1
|
Díaz-Gómez JL, López-Castillo LM, Garcia-Lara S, Castorena-Torres F, Winkler R, Wielsch N, Aguilar O. Novel α-zein peptide fractions with in vitro cytotoxic activity against hepatocarcinoma. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
2
|
Paris R, Petruzzino G, Savino M, De Simone V, Ficco DBM, Trono D. Genome-Wide Identification, Characterization and Expression Pattern Analysis of the γ-Gliadin Gene Family in the Durum Wheat ( Triticum durum Desf.) Cultivar Svevo. Genes (Basel) 2021; 12:genes12111743. [PMID: 34828349 PMCID: PMC8621147 DOI: 10.3390/genes12111743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Very recently, the genome of the modern durum wheat cv. Svevo was fully sequenced, and its assembly is publicly available. So, we exploited the opportunity to carry out an in-depth study for the systematic characterization of the γ-gliadin gene family in the cv. Svevo by combining a bioinformatic approach with transcript and protein analysis. We found that the γ-gliadin family consists of nine genes that include seven functional genes and two pseudogenes. Three genes, Gli-γ1a, Gli-γ3a and Gli-γ4a, and the pseudogene Gli-γ2a* mapped on the A genome, whereas the remaining four genes, Gli-γ1b, Gli-γ2b, Gli-γ3b and Gli-γ5b, and the pseudogene Gli-γ4b* mapped on the B genome. The functional γ-gliadins presented all six domains and eight-cysteine residues typical of γ-gliadins. The Gli-γ1b also presented an additional cysteine that could possibly have a role in the formation of the gluten network through binding to HMW glutenins. The γ-gliadins from the A and B genome differed in their celiac disease (CD) epitope content and composition, with the γ-gliadins from the B genome showing the highest frequency of CD epitopes. In all the cases, almost all the CD epitopes clustered in the central region of the γ-gliadin proteins. Transcript analysis during seed development revealed that all the functional γ-gliadin genes were expressed with a similar pattern, although significant differences in the transcript levels were observed among individual genes that were sometimes more than 60-fold. A progressive accumulation of the γ-gliadin fraction was observed in the ripening seeds that reached 34% of the total gliadin fraction at harvest maturity. We believe that the insights generated in the present study could aid further studies on gliadin protein functions and future breeding programs aimed at the selection of new healthier durum wheat genotypes.
Collapse
Affiliation(s)
- Roberta Paris
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, Via di Corticella 133, 40128 Bologna, Italy;
| | - Giuseppe Petruzzino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Michele Savino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Vanessa De Simone
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Donatella B. M. Ficco
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, Km 25,200, 71122 Foggia, Italy; (G.P.); (M.S.); (V.D.S.); (D.B.M.F.)
- Correspondence:
| |
Collapse
|
3
|
Hurst P, Schnable JC, Holding DR. Tandem duplicate expression patterns are conserved between maize haplotypes of the α-zein gene family. PLANT DIRECT 2021; 5:e346. [PMID: 34541444 PMCID: PMC8438537 DOI: 10.1002/pld3.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Tandem duplication gives rise to copy number variation and subsequent functional novelty among genes as well as diversity between individuals in a species. Functional novelty can result from either divergence in coding sequence or divergence in patterns of gene transcriptional regulation. Here, we investigate conservation and divergence of both gene sequence and gene regulation between the copies of the α-zein gene family in maize inbreds B73 and W22. We used RNA-seq data generated from developing, self-pollinated kernels at three developmental stages timed to coincide with early and peak zein expression. The reference genome annotations for B73 and W22 were modified to ensure accurate inclusion of their respective α-zein gene models to accurately assess copy-specific expression. Expression analysis indicated that although the total expression of α-zeins is higher in W22, the pattern of expression in both lines is conserved. Additional analysis of publicly available RNA-seq data from a diverse population of maize inbreds also demonstrates variation in absolute expression, but conservation of expression patterns across a wide range of maize genotypes and α-zein haplotypes.
Collapse
Affiliation(s)
- Preston Hurst
- Department of Agronomy and Horticulture, Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - James C. Schnable
- Department of Agronomy and Horticulture, Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - David R. Holding
- Department of Agronomy and Horticulture, Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| |
Collapse
|
4
|
Khan NU, Sheteiwy M, Lihua N, Khan MMU, Han Z. An update on the maize zein-gene family in the post-genomics era. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractMaize (Zea mays) is a cereal crop of global food importance. However, the deficiency of essential amino acids, more importantly lysine, methionine and tryptophan, in the major seed storage zein proteins makes corn nutritionally of low value for human consumption. The idea of improving maize nutritional value prompted the search for maize natural mutants harboring low zein contents and higher amount of lysine. These studies resulted in the identification of more than dozens of maize opaque mutants in the previous few decades,o2mutant being the most extensively studied one. However, the high lysine contents but soft kernel texture and chalky endosperm halted the widespread application and commercial success of maize opaque mutants, which ultimately paved the way for the development of Quality Protein Maize (QPM) by modifying the soft endosperm ofo2 mutant into lysine-rich hard endosperm. The previous few decades have witnessed a marked progress in maize zein research. It includes elucidation of molecular mechanism underlying the role of different zein genes in seed endosperm development by cloning different components of zein family, exploring the general organization, function and evolution of zein family members within maize species and among other cereals, and elucidating the cis- and trans-regulatory elements modulating the regulation of different molecular players of maize seed endosperm development. The current advances in high quality reference genomes of maize lines B73 and Mo17 plus the completion of ongoing pan genome sequencing projects of more maize lines with NGS technologies are expected to revolutionize maize zein gene research in near future. This review highlights the recent advances in QPM development and its practical application in the post genomic era, genomic and physical composition and evolution of zein family, and expression, regulation and downstream role of zein genes in endosperm development. Moreover, recent genomic tools and methods developed for functional validation of maize zein genes are also discussed.Graphical abstract
Collapse
|
5
|
Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela. Proc Natl Acad Sci U S A 2019; 116:18893-18899. [PMID: 31484765 DOI: 10.1073/pnas.1910401116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aquatic plants have to adapt to the environments distinct from where land plants grow. A critical aspect of adaptation is the dynamics of sequence repeats, not resolved in older sequencing platforms due to incomplete and fragmented genome assemblies from short reads. Therefore, we used PacBio long-read sequencing of the Spirodela polyrhiza genome, reaching a 44-fold increase of contiguity with an N50 (a median of contig lengths) of 831 kb and filling 95.4% of gaps left from the previous version. Reconstruction of repeat regions indicates that sequentially nested long terminal repeat (LTR) retrotranspositions occur early in monocot evolution, featured with both prokaryote-like gene-rich regions and eukaryotic repeat islands. Protein-coding genes are reduced to 18,708 gene models supported by 492,435 high-quality full-length PacBio complementary DNA (cDNA) sequences. Different from land plants, the primitive architecture of Spirodela's adventitious roots and lack of lateral roots and root hairs are consistent with dispensable functions of nutrient absorption. Disease-resistant genes encoding antimicrobial peptides and dirigent proteins are expanded by tandem duplications. Remarkably, disease-resistant genes are not only amplified, but also highly expressed, consistent with low levels of 24-nucleotide (nt) small interfering RNA (siRNA) that silence the immune system of land plants, thereby protecting Spirodela against a wide spectrum of pathogens and pests. The long-read sequence information not only sheds light on plant evolution and adaptation to the environment, but also facilitates applications in bioenergy and phytoremediation.
Collapse
|
6
|
Castelli S, Mascheretti I, Cosentino C, Lazzari B, Pirona R, Ceriotti A, Viotti A, Lauria M. Uniparental and transgressive expression of α-zeins in maize endosperm of o2 hybrid lines. PLoS One 2018; 13:e0206993. [PMID: 30439980 PMCID: PMC6237297 DOI: 10.1371/journal.pone.0206993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
The α-zein gene family encodes the most abundant storage proteins of maize (Zea mays) endosperm. Members of this family are expressed in a parent-of-origin manner. To characterize this phenomenon further, we investigated the expression of a subset of α-zein polypeptides in reciprocal crosses between o2 lines that were characterized by a simplified α-zein pattern. Maize lines that suppressed the expression of α-zeins when used as female parents were identified. The suppression was cross-specific, occurring only when specific genetic backgrounds were combined. Four α-zein sequences that were sensitive to uniparental expression were isolated. Molecular characterization of these α-zeins confirmed that their expression or suppression depended on the genetic proprieties of the endosperm tissue instead of their parental origin. DNA methylation analysis of both maternally and paternally expressed α-zeins revealed no clear correlation between this epigenetic marker and parent-of-origin allelic expression, suggesting that an additional factor(s) is involved in this process. Genetic analyses revealed that the ability of certain lines to suppress α-zein expression was unstable after one round of heterozygosity with non-suppressing lines. Interestingly, α-zeins also showed a transgressive expression pattern because unexpressed isoforms were reactivated in both F2 and backcross plants. Collectively, our results suggest that parent-of-origin expression of specific α-zein alleles depends on a complex interaction between genotypes in a manner that is reminiscent of paramutation-like phenomena.
Collapse
Affiliation(s)
- Silvana Castelli
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Iride Mascheretti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Cristian Cosentino
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Raul Pirona
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Aldo Ceriotti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Angelo Viotti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
- * E-mail: (AV); (ML)
| | - Massimiliano Lauria
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
- * E-mail: (AV); (ML)
| |
Collapse
|
7
|
Liu Z, Fan M, Li C, Xu JH. Dynamic gene amplification and function diversification of grass-specific O-methyltransferase gene family. Genomics 2018; 111:687-695. [PMID: 29689291 DOI: 10.1016/j.ygeno.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
The plant O-methyltransferases are dependent on S-Adenosyl-l-methionine, which can catalyze a variety of secondary metabolites. Here we identified different number of OMT genes from the respective grass genomes. Phylogenetic analysis showed that this OMT gene family is a grass-specific gene family that is different from COMT. Most of genes were expanded by tandem and segment duplication after the species split from their progenitor. Furthermore, genes from Group I and two clusters from group II are only present in Panicoideae, which included Bx10 and Bx7 involved in the benzoxazinoids pathway, suggesting these genes could participate in insect resistance in Panicoideae. Gene expression profiles showed that OMT genes were preferentially expressed in vegetative stages, especially in roots. These results revealed that this grass-specific OMT gene family could affect the development of vegetative stages, and be involved in the benzoxazinoids pathway or suberin biosynthesis that was different from COMT.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Miao Fan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Huo N, Zhu T, Altenbach S, Dong L, Wang Y, Mohr T, Liu Z, Dvorak J, Luo MC, Gu YQ. Dynamic Evolution of α-Gliadin Prolamin Gene Family in Homeologous Genomes of Hexaploid Wheat. Sci Rep 2018; 8:5181. [PMID: 29581476 PMCID: PMC5980091 DOI: 10.1038/s41598-018-23570-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Wheat Gli-2 loci encode complex groups of α-gliadin prolamins that are important for breadmaking, but also major triggers of celiac disease (CD). Elucidation of α-gliadin evolution provides knowledge to produce wheat with better end-use properties and reduced immunogenic potential. The Gli-2 loci contain a large number of tandemly duplicated genes and highly repetitive DNA, making sequence assembly of their genomic regions challenging. Here, we constructed high-quality sequences spanning the three wheat homeologous α-gliadin loci by aligning PacBio-based sequence contigs with BioNano genome maps. A total of 47 α-gliadin genes were identified with only 26 encoding intact full-length protein products. Analyses of α-gliadin loci and phylogenetic tree reconstruction indicate significant duplications of α-gliadin genes in the last ~2.5 million years after the divergence of the A, B and D genomes, supporting its rapid lineage-independent expansion in different Triticeae genomes. We showed that dramatic divergence in expression of α-gliadin genes could not be attributed to sequence variations in the promoter regions. The study also provided insights into the evolution of CD epitopes and identified a single indel event in the hexaploid wheat D genome that likely resulted in the generation of the highly toxic 33-mer CD epitope.
Collapse
Affiliation(s)
- Naxin Huo
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA.,Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Susan Altenbach
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Wang
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Toni Mohr
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Yong Q Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA.
| |
Collapse
|
9
|
Divergent Transactivation of Maize Storage Protein Zein Genes by the Transcription Factors Opaque2 and OHPs. Genetics 2016; 204:581-591. [PMID: 27474726 PMCID: PMC5068848 DOI: 10.1534/genetics.116.192385] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022] Open
Abstract
Maize transcription factors (TFs) opaque2 (O2) and the O2 heterodimerizing proteins (OHP1 and OHP2) originated from an ancient segmental duplication. The 22-kDa (z1C) and 19-kDa (z1A, z1B, and z1D) α-zeins are the most abundant storage proteins in maize endosperm. O2 is known to regulate α-zein gene expression, but its target motifs in the 19-kDa α-zein gene promoters have not been identified. The mechanisms underlying the regulation of α-zein genes by these TFs are also not well understood. In this study, we found that the O2 binding motifs in the α-zein gene promoters are quite flexible, with ACGT being present in the z1C and z1A promoters and a variant, ACAT, being present in the z1B and z1D promoters. OHPs recognized and transactivated all of the α-zein promoters, although to much lower levels than did O2. In the presence of O2, the suppression of OHPs did not cause a significant reduction in the transcription of α-zein genes, but in the absence of O2, OHPs were critical for the expression of residual levels of α-zeins. These findings demonstrated that O2 is the primary TF and that OHPs function as minor TFs in this process. This relationship is the converse of that involved in 27-kDa γ-zein gene regulation, indicating that the specificities of O2 and the OHPs for regulating zein genes diverged after gene duplication. The prolamine-box binding factor by itself has limited transactivation activity, but it promotes the binding of O2 to O2 motifs, resulting in the synergistic transactivation of α-zein genes.
Collapse
|
10
|
Analysis of tandem gene copies in maize chromosomal regions reconstructed from long sequence reads. Proc Natl Acad Sci U S A 2016; 113:7949-56. [PMID: 27354512 DOI: 10.1073/pnas.1608775113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Haplotype variation not only involves SNPs but also insertions and deletions, in particular gene copy number variations. However, comparisons of individual genomes have been difficult because traditional sequencing methods give too short reads to unambiguously reconstruct chromosomal regions containing repetitive DNA sequences. An example of such a case is the protein gene family in maize that acts as a sink for reduced nitrogen in the seed. Previously, 41-48 gene copies of the alpha zein gene family that spread over six loci spanning between 30- and 500-kb chromosomal regions have been described in two Iowa Stiff Stalk (SS) inbreds. Analyses of those regions were possible because of overlapping BAC clones, generated by an expensive and labor-intensive approach. Here we used single-molecule real-time (Pacific Biosciences) shotgun sequencing to assemble the six chromosomal regions from the Non-Stiff Stalk maize inbred W22 from a single DNA sequence dataset. To validate the reconstructed regions, we developed an optical map (BioNano genome map; BioNano Genomics) of W22 and found agreement between the two datasets. Using the sequences of full-length cDNAs from W22, we found that the error rate of PacBio sequencing seemed to be less than 0.1% after autocorrection and assembly. Expressed genes, some with premature stop codons, are interspersed with nonexpressed genes, giving rise to genotype-specific expression differences. Alignment of these regions with those from the previous analyzed regions of SS lines exhibits in part dramatic differences between these two heterotic groups.
Collapse
|
11
|
Zhang W, Xu J, Bennetzen JL, Messing J. Teff, an Orphan Cereal in the Chloridoideae, Provides Insights into the Evolution of Storage Proteins in Grasses. Genome Biol Evol 2016; 8:1712-21. [PMID: 27190000 PMCID: PMC4943188 DOI: 10.1093/gbe/evw117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Seed storage proteins (SSP) in cereals provide essential nutrition for humans and animals. Genes encoding these proteins have undergone rapid evolution in different grass species. To better understand the degree of divergence, we analyzed this gene family in the subfamily Chloridoideae, where the genome of teff (Eragrostis tef) has been sequenced. We find gene duplications, deletions, and rapid mutations in protein-coding sequences. The main SSPs in teff, like other grasses, are prolamins, here called eragrostins. Teff has γ- and δ-prolamins, but has no β-prolamins. One δ-type prolamin (δ1) in teff has higher methionine (33%) levels than in maize (23–25%). The other δ-type prolamin (δ2) has reduced methionine residues (<10%) and is phylogenetically closer to α prolamins. Prolamin δ2 in teff represents an intermediate between δ and α types that appears to have been lost in maize and other Panicoideae, and was replaced by the expansion of α-prolamins. Teff also has considerably larger numbers of α-prolamin genes, which we further divide into five sub-groups, where α2 and α5 represent the most abundant α-prolamins both in number and in expression. In addition, indolines that determine kernel softness are present in teff and the panicoid cereal called foxtail millet (Setaria italica) but not in sorghum or maize, indicating that these genes were only recently lost in some members of the Panicoideae. Moreover, this study provides not only information on the evolution of SSPs in the grass family but also the importance of α-globulins in protein aggregation and germplasm divergence.
Collapse
Affiliation(s)
- Wei Zhang
- Waksman Institute of Microbiology, Rutgers University
| | - Jianhong Xu
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou China
| | | | | |
Collapse
|
12
|
Locus- and Site-Specific DNA Methylation of 19 kDa Zein Genes in Maize. PLoS One 2016; 11:e0146416. [PMID: 26741504 PMCID: PMC4704816 DOI: 10.1371/journal.pone.0146416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/16/2015] [Indexed: 01/06/2023] Open
Abstract
An interesting question in maize development is why only a single zein gene is highly expressed in each of the 19-kDa zein gene clusters (A and B types), z1A2-1 and z1B4, in the immature endosperm. For instance, epigenetic marks could provide a structural difference. Therefore, we investigated the DNA methylation of the arrays of gene copies in both promoter and gene body regions of leaf (non-expressing tissue as a control), normal endosperm, and cultured endosperm. Although we could show that expressed genes have much lower methylation levels in promoter regions than silent ones in both leaf and normal endosperm, there was surprisingly also a difference in the pattern of the z1A and z1B gene clusters. The expression of z1B gene is suppressed by increased DNA methylation and activated with reduced DNA methylation, whereas z1A gene expression is not. DNA methylation in gene coding regions is higher in leaf than in endosperm, whereas no significant difference is observed in gene bodies between expressed and non-expressed gene copies. A median CHG methylation (25–30%) appears to be optimal for gene expression. Moreover, tissue-cultured endosperm can reset the DNA methylation pattern and tissue-specific gene expression. These results reveal that DNA methylation changes of the 19-kDa zein genes is subject to plant development and tissue culture treatment, but varies in different chromosomal locations, indicating that DNA methylation changes do not apply to gene expression in a uniform fashion. Because tissue culture is used to produce transgenic plants, these studies provide new insights into variation of gene expression of integrated sequences.
Collapse
|
13
|
Abstract
Dividing cells that experience chromosome mis-segregation generate aneuploid daughter cells, which contain an incorrect number of chromosomes. Although aneuploidy interferes with the proliferation of untransformed cells, it is also, paradoxically, a hallmark of cancer, a disease defined by increased proliferative potential. These contradictory effects are also observed in mouse models of chromosome instability (CIN). CIN can inhibit and promote tumorigenesis. Recent work has provided insights into the cellular consequences of CIN and aneuploidy. Chromosome mis-segregation per se can alter the genome in many more ways than just causing the gain or loss of chromosomes. The short- and long-term effects of aneuploidy are caused by gene-specific effects and a stereotypic aneuploidy stress response. Importantly, these recent findings provide insights into the role of aneuploidy in tumorigenesis.
Collapse
|
14
|
Cytogenetic and Sequence Analyses of Mitochondrial DNA Insertions in Nuclear Chromosomes of Maize. G3-GENES GENOMES GENETICS 2015; 5:2229-39. [PMID: 26333837 PMCID: PMC4632043 DOI: 10.1534/g3.115.020677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transfer of mitochondrial DNA (mtDNA) into nuclear genomes is a regularly occurring process that has been observed in many species. Few studies, however, have focused on the variation of nuclear-mtDNA sequences (NUMTs) within a species. This study examined mtDNA insertions within chromosomes of a diverse set of Zea mays ssp. mays (maize) inbred lines by the use of fluorescence in situ hybridization. A relatively large NUMT on the long arm of chromosome 9 (9L) was identified at approximately the same position in four inbred lines (B73, M825, HP301, and Oh7B). Further examination of the similarly positioned 9L NUMT in two lines, B73 and M825, indicated that the large size of these sites is due to the presence of a majority of the mitochondrial genome; however, only portions of this NUMT (~252 kb total) were found in the publically available B73 nuclear sequence for chromosome 9. Fiber-fluorescence in situ hybridization analysis estimated the size of the B73 9L NUMT to be ~1.8 Mb and revealed that the NUMT is methylated. Two regions of mtDNA (2.4 kb and 3.3 kb) within the 9L NUMT are not present in the B73 mitochondrial NB genome; however, these 2.4-kb and 3.3-kb segments are present in other Zea mitochondrial genomes, including that of Zea mays ssp. parviglumis, a progenitor of domesticated maize.
Collapse
|
15
|
Abstract
We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators.
Collapse
Affiliation(s)
- Nelson Garcia
- Waksman Institute of Microbiology, Rutgers University
| | - Wei Zhang
- Waksman Institute of Microbiology, Rutgers University
| | - Yongrui Wu
- Waksman Institute of Microbiology, Rutgers University Present address: National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
16
|
Correa de Souza RS, Balbuena TS, Arruda P. Structure, Organization, and Expression of the Alpha Prolamin Multigenic Family Bring New Insights into the Evolutionary Relationships among Grasses. THE PLANT GENOME 2015; 8:eplantgenome2014.06.0027. [PMID: 33228278 DOI: 10.3835/plantgenome2014.06.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Indexed: 06/11/2023]
Abstract
Prolamins are the major seed storage proteins of grasses. In maize and related species, prolamins are classified into α-, β-, γ-, and δ-subclasses by their solubility properties. α-prolamins are encoded by multigene families and have a secondary structure that consists of tandem α-helix repeats. Maize has two α-prolamin subclasses, namely the 19 and 22 kDa subclasses that contain nine and 10 α-helix repeats, respectively. Here, we present an evolutionary study based on the structure, organization, and expression of α-prolamins in maize, sugarcane, sorghum, and coix. True 22 kDa subclasses containing 10 repeats are conserved in all four species, but true 19 kDa subclasses containing nine repeats are found only in maize and sugarcane. We discovered a 19 kDa-like α-coixin that, as in sorghum, is encoded by few genes. These data suggest that a 19 kDa progenitor present in the ancestor common to maize, coix, sorghum, and sugarcane was preserved at low copy number in coix and sorghum, while amplified into multigene family architecture in maize and sugarcane. The expression profiling of α-prolamins, verified by two-dimensional gels, showed highly conserved multispot composition for the 19 kDa α-prolamins in maize and sugarcane. Coix and sorghum did not present true 19 kDa α-prolamin spots. Our data show remarkable similarity between maize and sugarcane 19 kDa α-prolamins regarding both gene structure and expression. Since the multigene architecture of 19 kDa α-canein appeared after sugarcane diverged from sorghum, our data suggest that maize and sugarcane might have acquired the multigene family encoding these storage proteins from a common ancestor.
Collapse
Affiliation(s)
| | - Tiago Santana Balbuena
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), 14884-900, Jaboticabal, SP, Brazil
| | - Paulo Arruda
- Centro de Biologia Molecular e Engenharia Genética
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), 13083-875, Campinas, SP, Brazil
| |
Collapse
|
17
|
Joshi JB, Geetha S, Singh B, Kumar KK, Kokiladevi E, Arul L, Balasubramanian P, Sudhakar D. A maize α-zein promoter drives an endosperm-specific expression of transgene in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:35-42. [PMID: 25649529 PMCID: PMC4312335 DOI: 10.1007/s12298-014-0268-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
An alpha-zein promoter isolated from maize containing P-box, E motif sequence TGTAAAGT, opaque-2 box and TATA box was studied for its tissue-specific expression in rice. A 1,098 bp promoter region of alpha-zein gene, fused to the upstream of gusA reporter gene was used for transforming rice immature embryos (ASD 16 or IR 64) via the particle bombardment-mediated method. PCR analysis of putative transformants demonstrated the presence of transgenes (the zein promoter, gusA and hpt). Nineteen out of 37 and two out of five events generated from ASD 16 and IR 64 were found to be GUS-positive. A histological staining analysis performed on sections of mature T1 seeds revealed that the GUS expression was limited to the endosperm and not to the pericarp or the endothelial region. GUS expression was observed only in the following seed development stages : milky (14-15 DAF), soft dough (17-18 DAF), hard dough (20-23 DAF), and mature stages (28-30 DAF) of zein-gusA transformed (T0) plants. On the contrary a constitutive expression of GUS was evident in CaMV35S-gusA plants. PCR and Southern blotting analyses on T1 plants demonstrated a stable integration and inheritance of transgene in the subsequent T1 generation. GUS assay on T2 seeds revealed that the expression of gusA gene driven by alpha-zein promoter was stable and tissue-specific over two generations. Results suggest that this alpha-zein promoter could serve as an alternative promoter to drive endosperm-specific expression of transgenes in rice and other cereal transformation experiments.
Collapse
Affiliation(s)
- J. Beslin Joshi
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - S. Geetha
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - Birla Singh
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - K. K. Kumar
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - E. Kokiladevi
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - L. Arul
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - P. Balasubramanian
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - D. Sudhakar
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| |
Collapse
|
18
|
Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A, Lai J. Dynamic transcriptome landscape of maize embryo and endosperm development. PLANT PHYSIOLOGY 2014; 166:252-64. [PMID: 25037214 PMCID: PMC4149711 DOI: 10.1104/pp.114.240689] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Maize (Zea mays) is an excellent cereal model for research on seed development because of its relatively large size for both embryo and endosperm. Despite the importance of seed in agriculture, the genome-wide transcriptome pattern throughout seed development has not been well characterized. Using high-throughput RNA sequencing, we developed a spatiotemporal transcriptome atlas of B73 maize seed development based on 53 samples from fertilization to maturity for embryo, endosperm, and whole seed tissues. A total of 26,105 genes were found to be involved in programming seed development, including 1,614 transcription factors. Global comparisons of gene expression highlighted the fundamental transcriptomic reprogramming and the phases of development. Coexpression analysis provided further insight into the dynamic reprogramming of the transcriptome by revealing functional transitions during maturation. Combined with the published nonseed high-throughput RNA sequencing data, we identified 91 transcription factors and 1,167 other seed-specific genes, which should help elucidate key mechanisms and regulatory networks that underlie seed development. In addition, correlation of gene expression with the pattern of DNA methylation revealed that hypomethylation of the gene body region should be an important factor for the expressional activation of seed-specific genes, especially for extremely highly expressed genes such as zeins. This study provides a valuable resource for understanding the genetic control of seed development of monocotyledon plants.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Biao Zeng
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Mei Zhang
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shaojun Xie
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Gaokui Wang
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Andrew Hauck
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
19
|
Wallace JG, Larsson SJ, Buckler ES. Entering the second century of maize quantitative genetics. Heredity (Edinb) 2014; 112:30-8. [PMID: 23462502 PMCID: PMC3860165 DOI: 10.1038/hdy.2013.6] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/27/2012] [Accepted: 01/14/2013] [Indexed: 12/14/2022] Open
Abstract
Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architecture more similar to other outcrossing organisms than to self-pollinating crops and model plants. In this review, we summarize recent advances in maize genetics, including the development of powerful populations for genetic mapping and genome-wide association studies (GWAS), and the insights these studies yield on the mechanisms underlying complex maize traits. Most maize traits are controlled by a large number of genes, and linkage analysis of several traits implicates a 'common gene, rare allele' model of genetic variation where some genes have many individually rare alleles contributing. Most natural alleles exhibit small effect sizes with little-to-no detectable pleiotropy or epistasis. Additionally, many of these genes are locked away in low-recombination regions that encourage the formation of multi-gene blocks that may underlie maize's strong heterotic effect. Domestication left strong marks on the maize genome, and some of the differences in trait architectures may be due to different selective pressures over time. Overall, maize's advantages as a model system make it highly desirable for studying the genetics of outcrossing species, and results from it can provide insight into other such species, including humans.
Collapse
Affiliation(s)
- J G Wallace
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
| | - S J Larsson
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - E S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
- United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| |
Collapse
|
20
|
Holding DR. Recent advances in the study of prolamin storage protein organization and function. FRONTIERS IN PLANT SCIENCE 2014; 5:276. [PMID: 24999346 PMCID: PMC4064455 DOI: 10.3389/fpls.2014.00276] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/27/2014] [Indexed: 05/20/2023]
Abstract
Prolamin storage proteins are the main repository for nitrogen in the endosperm of cereal seeds. These stable proteins accumulate at massive levels due to the high level expression from extensively duplicated genes in endoreduplicated cells. Such abundant accumulation is achieved through efficient packaging in endoplasmic reticulum localized protein bodies in a process that is not completely understood. Prolamins are also a key determinant of hard kernel texture in the mature seed; an essential characteristic of cereal grains like maize. However, deficiencies of key essential amino acids in prolamins result in relatively poor grain protein quality. The inverse relationship between prolamin accumulation and protein quality has fueled an interest in understanding the role of prolamins and other proteins in endosperm maturation. This article reviews recent technological advances that have enabled dissection of overlapping and non-redundant roles of prolamins, particularly the maize zeins. This has come through molecular characterization of mutants first identified many decades ago, selective down-regulation of specific zein genes or entire zein gene families, and most recently through combining deletion mutagenesis with current methods in genome and transcriptome profiling. Works aimed at understanding prolamin deposition and function as well as creating novel variants with improved nutritional and digestibility characteristics, are reported.
Collapse
Affiliation(s)
- David R. Holding
- *Correspondence: David R. Holding, Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, E323 Beadle Center for Biotechnology, 1901 Vine Street, Lincoln, NE, USA e-mail:
| |
Collapse
|
21
|
Dong Z, Yang Y, Li Y, Zhang K, Lou H, An X, Dong L, Gu YQ, Anderson OD, Liu X, Qin H, Wang D. Haplotype variation of Glu-D1 locus and the origin of Glu-D1d allele conferring superior end-use qualities in common wheat. PLoS One 2013; 8:e74859. [PMID: 24098671 PMCID: PMC3786984 DOI: 10.1371/journal.pone.0074859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/06/2013] [Indexed: 01/01/2023] Open
Abstract
In higher plants, seed storage proteins (SSPs) are frequently expressed from complex gene families, and allelic variation of SSP genes often affects the quality traits of crops. In common wheat, the Glu-D1 locus, encoding 1Dx and 1Dy SSPs, has multiple alleles. The Glu-D1d allele frequently confers superior end-use qualities to commercial wheat varieties. Here, we studied the haplotype structure of Glu-D1 genomic region and the origin of Glu-D1d. Using seven diagnostic DNA markers, 12 Glu-D1 haplotypes were detected among common wheat, European spelt wheat (T. spelta, a primitive hexaploid relative of common wheat), and Aegilops tauschii (the D genome donor of hexaploid wheat). By comparatively analyzing Glu-D1 haplotypes and their associated 1Dx and 1Dy genes, we deduce that the haplotype carrying Glu-D1d was likely differentiated in the ancestral hexaploid wheat around 10,000 years ago, and was subsequently transmitted to domesticated common wheat and T. spelta. A group of relatively ancient Glu-D1 haplotypes was discovered in Ae. tauschii, which may serve for the evolution of other haplotypes. Moreover, a number of new Glu-D1d variants were found in T. spelta. The main steps in Glu-D1d differentiation are proposed. The implications of our work for enhancing the utility of Glu-D1d in wheat quality improvement and studying the SSP alleles in other crop species are discussed.
Collapse
Affiliation(s)
- Zhenying Dong
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yushuang Yang
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yiwen Li
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kunpu Zhang
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Haijuan Lou
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xueli An
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lingli Dong
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yong Qiang Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Olin D. Anderson
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Xin Liu
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huanju Qin
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosomal Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Transcriptome analysis of Barbarea vulgaris infested with diamondback moth (Plutella xylostella) larvae. PLoS One 2013; 8:e64481. [PMID: 23696897 PMCID: PMC3655962 DOI: 10.1371/journal.pone.0064481] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/16/2013] [Indexed: 01/23/2023] Open
Abstract
Background The diamondback moth (DBM, Plutella xylostella) is a crucifer-specific pest that causes significant crop losses worldwide. Barbarea vulgaris (Brassicaceae) can resist DBM and other herbivorous insects by producing feeding-deterrent triterpenoid saponins. Plant breeders have long aimed to transfer this insect resistance to other crops. However, a lack of knowledge on the biosynthetic pathways and regulatory networks of these insecticidal saponins has hindered their practical application. A pyrosequencing-based transcriptome analysis of B. vulgaris during DBM larval feeding was performed to identify genes and gene networks responsible for saponin biosynthesis and its regulation at the genome level. Principal Findings Approximately 1.22, 1.19, 1.16, 1.23, 1.16, 1.20, and 2.39 giga base pairs of clean nucleotides were generated from B. vulgaris transcriptomes sampled 1, 4, 8, 12, 24, and 48 h after onset of P. xylostella feeding and from non-inoculated controls, respectively. De novo assembly using all data of the seven transcriptomes generated 39,531 unigenes. A total of 37,780 (95.57%) unigenes were annotated, 14,399 of which were assigned to one or more gene ontology terms and 19,620 of which were assigned to 126 known pathways. Expression profiles revealed 2,016–4,685 up-regulated and 557–5188 down-regulated transcripts. Secondary metabolic pathways, such as those of terpenoids, glucosinolates, and phenylpropanoids, and its related regulators were elevated. Candidate genes for the triterpene saponin pathway were found in the transcriptome. Orthological analysis of the transcriptome with four other crucifer transcriptomes identified 592 B. vulgaris-specific gene families with a P-value cutoff of 1e−5. Conclusion This study presents the first comprehensive transcriptome analysis of B. vulgaris subjected to a series of DBM feedings. The biosynthetic and regulatory pathways of triterpenoid saponins and other DBM deterrent metabolites in this plant were classified. The results of this study will provide useful data for future investigations on pest-resistance phytochemistry and plant breeding.
Collapse
|
23
|
Tang YC, Amon A. Gene copy-number alterations: a cost-benefit analysis. Cell 2013; 152:394-405. [PMID: 23374337 PMCID: PMC3641674 DOI: 10.1016/j.cell.2012.11.043] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/22/2012] [Accepted: 11/01/2012] [Indexed: 11/25/2022]
Abstract
Changes in DNA copy number, whether confined to specific genes or affecting whole chromosomes, have been identified as causes of diseases and developmental abnormalities and as sources of adaptive potential. Here, we discuss the costs and benefits of DNA copy-number alterations. Changes in DNA copy number are largely detrimental. Amplifications or deletions of specific genes can elicit discrete defects. Large-scale changes in DNA copy number can also cause detrimental phenotypes that are due to the cumulative effects of copy-number alterations of many genes simultaneously. On the other hand, studies in microorganisms show that DNA copy-number alterations can be beneficial, increasing survival under selective pressure. As DNA copy-number alterations underlie many human diseases, we will end with a discussion of gene copy-number changes as therapeutic targets.
Collapse
Affiliation(s)
- Yun-Chi Tang
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-561, 500 Main Street, Cambridge, MA 02139, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 76-561, 500 Main Street, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Rapid divergence of prolamin gene promoters of maize after gene amplification and dispersal. Genetics 2012; 192:507-19. [PMID: 22798485 DOI: 10.1534/genetics.112.142372] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seeds have evolved to accommodate complicated processes like senescence, dormancy, and germination. Central to these is the storage of carbohydrates and proteins derived from sugars and amino acids synthesized during photosynthesis. In the grasses, the bulk of amino acids is stored in the prolamin superfamily that specifically accumulates in seed endosperm during senescence. Their promoters contain a conserved cis-element, called prolamin-box (P-box), recognized by the trans-activator P-box binding factor (PBF). Because of the lack of null mutants in all grass species, its physiological role in storage-protein gene expression has been elusive. In contrast, a null mutant of another endosperm-specific trans-activator Opaque2 (O2) has been shown to be required for the transcriptional activation of subsets of this superfamily by binding to the O2 box. Here, we used RNAi to knockdown Pbf expression and found that only 27-kDa γ- and 22-kDa α-zein gene expression were affected, whereas the level of other zeins remained unchanged. Still, transgenic seeds had an opaque seed phenotype. Combination of PbfRNAi and o2 resulted in further reduction of α-zein expression. We also tested the interaction of promoters and constitutively expressed PBF and O2. Whereas transgenic promoters could be activated, endogenous promoters appeared to be not accessible to transcriptional activation, presumably due to differential chromatin states. Although analysis of the methylation of binding sites of PBF and O2 correlated with the expression of endogenous 22-kDa α-zein promoters, a different mechanism seems to apply to the 27-kDa γ-zein promoter, which does not undergo methylation changes.
Collapse
|
25
|
Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. PLANT PHYSIOLOGY 2012; 158:824-34. [PMID: 22135431 PMCID: PMC3271770 DOI: 10.1104/pp.111.185033] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/28/2011] [Indexed: 05/18/2023]
Abstract
The maize (Zea mays) kernel plays a critical role in feeding humans and livestock around the world and in a wide array of industrial applications. An understanding of the regulation of kernel starch, protein, and oil is needed in order to manipulate composition to meet future needs. We conducted joint-linkage quantitative trait locus mapping and genome-wide association studies (GWAS) for kernel starch, protein, and oil in the maize nested association mapping population, composed of 25 recombinant inbred line families derived from diverse inbred lines. Joint-linkage mapping revealed that the genetic architecture of kernel composition traits is controlled by 21-26 quantitative trait loci. Numerous GWAS associations were detected, including several oil and starch associations in acyl-CoA:diacylglycerol acyltransferase1-2, a gene that regulates oil composition and quantity. Results from nested association mapping were verified in a 282 inbred association panel using both GWAS and candidate gene association approaches. We identified many beneficial alleles that will be useful for improving kernel starch, protein, and oil content.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sherry A. Flint-Garcia
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211 (J.P.C., M.D.M., S.A.F.-G.); United States Department of Agriculture-Agricultural Research Service, Columbia, Missouri 65211 (M.D.M., S.A.F.-G.); United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (J.B.H.); United States Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853 (P.B., E.S.B.); Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (J.B.H.); Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853 (F.T., P.B., E.S.B.); Department of Plant Sciences, University of California, Davis, California 95616 (J.R.-I.)
| |
Collapse
|
26
|
Xu JH, Bennetzen JL, Messing J. Dynamic Gene Copy Number Variation in Collinear Regions of Grass Genomes. Mol Biol Evol 2011; 29:861-71. [PMID: 22002476 DOI: 10.1093/molbev/msr261] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Jian-Hong Xu
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, New Jersey, USA
| | | | | |
Collapse
|