1
|
Yusuf A, Wakaya K, Sakamoto T, Uemura T, Okamura K, Ramadan A, Nozawa A, Suzuki T, Inui Y, Matsunaga S, Sawasaki T, Arimura G. Histone Modification-Dependent Transcriptional Regulation of Defence Genes in Early Response of Arabidopsis to Spodoptera litura Attack. PLANT, CELL & ENVIRONMENT 2025; 48:3257-3268. [PMID: 39722556 PMCID: PMC11963488 DOI: 10.1111/pce.15345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Histone modification is a cellular process for transcriptional regulation. In herbivore-damaged plants, activation of genes involved in defence responses is required for antiherbivore properties, but little is known about how the chromatin remodelling system is involved. In Arabidopsis (Arabidopsis thaliana) plants responding to Spodoptera litura larvae, HAC1 and HDA6, a histone acetyltransferase and a histone deacetylase, respectively, were found here to be involved in histone H3 (Lys9; H3K9) acetylation/deacetylation at the promoter region of the plant defensin gene PDF1.2 and the gene body of ethylene response factor 13 (ERF13) as early as 2 h after the onset of herbivore attack. The H3K9 acetylation was responsible for the robust upregulation of PDF1.2 later, at 24 h, and ERF13 even earlier, at 1 h. TOPLESS (TPL) and TOPLESS-related (TPR) corepressors interacted with HDA6 to deacetylate H3K9 at PDF1.2 and ERF13, while negatively regulating the expression of PDF1.2 but not ERF13. Furthermore, TPL also interacted with ERF13, resulting in ERF13-mediated regulation of PDF1.2. Taken together, these data suggest a model of promoter-restricted, TPL/TPR-directed histone deacetylation and transcription factor repression in healthy Arabidopsis plants for the feedback regulation of the antiherbivore response.
Collapse
Affiliation(s)
- Ahmed Yusuf
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
- Department of BotanyFaculty of Science, Ain Shams UniversityCairoEgypt
| | - Kota Wakaya
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Takuya Sakamoto
- Department of ScienceFaculty of Science, Kanagawa UniversityYokohamaJapan
| | - Takuya Uemura
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Koudai Okamura
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Abdelaziz Ramadan
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Akira Nozawa
- Proteo‐Science CenterEhime UniversityMatsuyamaJapan
| | - Takamasa Suzuki
- College of Bioscience and BiotechnologyChubu UniversityKasugaiJapan
| | - Yayoi Inui
- Department of Integrated BiosciencesGraduate School of Frontier Sciences, The University of TokyoKashiwaJapan
| | - Sachihiro Matsunaga
- Department of Integrated BiosciencesGraduate School of Frontier Sciences, The University of TokyoKashiwaJapan
| | | | - Gen‐Ichiro Arimura
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| |
Collapse
|
2
|
Liu N, Li JX, Yuan DY, Su YN, Zhang P, Wang Q, Su XM, Li L, Li H, Chen S, He XJ. Essential angiosperm-specific subunits of HDA19 histone deacetylase complexes in Arabidopsis. EMBO J 2025:10.1038/s44318-025-00445-w. [PMID: 40295864 DOI: 10.1038/s44318-025-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Although the Arabidopsis thaliana RPD3-type histone deacetylase HDA19 and its close homolog HDA6 participate in SIN3-type histone deacetylase complexes, they display distinct biological roles, with the reason for these differences being poorly understood. This study identifies three angiosperm-specific HDA19-interacting homologous proteins, termed HDIP1, HDIP2, and HDIP3 (HDIP1/2/3). These proteins interact with HDA19 and other conserved histone deacetylase complex components, leading to the formation of HDA19-containing SIN3-type complexes, while they are not involved in the formation of HDA6-containing complexes. While mutants of conserved SIN3-type complex components show phenotypes divergent from the hda19 mutant, the hdip1/2/3 mutant closely phenocopies the hda19 mutant with respect to development, abscisic acid response, and drought stress tolerance. Genomic and transcriptomic analyses indicate that HDIP1/2/3 and HDA19 co-occupy chromatin and jointly repress gene transcription, especially for stress-related genes. An α-helix motif within HDIP1 has the capacity to bind to nucleosomes and architectural DNA, and is required for its function in Arabidopsis plants. These findings suggest that the angiosperm SIN3-type complexes have evolved to include additional subunits for the precise regulation of histone deacetylation and gene transcription.
Collapse
Affiliation(s)
- Na Liu
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Jia-Xin Li
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, China
| | - Pei Zhang
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Qi Wang
- National Institute of Biological Sciences, Beijing, China
| | - Xiao-Min Su
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Haitao Li
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Jiang T, Li L, Hu Q, Kuang X, Zhang L, Zeng W, Miki D, Zheng B. The DNA methylation-demethylation balance prevents development of multiple megaspore mother cells in Arabidopsis. THE PLANT CELL 2025; 37:koaf023. [PMID: 39899470 PMCID: PMC11827614 DOI: 10.1093/plcell/koaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/20/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
Female gametophyte development initiates from the megaspore mother cell (MMC), and only 1 somatic cell develops into an MMC. Here, we report that the balance between DNA methylation and demethylation ensures the maintenance of a single MMC in Arabidopsis (Arabidopsis thaliana). Surprisingly, a decrease or an increase of all 3 DNA methylation types (mCG, mCHG, and mCHH) caused abnormal enlargement of MMC-like cells and re-balancing DNA methylation rescued the enlarged MMC-like cells in the mutants of regulators for DNA methylation and demethylation. Systematic quantification of DNA methylation at the single-cell level demonstrated that mCHH levels begin to decrease from the central precursor MMC, preceding expression of the MMC marker KNUCKLES(KNU). Disrupting the regulation of DNA methylation caused the mCHH levels to become similar in the MMC and its neighboring cells, and these neighbors usually developed into MMC-like cells. Levels of the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) in the precursor MMC decreased before KNU expression, but the levels of the DNA glycosylase DEMETER decreased after KNU expression. Re-introduction of DRM2 or knockdown of DEMETER specifically in neighboring cells rescued the defects in drm1 drm2 double mutants. Collectively, our findings demonstrate that the balance of DNA methylation, rather than total methylation levels, facilitates maintenance of a single MMC.
Collapse
Affiliation(s)
- Ting Jiang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lei Li
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qianqian Hu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xianyu Kuang
- Beijing International Center for Mathematical Research, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Lei Zhang
- Beijing International Center for Mathematical Research, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Tao J, Kong W, Luo W, Wang L, Dai X, Lin X, Dong H, Yang X, Mo B, Chen X, Yu Y. The rice microRNA159-SPOROCYTELESS EAR2 module regulates starch biosynthesis during pollen development and maintains male fertility. THE PLANT CELL 2024; 37:koae324. [PMID: 39665752 DOI: 10.1093/plcell/koae324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/28/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Starch is an indispensable energy reserve for pollen and failure of starch biosynthesis in pollen leads to male sterility in flowering crops. Nonetheless, the regulatory mechanisms underlying starch biosynthesis in rice (Oryza sativa) pollen remain unclear. Here, we identified a target of the microRNA OsmiR159, SPOROCYTELESS ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-ASSOCIATED AMPHIPHILIC-REPRESSION 2 (OsSPEAR2). OsSPEAR2 is predominantly expressed in mature pollen and OsSPEAR2 possesses transcriptional repressor activity and localizes in the nucleus. Disruption of OsSPEAR2 results in severely shrunken pollen grains and male sterility. OsSPEAR2 interacts with multiple OsTCPs, including OsTCP14. OsTCP14 is a target of OsmiR319 and a knockout mutation in OsTCP14 partially rescues the defective pollen phenotype of Osspear2. In addition, transcriptome analyses revealed significant downregulation of numerous genes associated with carbohydrate metabolism, specifically in Osspear2 anthers, including several genes critical for starch biosynthesis. Moreover, OsTCP14 directly represses the expression of the essential starch biosynthesis gene OsUGP2; however, this repression could be alleviated by OsSPEAR2. Noteworthily, embryophyte-specific SPEAR2 and SPOROCYTELESS were also identified as miR159 targets involved in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana), indicating that the miR159-SPEAR regulatory module may be conserved among embryophytes. Collectively, our findings reveal OsmiR159-OsSPEAR2-OsTCP14-OsUGP2 as a regulatory cascade that modulates starch biosynthesis during pollen development in rice.
Collapse
Affiliation(s)
- Jinyuan Tao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wenwen Kong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Weigui Luo
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Li Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Dai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Xiaojing Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Haijiao Dong
- Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing 100081, China
| | - Xiaoyu Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Longhua Bioindustry and Innovation Research Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Xuemei Chen
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Yu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Li W, Zhang X, Zhang Q, Li Q, Li Y, Lv Y, Liu Y, Cao Y, Wang H, Chen X, Yang H. PICKLE and HISTONE DEACETYLASE6 coordinately regulate genes and transposable elements in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1080-1094. [PMID: 38976580 DOI: 10.1093/plphys/kiae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
Chromatin dynamics play essential roles in transcriptional regulation. The chromodomain helicase DNA-binding domain 3 chromatin remodeler PICKLE (PKL) and HISTONE DEACETYLASE6 (HDA6) are required for transcriptional gene silencing, but their coordinated function in gene repression requires further study. Through a genetic suppressor screen, we found that a point mutation at PKL could partially restore the developmental defects of a weak Polycomb repressive complex 1 (PRC1) mutant (ring1a-2 ring1b-3), in which RING1A expression is suppressed by a T-DNA insertion at the promoter. Compared to ring1a-2 ring1b-3, the expression of RING1A is increased, nucleosome occupancy is reduced, and the histone 3 lysine 9 acetylation (H3K9ac) level is increased at the RING1A locus in the pkl ring1a-2 ring1b-3 triple mutant. HDA6 interacts with PKL and represses RING1A expression similarly to PKL genetically and molecularly in the ring1a-2 ring1b-3 background. Furthermore, we show that PKL and HDA6 suppress the expression of a set of genes and transposable elements (TEs) by increasing nucleosome density and reducing H3K9ac. Genome-wide analysis indicated they possibly coordinately maintain DNA methylation as well. Our findings suggest that PKL and HDA6 function together to reduce H3K9ac and increase nucleosome occupancy, thereby facilitating gene/TE regulation in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China
| | - Qingche Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Qingzhu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yanfang Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Ying Cao
- College of Life Sciences, RNA Center, Capital Normal University, Beijing 100048, China
| | - Huamei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Nishio H, Kawakatsu T, Yamaguchi N. Beyond heat waves: Unlocking epigenetic heat stress memory in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:1934-1951. [PMID: 37878744 DOI: 10.1093/plphys/kiad558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Plants remember their exposure to environmental changes and respond more effectively the next time they encounter a similar change by flexibly altering gene expression. Epigenetic mechanisms play a crucial role in establishing such memory of environmental changes and fine-tuning gene expression. With the recent advancements in biochemistry and sequencing technologies, it has become possible to characterize the dynamics of epigenetic changes on scales ranging from short term (minutes) to long term (generations). Here, our main focus is on describing the current understanding of the temporal regulation of histone modifications and chromatin changes during exposure to short-term recurring high temperatures and reevaluating them in the context of natural environments. Investigations of the dynamics of histone modifications and chromatin structural changes in Arabidopsis after repeated exposure to heat at short intervals have revealed the detailed molecular mechanisms of short-term heat stress memory, which include histone modification enzymes, chromatin remodelers, and key transcription factors. In addition, we summarize the spatial regulation of heat responses. Based on the natural temperature patterns during summer, we discuss how plants cope with recurring heat stress occurring at various time intervals by utilizing 2 distinct types of heat stress memory mechanisms. We also explore future research directions to provide a more precise understanding of the epigenetic regulation of heat stress memory.
Collapse
Affiliation(s)
- Haruki Nishio
- Data Science and AI Innovation Research Promotion Center, Shiga University, Shiga 522-8522, Japan
- Center for Ecological Research, Kyoto University, Shiga 520-2113, Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
7
|
Zhang X, Zeng Q, Yang Q, Luo X, Feng Y, Wang Q, Zhang F, Zhang L, Liu Q. DgHDA6 enhances the cold tolerance in chrysanthemum by improving ROS scavenging capacity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115737. [PMID: 38029581 DOI: 10.1016/j.ecoenv.2023.115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Histone deacetylases have been demonstrated to play an important role in responding to low-temperature stress, but the related response mechanism in chrysanthemum remains unclear. In this study, we isolated a cold-induced gene, DgHDA6, from chrysanthemum (Chrysanthemum morifolium Ramat). DgHDA6 contains 474 amino acids and shares a typical deacetylation domain with RPD3/HDA1 family members. The overexpression of DgHDA6 enhanced cold resistance in chrysanthemums. After low-temperature stress, the overexpression lines showed a higher survival rate. The contents of proline, soluble proteins and sugars, and the activities of antioxidant enzymes were significantly increased while the contents of H2O2, O2- and MDA were lower. Moreover, cold-stress-responding genes such as DgCuZnSOD, DgCAT, DgP5CS, and DgFAD were upregulated after cold stress. These results suggest that the overexpression of DgHDA6 can improve cold tolerance in chrysanthemum by enhancing ROS scavenging capacity.
Collapse
Affiliation(s)
- Xingsu Zhang
- Department of Ornamental Horticulture, 211 Huimin Road, Chengdu 611130, China
| | - Qinhan Zeng
- Department of Ornamental Horticulture, 211 Huimin Road, Chengdu 611130, China
| | - Qing Yang
- Department of Ornamental Horticulture, 211 Huimin Road, Chengdu 611130, China
| | - Xuanling Luo
- Department of Ornamental Horticulture, 211 Huimin Road, Chengdu 611130, China
| | - Yan Feng
- Department of Ornamental Horticulture, 211 Huimin Road, Chengdu 611130, China
| | - Qian Wang
- Department of Ornamental Horticulture, 211 Huimin Road, Chengdu 611130, China
| | - Fan Zhang
- Department of Ornamental Horticulture, 211 Huimin Road, Chengdu 611130, China
| | - Lei Zhang
- Department of Ornamental Horticulture, 211 Huimin Road, Chengdu 611130, China
| | - Qinglin Liu
- Department of Ornamental Horticulture, 211 Huimin Road, Chengdu 611130, China.
| |
Collapse
|
8
|
Sharma M, Sidhu AK, Samota MK, Gupta M, Koli P, Choudhary M. Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants. Proteomes 2023; 11:38. [PMID: 38133152 PMCID: PMC10747722 DOI: 10.3390/proteomes11040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
Collapse
Affiliation(s)
- Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Amanpreet K. Sidhu
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Mahesh Kumar Samota
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Regional Station, Abohar 152116, India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
| | - Pushpendra Koli
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
- Post-Harvest Biosecurity, Murdoch University, Perth, WA 6150, Australia
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Guo M, Wang S, Liu H, Yao S, Yan J, Wang C, Miao B, Guo J, Ma F, Guan Q, Xu J. Histone deacetylase MdHDA6 is an antagonist in regulation of transcription factor MdTCP15 to promote cold tolerance in apple. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2254-2272. [PMID: 37475182 PMCID: PMC10579720 DOI: 10.1111/pbi.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Understanding the molecular regulation of plant cold response is the basis for cold resistance germplasm improvement. Here, we revealed that the apple histone deacetylase MdHDA6 can perform histone deacetylation on cold-negative regulator genes and repress their expression, leading to the positive regulation of cold tolerance in apples. Moreover, MdHDA6 directly interacts with the transcription factor MdTCP15. Phenotypic analysis of MdTCP15 transgenic apple lines and wild types reveals that MdTCP15 negatively regulates cold tolerance in apples. Furthermore, we found that MdHDA6 can facilitate histone deacetylation of MdTCP15 and repress the expression of MdTCP15, which positively contributes to cold tolerance in apples. Additionally, the transcription factor MdTCP15 can directly bind to the promoter of the cold-negative regulator gene MdABI1 and activate its expression, and it can also directly bind to the promoter of the cold-positive regulator gene MdCOR47 and repress its expression. However, the co-expression of MdHDA6 and MdTCP15 can inhibit MdTCP15-induced activation of MdABI1 and repression of MdCOR47, suggesting that MdHDA6 suppresses the transcriptional regulation of MdTCP15 on its downstream genes. Our results demonstrate that histone deacetylase MdHDA6 plays an antagonistic role in the regulation of MdTCP15-induced transcriptional activation or repression to positively regulate cold tolerance in apples, revealing a new regulatory mechanism of plant cold response.
Collapse
Affiliation(s)
- Meimiao Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Han Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Senyang Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jinjiao Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
- College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Caixia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Bingjie Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| |
Collapse
|
10
|
Lee SC, Adams DW, Ipsaro JJ, Cahn J, Lynn J, Kim HS, Berube B, Major V, Calarco JP, LeBlanc C, Bhattacharjee S, Ramu U, Grimanelli D, Jacob Y, Voigt P, Joshua-Tor L, Martienssen RA. Chromatin remodeling of histone H3 variants by DDM1 underlies epigenetic inheritance of DNA methylation. Cell 2023; 186:4100-4116.e15. [PMID: 37643610 PMCID: PMC10529913 DOI: 10.1016/j.cell.2023.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.
Collapse
Affiliation(s)
- Seung Cho Lee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Dexter W Adams
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jonathan J Ipsaro
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Hyun-Soo Kim
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Cold Spring Harbor Laboratory School of Biological Sciences, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Viktoria Major
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Joseph P Calarco
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Cold Spring Harbor Laboratory School of Biological Sciences, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Chantal LeBlanc
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Sonali Bhattacharjee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement, 911Avenue Agropolis, 34394 Montpelier, France
| | - Yannick Jacob
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
11
|
Lee SC, Adams DW, Ipsaro JJ, Cahn J, Lynn J, Kim HS, Berube B, Major V, Calarco JP, LeBlanc C, Bhattacharjee S, Ramu U, Grimanelli D, Jacob Y, Voigt P, Joshua-Tor L, Martienssen RA. Chromatin remodeling of histone H3 variants underlies epigenetic inheritance of DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548598. [PMID: 37503143 PMCID: PMC10369972 DOI: 10.1101/2023.07.11.548598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Epigenetic inheritance refers to the faithful replication of DNA methylation and histone modification independent of DNA sequence. Nucleosomes block access to DNA methyltransferases, unless they are remodeled by DECREASE IN DNA METHYLATION1 (DDM1 Lsh/HELLS ), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 activity results in replacement of the transcriptional histone variant H3.3 for the replicative variant H3.1 during the cell cycle. In ddm1 mutants, DNA methylation can be restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals direct engagement at SHL2 with histone H3.3 at or near variant residues required for assembly, as well as with the deacetylated H4 tail. An N-terminal autoinhibitory domain binds H2A variants to allow remodeling, while a disulfide bond in the helicase domain is essential for activity in vivo and in vitro . We show that differential remodeling of H3 and H2A variants in vitro reflects preferential deposition in vivo . DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1 Dnmt1 . DDM1 localization to the chromosome is blocked by H4K16 acetylation, which accumulates at DDM1 targets in ddm1 mutants, as does the sperm cell specific H3.3 variant MGH3 in pollen, which acts as a placeholder nucleosome in the germline and contributes to epigenetic inheritance.
Collapse
Affiliation(s)
- Seung Cho Lee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Dexter W. Adams
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute; Cold Spring Harbor, NY 11724, USA
- Graduate Program in Genetics, Stony Brook University; Stony Brook, NY 11794, USA
| | - Jonathan J. Ipsaro
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute; Cold Spring Harbor, NY 11724, USA
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Hyun-Soo Kim
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences; 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Viktoria Major
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh; Edinburgh EH9 3BF, United Kingdom
| | - Joseph P. Calarco
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences; 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Chantal LeBlanc
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Present address: Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University; 260 Whitney Ave., New Haven, CT, 06511, USA
| | - Sonali Bhattacharjee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement; 911 Avenue Agropolis, 34394 Montpellier, France
| | - Yannick Jacob
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Present address: Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University; 260 Whitney Ave., New Haven, CT, 06511, USA
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh; Edinburgh EH9 3BF, United Kingdom
- Present address: Epigenetics Programme, Babraham Institute; Cambridge CB22 3AT, United Kingdom
| | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute; Cold Spring Harbor, NY 11724, USA
| | - Robert A. Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory; 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
12
|
Qiang Y, He X, Li Z, Li S, Zhang J, Liu T, Tursunniyaz M, Wang X, Liu Z, Fang L. Genome-wide identification and expression analysis of the response regulator gene family in alfalfa ( Medicago sativa L.) reveals their multifarious roles in stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1149880. [PMID: 36998691 PMCID: PMC10043395 DOI: 10.3389/fpls.2023.1149880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
As important components of the two-component regulatory system, response regulatory proteins (RRPs) play a crucial role in histidine phosphorylation-mediated signal transduction in response to environmental fluctuations. Accumulating evidence has revealed that RRPs play important roles in plant growth and stress response. However, the specific functions of RR genes (RRs) in cultivated alfalfa remain ambiguous. Therefore, in this study, we identified and characterized the RR family genes in the alfalfa genome using bioinformatics methods. Our analysis revealed 37 RRs in the alfalfa genome of Zhongmu No.1 that were unevenly distributed on the chromosomes. Cis-elements analysis revealed the involvement of RRs in responses to light, stress, and various plant hormones. Expression analysis of RRs in different tissues revealed their distinct tissue expression patterns. These findings provide preliminary insights into the roles of RRs in plant responses to abiotic stress, which can be used to improve the stress tolerance of autotetraploid-cultivated alfalfa plants via genetic engineering.
Collapse
Affiliation(s)
- Yuqin Qiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaojuan He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhen Li
- National Engineering Laboratory for Volatile Organic Compounds Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Siqi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jia Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tao Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mamateliy Tursunniyaz
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xinyu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Wang M, Zhong Z, Gallego-Bartolomé J, Li Z, Feng S, Kuo HY, Kan RL, Lam H, Richey JC, Tang L, Zhou J, Liu M, Jami-Alahmadi Y, Wohlschlegel J, Jacobsen SE. A gene silencing screen uncovers diverse tools for targeted gene repression in Arabidopsis. NATURE PLANTS 2023; 9:460-472. [PMID: 36879017 PMCID: PMC10027610 DOI: 10.1038/s41477-023-01362-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 02/01/2023] [Indexed: 05/18/2023]
Abstract
DNA methylation has been utilized for target gene silencing in plants. However, it is not well understood whether other silencing pathways can be also used to manipulate gene expression. Here we performed a gain-of-function screen for proteins that could silence a target gene when fused to an artificial zinc finger. We uncovered many proteins that suppressed gene expression through DNA methylation, histone H3K27me3 deposition, H3K4me3 demethylation, histone deacetylation, inhibition of RNA polymerase II transcription elongation or Ser-5 dephosphorylation. These proteins also silenced many other genes with different efficacies, and a machine learning model could accurately predict the efficacy of each silencer on the basis of various chromatin features of the target loci. Furthermore, some proteins were also able to target gene silencing when used in a dCas9-SunTag system. These results provide a more comprehensive understanding of epigenetic regulatory pathways in plants and provide an armament of tools for targeted gene manipulation.
Collapse
Affiliation(s)
- Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Javier Gallego-Bartolomé
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Zheng Li
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA
| | - Hsuan Yu Kuo
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ryan L Kan
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Hoiyan Lam
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - John Curtis Richey
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Linli Tang
- Department of Statistics, University of California, Riverside, CA, USA
| | - Jessica Zhou
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Mukun Liu
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA.
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, CA, USA.
- Howard Hughes Medical Institute (HHMI), University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Zhao L, Zhou Q, He L, Deng L, Lozano-Duran R, Li G, Zhu JK. DNA methylation underpins the epigenomic landscape regulating genome transcription in Arabidopsis. Genome Biol 2022; 23:197. [PMID: 36127735 PMCID: PMC9487137 DOI: 10.1186/s13059-022-02768-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is challenging to determine the effect of DNA methylation on the epigenetic landscape and the function in higher organisms due to the lack of DNA methylation-free mutants. RESULTS Here, the analysis of a recently generated Arabidopsis mutant completely devoid of DNA methylation reveals that DNA methylation underpins the genome-wide landscape of histone modifications. Complete loss of DNA methylation causes an upheaval of the histone modification landscape, including complete loss of H3K9me2 and widespread redistribution of active and H3K27me3 histone marks, mostly owing to the role of DNA methylation in initiating H3K9me2 deposition and excluding active marks and repressive mark H3K27me3; CG and non-CG methylation can act independently at some genomic regions while they act cooperatively at many other regions. The transcriptional reprogramming upon loss of all DNA methylation correlates with the extensive redistribution or switches of the examined histone modifications. Histone modifications retained or gained in the DNA methylation-free mutant serve as DNA methylation-independent transcriptional regulatory signals: active marks promote genome transcription, whereas the repressive mark H3K27me3 compensates for the lack of DNA hypermethylation/H3K9me2 at multiple transposon families. CONCLUSIONS Our results show that an intact DNA methylome constitutes the scaffolding of the epigenomic landscape in Arabidopsis and is critical for controlled genome transcription and ultimately for proper growth and development.
Collapse
Affiliation(s)
- Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Qiangwei Zhou
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li He
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Li Deng
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076, Tübingen, Germany
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
15
|
Kundariya H, Sanchez R, Yang X, Hafner A, Mackenzie SA. Methylome decoding of RdDM-mediated reprogramming effects in the Arabidopsis MSH1 system. Genome Biol 2022; 23:167. [PMID: 35927734 PMCID: PMC9351182 DOI: 10.1186/s13059-022-02731-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Plants undergo programmed chromatin changes in response to environment, influencing heritable phenotypic plasticity. The RNA-directed DNA methylation (RdDM) pathway is an essential component of this reprogramming process. The relationship of epigenomic changes to gene networks on a genome-wide basis has been elusive, particularly for intragenic DNA methylation repatterning. RESULTS Epigenomic reprogramming is tractable to detailed study and cross-species modeling in the MSH1 system, where perturbation of the plant-specific gene MSH1 triggers at least four distinct nongenetic states to impact plant stress response and growth vigor. Within this system, we have defined RdDM target loci toward decoding phenotype-relevant methylome data. We analyze intragenic methylome repatterning associated with phenotype transitions, identifying state-specific cytosine methylation changes in pivotal growth-versus-stress, chromatin remodeling, and RNA spliceosome gene networks that encompass 871 genes. Over 77% of these genes, and 81% of their central network hubs, are functionally confirmed as RdDM targets based on analysis of mutant datasets and sRNA cluster associations. These dcl2/dcl3/dcl4-sensitive gene methylation sites, many present as singular cytosines, reside within identifiable sequence motifs. These data reflect intragenic methylation repatterning that is targeted and amenable to prediction. CONCLUSIONS A prevailing assumption that biologically relevant DNA methylation variation occurs predominantly in density-defined differentially methylated regions overlooks behavioral features of intragenic, single-site cytosine methylation variation. RdDM-dependent methylation changes within identifiable sequence motifs reveal gene hubs within networks discriminating stress response and growth vigor epigenetic phenotypes. This study uncovers components of a methylome "code" for de novo intragenic methylation repatterning during plant phenotype transitions.
Collapse
Affiliation(s)
- Hardik Kundariya
- Department of Biology, The Pennsylvania State University, 362 Frear N Bldg, University Park, PA 16802 USA
| | - Robersy Sanchez
- Department of Biology, The Pennsylvania State University, 362 Frear N Bldg, University Park, PA 16802 USA
| | - Xiaodong Yang
- Department of Biology, The Pennsylvania State University, 362 Frear N Bldg, University Park, PA 16802 USA
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu China
| | - Alenka Hafner
- Department of Biology, The Pennsylvania State University, 362 Frear N Bldg, University Park, PA 16802 USA
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA USA
| | - Sally A. Mackenzie
- Department of Biology, The Pennsylvania State University, 362 Frear N Bldg, University Park, PA 16802 USA
- Department of Plant Science, The Pennsylvania State University, University Park, PA USA
| |
Collapse
|
16
|
Hou J, Zheng X, Ren R, Shi Q, Xiao H, Chen Z, Yue M, Wu Y, Hou H, Li L. The histone deacetylase 1/GSK3/SHAGGY-like kinase 2/BRASSINAZOLE-RESISTANT 1 module controls lateral root formation in rice. PLANT PHYSIOLOGY 2022; 189:858-873. [PMID: 35078247 PMCID: PMC9157092 DOI: 10.1093/plphys/kiac015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/04/2022] [Indexed: 05/10/2023]
Abstract
Lateral roots (LRs) are a main component of the root system of rice (Oryza sativa) that increases root surface area, enabling efficient absorption of water and nutrients. However, the molecular mechanism regulating LR formation in rice remains largely unknown. Here, we report that histone deacetylase 1 (OsHDAC1) positively regulates LR formation in rice. Rice OsHDAC1 RNAi plants produced fewer LRs than wild-type plants, whereas plants overexpressing OsHDAC1 exhibited increased LR proliferation by promoting LR primordia formation. Brassinosteroid treatment increased the LR number, as did mutation of GSK3/SHAGGY-like kinase 2 (OsGSK2), whereas overexpression of OsGSK2 decreased the LR number. Importantly, OsHDAC1 could directly interact with and deacetylate OsGSK2, inhibiting its activity. OsGSK2 deacetylation attenuated the interaction between OsGSK2 and BRASSINAZOLE-RESISTANT 1 (OsBZR1), leading to accumulation of OsBZR1. The overexpression of OsBZR1 increased LR formation by regulating Auxin/IAA signaling genes. Taken together, the results indicate that OsHDAC1 regulates LR formation in rice by deactivating OsGSK2, thereby preventing degradation of OsBZR1, a positive regulator of LR primordia formation. Our findings suggest that OsHDAC1 is a breeding target in rice that can improve resource capture.
Collapse
Affiliation(s)
- Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xueke Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ruifei Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qipeng Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenfei Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxia Yue
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yequn Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Author for correspondence:
| |
Collapse
|
17
|
Onosato H, Fujimoto G, Higami T, Sakamoto T, Yamada A, Suzuki T, Ozawa R, Matsunaga S, Seki M, Ueda M, Sako K, Galis I, Arimura GI. Sustained defense response via volatile signaling and its epigenetic transcriptional regulation. PLANT PHYSIOLOGY 2022; 189:922-933. [PMID: 35201346 PMCID: PMC9157098 DOI: 10.1093/plphys/kiac077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/29/2022] [Indexed: 05/11/2023]
Abstract
Plants perceive volatiles emitted from herbivore-damaged neighboring plants to urgently adapt or prime their defense responses to prepare for forthcoming herbivores. Mechanistically, these volatiles can induce epigenetic regulation based on histone modifications that alter the transcriptional status of defense genes, but little is known about the underlying mechanisms. To understand the roles of such epigenetic regulation of plant volatile signaling, we explored the response of Arabidopsis (Arabidopsis thaliana) plants to the volatile β-ocimene. Defense traits of Arabidopsis plants toward larvae of Spodoptera litura were induced in response to β-ocimene, through enriched histone acetylation and elevated transcriptional levels of defense gene regulators, including ethylene response factor genes (ERF8 and ERF104) in leaves. The enhanced defense ability of the plants was maintained for 5 d but not over 10 d after exposure to β-ocimene, and this coincided with elevated expression of those ERFs in their leaves. An array of histone acetyltransferases, including HAC1, HAC5, and HAM1, were responsible for the induction and maintenance of the anti-herbivore property. HDA6, a histone deacetylase, played a role in the reverse histone remodeling. Collectively, our findings illuminate the role of epigenetic regulation in plant volatile signaling.
Collapse
Affiliation(s)
- Haruki Onosato
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Genya Fujimoto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Tomota Higami
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Ayaka Yamada
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu 520-2113, Japan
| | - Sachihiro Matsunaga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan
| | - Minoru Ueda
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Gen-ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
- Author for correspondence:
| |
Collapse
|
18
|
Kumari P, Khan S, Wani IA, Gupta R, Verma S, Alam P, Alaklabi A. Unravelling the Role of Epigenetic Modifications in Development and Reproduction of Angiosperms: A Critical Appraisal. Front Genet 2022; 13:819941. [PMID: 35664328 PMCID: PMC9157814 DOI: 10.3389/fgene.2022.819941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetics are the heritable changes in gene expression patterns which occur without altering DNA sequence. These changes are reversible and do not change the sequence of the DNA but can alter the way in which the DNA sequences are read. Epigenetic modifications are induced by DNA methylation, histone modification, and RNA-mediated mechanisms which alter the gene expression, primarily at the transcriptional level. Such alterations do control genome activity through transcriptional silencing of transposable elements thereby contributing toward genome stability. Plants being sessile in nature are highly susceptible to the extremes of changing environmental conditions. This increases the likelihood of epigenetic modifications within the composite network of genes that affect the developmental changes of a plant species. Genetic and epigenetic reprogramming enhances the growth and development, imparts phenotypic plasticity, and also ensures flowering under stress conditions without changing the genotype for several generations. Epigenetic modifications hold an immense significance during the development of male and female gametophytes, fertilization, embryogenesis, fruit formation, and seed germination. In this review, we focus on the mechanism of epigenetic modifications and their dynamic role in maintaining the genomic integrity during plant development and reproduction.
Collapse
Affiliation(s)
- Priyanka Kumari
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sajid Khan
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ishfaq Ahmad Wani
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Renu Gupta
- Division of Soil Sciences & Agricultural Chemistry, Faculty of Agriculture Sher e Kashmir University of Agricultural Sciences and Technology, Chatha, India
| | - Susheel Verma
- Department of Botany, University of Jammu, Jammu, India
- *Correspondence: Susheel Verma,
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Abdullah Alaklabi
- Department of Biology, College of Science, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
19
|
Vincent SA, Kim JM, Pérez-Salamó I, To TK, Torii C, Ishida J, Tanaka M, Endo TA, Bhat P, Devlin PF, Seki M, Devoto A. Jasmonates and Histone deacetylase 6 activate Arabidopsis genome-wide histone acetylation and methylation during the early acute stress response. BMC Biol 2022; 20:83. [PMID: 35399062 PMCID: PMC8996529 DOI: 10.1186/s12915-022-01273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Jasmonates (JAs) mediate trade-off between responses to both biotic and abiotic stress and growth in plants. The Arabidopsis thaliana HISTONE DEACETYLASE 6 is part of the CORONATINE INSENSITIVE1 receptor complex, co-repressing the HDA6/COI1-dependent acetic acid-JA pathway that confers plant drought tolerance. The decrease in HDA6 binding to target DNA mirrors histone H4 acetylation (H4Ac) changes during JA-mediated drought response, and mutations in HDA6 also cause depletion in the constitutive repressive marker H3 lysine 27 trimethylation (H3K27me3). However, the genome-wide effect of HDA6 on H4Ac and much of the impact of JAs on histone modifications and chromatin remodelling remain elusive. RESULTS We performed high-throughput ChIP-Seq on the HDA6 mutant, axe1-5, and wild-type plants with or without methyl jasmonate (MeJA) treatment to assess changes in active H4ac and repressive H3K27me3 histone markers. Transcriptional regulation was investigated in parallel by microarray analysis in the same conditions. MeJA- and HDA6-dependent histone modifications on genes for specialized metabolism; linolenic acid and phenylpropanoid pathways; and abiotic and biotic stress responses were identified. H4ac and H3K27me3 enrichment also differentially affects JAs and HDA6-mediated genome integrity and gene regulatory networks, substantiating the role of HDA6 interacting with specific families of transposable elements in planta and highlighting further specificity of action as well as novel targets of HDA6 in the context of JA signalling for abiotic and biotic stress responses. CONCLUSIONS The findings demonstrate functional overlap for MeJA and HDA6 in tuning plant developmental plasticity and response to stress at the histone modification level. MeJA and HDA6, nonetheless, maintain distinct activities on histone modifications to modulate genetic variability and to allow adaptation to environmental challenges.
Collapse
Affiliation(s)
- Stacey A Vincent
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Jong-Myong Kim
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Present address: Ac-Planta Inc., 2-16-9 Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Imma Pérez-Salamó
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Taiko Kim To
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Present address: Department of Biological Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Chieko Torii
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaho A Endo
- Bioinformatics and Systems Engineering Division, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Present address: Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Prajwal Bhat
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Paul F Devlin
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
20
|
Yang J, Xu Y, Wang J, Gao S, Huang Y, Hung FY, Li T, Li Q, Yue L, Wu K, Yang S. The chromatin remodelling ATPase BRAHMA interacts with GATA-family transcription factor GNC to regulate flowering time in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:835-847. [PMID: 34545936 DOI: 10.1093/jxb/erab430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/20/2021] [Indexed: 05/13/2023]
Abstract
BRAHMA (BRM) is the ATPase of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodelling complex, which is indispensable for transcriptional inhibition and activation, associated with vegetative and reproductive development in Arabidopsis thaliana. Here, we show that BRM directly binds to the chromatin of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), which integrates multiple flowering signals to regulate floral transition, leading to flowering. In addition, genetic and molecular analysis showed that BRM interacts with GNC (GATA, NITRATE-INDUCIBLE, CARBON METABOLISM INVOLVED), a GATA transcription factor that represses flowering by directly repressing SOC1 expression. Furthermore, BRM is recruited by GNC to directly bind to the chromatin of SOC1. The transcript level of SOC1 is elevated in brm-3, gnc, and brm-3/gnc mutants, which is associated with increased histone H3 lysine 4 tri-methylation (H3K4Me3) but decreased DNA methylation. Taken together, our results indicate that BRM associates with GNC to regulate SOC1 expression and flowering time.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhao Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Sujuan Gao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yisui Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Tao Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qing Li
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agrobiological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lin Yue
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
21
|
Zhang D, Liu T, Sheng J, Lv S, Ren L. TMT-Based Quantitative Proteomic Analysis Reveals the Physiological Regulatory Networks of Embryo Dehydration Protection in Lotus ( Nelumbo nucifera). FRONTIERS IN PLANT SCIENCE 2021; 12:792057. [PMID: 34975978 PMCID: PMC8718645 DOI: 10.3389/fpls.2021.792057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Lotus is an aquatic plant that is sensitive to water loss, but its seeds are longevous after seed embryo dehydration and maturation. The great difference between the responses of vegetative organs and seeds to dehydration is related to the special protective mechanism in embryos. In this study, tandem mass tags (TMT)-labeled proteomics and parallel reaction monitoring (PRM) technologies were used to obtain novel insights into the physiological regulatory networks during lotus seed dehydration process. Totally, 60,266 secondary spectra and 32,093 unique peptides were detected. A total of 5,477 proteins and 815 differentially expressed proteins (DEPs) were identified based on TMT data. Of these, 582 DEPs were continuously downregulated and 228 proteins were significantly up-regulated during the whole dehydration process. Bioinformatics and protein-protein interaction network analyses indicated that carbohydrate metabolism (including glycolysis/gluconeogenesis, galactose, starch and sucrose metabolism, pentose phosphate pathway, and cell wall organization), protein processing in ER, DNA repair, and antioxidative events had positive responses to lotus embryo dehydration. On the contrary, energy metabolism (metabolic pathway, photosynthesis, pyruvate metabolism, fatty acid biosynthesis) and secondary metabolism (terpenoid backbone, steroid, flavonoid biosynthesis) gradually become static status during lotus embryo water loss and maturation. Furthermore, non-enzymatic antioxidants and pentose phosphate pathway play major roles in antioxidant protection during dehydration process in lotus embryo. Abscisic acid (ABA) signaling and the accumulation of oligosaccharides, late embryogenesis abundant proteins, and heat shock proteins may be the key factors to ensure the continuous dehydration and storage tolerance of lotus seed embryo. Stress physiology detection showed that H2O2 was the main reactive oxygen species (ROS) component inducing oxidative stress damage, and glutathione and vitamin E acted as the major antioxidant to maintain the REDOX balance of lotus embryo during the dehydration process. These results provide new insights to reveal the physiological regulatory networks of the protective mechanism of embryo dehydration in lotus.
Collapse
Affiliation(s)
- Di Zhang
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Liu
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangyuan Sheng
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Lv
- School of Design, Shanghai Jiao Tong University, Shanghai, China
| | - Li Ren
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
22
|
Liu J, Chang C. Concerto on Chromatin: Interplays of Different Epigenetic Mechanisms in Plant Development and Environmental Adaptation. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122766. [PMID: 34961235 PMCID: PMC8705648 DOI: 10.3390/plants10122766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 05/26/2023]
Abstract
Epigenetic mechanisms such as DNA methylation, histone post-translational modifications, chromatin remodeling, and noncoding RNAs, play important roles in regulating plant gene expression, which is involved in various biological processes including plant development and stress responses. Increasing evidence reveals that these different epigenetic mechanisms are highly interconnected, thereby contributing to the complexity of transcriptional reprogramming in plant development processes and responses to environmental stresses. Here, we provide an overview of recent advances in understanding the epigenetic regulation of plant gene expression and highlight the crosstalk among different epigenetic mechanisms in making plant developmental and stress-responsive decisions. Structural, physical, transcriptional and metabolic bases for these epigenetic interplays are discussed.
Collapse
|
23
|
Drosou V, Kapazoglou A, Letsiou S, Tsaftaris AS, Argiriou A. Drought induces variation in the DNA methylation status of the barley HvDME promoter. JOURNAL OF PLANT RESEARCH 2021; 134:1351-1362. [PMID: 34510287 DOI: 10.1007/s10265-021-01342-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Cytosine methylation is an epigenetic modification with essential roles in diverse plant biological processes including vegetative and reproductive development and responsiveness to environmental stimuli. A dynamic process involving DNA methyltransferases and DNA demethylases establishes cytosine DNA methylation levels and distribution along the genome. A DNA demethylase gene from barley (Hordeum vulgare), DEMETER (HvDME), the homologue of the Arabidopsis thaliana DME (AtDME), has been characterized previously and found to respond to drought conditions. Here, the promoter of the HvDME gene was analysed further by in silico and DNA methylation analysis. The effect of drought conditions on the DNA methylation status of HvDME was investigated at single-cytosine resolution using bisulfite sequencing. It was demonstrated that the HvDME promoter can be divided into two discrete regions, in terms of DNA methylation level and density; a relatively unmethylated region proximal to the translational start site that is depleted of non-CG (CHG, CHH) methylation and another distal region, approximately 1500 bp upstream of the translational start site, enriched in CG, as well as non-CG methylation. Drought stress provoked alterations in the methylation status of the HvDME promoter distal region, whereas the DNA methylation of the proximal region remained unaffected. Computational analysis of the HvDME promoter revealed the presence of several putative regulatory elements related to drought responsiveness, as well as transposable elements (TEs) that may affect DNA methylation. Overall, our results expand our investigations of the epigenetic regulation of the HvDME gene in response to drought stress in barley and may contribute to further understanding of the epigenetic mechanisms underlying abiotic stress responses in barley and other cereals.
Collapse
Affiliation(s)
- Victoria Drosou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thermi, 57001, Thessaloniki, Greece
| | - Aliki Kapazoglou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thermi, 57001, Thessaloniki, Greece.
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-Dimitra (ELGO-Dimitra), Lykovrysi, 14123, Athens, Greece.
| | - Sophia Letsiou
- Laboratory of Biochemistry, Department of Research and Development, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece
| | | | - Anagnostis Argiriou
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), Thermi, 57001, Thessaloniki, Greece
| |
Collapse
|
24
|
Nicolau M, Picault N, Moissiard G. The Evolutionary Volte-Face of Transposable Elements: From Harmful Jumping Genes to Major Drivers of Genetic Innovation. Cells 2021; 10:cells10112952. [PMID: 34831175 PMCID: PMC8616336 DOI: 10.3390/cells10112952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are self-replicating DNA elements that constitute major fractions of eukaryote genomes. Their ability to transpose can modify the genome structure with potentially deleterious effects. To repress TE activity, host cells have developed numerous strategies, including epigenetic pathways, such as DNA methylation or histone modifications. Although TE neo-insertions are mostly deleterious or neutral, they can become advantageous for the host under specific circumstances. The phenomenon leading to the appropriation of TE-derived sequences by the host is known as TE exaptation or co-option. TE exaptation can be of different natures, through the production of coding or non-coding DNA sequences with ultimately an adaptive benefit for the host. In this review, we first give new insights into the silencing pathways controlling TE activity. We then discuss a model to explain how, under specific environmental conditions, TEs are unleashed, leading to a TE burst and neo-insertions, with potential benefits for the host. Finally, we review our current knowledge of coding and non-coding TE exaptation by providing several examples in various organisms and describing a method to identify TE co-option events.
Collapse
Affiliation(s)
- Melody Nicolau
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Nathalie Picault
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Guillaume Moissiard
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
- Correspondence:
| |
Collapse
|
25
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
26
|
Wang Q, Bao X, Chen S, Zhong H, Liu Y, Zhang L, Xia Y, Kragler F, Luo M, Li XD, Lam HM, Zhang S. AtHDA6 functions as an H3K18ac eraser to maintain pericentromeric CHG methylation in Arabidopsis thaliana. Nucleic Acids Res 2021; 49:9755-9767. [PMID: 34403482 PMCID: PMC8464031 DOI: 10.1093/nar/gkab706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 01/06/2023] Open
Abstract
Pericentromeric DNA, consisting of high-copy-number tandem repeats and transposable elements, is normally silenced through DNA methylation and histone modifications to maintain chromosomal integrity and stability. Although histone deacetylase 6 (HDA6) has been known to participate in pericentromeric silencing, the mechanism is still yet unclear. Here, using whole genome bisulfite sequencing (WGBS) and chromatin immunoprecipitation-sequencing (ChIP-Seq), we mapped the genome-wide patterns of differential DNA methylation and histone H3 lysine 18 acetylation (H3K18ac) in wild-type and hda6 mutant strains. Results show pericentromeric CHG hypomethylation in hda6 mutants was mediated by DNA demethylases, not by DNA methyltransferases as previously thought. DNA demethylases can recognize H3K18ac mark and then be recruited to the chromatin. Using biochemical assays, we found that HDA6 could function as an ‘eraser’ enzyme for H3K18ac mark to prevent DNA demethylation. Oxford Nanopore Technology Direct RNA Sequencing (ONT DRS) also revealed that hda6 mutants with H3K18ac accumulation and CHG hypomethylation were shown to have transcriptionally active pericentromeric DNA.
Collapse
Affiliation(s)
- Qianwen Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Xiucong Bao
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Shengjie Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Huan Zhong
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Yaqin Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Li Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Yiji Xia
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region.,State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region
| | - Friedrich Kragler
- Max-Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Golm, Germany
| | - Ming Luo
- Agriculture and Biotechnology Research Center, Guangdong Provincial Key Laboratory of Applied Botany, Center of Economic Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Shoudong Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.,Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| |
Collapse
|
27
|
Zhou X, He J, Velanis CN, Zhu Y, He Y, Tang K, Zhu M, Graser L, de Leau E, Wang X, Zhang L, Andy Tao W, Goodrich J, Zhu JK, Zhang CJ. A domesticated Harbinger transposase forms a complex with HDA6 and promotes histone H3 deacetylation at genes but not TEs in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1462-1474. [PMID: 33960113 DOI: 10.1111/jipb.13108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
In eukaryotes, histone acetylation is a major modification on histone N-terminal tails that is tightly connected to transcriptional activation. HDA6 is a histone deacetylase involved in the transcriptional regulation of genes and transposable elements (TEs) in Arabidopsis thaliana. HDA6 has been shown to participate in several complexes in plants, including a conserved SIN3 complex. Here, we uncover a novel protein complex containing HDA6, several Harbinger transposon-derived proteins (HHP1, SANT1, SANT2, SANT3, and SANT4), and MBD domain-containing proteins (MBD1, MBD2, and MBD4). We show that mutations of all four SANT genes in the sant-null mutant cause increased expression of the flowering repressors FLC, MAF4, and MAF5, resulting in a late flowering phenotype. Transcriptome deep sequencing reveals that while the SANT proteins and HDA6 regulate the expression of largely overlapping sets of genes, TE silencing is unaffected in sant-null mutants. Our global histone H3 acetylation profiling shows that SANT proteins and HDA6 modulate gene expression through deacetylation. Collectively, our findings suggest that Harbinger transposon-derived SANT domain-containing proteins are required for histone deacetylation and flowering time control in plants.
Collapse
Affiliation(s)
- Xishi Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Junna He
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
| | - Christos N Velanis
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, United Kingdom
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yuhan He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Mingku Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lisa Graser
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, United Kingdom
- University of Applied Sciences Mannheim, Paul-Wittsack-Str. 10,, Mannheim, 68163, Germany
| | - Erica de Leau
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, United Kingdom
| | - Xingang Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
| | - Lingrui Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette,, IN 47907, USA
| | - Justin Goodrich
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, United Kingdom
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
28
|
Zhou JX, Du P, Liu ZW, Feng C, Cai XW, He XJ. FVE promotes RNA-directed DNA methylation by facilitating the association of RNA polymerase V with chromatin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:467-479. [PMID: 33942410 DOI: 10.1111/tpj.15302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Association of RNA polymerase V (Pol V) with chromatin is a critical step for RNA- directed DNA methylation (RdDM) in plants. Although the methylated DNA-binding proteins SUVH2 and SUVH9 and the chromatin remodeler-containing complex DRD1-DMS3-RDM1 are known to be required for the association of Pol V with chromatin, the molecular mechanisms underlying the association of Pol V with different chromatin environments remain largely unknown. Here we found that SUVH9 interacts with FVE, a homolog of the mammalian retinoblastoma-associated protein, which has been previously identified as a shared subunit of the histone deacetylase complex and the polycomb-type histone H3K27 trimethyltransferase complex. We demonstrated that FVE facilitates the association of Pol V with chromatin and thus contributes to DNA methylation at a substantial subset of RdDM target loci. Compared with FVE-independent RdDM target loci, FVE-dependent RdDM target loci are more abundant in gene-rich chromosome arms than in pericentromeric heterochromatin regions. This study contributes to our understanding of how the association of Pol V with chromatin is regulated in different chromatin environments.
Collapse
Affiliation(s)
- Jin-Xing Zhou
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Ping Du
- National Institute of Biological Sciences, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhang-Wei Liu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Chao Feng
- National Institute of Biological Sciences, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
29
|
Yruela I, Moreno-Yruela C, Olsen CA. Zn 2+-Dependent Histone Deacetylases in Plants: Structure and Evolution. TRENDS IN PLANT SCIENCE 2021; 26:741-757. [PMID: 33461867 DOI: 10.1016/j.tplants.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Zn2+-dependent histone deacetylases are widely distributed in archaea, bacteria, and eukaryotes. Through deacetylation of histones and other biomolecules, these enzymes regulate mammalian gene expression, microtubule stability, and polyamine metabolism. In plants, they play essential roles in development and stress response, but little is known about their biochemistry. We provide here a holistic revision of plant histone deacetylase (HDA) phylogeny and translate recent lessons from other organisms. HDA evolution correlates with a gain of structural ductility/disorder, as observed for other proteins. We also highlight two recently identified Brassicaceae-specific HDAs, as well as unprecedented key mutations that would affect the catalytic activity of individual HDAs. This revised phylogeny will contextualize future studies and illuminate research on plant development and adaptation.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Group of Biochemistry, Biophysics, and Computational Biology (GBsC), Institute for Biocomputation and Physics of Complex Systems (BIFI) and Universidad de Zaragoza (UNIZAR) Joint Unit to CSIC, Zaragoza, Spain.
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
30
|
Arabidopsis RPD3-like histone deacetylases form multiple complexes involved in stress response. J Genet Genomics 2021; 48:369-383. [PMID: 34144927 DOI: 10.1016/j.jgg.2021.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes, but whether they form other types of complexes is unknown. Here, we perform affinity purification followed by mass spectrometry and demonstrate that the Arabidopsis RPD3-type histone deacetylases HDA6 and HDA19 interact with several previously uncharacterized proteins, thereby forming three types of plant-specific histone deacetylase complexes, which we named SANT, ESANT, and ARID. RNA-seq indicates that the newly identified components function together with HDA6 and HDA19 and coregulate the expression of a number of genes. HDA6 and HDA19 were previously thought to repress gene transcription by histone deacetylation. We find that the histone deacetylase complexes can repress gene expression via both histone deacetylation-dependent and -independent mechanisms. In the mutants of histone deacetylase complexes, the expression of a number of stress-induced genes is up-regulated, and several mutants of the histone deacetylase complexes show severe retardation in growth. Considering that growth retardation is thought to be a trade-off for an increase in stress tolerance, we infer that the histone deacetylase complexes identified in this study prevent overexpression of stress-induced genes and thereby ensure normal growth of plants under nonstress conditions.
Collapse
|
31
|
Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R. Role of Chromatin Architecture in Plant Stress Responses: An Update. FRONTIERS IN PLANT SCIENCE 2021; 11:603380. [PMID: 33510748 PMCID: PMC7835326 DOI: 10.3389/fpls.2020.603380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 05/08/2023]
Abstract
Sessile plants possess an assembly of signaling pathways that perceive and transmit environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a key feature of chromatin structure. Numerous histone-modifying proteins act under different environmental stress conditions to help modulate gene expression. DNA methylation and histone modification are crucial for genome reprogramming for tissue-specific gene expression and global gene silencing. Different classes of chromatin remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin in different organisms, under diverse stresses, to convert chromatin from a transcriptionally inactive to a transcriptionally active state. The architecture of chromatin at a given promoter is crucial for determining the transcriptional readout. Further, the connection between somatic memory and chromatin modifications may suggest a mechanistic basis for a stress memory. Studies have suggested that there is a functional connection between changes in nuclear organization and stress conditions. In this review, we discuss the role of chromatin architecture in different stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Sneha Lata Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Mahesh K. Basantani
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, India
| | - Gary J. Loake
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburg, Edinburg, United Kingdom
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| |
Collapse
|
32
|
Waititu JK, Zhang C, Liu J, Wang H. Plant Non-Coding RNAs: Origin, Biogenesis, Mode of Action and Their Roles in Abiotic Stress. Int J Mol Sci 2020; 21:E8401. [PMID: 33182372 PMCID: PMC7664903 DOI: 10.3390/ijms21218401] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 01/21/2023] Open
Abstract
As sessile species, plants have to deal with the rapidly changing environment. In response to these environmental conditions, plants employ a plethora of response mechanisms that provide broad phenotypic plasticity to allow the fine-tuning of the external cues related reactions. Molecular biology has been transformed by the major breakthroughs in high-throughput transcriptome sequencing and expression analysis using next-generation sequencing (NGS) technologies. These innovations have provided substantial progress in the identification of genomic regions as well as underlying basis influencing transcriptional and post-transcriptional regulation of abiotic stress response. Non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), short interfering RNAs (siRNAs), and long non-coding RNAs (lncRNAs), have emerged as essential regulators of plants abiotic stress response. However, shared traits in the biogenesis of ncRNAs and the coordinated cross-talk among ncRNAs mechanisms contribute to the complexity of these molecules and might play an essential part in regulating stress responses. Herein, we highlight the current knowledge of plant microRNAs, siRNAs, and lncRNAs, focusing on their origin, biogenesis, modes of action, and fundamental roles in plant response to abiotic stresses.
Collapse
Affiliation(s)
- Joram Kiriga Waititu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.K.W.); (C.Z.)
| |
Collapse
|
33
|
Yang R, He L, Huang H, Zhu JK, Lozano-Duran R, Zhang H. RNA-directed DNA methylation has an important developmental function in Arabidopsis that is masked by the chromatin remodeler PICKLE. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1647-1652. [PMID: 32515549 DOI: 10.1111/jipb.12979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
In Arabidopsis, RNA-directed DNA methylation (RdDM) is required for the maintenance of CHH methylation, and for de novo methylation in all (CG, CHG, and CHH) contexts, but no obvious effect of RdDM deficiency on plant development has been found to date. We show that the combination of mutations in the chromatin remodeler PKL and RdDM components results in developmental alterations, which appear in a SUPPRESSOR OF DRM1 DRM2 CMT3 (SDC)-dependent manner.
Collapse
Affiliation(s)
- Rong Yang
- Shanghai Center for Plant Stress Biology, Center for Excellence for Molecular Plant Sciences the Chinese Academy of Sciences, Shanghai, 201062, China
| | - Li He
- Shanghai Center for Plant Stress Biology, Center for Excellence for Molecular Plant Sciences the Chinese Academy of Sciences, Shanghai, 201062, China
| | - Huan Huang
- Shanghai Center for Plant Stress Biology, Center for Excellence for Molecular Plant Sciences the Chinese Academy of Sciences, Shanghai, 201062, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence for Molecular Plant Sciences the Chinese Academy of Sciences, Shanghai, 201062, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, Center for Excellence for Molecular Plant Sciences the Chinese Academy of Sciences, Shanghai, 201062, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence for Molecular Plant Sciences the Chinese Academy of Sciences, Shanghai, 201062, China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence for Molecular Plant Sciences the Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
34
|
de Rooij PGH, Perrella G, Kaiserli E, van Zanten M. The diverse and unanticipated roles of histone deacetylase 9 in coordinating plant development and environmental acclimation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6211-6225. [PMID: 32687569 PMCID: PMC7586748 DOI: 10.1093/jxb/eraa335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
Plants tightly control gene transcription to adapt to environmental conditions and steer growth and development. Different types of epigenetic modifications are instrumental in these processes. In recent years, an important role for the chromatin-modifying RPD3/HDA1 class I HDAC HISTONE DEACETYLASE 9 (HDA9) emerged in the regulation of a multitude of plant traits and responses. HDACs are widely considered transcriptional repressors and are typically part of multiprotein complexes containing co-repressors, DNA, and histone-binding proteins. By catalyzing the removal of acetyl groups from lysine residues of histone protein tails, HDA9 negatively controls gene expression in many cases, in concert with interacting proteins such as POWERDRESS (PWR), HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 15 (HOS15), WRKY53, ELONGATED HYPOCOTYL 5 (HY5), ABA INSENSITIVE 4 (ABI4), and EARLY FLOWERING 3 (ELF3). However, HDA9 activity has also been directly linked to transcriptional activation. In addition, following the recent breakthrough discovery of mutual negative feedback regulation between HDA9 and its interacting WRKY-domain transcription factor WRKY53, swift progress in gaining understanding of the biology of HDA9 is expected. In this review, we summarize knowledge on this intriguing versatile-and long under-rated-protein and propose novel leads to further unravel HDA9-governed molecular networks underlying plant development and environmental biology.
Collapse
Affiliation(s)
- Peter G H de Rooij
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan, CH Utrecht, The Netherlands
| | - Giorgio Perrella
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- ENEA - Trisaia Research Centre 75026, Rotondella (Matera), Italy
| | - Eirini Kaiserli
- Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan, CH Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
35
|
Iwakawa H, Takahashi H, Machida Y, Machida C. Roles of ASYMMETRIC LEAVES2 (AS2) and Nucleolar Proteins in the Adaxial-Abaxial Polarity Specification at the Perinucleolar Region in Arabidopsis. Int J Mol Sci 2020; 21:E7314. [PMID: 33022996 PMCID: PMC7582388 DOI: 10.3390/ijms21197314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Leaves of Arabidopsis develop from a shoot apical meristem grow along three (proximal-distal, adaxial-abaxial, and medial-lateral) axes and form a flat symmetric architecture. ASYMMETRIC LEAVES2 (AS2), a key regulator for leaf adaxial-abaxial partitioning, encodes a plant-specific nuclear protein and directly represses the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). How AS2 could act as a critical regulator, however, has yet to be demonstrated, although it might play an epigenetic role. Here, we summarize the current understandings of the genetic, molecular, and cellular functions of AS2. A characteristic genetic feature of AS2 is the presence of a number of (about 60) modifier genes, mutations of which enhance the leaf abnormalities of as2. Although genes for proteins that are involved in diverse cellular processes are known as modifiers, it has recently become clear that many modifier proteins, such as NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10), are localized in the nucleolus. Some modifiers including ribosomal proteins are also members of the small subunit processome (SSUP). In addition, AS2 forms perinucleolar bodies partially colocalizing with chromocenters that include the condensed inactive 45S ribosomal RNA genes. AS2 participates in maintaining CpG methylation in specific exons of ETT/ARF3. NUC1 and RH10 genes are also involved in maintaining the CpG methylation levels and repressing ETT/ARF3 transcript levels. AS2 and nucleolus-localizing modifiers might cooperatively repress ETT/ARF3 to develop symmetric flat leaves. These results raise the possibility of a nucleolus-related epigenetic repression system operating for developmental genes unique to plants and predict that AS2 could be a molecule with novel functions that cannot be explained by the conventional concept of transcription factors.
Collapse
Affiliation(s)
- Hidekazu Iwakawa
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200, Matsumoto-cho, Kasugai, Aichi 487-8501, Japan;
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan;
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200, Matsumoto-cho, Kasugai, Aichi 487-8501, Japan;
| |
Collapse
|
36
|
Cadavid IC, da Fonseca GC, Margis R. HDAC inhibitor affects soybean miRNA482bd expression under salt and osmotic stress. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153261. [PMID: 32947244 DOI: 10.1016/j.jplph.2020.153261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding molecules that modulate gene expression through targeting mRNA by specific-sequence cleavage, translation inhibition, or transcriptional regulation. miRNAs are key molecules in regulatory networks in abiotic stresses such as salt stress and water deficit in plants. Throughout the world, soybean is a critical crop, the production of which is affected by environmental stress conditions. In this study, RNA-Seq libraries from leaves of soybean under salt treatment were analyzed. 17 miRNAs and 31 putative target genes were identified with inverse differential expression patterns, indicating miRNA-target interaction. The differential expression of six miRNAs, including miR482bd-5p, and their potential targets, were confirmed by RT-qPCR. The miR482bd-5p expression was repressed, while its potential HEC1 and BAK1 targets were increased. Polyethylene glycol experiment was used to simulate drought stress, and miR482bd-5p, HEC1, and BAK1 presented a similar expression pattern, as found in salt stress. Histone modifications occur in response to abiotic stress, where histone deacetylases (HDACs) can lead to gene repression and silencing. The miR482bd-5p epigenetic regulation by histone deacetylation was evaluated by using the SAHA-HDAC inhibitor. The miR482bd-5p was up-regulated, and HEC1 was down-regulated under SAHA-salt treatment. It suggests an epigenetic regulation, where the miRNA gene is repressed by HDAC under salt stress, reducing its transcription, with an associated increase in the HEC1 target expression.
Collapse
Affiliation(s)
- Isabel Cristina Cadavid
- Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rogerio Margis
- Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
37
|
Hung FY, Chen C, Yen MR, Hsieh JWA, Li C, Shih YH, Chen FF, Chen PY, Cui Y, Wu K. The expression of long non-coding RNAs is associated with H3Ac and H3K4me2 changes regulated by the HDA6-LDL1/2 histone modification complex in Arabidopsis. NAR Genom Bioinform 2020; 2:lqaa066. [PMID: 33575615 PMCID: PMC7671367 DOI: 10.1093/nargab/lqaa066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
In recent years, eukaryotic long non-coding RNAs (lncRNAs) have been identified as important factors involved in a wide variety of biological processes, including histone modification, alternative splicing and transcription enhancement. The expression of lncRNAs is highly tissue-specific and is regulated by environmental stresses. Recently, a large number of plant lncRNAs have been identified, but very few of them have been studied in detail. Furthermore, the mechanism of lncRNA expression regulation remains largely unknown. Arabidopsis HISTONE DEACETYLASE 6 (HDA6) and LSD1-LIKE 1/2 (LDL1/2) can repress gene expression synergistically by regulating H3Ac/H3K4me. In this research, we performed RNA-seq and ChIP-seq analyses to further clarify the function of HDA6-LDL1/2. Our results indicated that the global expression of lncRNAs is increased in hda6/ldl1/2 and that this increased lncRNA expression is particularly associated with H3Ac/H3K4me2 changes. In addition, we found that HDA6-LDL1/2 is important for repressing lncRNAs that are non-expressed or show low-expression, which may be strongly associated with plant development. GO-enrichment analysis also revealed that the neighboring genes of the lncRNAs that are upregulated in hda6/ldl1/2 are associated with various developmental processes. Collectively, our results revealed that the expression of lncRNAs is associated with H3Ac/H3K4me2 changes regulated by the HDA6-LDL1/2 histone modification complex.
Collapse
Affiliation(s)
- Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei 10617 Taiwan
| | - Chen Chen
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3 Canada
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - Chenlong Li
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3 Canada
| | - Yuan-Hsin Shih
- Institute of Plant Biology, National Taiwan University, Taipei 10617 Taiwan
| | - Fang-Fang Chen
- Institute of Plant Biology, National Taiwan University, Taipei 10617 Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3 Canada
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 10617 Taiwan
| |
Collapse
|
38
|
Nowak K, Morończyk J, Wójcik A, Gaj MD. AGL15 Controls the Embryogenic Reprogramming of Somatic Cells in Arabidopsis through the Histone Acetylation-Mediated Repression of the miRNA Biogenesis Genes. Int J Mol Sci 2020; 21:ijms21186733. [PMID: 32937992 PMCID: PMC7554740 DOI: 10.3390/ijms21186733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
The embryogenic transition of somatic cells requires an extensive reprogramming of the cell transcriptome. Relevantly, the extensive modulation of the genes that have a regulatory function, in particular the genes encoding the transcription factors (TFs) and miRNAs, have been indicated as controlling somatic embryogenesis (SE) that is induced in vitro in the somatic cells of plants. Identifying the regulatory relationships between the TFs and miRNAs during SE induction is of central importance for understanding the complex regulatory interplay that fine-tunes a cell transcriptome during the embryogenic transition. Hence, here, we analysed the regulatory relationships between AGL15 (AGAMOUS-LIKE 15) TF and miR156 in an embryogenic culture of Arabidopsis. Both AGL15 and miR156 control SE induction and AGL15 has been reported to target the MIR156 genes in planta. The results showed that AGL15 contributes to the regulation of miR156 in an embryogenic culture at two levels that involve the activation of the MIR156 transcription and the containment of the abundance of mature miR156 by repressing the miRNA biogenesis genes DCL1 (DICER-LIKE1), SERRATE and HEN1 (HUA-ENHANCER1). To repress the miRNA biogenesis genes AGL15 seems to co-operate with the TOPLESS co-repressors (TPL and TPR1-4), which are components of the SIN3/HDAC silencing complex. The impact of TSA (trichostatin A), an inhibitor of the HDAC histone deacetylases, on the expression of the miRNA biogenesis genes together with the ChIP results implies that histone deacetylation is involved in the AGL15-mediated repression of miRNA processing. The results indicate that HDAC6 and HDAC19 histone deacetylases might co-operate with AGL15 in silencing the complex that controls the abundance of miR156 during embryogenic induction. This study provides new evidence about the histone acetylation-mediated control of the miRNA pathways during the embryogenic reprogramming of plant somatic cells and the essential role of AGL15 in this regulatory mechanism.
Collapse
|
39
|
Abstract
Epigenetic mechanisms play fundamental roles in regulating numerous biological processes in various developmental and environmental contexts. Three highly interconnected epigenetic control mechanisms, including small noncoding RNAs, DNA methylation, and histone modifications, contribute to the establishment of plant epigenetic profiles. During the past decade, a growing body of experimental work has revealed the intricate, diverse, and dynamic roles that epigenetic modifications play in plant-nematode interactions. In this review, I summarize recent progress regarding the functions of small RNAs in mediating plant responses to infection by cyst and root-knot nematodes, with a focus on the functions of microRNAs. I also recapitulate recent advances in genome-wide DNA methylation analysis and discuss how cyst nematodes induce extensive and dynamic changes in the plant methylome that impact the transcriptional activity of genes and transposable elements. Finally, the potential role of nematode effector proteins in triggering such epigenome changes is discussed.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA;
| |
Collapse
|
40
|
Lin J, Hung FY, Ye C, Hong L, Shih YH, Wu K, Li QQ. HDA6-dependent histone deacetylation regulates mRNA polyadenylation in Arabidopsis. Genome Res 2020; 30:1407-1417. [PMID: 32759225 PMCID: PMC7605263 DOI: 10.1101/gr.255232.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Eukaryotic histone deacetylation, critical for maintaining nucleosome structure and regulating gene expression, is mediated by histone deacetylases (HDACs). Although nucleosomes have been reported to regulate mRNA polyadenylation in humans, the role of HDACs in regulating polyadenylation has not been uncovered. Taking advantage of phenotypic studies on Arabidopsis, HDA6 (one of HDACs) was found to be a critical part of many biological processes. Here, we report that HDA6 affects mRNA polyadenylation in Arabidopsis. Poly(A) sites of up-regulated transcripts are closer to the histone acetylation peaks in hda6 compared to the wild-type Col-0. HDA6 is required for the deacetylation of histones around DNA on nucleosomes, which solely coincides with up-regulated or uniquely presented poly(A) sites in hda6. Furthermore, defective HDA6 results in an overrepresentation of the canonical poly(A) signal (AAUAAA) usage. Chromatin loci for generating AAUAAA-type transcripts have a comparatively low H3K9K14ac around poly(A) sites when compared to other noncanonical poly(A) signal–containing transcripts. These results indicate that HDA6 regulates polyadenylation in a histone deacetylation–dependent manner in Arabidopsis.
Collapse
Affiliation(s)
- Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan 10617
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Liwei Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuan-Hsin Shih
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan 10617
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan 10617
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.,Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
41
|
Segregation of an MSH1 RNAi transgene produces heritable non-genetic memory in association with methylome reprogramming. Nat Commun 2020; 11:2214. [PMID: 32371941 PMCID: PMC7200659 DOI: 10.1038/s41467-020-16036-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
MSH1 is a plant-specific protein. RNAi suppression of MSH1 results in phenotype variability for developmental and stress response pathways. Segregation of the RNAi transgene produces non-genetic msh1 ‘memory’ with multi-generational inheritance. First-generation memory versus non-memory comparison, and six-generation inheritance studies, identifies gene-associated, heritable methylation repatterning. Genome-wide methylome analysis integrated with RNAseq and network-based enrichment studies identifies altered circadian clock networks, and phytohormone and stress response pathways that intersect with circadian control. A total of 373 differentially methylated loci comprising these networks are sufficient to discriminate memory from nonmemory full sibs. Methylation inhibitor 5-azacytidine diminishes the differences between memory and wild type for growth, gene expression and methylation patterning. The msh1 reprogramming is dependent on functional HISTONE DEACETYLASE 6 and methyltransferase MET1, and transition to memory requires the RNA-directed DNA methylation pathway. This system of phenotypic plasticity may serve as a potent model for defining accelerated plant adaptation during environmental change. Segregation of an MSH1 RNAi transgene produces non-genetic memory that displays transgenerational inheritance in Arabidopsis. Here, the authors compare memory and non-memory full-sib progenies to show the involvement of DNA methylation reprogramming, involving the RdDM pathway, in transition to a heritable memory state.
Collapse
|
42
|
Yang J, Yuan L, Yen MR, Zheng F, Ji R, Peng T, Gu D, Yang S, Cui Y, Chen PY, Wu K, Liu X. SWI3B and HDA6 interact and are required for transposon silencing in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:809-822. [PMID: 31883159 DOI: 10.1111/tpj.14666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/23/2019] [Accepted: 11/20/2019] [Indexed: 05/14/2023]
Abstract
Although the interplay of covalent histone acetylation/deacetylation and ATP-dependent chromatin remodelling is crucial for the regulation of chromatin structure and gene expression in eukaryotes, the underlying molecular mechanism in plants remains largely unclear. Here we show a direct interaction between Arabidopsis SWI3B, an essential subunit of the SWI/SNF chromatin-remodelling complex, and the RPD3/HDA1-type histone deacetylase HDA6 both in vitro and in vivo. Furthermore, SWI3B and HDA6 co-repress the transcription of a subset of transposons. Both SWI3B and HDA6 maintain transposon silencing by decreasing histone H3 lysine 9 acetylation, but increasing histone H3 lysine 9 di-methylation, DNA methylation and nucleosome occupancy. Our findings reveal that SWI3B and HDA6 may act in the same co-repressor complex to maintain transposon silencing in Arabidopsis.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianyu Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 106, Taiwan
| | - Feng Zheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Rujun Ji
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Peng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Dachuan Gu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yuhai Cui
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 106, Taiwan
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
43
|
Singh J, Pikaard CS. Reconstitution of siRNA Biogenesis In Vitro: Novel Reaction Mechanisms and RNA Channeling in the RNA-Directed DNA Methylation Pathway. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:195-201. [PMID: 32350049 DOI: 10.1101/sqb.2019.84.039842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotes deploy RNA-mediated gene silencing pathways to guard their genomes against selfish genetic elements, such as transposable elements and invading viruses. In plants, RNA-directed DNA methylation (RdDM) is used to silence selfish elements at the level of transcription. This process involves 24-nt short interfering RNAs (siRNAs) and longer noncoding RNAs to which the siRNAs base-pair. Recently, we showed that 24-nt siRNA biogenesis could be recapitulated in the test tube using purified enzymes, yielding biochemical answers to numerous questions left unresolved by prior genetic and genomic studies. Interestingly, each enzyme has activities that program what happens in the next step, thus channeling the RNAs within the RdDM pathway and restricting their diversion into alternative pathways. However, a similar mechanistic understanding is lacking for other important steps of the RdDM pathway. We discuss some of the steps most in need of biochemical investigation and important questions still in need of answers.
Collapse
Affiliation(s)
- Jasleen Singh
- Department of Molecular and Cellular Biochemistry and Department of Biology, Bloomington, Indiana 47405, USA
| | - Craig S Pikaard
- Department of Molecular and Cellular Biochemistry and Department of Biology, Bloomington, Indiana 47405, USA.,Howard Hughes Medical Institute, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
44
|
Luo L, Ando S, Sakamoto Y, Suzuki T, Takahashi H, Ishibashi N, Kojima S, Kurihara D, Higashiyama T, Yamamoto KT, Matsunaga S, Machida C, Sasabe M, Machida Y. The formation of perinucleolar bodies is important for normal leaf development and requires the zinc-finger DNA-binding motif in Arabidopsis ASYMMETRIC LEAVES2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1118-1134. [PMID: 31639235 PMCID: PMC7155070 DOI: 10.1111/tpj.14579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 05/27/2023]
Abstract
In Arabidopsis, the ASYMMETRIC LEAVES2 (AS2) protein plays a key role in the formation of flat symmetric leaves via direct repression of the abaxial gene ETT/ARF3. AS2 encodes a plant-specific nuclear protein that contains the AS2/LOB domain, which includes a zinc-finger (ZF) motif that is conserved in the AS2/LOB family. We have shown that AS2 binds to the coding DNA of ETT/ARF3, which requires the ZF motif. AS2 is co-localized with AS1 in perinucleolar bodies (AS2 bodies). To identify the amino acid signals in AS2 required for formation of AS2 bodies and function(s) in leaf formation, we constructed recombinant DNAs that encoded mutant AS2 proteins fused to yellow fluorescent protein. We examined the subcellular localization of these proteins in cells of cotyledons and leaf primordia of transgenic plants and cultured cells. The amino acid signals essential for formation of AS2 bodies were located within and adjacent to the ZF motif. Mutant AS2 that failed to form AS2 bodies also failed to rescue the as2-1 mutation. Our results suggest the importance of the formation of AS2 bodies and the nature of interactions of AS2 with its target DNA and nucleolar factors including NUCLEOLIN1. The partial overlap of AS2 bodies with perinucleolar chromocenters with condensed ribosomal RNA genes implies a correlation between AS2 bodies and the chromatin state. Patterns of AS2 bodies in cells during interphase and mitosis in leaf primordia were distinct from those in cultured cells, suggesting that the formation and distribution of AS2 bodies are developmentally modulated in plants.
Collapse
Affiliation(s)
- Lilan Luo
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Present address:
Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Sayuri Ando
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Yuki Sakamoto
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of ScienceNodaChiba278‐8510Japan
- Department of Biological SciencesGraduate School of ScienceOsaka University1‐1 Machikaneyama‐choToyonakaOsaka560‐0043Japan
| | - Takanori Suzuki
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Central Research InstituteIshihara Sangyo Kaisha, Ltd.2‐3‐1 Nishi‐ShibukawaKusatsuShiga525‐0025Japan
| | - Hiro Takahashi
- Graduate School of Medical SciencesKanazawa UniversityKakuma‐machiKanazawaIshikawa920‐1192Japan
| | - Nanako Ishibashi
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
| | - Shoko Kojima
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Daisuke Kurihara
- JST, PRESTOFuro‐cho, Chikusa‐kuNagoyaAichi464‐8601Japan
- Institute of Transformative Bio‐Molecules (ITbM)Nagoya UniversityFuro‐cho, Chiku00sa‐kuNagoyaAichi464‐8601Japan
| | - Tetsuya Higashiyama
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Institute of Transformative Bio‐Molecules (ITbM)Nagoya UniversityFuro‐cho, Chiku00sa‐kuNagoyaAichi464‐8601Japan
- Department of Biological SciencesGraduate School of ScienceUniversity of Tokyo7‐3‐1 Hongo, Bukyo‐kuTokyo113‐0033Japan
| | - Kotaro T. Yamamoto
- Division of Biological SciencesFaculty of ScienceHokkaido UniversitySapporo060‐0810Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of ScienceNodaChiba278‐8510Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Michiko Sasabe
- Department of BiologyFaculty of Agriculture and Life ScienceHirosaki University3 Bunkyo‐choHirosaki036‐8561Japan
| | - Yasunori Machida
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
| |
Collapse
|
45
|
Trejo-Arellano MS, Mehdi S, de Jonge J, Dvorák Tomastíková E, Köhler C, Hennig L. Dark-Induced Senescence Causes Localized Changes in DNA Methylation. PLANT PHYSIOLOGY 2020; 182:949-961. [PMID: 31792150 PMCID: PMC6997673 DOI: 10.1104/pp.19.01154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/14/2019] [Indexed: 05/04/2023]
Abstract
Senescence occurs in a programmed manner to dismantle the vegetative tissues and redirect nutrients towards metabolic pathways supporting reproductive success. External factors can trigger the senescence program as an adaptive strategy, indicating that this terminal program is controlled at different levels. It has been proposed that epigenetic factors accompany the reprogramming of the senescent genome; however, the mechanism and extent of this reprogramming remain unknown. Using bisulphite conversion followed by sequencing, we assessed changes in the methylome of senescent Arabidopsis (Arabidopsis thaliana) leaves induced by darkness and monitored their effect on gene and transposable element (TE) expression with transcriptome sequencing. Upon dark-induced senescence, genes controlling chromatin silencing were collectively down-regulated. As a consequence, the silencing of TEs was impaired, causing in particular young TEs to become preferentially reactivated. In parallel, heterochromatin at chromocenters was decondensed. Despite the disruption of the chromatin maintenance network, the global DNA methylation landscape remained highly stable, with localized changes mainly restricted to CHH methylation. Together, our data show that the terminal stage of plant life is accompanied by global changes in chromatin structure but only localized changes in DNA methylation, adding another example of the dynamics of DNA methylation during plant development.
Collapse
Affiliation(s)
- Minerva S Trejo-Arellano
- Swedish University of Agricultural Sciences, Department of Plant Biology and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Saher Mehdi
- Swedish University of Agricultural Sciences, Department of Plant Biology and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Jennifer de Jonge
- Swedish University of Agricultural Sciences, Department of Plant Biology and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Eva Dvorák Tomastíková
- Swedish University of Agricultural Sciences, Department of Plant Biology and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Claudia Köhler
- Swedish University of Agricultural Sciences, Department of Plant Biology and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Lars Hennig
- Swedish University of Agricultural Sciences, Department of Plant Biology and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| |
Collapse
|
46
|
Chen X, Ding AB, Zhong X. Functions and mechanisms of plant histone deacetylases. SCIENCE CHINA-LIFE SCIENCES 2019; 63:206-216. [PMID: 31879846 DOI: 10.1007/s11427-019-1587-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
Abstract
Lysine acetylation, one of the major types of post-translational modifications, plays critical roles in regulating gene expression and protein function. Histone deacetylases (HDACs) are responsible for removing acetyl groups from lysines of both histone and non-histone proteins. While tremendous progress has been made in understanding the function and mechanism of HDACs in animals in the past two decades, nearly half of the HDAC studies in plants were reported within the past five years. In this review, we summarize the major findings on plant HDACs, with a focus on the model plant Arabidopsis thaliana, and highlight the components, regulatory mechanisms, and biological functions of HDAC complexes.
Collapse
Affiliation(s)
- Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Adeline B Ding
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
47
|
Zhu G, Chang Y, Xu X, Tang K, Chen C, Lei M, Zhu JK, Duan CG. EXPORTIN 1A prevents transgene silencing in Arabidopsis by modulating nucleo-cytoplasmic partitioning of HDA6. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1243-1254. [PMID: 30697937 DOI: 10.1111/jipb.12787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/25/2019] [Indexed: 05/28/2023]
Abstract
In eukaryotic cells, transport of macromolecules across the nuclear envelope is an essential process that ensures rapid exchange of cellular components, including protein and RNA molecules. Chromatin regulators involved in epigenetic control are among the molecules exported across the nuclear envelope, but the significance of this nucleo-cytoplasmic trafficking is not well understood. Here, we use a forward screen to isolate XPO1A (a nuclear export receptor in Arabidopsis) as an anti-silencing factor that protects transgenes from transcriptional silencing. Loss-of-function of XPO1A leads to locus-specific DNA hypermethylation at transgene promoters and some endogenous loci. We found that XPO1A directly interacts with histone deacetylase HDA6 in vivo and that the xpo1a mutation causes increased nuclear retention of HDA6 protein and results in reduced histone acetylation and enhanced transgene silencing. Our results reveal a new mechanism of epigenetic regulation through the modulation of XPO1A-dependent nucleo-cytoplasm partitioning of a chromatin regulator.
Collapse
Affiliation(s)
- Guohui Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanan Chang
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
- The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuezhong Xu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
| | - Chunxiang Chen
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
- The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
| | - Cheng-Guo Duan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
48
|
Kurita K, Sakamoto Y, Naruse S, Matsunaga TM, Arata H, Higashiyama T, Habu Y, Utsumi Y, Utsumi C, Tanaka M, Takahashi S, Kim JM, Seki M, Sakamoto T, Matsunaga S. Intracellular localization of histone deacetylase HDA6 in plants. JOURNAL OF PLANT RESEARCH 2019; 132:629-640. [PMID: 31338715 DOI: 10.1007/s10265-019-01124-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/03/2019] [Indexed: 05/26/2023]
Abstract
Histone modification is an important epigenetic mechanism in eukaryotes. Histone acetyltransferase and deacetylase regulate histone acetylation levels antagonistically, leading to dynamic control of chromatin structure. One of the histone deacetylases, HDA6, is involved in gene silencing in the heterochromatin regions, chromocenter formation, and metabolic adaptation under drought stress. Although HDA6 plays an important role in chromatin control and response to drought stress, its intracellular localization has not been observed in detail. In this paper, we generated transformants expressing HDA6-GFP in the model plant, Arabidopsis thaliana, and the crops, rice, and cassava. We observed the localization of the fusion protein and showed that HDA6-GFP was expressed in the whole root and localized at the nucleus in Arabidopsis, rice, and cassava. Remarkably, HDA6-GFP clearly formed speckles that were actively colocalized with chromocenters in Arabidopsis root meristem. In contrast, such speckles were unlikely to be formed in rice or cassava. Because AtHDA6 directly binds to the acetate synthesis genes, which function in drought tolerance, we performed live imaging analyses to examine the cellular dynamics of pH in roots and the subnuclear dynamics of AtHDA6 responding to acetic acid treatment. The number of HDA6 speckles increased during drought stress, suggesting a role in contributing to drought stress tolerance.
Collapse
Affiliation(s)
- Kazuki Kurita
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuki Sakamoto
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Sota Naruse
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomoko M Matsunaga
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hideyuki Arata
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yoshiki Habu
- Plant Physiology Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Centre for Sustainable Resource Science (CSRS), 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Centre for Sustainable Resource Science (CSRS), 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Centre for Sustainable Resource Science (CSRS), 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Centre for Sustainable Resource Science (CSRS), 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Centre for Sustainable Resource Science (CSRS), 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Centre for Sustainable Resource Science (CSRS), 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
49
|
Sims J, Copenhaver GP, Schlögelhofer P. Meiotic DNA Repair in the Nucleolus Employs a Nonhomologous End-Joining Mechanism. THE PLANT CELL 2019; 31:2259-2275. [PMID: 31266898 PMCID: PMC6751124 DOI: 10.1105/tpc.19.00367] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/12/2019] [Accepted: 06/28/2019] [Indexed: 05/03/2023]
Abstract
Ribosomal RNA genes are arranged in large arrays with hundreds of rDNA units in tandem. These highly repetitive DNA elements pose a risk to genome stability since they can undergo nonallelic exchanges. During meiosis, DNA double-strand breaks (DSBs) are induced as part of the regular program to generate gametes. Meiotic DSBs initiate homologous recombination (HR), which subsequently ensures genetic exchange and chromosome disjunction. In Arabidopsis (Arabidopsis thaliana), we demonstrate that all 45S rDNA arrays become transcriptionally active and are recruited into the nucleolus early in meiosis. This shields the rDNA from acquiring canonical meiotic chromatin modifications and meiotic cohesin and allows only very limited meiosis-specific DSB formation. DNA lesions within the rDNA arrays are repaired in an RAD51-independent but LIG4-dependent manner, establishing that nonhomologous end-joining maintains rDNA integrity during meiosis. Utilizing ectopically integrated rDNA repeats, we validate our findings and demonstrate that the rDNA constitutes an HR-refractory genome environment.
Collapse
Affiliation(s)
- Jason Sims
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
50
|
Ning YQ, Chen Q, Lin RN, Li YQ, Li L, Chen S, He XJ. The HDA19 histone deacetylase complex is involved in the regulation of flowering time in a photoperiod-dependent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:448-464. [PMID: 30828924 DOI: 10.1111/tpj.14229] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
Chromatin modifications are known to affect flowering time in plants, but little is known about how these modifications regulate flowering time in response to environmental signals like photoperiod. In Arabidopsis thaliana, HDC1, a conserved subunit of the RPD3-like histone deacetylase (HDAC) complex, was previously reported to regulate flowering time via the same mechanism as does the HDAC HDA6. Here, we demonstrate that HDC1, SNLs and MSI1 are shared subunits of the HDA6 and HDA19 HDAC complexes. While the late-flowering phenotype of the hda6 mutant is independent of photoperiod, the hda19, hdc1 and snl2/3/4 mutants flower later than or at a similar time to the wild-type in long-day conditions but flower earlier than the wild-type in short-day conditions. Our genome-wide analyses indicate that the effect of hdc1 on histone acetylation and transcription is comparable with that of hda19 but is different from that of hda6. Especially, we demonstrate that the HDA19 complex directly regulates the expression of two flowering repressor genes related to the gibberellin signaling pathway. Thus, the study reveals a photoperiod-dependent role of the HDA19 HDAC complex in the regulation of flowering time.
Collapse
Affiliation(s)
- Yong-Qiang Ning
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Qing Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Rong-Nan Lin
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yong-Qiang Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
| |
Collapse
|