shuang Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Shuangxi Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Bing Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
13
|
Jiang K, Liu Y, Zhang J, Jia J. An intracellular activation of Smoothened that is independent of Hedgehog stimulation in Drosophila. J Cell Sci 2018; 131:jcs211367. [PMID: 29142103 PMCID: PMC5818065 DOI: 10.1242/jcs.211367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023] Open
Abstract
Smoothened (Smo), a GPCR family protein, plays a critical role in the reception and transduction of Hedgehog (Hh) signal. Smo is phosphorylated and activated on the cell surface; however, it is unknown whether Smo can be intracellularly activated. Here, we demonstrate that inactivation of the ESCRT-III causes dramatic accumulation of Smo in the ESCRT-III/MVB compartment, and subsequent activation of Hh signaling. In contrast, inactivation of ESCRTs 0-II induces mild Smo accumulation in the ESCRT-III/MVB compartment. We provide evidence that Kurtz (Krz), the Drosophila β-arrestin2, acts in parallel with the ESCRTs 0-II pathway to sort Smo to the multivesicular bodies and lysosome-mediated degradation. Additionally, upon inactivation of ESCRT-III, all active and inactive forms of Smo are accumulated. Endogenous Smo accumulated upon ESCRT-III inactivation is highly activated, which is induced by phosphorylation but not sumoylation. Taken together, our findings demonstrate a model for intracellular activation of Smo, raising the possibility for tissue overgrowth caused by an excessive amount, rather than mutation of Smo.
Collapse
Affiliation(s)
- Kai Jiang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Yajuan Liu
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jie Zhang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jianhang Jia
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
14
|
SUMO regulates the activity of Smoothened and Costal-2 in Drosophila Hedgehog signaling. Sci Rep 2017; 7:42749. [PMID: 28195188 PMCID: PMC5307382 DOI: 10.1038/srep42749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/17/2017] [Indexed: 12/21/2022] Open
Abstract
In Hedgehog (Hh) signaling, the GPCR-family protein Smoothened (Smo) acts as a signal transducer that is regulated by phosphorylation and ubiquitination, which ultimately change the cell surface accumulation of Smo. However, it is not clear whether Smo is regulated by other post-translational modifications, such as sumoylation. Here, we demonstrate that knockdown of the small ubiquitin-related modifier (SUMO) pathway components Ubc9 (a SUMO-conjugating enzyme E2), PIAS (a SUMO-protein ligase E3), and Smt3 (the SUMO isoform in Drosophila) by RNAi prevents Smo accumulation and alters Smo activity in the wing. We further show that Hh-induced-sumoylation stabilizes Smo, whereas desumoylation by Ulp1 destabilizes Smo in a phosphorylation independent manner. Mechanistically, we discover that excessive Krz, the Drosophila β-arrestin 2, inhibits Smo sumoylation and prevents Smo accumulation through Krz regulatory domain. Krz likely facilitates the interaction between Smo and Ulp1 because knockdown of Krz by RNAi attenuates Smo-Ulp1 interaction. Finally, we provide evidence that Cos2 is also sumoylated, which counteracts its inhibitory role on Smo accumulation in the wing. Taken together, we have uncovered a novel mechanism for Smo activation by sumoylation that is regulated by Hh and Smo interacting proteins.
Collapse
|
15
|
Abstract
BACKGROUND The activation of the Notch signaling pathway has been shown to play an important role in diabetic nephropathy (DN) development. Besides, Notch-1 is a target gene in miR-34a. However, the regulation of the podocyte lesions involved in DN by miR-34a has not been identified. METHODS This study utilized miR-34a mimics and small interfering RNA transfection to construct miR-34a overexpression and lower-expression model to investigate the effect of miR-34a on the regulation of the Notch signaling pathway and podocyte lesions in DN. Western blotting and real-time quantitative polymerase chain reaction were applied for the quantitative testing of mRNA and protein expression. Apoptosis of podocyte was detected by TUNEL staining. RESULTS In high-glucose (HG) conditions, miR-34a overexpression inhibited the expression of Notch 1, Jagged 1, NICD, Hes 1, and Hey 1 proteins. Further, cleaved caspase-3, Bax, and phosphorylation of p53 (p-p53) were reduced significantly. Therefore, miR-34a overexpression inhibited the Notch signaling pathway and podocyte lesions induced by HG. β-arrestin was slightly reduced in HG conditions. Meanwhile, miR-34a overexpression could remit the inhibition. CONCLUSION Results from this study provide evidence that miR-34a may offer a new approach for the treatment of diabetes.
Collapse
Affiliation(s)
- Xiangying Zhang
- Department of Endocrinology, Tianjin Hospital, Tianjin, P.R. China
- Correspondence: Xiangying Zhang, Department of Endocrinology, Tianjin Hospital. Liberation South Road No. 406, Hexi District, Tianjin 300211, China (e-mail: )
| | | | | |
Collapse
|
16
|
Abstract
The casein kinase 1 (CK1) family of serine (Ser)/threonine (Thr) protein kinases participates in a myriad of cellular processes including developmental signaling. Hedgehog (Hh) and Wnt pathways are two major and evolutionarily conserved signaling pathways that control embryonic development and adult tissue homeostasis. Deregulation of these pathways leads to many human disorders including birth defects and cancer. Here, I review the role of CK1 in the regulation of Hh and Wnt signal transduction cascades from the membrane reception systems to the transcriptional effectors. In both Hh and Wnt pathways, multiple CK1 family members regulate signal transduction at several levels of the pathways and play either positive or negative roles depending on the signaling status, individual CK1 isoforms involved, and the specific substrates they phosphorylate. A common mechanism underlying the control of CK1-mediated phosphorylation of Hh and Wnt pathway components is the regulation of CK1/substrate interaction within large protein complexes. I will highlight this feature in the context of Hh signaling and draw interesting parallels between the Hh and Wnt pathways.
Collapse
Affiliation(s)
- Jin Jiang
- University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States.
| |
Collapse
|
17
|
GPCRs in invertebrate innate immunity. Biochem Pharmacol 2016; 114:82-7. [DOI: 10.1016/j.bcp.2016.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022]
|
18
|
Wang D, Li L, Lu J, Liu S, Shen J. Complementary expression of optomotor-blind and the Iroquois complex promotes fold formation to separate wing notum and hinge territories. Dev Biol 2016; 416:225-234. [DOI: 10.1016/j.ydbio.2016.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023]
|
19
|
Arensdorf AM, Marada S, Ogden SK. Smoothened Regulation: A Tale of Two Signals. Trends Pharmacol Sci 2015; 37:62-72. [PMID: 26432668 DOI: 10.1016/j.tips.2015.09.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 02/09/2023]
Abstract
The G protein-coupled receptor (GPCR) Smoothened (Smo) is the signal transducer of the developmentally and therapeutically relevant Hedgehog (Hh) pathway. Although recent structural analyses have advanced our understanding of Smo biology, several questions remain. Chief among them are the identity of its natural ligand, the regulatory processes controlling its activation, and the mechanisms by which it signals to downstream effectors. In this review, we discuss recent discoveries from multiple model systems that have set the stage for solving these mysteries. We focus on the roles of distinct Smo functional domains, post-translational modifications, and trafficking, and conclude by discussing their contributions to signal output.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place MS#340, Memphis, TN 38105, USA
| | - Suresh Marada
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place MS#340, Memphis, TN 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place MS#340, Memphis, TN 38105, USA.
| |
Collapse
|
20
|
Zhang XQ, Li XR, Ren J, Li YB, Cai MJ, Wang JX, Zhao XF. β-Arrestin1 interacts with G protein-coupled receptor to desensitize signaling of the steroid hormone 20-hydroxyecdysone in the lepidopteran insect Helicoverpa armigera. Cell Signal 2015; 27:878-86. [PMID: 25660147 DOI: 10.1016/j.cellsig.2015.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 12/17/2022]
Abstract
The steroid hormone 20-hydroxyecdysone (20E) plays a critical role in insect development, particularly in larval molting and larval-pupal transition. Studies have indicated that 20E transmits its signal via a G protein-coupled receptor (GPCR)-mediated non-genomic pathway before a genomic pathway is initiated. However, the mechanism by which a 20E signal is desensitized remains unclear. We proposed that β-arrestin1 interacts with ecdysone-responsible GPCR (ErGPCR1) to desensitize a 20E signal in the lepidopteran insect Helicoverpa armigera. Results showed that β-arrestin1 was highly expressed in various tissues during metamorphosis. β-Arrestin1 knockdown by RNA interference in larvae caused advanced pupation and a larval-pupal chimera. The mRNA levels of 20E-response genes were increased after β-arrestin1 was knocked down but were decreased after β-arrestin1 was overexpressed. 20E induced the migration of β-arrestin1 from the cytosol to the cytoplasmic membrane to interact with ErGPCR1. The inhibitors suramin and chelerythrine chloride repressed 20E-induced β-arrestin1 phosphorylation and membrane migration. With ErGPCR1, 20E regulated β-arrestin1 phosphorylation on serines at positions 170 and 234. The double mutation of the amino acids Ser170 and Ser234 to asparagine inhibited phosphorylation and membrane migration of β-arrestin1 in 20E induction. Therefore, 20E via ErGPCR1 and PKC signaling induces β-arrestin1 phosphorylation; phosphorylated β-arrestin1 migrates to the cytoplasmic membrane to interact with ErGPCR1 to block 20E signaling via a feedback mechanism.
Collapse
Affiliation(s)
- Xiao-Qian Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiang-Ru Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jing Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yong-Bo Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Mei-Juan Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
21
|
Xiong Y, Liu C, Zhao Y. Decoding Ci: from partial degradation to inhibition. Dev Growth Differ 2014; 57:98-108. [PMID: 25495033 DOI: 10.1111/dgd.12187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/28/2022]
Abstract
Hedgehog is a morphogen, which is widely involved in the regulation of cell proliferation, differentiation and tissue patterning during development in both vertebrate and invertebrate, such as in coordination of eye, brain, gonad, gut and tracheal development. In invertebrate, Cubitus interruptus (Ci) modification process is the last identified step before transcriptional activation in the Hh signaling pathway. Ci can form a truncated repressor (Ci(R) /Ci75) or act as an activator (Ci(A) /Ci155) based on Hh gradient to regulate the expressions of target genes. The activity of Ci is mediated by different mechanisms, including processing, trafficking and degradation. While in vertebrate, Glioblastomas (Glis), homologs of Ci, play similar but more complex roles in the regulation of mammals Hh pathway. Hh signaling is responsible for a wide variety of processes during embryonic development and adult tissue homeostasis. Malfunction of Hh signaling could cause various diseases including birth defects and cancers. Enormous efforts were made in the past decades to explore the Hh pathway regulation and the results have provided us important insights into disease diagnosis and therapeutic treatment. In this review, we focus on a small branch of Hh pathway regulation based on studies in the Drosophila system, mainly about Ci degradation, aiming to explain how Ci is modified by different ubiquitin ligases due to the strong or moderate Hh signals and then been subjected to complete or partial degradation by proteasomes. Overall, we intend to offer an overview on how Ci responds to and relays Hh signals in a precise manner to control target genes expressions and ensures proper Hh signal transduction.
Collapse
Affiliation(s)
- Yue Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | |
Collapse
|
22
|
Manning AJ, Rogers SL. The Fog signaling pathway: insights into signaling in morphogenesis. Dev Biol 2014; 394:6-14. [PMID: 25127992 PMCID: PMC4182926 DOI: 10.1016/j.ydbio.2014.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 12/28/2022]
Abstract
Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell–cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system's relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa.
Collapse
Affiliation(s)
- Alyssa J Manning
- Department of Biochemistry, Box 357350, The University of Washington, Seattle, WA 98195-7350, USA
| | - Stephen L Rogers
- Department of Biology, The University of North Carolina at Chapel Hill, CB ♯3280, Fordham Hall, South Road, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, USA; Carolina Center for Genome Sciences, USA.
| |
Collapse
|
23
|
Structural insights into the role of the Smoothened cysteine-rich domain in Hedgehog signalling. Nat Commun 2014; 4:2965. [PMID: 24351982 PMCID: PMC3890372 DOI: 10.1038/ncomms3965] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/20/2013] [Indexed: 01/09/2023] Open
Abstract
Smoothened (Smo) is a member of the Frizzled (FzD) class of G-protein-coupled receptors (GPCRs), and functions as the key transducer in the Hedgehog (Hh) signalling pathway. Smo has an extracellular cysteine-rich domain (CRD), indispensable for its function and downstream Hh signalling. Despite its essential role, the functional contribution of the CRD to Smo signalling has not been clearly elucidated. However, given that the FzD CRD binds to the endogenous Wnt ligand, it has been proposed that the Smo CRD may bind its own endogenous ligand. Here we present the NMR solution structure of the Drosophila Smo CRD, and describe interactions between the glucocorticoid budesonide (Bud) and the Smo CRDs from both Drosophila and human. Our results highlight a function of the Smo CRD, demonstrating its role in binding to small-molecule modulators.
Collapse
|
24
|
Fan J, Jiang K, Liu Y, Jia J. Hrs promotes ubiquitination and mediates endosomal trafficking of smoothened in Drosophila hedgehog signaling. PLoS One 2013; 8:e79021. [PMID: 24244405 PMCID: PMC3823941 DOI: 10.1371/journal.pone.0079021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022] Open
Abstract
In Hedgehog (Hh) signaling, the seven-transmembrane protein Smoothened (Smo) acts as a signal transducer that is regulated by phosphorylation, ubiquitination, and cell surface accumulation. However, it is not clear how Smo cell surface accumulation and intracellular trafficking are regulated. Here, we demonstrate that inactivation of Hrs by deletion or RNAi accumulates Smo in the late endosome that is marked by late endosome markers. Inactivation of Hrs enhances the wing defects caused by dominant-negative Smo. We show that Hrs promotes Smo ubiquitination, deleting the ubiquitin-interacting-motif (UIM) in Hrs abolishes the ability of Hrs to regulate Smo ubiquitination. However, the UIM domain neither recognizes the ubiquitinated Smo nor directly interacts with Smo. Hrs lacking UIM domain still downregulates Smo activity even though to a less extent. We have characterized that the N-terminus of Hrs directly interacts with the PKA/CK1 phosphorylation clusters to prevent Smo phosphorylation and activation, indicating an ubiquitin-independent regulation of Smo by Hrs. Finally, we found that knockdown of Tsg101 accumulates Smo that is co-localized with Hrs and other late endosome markers. Taken together, our data indicate that Hrs mediates Smo trafficking in the late endosome by not only promoting Smo ubiquitination but also blocking Smo phosphorylation.
Collapse
Affiliation(s)
- Junkai Fan
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, The University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Kai Jiang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, The University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Yajuan Liu
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, The University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jianhang Jia
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, The University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| |
Collapse
|
25
|
Abstract
The Toll signaling pathway has a highly conserved function in innate immunity and is regulated by multiple factors that fine tune its activity. One such factor is β-arrestin Kurtz (Krz), which we previously implicated in the inhibition of developmental Toll signaling in the Drosophila melanogaster embryo. Another level of controlling Toll activity and immune system homeostasis is by protein sumoylation. In this study, we have uncovered a link between these two modes of regulation and show that Krz affects sumoylation via a conserved protein interaction with a SUMO protease, Ulp1. Loss of function of krz or Ulp1 in Drosophila larvae results in a similar inflammatory phenotype, which is manifested as increased lamellocyte production; melanotic mass formation; nuclear accumulation of Toll pathway transcriptional effectors, Dorsal and Dif; and expression of immunity genes, such as Drosomycin. Moreover, mutations in krz and Ulp1 show dosage-sensitive synergistic genetic interactions, suggesting that these two proteins are involved in the same pathway. Using Dorsal sumoylation as a readout, we found that altering Krz levels can affect the efficiency of SUMO deconjugation mediated by Ulp1. Our results demonstrate that β-arrestin controls Toll signaling and systemic inflammation at the level of sumoylation.
Collapse
|
26
|
Activation and function of TGFβ signalling during Drosophila wing development and its interactions with the BMP pathway. Dev Biol 2013; 377:138-53. [PMID: 23485686 DOI: 10.1016/j.ydbio.2013.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/26/2012] [Accepted: 02/06/2013] [Indexed: 11/20/2022]
Abstract
The development of the Drosophila wing disc requires the activities of the BMP and TGFβ signalling pathways. BMP signalling is critical for the correct growth and patterning of the disc, whereas the related TGFβ pathway is mostly required for growth. The BMP and TGFβ pathways share a common co-receptor (Punt) and a nuclear effector (Medea), and consequently it is likely that these pathways can interfere with each other during normal development. In this work we focus on the spatial activation domains and requirements for TGFβ signalling during wing disc development. We found that the phosphorylation of Smad2, the specific transducer for TGFβ signalling, occurs in a generalised manner in the wing disc. It appears that the expression of the four candidate TGFβ ligands (Activinβ, Dawdle, Maverick and Myoglianin) in the wing disc is required to obtain normal levels of TGFβ signalling in this tissue. We show that Baboon, the specific receptor of the TGFβ pathway, can phosphorylate Mad, the specific transducer of the BMP pathway, in vivo. However, this activation only occurs in the wing disc when the receptor is constitutively activated in a background of reduced expression of Smad2. In the presence of Smad2, the normal situation during wing disc development, high levels of activated Baboon lead to a depletion in Mad phosphorylation and to BMP loss-of-function phenotypes. Although loss of either babo or Smad2 expression reduce growth in the wing blade in a similar manner, loss of Smad2 can also cause phenotypes related to ectopic BMP signalling, suggesting a physiological role for this transducer in the regulation of Mad spatial activation.
Collapse
|
27
|
Abstract
Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis, and its deregulation leads to numerous human disorders including cancer. Binding of Hh to Patched (Ptc), a twelve-transmembrane protein, alleviates its inhibition of Smoothened (Smo), a seven-transmembrane protein related to G-protein-coupled receptors (GPCRs), leading to Smo phosphorylation and activation. Smo acts through intracellular signaling complexes to convert the latent transcription factor Cubitus interruptus (Ci)/Gli from a truncated repressor to a full-length activator, leading to derepression/activation of Hh target genes. Increasing evidence suggests that phosphorylation participates in almost every step in the signal relay from Smo to Ci/Gli, and that differential phosphorylation of several key pathway components may be crucial for translating the Hh morphogen gradient into graded pathway activities. In this review, we focus on the multifaceted roles that phosphorylation plays in Hh signal transduction, and discuss the conservation and difference between Drosophila and mammalian Hh signaling mechanisms.
Collapse
|
28
|
Kupinski AP, Raabe I, Michel M, Ail D, Brusch L, Weidemann T, Bökel C. Phosphorylation of the Smo tail is controlled by membrane localization and is dispensable for clustering. J Cell Sci 2013; 126:4684-97. [DOI: 10.1242/jcs.128926] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog (Hh) signalling cascade is highly conserved and involved in development and disease throughout evolution. Nevertheless, in comparison with other pathways our mechanistic understanding of Hh signal transduction is remarkably incomplete. In the absence of ligand, the Hh receptor Patched (Ptc) represses the key signal transducer Smoothened (Smo) through an unknown mechanism. Hh binding to Ptc alleviates this repression, causing Smo redistribution to the plasma membrane, phosphorylation and opening of the Smo cytoplasmic tail, and Smo oligomerization. However, the order and interdependence of these events is as yet poorly understood. We have mathematically modelled and simulated Smo activation for two alternative modes of pathway activation, with Ptc primarily affecting either Smo localization or phosphorylation. Visualizing Smo activation through a novel, fluorescence based reporter allowed us to test these competing models. Here we show that Smo localization to the plasma membrane is sufficient for phosphorylation of the cytoplasmic tail in the presence of Ptc. Using fluorescence cross-correlation spectroscopy (FCCS) we furthermore demonstrate that inactivation of Ptc by Hh induces Smo clustering irrespective of Smo phosphorylation. Our observations therefore support a model of Hh signal transduction whereby Smo subcellular localization and not phosphorylation is the primary target of Ptc function.
Collapse
|
29
|
The Role of Arrestins in Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:225-42. [DOI: 10.1016/b978-0-12-394440-5.00009-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Maier D, Cheng S, Hipfner DR. The complexities of G-protein-coupled receptor kinase function in Hedgehog signaling. Fly (Austin) 2012; 6:135-41. [PMID: 22653052 DOI: 10.4161/fly.20245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hedgehog (Hh) signaling is essential for proper tissue patterning and maintenance and has a substantial impact on human disease. While many of the main components and mechanisms involved in transduction of the Hh signal have been identified, the details of how the pathway functions are continually being refined. One aspect that has attracted much attention recently is the involvement of G-protein-coupled receptor kinases (GRKs) in the pathway. These regulators of G-protein-coupled receptor (GPCR) signaling have an evolutionarily-conserved function in promoting high-threshold Hh target gene expression through regulation of Smoothened (Smo), a GPCR family member that activates intracellular Hh signaling. Several models of how GRKs impact on Smo to increase downstream signaling have been proposed. Recently, we demonstrated that these kinases have surprisingly complex and conflicting roles, acting to limit signaling through the pathway while also promoting Smo activity. In addition to the previously described direct effects of Gprk2 on Smo activation, Gprk2 also indirectly affects Hh signaling by controlling production of the second messenger cyclic AMP to influence Protein kinase A activity.
Collapse
Affiliation(s)
- Dominic Maier
- Institut de recherches cliniques de Montréal; Montreal, QC Canada
| | | | | |
Collapse
|
31
|
Li S, Chen Y, Shi Q, Yue T, Wang B, Jiang J. Hedgehog-regulated ubiquitination controls smoothened trafficking and cell surface expression in Drosophila. PLoS Biol 2012; 10:e1001239. [PMID: 22253574 PMCID: PMC3254653 DOI: 10.1371/journal.pbio.1001239] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022] Open
Abstract
Hedgehog transduces signal by promoting cell surface expression of the seven-transmembrane protein Smoothened (Smo) in Drosophila, but the underlying mechanism remains unknown. Here we demonstrate that Smo is downregulated by ubiquitin-mediated endocytosis and degradation, and that Hh increases Smo cell surface expression by inhibiting its ubiquitination. We find that Smo is ubiquitinated at multiple Lysine residues including those in its autoinhibitory domain (SAID), leading to endocytosis and degradation of Smo by both lysosome- and proteasome-dependent mechanisms. Hh inhibits Smo ubiquitination via PKA/CK1-mediated phosphorylation of SAID, leading to Smo cell surface accumulation. Inactivation of the ubiquitin activating enzyme Uba1 or perturbation of multiple components of the endocytic machinery leads to Smo accumulation and Hh pathway activation. In addition, we find that the non-visual β-arrestin Kurtz (Krz) interacts with Smo and acts in parallel with ubiquitination to downregulate Smo. Finally, we show that Smo ubiquitination is counteracted by the deubiquitinating enzyme UBPY/USP8. Gain and loss of UBPY lead to reciprocal changes in Smo cell surface expression. Taken together, our results suggest that ubiquitination plays a key role in the downregulation of Smo to keep Hh pathway activity off in the absence of the ligand, and that Hh-induced phosphorylation promotes Smo cell surface accumulation by inhibiting its ubiquitination, which contributes to Hh pathway activation.
Collapse
Affiliation(s)
- Shuang Li
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Yongbin Chen
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Qing Shi
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Tao Yue
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Bing Wang
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| |
Collapse
|
32
|
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development 2011; 138:3593-612. [PMID: 21828089 DOI: 10.1242/dev.063610] [Citation(s) in RCA: 724] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling is evolutionarily conserved and operates in many cell types and at various stages during development. Notch signaling must therefore be able to generate appropriate signaling outputs in a variety of cellular contexts. This need for versatility in Notch signaling is in apparent contrast to the simple molecular design of the core pathway. Here, we review recent studies in nematodes, Drosophila and vertebrate systems that begin to shed light on how versatility in Notch signaling output is generated, how signal strength is modulated, and how cross-talk between the Notch pathway and other intracellular signaling systems, such as the Wnt, hypoxia and BMP pathways, contributes to signaling diversity.
Collapse
Affiliation(s)
- Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|