1
|
Liu X, Zhang B, Hua Y, Li C, Li X, Kong D. Nucleosomes represent a crucial target for the intra-S phase checkpoint in response to replication stress. SCIENCE ADVANCES 2025; 11:eadr3673. [PMID: 40378213 PMCID: PMC12083529 DOI: 10.1126/sciadv.adr3673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 04/17/2025] [Indexed: 05/18/2025]
Abstract
The intra-S phase checkpoint is essential for stability of stalled DNA replication forks. However, the mechanisms underlying checkpoint regulation remain poorly understood. This study identifies a critical checkpoint target-the ubiquitin E3 ligase Brl2, revealing a new dimension of checkpoint regulation. Upon replication fork stalling, Brl2 undergoes phosphorylation at five serine residues by Cds1Chk2 kinase, resulting in the loss of its ligase activity and a marked reduction in H2BK119ub1 levels. In the brl2-5D (the five serine residues are replaced with aspartic acid) and htb-K119R mutants, chromatin becomes highly compacted. Furthermore, the rates of stalled replication fork collapse, and dsDNA breaks are significantly reduced in brl2-5D cds1Chk2∆ cells compared to cds1Chk2∆ cells. Thus, this study demonstrates that nucleosomes are targeted by the intra-S phase checkpoint and highlights the checkpoint's critical role in configuring compact chromatin structures at replication fork stalling sites. These findings may explain why ATR and Chk1 are essential for cell proliferation and embryonic development, while ATM is not.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Institute of Brain Science, College of Medicine, Shanxi Datong University, Datong 037009, China
| | - Bo Zhang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Hua
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanqi Li
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Xizhou Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Lin Q, Gajan A, Nguyen I, Sharma S, Nangia-Makker P, Firestine S, Shekhar MP. Synthesis and Biological Evaluation of Novel Triazine Analogs as Rad6 Inhibitors. Pharm Res 2025; 42:511-527. [PMID: 40021546 DOI: 10.1007/s11095-025-03838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/09/2025] [Indexed: 03/03/2025]
Abstract
Rad6 is an E2 ubiquitin-conjugating enzyme that plays critical roles in genome maintenance and proteostasis. Rad6 is frequently overexpressed in many cancers and promotes cancer development, progression, and chemotherapy resistance. PURPOSE Given its role in cancer development and progression, Rad6 is an underexplored therapeutic target. Previous research identified compound SMI#9 as a small molecule inhibitor of Rad6. Despite its potency, SMI#9 has limited efficacy in vivo due to its limiting water solubility and the presence of a labile ester group. METHODS To address these limitations, we prepared a series of SMI#9 analogs in which the ester group was replaced with a secondary amine, and their effects on Rad6B-mediated ubiquitination of histone H2A were evaluated. In vivo interaction with Rad6 was assessed using cellular thermal shift assays. SMI#9 analog effects on cell survival and migration of triple negative and endocrine-resistant breast cancer, and melanoma cells were measured using MTT and Boyden chamber assays. Autophagy, mitochondrial function, and β-catenin localization were measured using CytoID, Mitotracker, and immunostaining, respectively. Cellular uptakes of analogs were determined by mass spectroscopy. RESULTS Analogs #4 and #6 inhibited H2A ubiquitination, induced autophagy and mitochondrial dysfunction, downregulated intracellular β-catenin, and inhibited proliferation. #6 targets Rad6 in vivo. #4 and #6 are chemically related, and #4 undergoes in vivo conversion to #6. CONCLUSIONS #6 retains all the properties of SMI#9 but with lesser potency. However, its improved water solubility and metabolic stability allows for in vivo studies that were previously precluded due to the poor physicochemical properties of SMI#9.
Collapse
Affiliation(s)
- Qian Lin
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Ambikai Gajan
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI, 48201, USA
| | - Ignatius Nguyen
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Shiv Sharma
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Pratima Nangia-Makker
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI, 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Steven Firestine
- Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI, 48201, USA.
| | - Malathy P Shekhar
- Karmanos Cancer Institute, 421 E. Canfield Avenue, Detroit, MI, 48201, USA.
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.
- Department of Pathology, Wayne State University School of Medicine, 421 E. Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
3
|
Navabpour S, Farrell K, Kincaid SE, Omar N, Musaus M, Lin Y, Xie H, Jarome TJ. Monoubiquitination of histone H2B is a crucial regulator of the transcriptome during memory formation. Learn Mem 2024; 31:a053912. [PMID: 38580378 PMCID: PMC11000578 DOI: 10.1101/lm.053912.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Posttranslational modification of histone proteins is critical for memory formation. Recently, we showed that monoubiquitination of histone H2B at lysine 120 (H2Bub) is critical for memory formation in the hippocampus. However, the transcriptome controlled by H2Bub remains unknown. Here, we found that fear conditioning in male rats increased or decreased the expression of 86 genes in the hippocampus but, surprisingly, siRNA-mediated knockdown of the H2Bub ligase, Rnf20, abolished changes in all but one of these genes. These findings suggest that monoubiquitination of histone H2B is a crucial regulator of the transcriptome during memory formation.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Translational Biology, Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Kayla Farrell
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Shannon E Kincaid
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Nour Omar
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Yu Lin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, USA
| | - Hehuang Xie
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, USA
- Fralin Life Science Institute at Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Timothy J Jarome
- Translational Biology, Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
4
|
Yang TH, Yu YH, Wu SH, Zhang FY. CFA: An explainable deep learning model for annotating the transcriptional roles of cis-regulatory modules based on epigenetic codes. Comput Biol Med 2023; 152:106375. [PMID: 36502693 DOI: 10.1016/j.compbiomed.2022.106375] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/07/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Metazoa gene expression is controlled by modular DNA segments called cis-regulatory modules (CRMs). CRMs can convey promoter/enhancer/insulator roles, generating additional regulation layers in transcription. Experiments for understanding CRM roles are low-throughput and costly. Large-scale CRM function investigation still depends on computational methods. However, existing in silico tools only recognize enhancers or promoters exclusively, thus accumulating errors when considering CRM promoter/enhancer/insulator roles altogether. Currently, no algorithm can concurrently consider these CRM roles. In this research, we developed the CRM Function Annotator (CFA) model. CFA provides complete CRM transcriptional role labeling based on epigenetic profiling interpretation. We demonstrated that CFA achieves high performance (test macro auROC/auPRC = 94.1%/90.3%) and outperforms existing tools in promoter/enhancer/insulator identification. CFA is also inspected to recognize explainable epigenetic codes consistent with previous findings when labeling CRM roles. By considering the higher-order combinations of the epigenetic codes, CFA significantly reduces false-positive rates in CRM transcriptional role annotation. CFA is available at https://github.com/cobisLab/CFA/.
Collapse
Affiliation(s)
- Tzu-Hsien Yang
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| | - Yu-Huai Yu
- Department of Information Management, National University of Kaohsiung, Kaohsiung University Rd, 811 Kaohsiung, Taiwan.
| | - Sheng-Hang Wu
- Department of Information Management, National University of Kaohsiung, Kaohsiung University Rd, 811 Kaohsiung, Taiwan.
| | - Fang-Yuan Zhang
- Department of Information Management, National University of Kaohsiung, Kaohsiung University Rd, 811 Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Characterizing and exploiting the many roles of aberrant H2B monoubiquitination in cancer pathogenesis. Semin Cancer Biol 2022; 86:782-798. [PMID: 34953650 DOI: 10.1016/j.semcancer.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023]
Abstract
Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is implicated in the control of multiple essential processes, including transcription, DNA damage repair and mitotic chromosome segregation. Accordingly, aberrant regulation of H2Bub1 can induce transcriptional reprogramming and genome instability that may promote oncogenesis. Remarkably, alterations of the ubiquitin ligases and deubiquitinating enzymes regulating H2Bub1 are emerging as ubiquitous features in cancer, further supporting the possibility that the misregulation of H2Bub1 is an underlying mechanism contributing to cancer pathogenesis. To date, aberrant H2Bub1 dynamics have been reported in multiple cancer types and are associated with transcriptional changes that promote oncogenesis in a cancer type-specific manner. Owing to the multi-functional nature of H2Bub1, misregulation of its writers and erasers may drive disease initiation and progression through additional synergistic processes. Accordingly, understanding the molecular determinants and pathogenic impacts associated with aberrant H2Bub1 regulation may reveal novel drug targets and therapeutic vulnerabilities that can be exploited to develop innovative precision medicine strategies that better combat cancer. In this review, we present the normal functions of H2Bub1 in the control of DNA-associated processes and describe the pathogenic implications associated with its misregulation in cancer. We further discuss the challenges coupled with the development of therapeutic strategies targeting H2Bub1 misregulation and expose the potential benefits of designing treatments that synergistically exploit the multiple functionalities of H2Bub1 to improve treatment selectivity and efficacy.
Collapse
|
6
|
Jarome TJ, Perez GA, Webb WM, Hatch KM, Navabpour S, Musaus M, Farrell K, Hauser RM, McFadden T, Martin K, Butler AA, Wang J, Lubin FD. Ubiquitination of Histone H2B by Proteasome Subunit RPT6 Controls Histone Methylation Chromatin Dynamics During Memory Formation. Biol Psychiatry 2021; 89:1176-1187. [PMID: 33934885 PMCID: PMC8178164 DOI: 10.1016/j.biopsych.2020.12.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/29/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Posttranslational histone modifications play a critical role in the regulation of gene transcription underlying synaptic plasticity and memory formation. One such epigenetic change is histone ubiquitination, a process that is mediated by the ubiquitin-proteasome system in a manner similar to that by which proteins are normally targeted for degradation. However, histone ubiquitination mechanisms are poorly understood in the brain and in learning. In this article, we describe a new role for the ubiquitin-proteasome system in histone crosstalk, showing that learning-induced monoubiquitination of histone H2B (H2Bubi) is required for increases in the transcriptionally active H3 lysine 4 trimethylation (H3K4me3) mark at learning-related genes in the hippocampus. METHODS Using a series of molecular, biochemical, electrophysiological, and behavioral experiments, we interrogated the effects of short interfering RNA-mediated knockdown and CRISPR (clustered regularly interspaced short palindromic repeats)-mediated upregulation of ubiquitin ligases, deubiquitinating enzymes and histone methyltransferases in the rat dorsal hippocampus during memory consolidation. RESULTS We show that H2Bubi recruits H3K4me3 through a process that is dependent on the 19S proteasome subunit RPT6 and that a loss of H2Bubi in the hippocampus prevents learning-induced increases in H3K4me3, gene transcription, synaptic plasticity, and memory formation. Furthermore, we show that CRISPR-dCas9-mediated increases in H2Bubi promote H3K4me3 and memory formation under weak training conditions and that promoting histone methylation does not rescue memory impairments resulting from loss of H2Bubi. CONCLUSIONS These results suggest that H2B ubiquitination regulates histone crosstalk in learning by way of nonproteolytic proteasome function, demonstrating a novel mechanism by which histone modifications are coordinated in response to learning.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama; Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia; School of Neuroscience, Virginia Polytechnic Institute and State University, Roanoke, Virginia; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Gabriella A Perez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - William M Webb
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Katrina M Hatch
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Kayla Farrell
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Rebecca M Hauser
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Taylor McFadden
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Kiley Martin
- School of Neuroscience, Virginia Polytechnic Institute and State University, Roanoke, Virginia
| | - Anderson A Butler
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jing Wang
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
7
|
RPA-mediated recruitment of Bre1 couples histone H2B ubiquitination to DNA replication and repair. Proc Natl Acad Sci U S A 2021; 118:2017497118. [PMID: 33602814 DOI: 10.1073/pnas.2017497118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin E3 ligase Bre1-mediated H2B monoubiquitination (H2Bub) is essential for proper DNA replication and repair in eukaryotes. Deficiency in H2Bub causes genome instability and cancer. How the Bre1-H2Bub pathway is evoked in response to DNA replication or repair remains unknown. Here, we identify that the single-stranded DNA (ssDNA) binding factor RPA acts as a key mediator that couples Bre1-mediated H2Bub to DNA replication and repair in yeast. We found that RPA interacts with Bre1 in vitro and in vivo, and this interaction is stimulated by ssDNA. This association ensures the recruitment of Bre1 to replication forks or DNA breaks but does not affect its E3 ligase activity. Disruption of the interaction abolishes the local enrichment of H2Bub, resulting in impaired DNA replication, response to replication stress, and repair by homologous recombination, accompanied by increased genome instability and DNA damage sensitivity. Notably, we found that RNF20, the human homolog of Bre1, interacts with RPA70 in a conserved mode. Thus, RPA functions as a master regulator for the spatial-temporal control of H2Bub chromatin landscape during DNA replication and recombination, extending the versatile roles of RPA in guarding genome stability.
Collapse
|
8
|
Ting X, Xia L, Yang J, He L, Si W, Shang Y, Sun L. USP11 acts as a histone deubiquitinase functioning in chromatin reorganization during DNA repair. Nucleic Acids Res 2019; 47:9721-9740. [PMID: 31504778 PMCID: PMC6765148 DOI: 10.1093/nar/gkz726] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022] Open
Abstract
How chromatin dynamics is regulated to ensure efficient DNA repair remains to be understood. Here, we report that the ubiquitin-specific protease USP11 acts as a histone deubiquitinase to catalyze H2AK119 and H2BK120 deubiquitination. We showed that USP11 is physically associated with the chromatin remodeling NuRD complex and functionally involved in DNA repair process. We demonstrated that USP11-mediated histone deubiquitination and NuRD-associated histone deacetylation coordinate to allow timely termination of DNA repair and reorganization of the chromatin structure. As such, USP11 is involved in chromatin condensation, genomic stability, and cell survival. Together, these observations indicate that USP11 is a chromatin modifier critically involved in DNA damage response and the maintenance of genomic stability.
Collapse
Affiliation(s)
- Xia Ting
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lu Xia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wenzhe Si
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
9
|
Zheng S, Li D, Lu Z, Liu G, Wang M, Xing P, Wang M, Dong Y, Wang X, Li J, Zhang S, Peng H, Ira G, Li G, Chen X. Bre1-dependent H2B ubiquitination promotes homologous recombination by stimulating histone eviction at DNA breaks. Nucleic Acids Res 2019; 46:11326-11339. [PMID: 30304473 PMCID: PMC6265479 DOI: 10.1093/nar/gky918] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/08/2018] [Indexed: 01/21/2023] Open
Abstract
Repair of DNA double-strand breaks (DSBs) requires eviction of the histones around DNA breaks to allow the loading of numerous repair and checkpoint proteins. However, the mechanism and regulation of this process remain poorly understood. Here, we show that histone H2B ubiquitination (uH2B) promotes histone eviction at DSBs independent of resection or ATP-dependent chromatin remodelers. Cells lacking uH2B or its E3 ubiquitin ligase Bre1 exhibit hyper-resection due to the loss of H3K79 methylation that recruits Rad9, a known negative regulator of resection. Unexpectedly, despite excessive single-strand DNA being produced, bre1Δ cells show defective RPA and Rad51 recruitment and impaired repair by homologous recombination and response to DNA damage. The HR defect in bre1Δ cells correlates with impaired histone loss at DSBs and can be largely rescued by depletion of CAF-1, a histone chaperone depositing histones H3-H4. Overexpression of Rad51 stimulates histone eviction and partially suppresses the recombination defects of bre1Δ mutant. Thus, we propose that Bre1 mediated-uH2B promotes DSB repair through facilitating histone eviction and subsequent loading of repair proteins.
Collapse
Affiliation(s)
- Sihao Zheng
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Dan Li
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhen Lu
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Guangxue Liu
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Meng Wang
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Poyuan Xing
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Dong
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Xuejie Wang
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Jingyao Li
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Simin Zhang
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Haoyang Peng
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Grzegorz Ira
- The Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, the Department of Genetics, College of Life Sciences and the Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
10
|
Jarome TJ, Devulapalli RK. The Ubiquitin-Proteasome System and Memory: Moving Beyond Protein Degradation. Neuroscientist 2018. [DOI: 10.1177/1073858418762317] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cellular models of memory formation have focused on the need for protein synthesis. Recently, evidence has emerged that protein degradation mediated by the ubiquitin-proteasome system (UPS) is also important for this process. This has led to revised cellular models of memory formation that focus on a balance between protein degradation and synthesis. However, protein degradation is only one function of the UPS. Studies using single-celled organisms have shown that non-proteolytic ubiquitin-proteasome signaling is involved in histone modifications and DNA methylation, suggesting that ubiquitin and the proteasome can regulate chromatin remodeling independent of protein degradation. Despite this evidence, the idea that the UPS is more than a protein degradation pathway has not been examined in the context of memory formation. In this article, we summarize recent findings implicating protein degradation in memory formation and discuss various ways in which both ubiquitin signaling and the proteasome could act independently to regulate epigenetic-mediated transcriptional processes necessary for learning-dependent synaptic plasticity. We conclude by proposing comprehensive models of how non-proteolytic functions of the UPS could work in concert to control epigenetic regulation of the cellular memory consolidation process, which will serve as a framework for future studies examining the role of the UPS in memory formation.
Collapse
Affiliation(s)
- Timothy J. Jarome
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rishi K. Devulapalli
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
11
|
Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin. Cells 2018; 7:cells7030017. [PMID: 29498679 PMCID: PMC5870349 DOI: 10.3390/cells7030017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. Here we discuss recent findings that try to elucidate the important question of how KMT2 complexes are recruited to specific sites on chromatin. This is embedded into short overviews of the biological functions of KMT2 complexes and the consequences of H3K4 methylation.
Collapse
|
12
|
Xu Z, Song Z, Li G, Tu H, Liu W, Liu Y, Wang P, Wang Y, Cui X, Liu C, Shang Y, de Rooij DG, Gao F, Li W. H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation. Nucleic Acids Res 2016; 44:9681-9697. [PMID: 27431324 PMCID: PMC5175339 DOI: 10.1093/nar/gkw652] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022] Open
Abstract
Meiotic recombination is essential for fertility in most sexually reproducing species, but the molecular mechanisms underlying this process remain poorly understood in mammals. Here, we show that RNF20-mediated H2B ubiquitination is required for meiotic recombination. A germ cell-specific knockout of the H2B ubiquitination E3 ligase RNF20 results in complete male infertility. The Stra8-Rnf20-/- spermatocytes arrest at the pachytene stage because of impaired programmed double-strand break (DSB) repair. Further investigations reveal that the depletion of RNF20 in the germ cells affects chromatin relaxation, thus preventing programmed DSB repair factors from being recruited to proper positions on the chromatin. The gametogenetic defects of the H2B ubiquitination deficient cells could be partially rescued by forced chromatin relaxation. Taken together, our results demonstrate that RNF20/Bre1p-mediated H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation, and suggest an old drug may provide a new way to treat some oligo- or azoospermia patients with chromatin relaxation disorders.
Collapse
Affiliation(s)
- Zhiliang Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Song
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China
| | - Huayu Tu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujiao Liu
- College of Marine Life, Ocean University of China, Qingdao 266003, China
| | - Pan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanting Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongliang Shang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
13
|
Davie JR, Xu W, Delcuve GP. Histone H3K4 trimethylation: dynamic interplay with pre-mRNA splicing. Biochem Cell Biol 2016; 94:1-11. [DOI: 10.1139/bcb-2015-0065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is often stated as a mark of transcriptionally active promoters. However, closer study of the positioning of H3K4me3 shows the mark locating primarily after the first exon at the 5′ splice site and overlapping with a CpG island in mammalian cells. There are several enzyme complexes that are involved in the placement of the H3K4me3 mark, including multiple protein complexes containing SETD1A, SETD1B, and MLL1 enzymes (writers). CXXC1, which is associated with SETD1A and SETD1B, target these enzymes to unmethylated CpG islands. Lysine demethylases (KDM5 family members, erasers) demethylate H3K4me3. The H3K4me3 mark is recognized by several proteins (readers), including lysine acetyltransferase complexes, chromatin remodelers, and RNA bound proteins involved in pre-mRNA splicing. Interestingly, attenuation of H3K4me3 impacts pre-mRNA splicing, and inhibition of pre-mRNA splicing attenuates H3K4me3.
Collapse
Affiliation(s)
- James R. Davie
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Wayne Xu
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Genevieve P. Delcuve
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
14
|
Fahrenkrog B. Histone modifications as regulators of life and death in Saccharomyces cerevisiae. MICROBIAL CELL 2015; 3:1-13. [PMID: 28357312 PMCID: PMC5354586 DOI: 10.15698/mic2016.01.472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis or programmed cell death is an integrated, genetically controlled
suicide program that not only regulates tissue homeostasis of multicellular
organisms, but also the fate of damaged and aged cells of lower eukaryotes, such
as the yeast Saccharomyces cerevisiae. Recent years have
revealed key apoptosis regulatory proteins in yeast that play similar roles in
mammalian cells. Apoptosis is a process largely defined by characteristic
structural rearrangements in the dying cell that include chromatin condensation
and DNA fragmentation. The mechanism by which chromosomes restructure during
apoptosis is still poorly understood, but it is becoming increasingly clear that
altered epigenetic histone modifications are fundamental parameters that
influence the chromatin state and the nuclear rearrangements within apoptotic
cells. The present review will highlight recent work on the epigenetic
regulation of programmed cell death in budding yeast.
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Rue Profs. Jeener et Brachet 12; 6041 Charleroi, Belgium
| |
Collapse
|
15
|
Karmodiya K, Pradhan SJ, Joshi B, Jangid R, Reddy PC, Galande S. A comprehensive epigenome map of Plasmodium falciparum reveals unique mechanisms of transcriptional regulation and identifies H3K36me2 as a global mark of gene suppression. Epigenetics Chromatin 2015; 8:32. [PMID: 26388940 PMCID: PMC4574195 DOI: 10.1186/s13072-015-0029-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/08/2015] [Indexed: 12/14/2022] Open
Abstract
Background Role of epigenetic mechanisms towards regulation of the complex life cycle/pathogenesis of Plasmodium falciparum, the causative agent of malaria, has been poorly understood. To elucidate stage-specific epigenetic regulation, we performed genome-wide mapping of multiple histone modifications of P. falciparum. Further to understand the differences in transcription regulation in P. falciparum and its host, human, we compared their histone modification profiles. Results Our comprehensive comparative analysis suggests distinct mode of transcriptional regulation in malaria parasite by virtue of poised genes and differential histone modifications. Furthermore, analysis of histone modification profiles predicted 562 genes producing anti-sense RNAs and 335 genes having bidirectional promoter activity, which raises the intriguing possibility of RNA-mediated regulation of transcription in P. falciparum. Interestingly, we found that H3K36me2 acts as a global repressive mark and gene regulation is fine tuned by the ratio of activation marks to H3K36me2 in P. falciparum. This novel mechanism of gene regulation is supported by the fact that knockout of SET genes (responsible for H3K36 methylation) leads to up-regulation of genes with highest occupancy of H3K36me2 in wild-type P. falciparum. Moreover, virulence (var) genes are mostly poised and marked by a unique set of activation (H4ac) and repression (H3K9me3) marks, which are mutually exclusive to other Plasmodium housekeeping genes. Conclusions Our study reveals unique plasticity in the epigenetic regulation in P. falciparum which can influence parasite virulence and pathogenicity. The observed differences in the histone code and transcriptional regulation in P. falciparum and its host will open new avenues for epigenetic drug development against malaria parasite. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0029-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra India
| | - Saurabh J Pradhan
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra India
| | - Bhagyashree Joshi
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra India
| | - Rahul Jangid
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra India
| | - Puli Chandramouli Reddy
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra India
| | - Sanjeev Galande
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra India.,Centre of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India.,National Centre for Cell Science, Pune, India
| |
Collapse
|
16
|
Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proc Natl Acad Sci U S A 2015; 112:10365-70. [PMID: 26240340 DOI: 10.1073/pnas.1504483112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquitylation of histone H2B at lysine 120 (H2B-Ub) plays a critical role in transcriptional elongation, chromatin conformation, as well as the regulation of specific histone H3 methylations. Herein, we report a strategy for the site-specific chemical attachment of ubiquitin to preassembled nucleosomes. This allowed expedited structure-activity studies into how H2B-Ub regulates H3K79 methylation by the methyltransferase human Dot1. Through an alanine scan of the ubiquitin surface, we identified a functional hotspot on ubiquitin that is required for the stimulation of human Dot1 in vitro. Importantly, this result was validated in chromatin from isolated nuclei by using a synthetic biology strategy that allowed selective incorporation of the hotspot-deficient ubiquitin mutant into H2B. The ubiquitin hotspot additionally impacted the regulation of ySet1-mediated H3K4 methylation but was not required for H2B-Ub-induced impairment of chromatin fiber compaction. These data demonstrate the utility of applying chemical ligation technologies to preassembled chromatin and delineate the multifunctionality of ubiquitin as a histone posttranslational modification.
Collapse
|
17
|
González-Buendía E, Escamilla-Del-Arenal M, Pérez-Molina R, Tena JJ, Guerrero G, Suaste-Olmos F, Ayala-Ortega E, Gómez-Skarmeta JL, Recillas-Targa F. A novel chromatin insulator regulates the chicken folate receptor gene from the influence of nearby constitutive heterochromatin and the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:955-65. [DOI: 10.1016/j.bbagrm.2015.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/17/2022]
|
18
|
Kato A, Komatsu K. RNF20-SNF2H Pathway of Chromatin Relaxation in DNA Double-Strand Break Repair. Genes (Basel) 2015; 6:592-606. [PMID: 26184323 PMCID: PMC4584319 DOI: 10.3390/genes6030592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/25/2023] Open
Abstract
Rapid progress in the study on the association of histone modifications with chromatin remodeling factors has broadened our understanding of chromatin dynamics in DNA transactions. In DNA double-strand break (DSB) repair, the well-known mark of histones is the phosphorylation of the H2A variant, H2AX, which has been used as a surrogate marker of DSBs. The ubiquitylation of histone H2B by RNF20 E3 ligase was recently found to be a DNA damage-induced histone modification. This modification is required for DSB repair and regulated by a distinctive pathway from that of histone H2AX phosphorylation. Moreover, the connection between H2B ubiquitylation and the chromatin remodeling activity of SNF2H has been elucidated. In this review, we summarize the current knowledge of RNF20-mediated processes and the molecular link to H2AX-mediated processes during DSB repair.
Collapse
Affiliation(s)
- Akihiro Kato
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kenshi Komatsu
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
19
|
Razin SV, Gavrilov AA, Ulyanov SV. Transcription-controlling regulatory elements of the eukaryotic genome. Mol Biol 2015. [DOI: 10.1134/s0026893315020119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Jarome TJ, Lubin FD. Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol Learn Mem 2014; 115:116-27. [PMID: 25130533 PMCID: PMC4250295 DOI: 10.1016/j.nlm.2014.08.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Memory consolidation involves transcriptional control of genes in neurons to stabilize a newly formed memory. Following retrieval, a once consolidated memory destabilizes and again requires gene transcription changes in order to restabilize, a process referred to as reconsolidation. Understanding the molecular mechanisms of gene transcription during the consolidation and reconsolidation processes could provide crucial insights into normal memory formation and memory dysfunction associated with psychiatric disorders. In the past decade, modifications of epigenetic markers such as DNA methylation and posttranslational modifications of histone proteins have emerged as critical transcriptional regulators of gene expression during initial memory formation and after retrieval. In light of the rapidly growing literature in this exciting area of research, we here examine the most recent and latest evidence demonstrating how memory acquisition and retrieval trigger epigenetic changes during the consolidation and reconsolidation phases to impact behavior. In particular we focus on the reconsolidation process, where we discuss the already identified epigenetic regulators of gene transcription during memory reconsolidation, while exploring other potential epigenetic modifications that may also be involved, and expand on how these epigenetic modifications may be precisely and temporally controlled by important signaling cascades critical to the reconsolidation process. Finally, we explore the possibility that epigenetic mechanisms may serve to regulate a system or circuit level reconsolidation process and may be involved in retrieval-dependent memory updating. Hence, we propose that epigenetic mechanisms coordinate changes in neuronal gene transcription, not only during the initial memory consolidation phase, but are triggered by retrieval to regulate molecular and cellular processes during memory reconsolidation.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
21
|
Epigenetic dysregulation by nickel through repressive chromatin domain disruption. Proc Natl Acad Sci U S A 2014; 111:14631-6. [PMID: 25246589 DOI: 10.1073/pnas.1406923111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Investigations into the genomic landscape of histone modifications in heterochromatic regions have revealed histone H3 lysine 9 dimethylation (H3K9me2) to be important for differentiation and maintaining cell identity. H3K9me2 is associated with gene silencing and is organized into large repressive domains that exist in close proximity to active genes, indicating the importance of maintenance of proper domain structure. Here we show that nickel, a nonmutagenic environmental carcinogen, disrupted H3K9me2 domains, resulting in the spreading of H3K9me2 into active regions, which was associated with gene silencing. We found weak CCCTC-binding factor (CTCF)-binding sites and reduced CTCF binding at the Ni-disrupted H3K9me2 domain boundaries, suggesting a loss of CTCF-mediated insulation function as a potential reason for domain disruption and spreading. We furthermore show that euchromatin islands, local regions of active chromatin within large H3K9me2 domains, can protect genes from H3K9me2-spreading-associated gene silencing. These results have major implications in understanding H3K9me2 dynamics and the consequences of chromatin domain disruption during pathogenesis.
Collapse
|
22
|
Jahan S, Davie JR. Protein arginine methyltransferases (PRMTs): role in chromatin organization. Adv Biol Regul 2014; 57:173-84. [PMID: 25263650 DOI: 10.1016/j.jbior.2014.09.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 01/19/2023]
Abstract
The mammalian genome encodes eleven protein arginine methyltransferases (PRMTs) that are involved in the transfer of a methyl group from S-adenosylmethionine (AdoMet) to the guanidino nitrogen of arginine. The substrates for these enzymes range from histones to several nuclear and cytoplasmic proteins. Methylation of histones by PRMTs can block the docking site for other reader/effector molecules and thus this modification can interfere with histone code orchestration. Several members of the PRMTs have roles in chromatin organization and function. Although PRMT aberrant expression is correlated with several diseases including cancer, the underlying mechanisms are still obscure in most cases.
Collapse
Affiliation(s)
- Sanzida Jahan
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba R3E 3P4 Canada
| | - James R Davie
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba R3E 3P4 Canada.
| |
Collapse
|
23
|
Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity. Nat Struct Mol Biol 2014; 21:236-43. [PMID: 24531659 DOI: 10.1038/nsmb.2776] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/22/2014] [Indexed: 01/06/2023]
Abstract
Functional centromeres are essential for proper cell division. Centromeres are established largely by epigenetic processes resulting in incorporation of the histone H3 variant CENP-A. Here, we demonstrate the direct involvement of H2B monoubiquitination, mediated by RNF20 in humans or Brl1 in Schizosaccharomyces pombe, in centromeric chromatin maintenance. Monoubiquinated H2B (H2Bub1) is needed for this maintenance, promoting noncoding transcription, centromere integrity and accurate chromosomal segregation. A transient pulse of centromeric H2Bub1 leads to RNA polymerase II-mediated transcription of the centromere's central domain, coupled to decreased H3 stability. H2Bub1-deficient cells have centromere cores that, despite their intact centromeric heterochromatin barriers, exhibit characteristics of heterochromatin, such as silencing histone modifications, reduced nucleosome turnover and reduced levels of transcription. In the H2Bub1-deficient cells, centromere functionality is hampered, thus resulting in unequal chromosome segregation. Therefore, centromeric H2Bub1 is essential for maintaining active centromeric chromatin.
Collapse
|
24
|
Fuchs G, Oren M. Writing and reading H2B monoubiquitylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:694-701. [PMID: 24412854 DOI: 10.1016/j.bbagrm.2014.01.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/01/2014] [Accepted: 01/02/2014] [Indexed: 01/27/2023]
Abstract
Monoubiquitylation of histone H2B (H2Bub1), catalyzed by the heterodimeric ubiquitin ligase complex RNF20/40, regulates multiple molecular and biological processes. The addition of a large ubiquitin moiety to the small H2B is believed to change the biochemical features of the chromatin. H2B monoubiquitylation alters nucleosome stability, nucleosome reassembly and higher order compaction of the chromatin. While these effects explain some of the direct roles of H2Bub1, there is growing evidence that H2Bub1 can also regulate multiple DNA-templated processes indirectly, by recruitment of specific factors ("readers") to the chromatin. H2Bub1 readers mediate much of the effect of H2Bub1 on histone crosstalk, transcriptional outcome and probably other chromatin-related activities. Here we summarize the current knowledge about H2Bub1-specific readers and their role in various biological processes. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Gilad Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
25
|
Jarome TJ, Thomas JS, Lubin FD. The epigenetic basis of memory formation and storage. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 128:1-27. [PMID: 25410539 DOI: 10.1016/b978-0-12-800977-2.00001-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The formation of long-term memory requires a series of cellular and molecular changes that involve transcriptional regulation of gene expression. While these changes in gene transcription were initially thought to be largely regulated by the activation of transcription factors by intracellular signaling molecules, epigenetic mechanisms have emerged as an important regulator of transcriptional processes across multiple brain regions to form a memory circuit for a learned event or experience. Due to their self-perpetuating nature and ability to bidirectionally control gene expression, these epigenetic mechanisms have the potential to not only regulate initial memory formation but also modify and update memory over time. This chapter focuses on the established, but poorly understood, role for epigenetic mechanisms such as posttranslational modifications of histone proteins and DNA methylation at the different stages of memory storage. Additionally, this chapter emphasizes how these mechanisms interact to control the ideal epigenetic environment for memory formation and modification in neurons. The reader will gain insights into the limitations in our current understanding of epigenetic regulation of memory storage, especially in terms of their cell-type specificity and the lack of understanding in the interactions of various epigenetic modifiers to one another to impact gene expression changes during memory formation.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jasmyne S Thomas
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Shema-Yaacoby E, Nikolov M, Haj-Yahya M, Siman P, Allemand E, Yamaguchi Y, Muchardt C, Urlaub H, Brik A, Oren M, Fischle W. Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription. Cell Rep 2013; 4:601-8. [PMID: 23933260 DOI: 10.1016/j.celrep.2013.07.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 05/28/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022] Open
Abstract
Chromatin posttranslational modifications (PTMs), including monoubiquitylation of histone H2B on lysine 120 (H2Bub1), play a major role in regulating genome functions. To elucidate the molecular mechanisms of H2Bub1 activity, a chromatin template uniformly containing H2Bub1 was used as an affinity matrix to identify preferentially interacting human proteins. Over 90 such factors were found, including proteins and protein complexes associated with transcription, RNA posttranscriptional modifications, and DNA replication and repair. Notably, we found that the SWI/SNF chromatin remodeling complex associates preferentially with H2Bub1-rich chromatin. Moreover, SWI/SNF is required for optimal transcription of a subset of genes that are selectively dependent on H2Bub1. Our findings substantially expand the known H2Bub1 interactome and provide insights into the functions of this PTM in mammalian gene regulation.
Collapse
Affiliation(s)
- Efrat Shema-Yaacoby
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Østrup O, Olbricht G, Østrup E, Hyttel P, Collas P, Cabot R. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions. PLoS One 2013; 8:e61547. [PMID: 23637850 PMCID: PMC3639270 DOI: 10.1371/journal.pone.0061547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
Fertilization is followed by complex changes in cytoplasmic composition and extensive chromatin reprogramming which results in the abundant activation of totipotent embryonic genome at embryonic genome activation (EGA). While chromatin reprogramming has been widely studied in several species, only a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv) and in vitro produced (ivt) porcine embryos before (2-cell stage) and after (late 4-cell stage) EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery), protein catabolism, and chromatin remodelling. Following EGA an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place before and after EGA (RNA splicing, protein catabolism), different metabolic pathways are involved. This strongly suggests that a complex metabolic switch accompanies EGA. In vitro conditions significantly altered RNA profiles before EGA, and the character of these changes indicates that they originate from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and human embryos showed striking overlap in functional annotation of transcripts during the EGA, suggesting conserved basic mechanisms regulating establishment of totipotency in mammalian development.
Collapse
Affiliation(s)
- Olga Østrup
- Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo and Norwegian Center for Stem Cell Research, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
28
|
Dong X, Reimer J, Göbel U, Engelhorn J, He F, Schoof H, Turck F. Natural variation of H3K27me3 distribution between two Arabidopsis accessions and its association with flanking transposable elements. Genome Biol 2012; 13:R117. [PMID: 23253144 PMCID: PMC4056368 DOI: 10.1186/gb-2012-13-12-r117] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/19/2012] [Indexed: 01/05/2023] Open
Abstract
Background Histone H3 lysine 27 tri-methylation and lysine 9 di-methylation are independent repressive chromatin modifications in Arabidopsis thaliana. H3K27me3 is established and maintained by Polycomb repressive complexes whereas H3K9me2 is catalyzed by SUVH histone methyltransferases. Both modifications can spread to flanking regions after initialization and were shown to be mutually exclusive in Arabidopsis. Results We analyzed the extent of natural variation of H3K27me3 in the two accessions Landsberg erecta (Ler) and Columbia (Col) and their F1 hybrids. The majority of H3K27me3 target genes in Col were unchanged in Ler and F1 hybrids. A small number of Ler-specific targets were detected and confirmed. Consistent with a cis-regulatory mechanism for establishing H3K27me3, differential targets showed allele-specific H3K27me3 in hybrids. Five Ler-specific targets showed the active mark H3K4me3 in Col and for this group, differential H3K27me3 enrichment accorded to expression variation. On the other hand, the majority of Ler-specific targets were not expressed in Col, Ler or 17 other accessions. Instead of H3K27me3, the antagonistic mark H3K9me2 and other heterochromatic features were observed at these loci in Col. These loci were frequently flanked by transposable elements, which were often missing in the Ler genome assembly. Conclusion There is little variation in H3K27me3 occupancy within the species, although H3K27me3 targets were previously shown as overrepresented among differentially expressed genes. The existing variation in H3K27me3 seems mostly explained by flanking polymorphic transposable elements. These could nucleate heterochromatin, which then spreads into neighboring H3K27me3 genes, thus converting them to H3K9me2 targets.
Collapse
|
29
|
Fuchs G, Shema E, Vesterman R, Kotler E, Wolchinsky Z, Wilder S, Golomb L, Pribluda A, Zhang F, Haj-Yahya M, Feldmesser E, Brik A, Yu X, Hanna J, Aberdam D, Domany E, Oren M. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol Cell 2012; 46:662-73. [PMID: 22681888 DOI: 10.1016/j.molcel.2012.05.023] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/06/2012] [Accepted: 05/17/2012] [Indexed: 11/17/2022]
Abstract
Embryonic stem cells (ESCs) maintain high genomic plasticity, which is essential for their capacity to enter diverse differentiation pathways. Posttranscriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner.
Collapse
Affiliation(s)
- Gilad Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chernikova SB, Brown JM. R-loops and genomic instability in Bre1 (RNF20/40)-deficient cells. Cell Cycle 2012; 11:2980-4. [PMID: 22825248 DOI: 10.4161/cc.21090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have proposed that maintenance of genomic stability may constitute the basis for the tumor-suppressing activity of the Bre1 (RNF20/RNF40) complex. Revisiting the evidence we presented in our recent publication, we discuss the mechanism by which maintenance of genomic stability by the Bre1 complex is achieved through coordination of events during transcription. Among many functions of Bre1, we focus on the two that, when defective, could lead to the formation of R-loops, the RNA:DNA hybrid structures regarded as a major source of genomic instability. Specifically, we discuss the role of Bre1-mediated H2B ubiquitination in the 3'-end processing of replication-associated histone mRNA and in heterochromatic gene silencing and show how disturbance of these two functions may result in the specific pattern of chromosomal abnormalities we observe in the Bre1-depleted cells.
Collapse
|
31
|
Cao J, Yan Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol 2012; 2:26. [PMID: 22649782 PMCID: PMC3355875 DOI: 10.3389/fonc.2012.00026] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/21/2012] [Indexed: 11/17/2022] Open
Abstract
Histone post-transcriptional modifications play essential roles in regulation of all DNA related processes. Among them, histone ubiquitination has been discovered for more than three decades. However, its functions are still less well understood than other histone modifications such as methylation and acetylation. In this review, we will summarize our current understanding of histone ubiquitination and deubiquitination. In particular, we will focus on how they are regulated by histone ubiquitin ligases and deubiquitinating enzymes. We will then discuss the roles of histone ubiquitination in transcription and DNA damage response and the crosstalk between histone ubiquitination and other histone modifications. Finally, we will review the important roles of histone ubiquitination in stem cell biology and cancer.
Collapse
Affiliation(s)
- Jian Cao
- Department of Pathology, Yale University School of MedicineNew Haven, CT, USA
| | - Qin Yan
- Department of Pathology, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
32
|
Ghirlando R, Giles K, Gowher H, Xiao T, Xu Z, Yao H, Felsenfeld G. Chromatin domains, insulators, and the regulation of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:644-51. [PMID: 22326678 DOI: 10.1016/j.bbagrm.2012.01.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 11/15/2022]
Abstract
The DNA sequence elements called insulators have two basic kinds of properties. Barrier elements block the propagation of heterochromatic structures into adjacent euchromatin. Enhancer blocking elements interfere with interaction between an enhancer and promoter when placed between them. We have dissected a compound insulator element found at the 5' end of the chicken β-globin locus, which possesses both activities. Barrier insulation is mediated by two kinds of DNA binding proteins: USF1/USF2, a heterodimer which recruits multiple enzyme complexes capable of marking histone on adjacent nucleosomes with 'activating' marks, and Vezf1, which protects against DNA methylation. We have found that the heterochromatic region upstream of the insulator element is maintained in its silent state by a dicer-dependent mechanism, suggesting a mechanism for Vezf1 function in the insulator. Enhancer blocking function in the β-globin insulator element is conferred by a binding site for CTCF. Consistent with this property, CTCF binding was found some years ago to be essential for imprinted expression at the Igf2/H19 locus. Work in many laboratories has since demonstrated that CTCF helps stabilize long-range interactions in the nucleus. We have recently shown that in the case of the human insulin locus such an interaction, over a distance of ~300kb, can result in stimulation of a target gene which itself is important for insulin secretion. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Key Diseases, National Insitute of Health, 9000 Rockville Pike, Bethesda, MD 20892-0540, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Barkess G, West AG. Chromatin insulator elements: establishing barriers to set heterochromatin boundaries. Epigenomics 2012; 4:67-80. [PMID: 22332659 DOI: 10.2217/epi.11.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epigenomic profiling has revealed that substantial portions of genomes in higher eukaryotes are organized into extensive domains of transcriptionally repressive chromatin. The boundaries of repressive chromatin domains can be fixed by DNA elements known as barrier insulators, to both shield neighboring gene expression and to maintain the integrity of chromosomal silencing. Here, we examine the current progress in identifying vertebrate barrier elements and their binding factors. We overview the design of the reporter assays used to define enhancer-blocking and barrier insulators. We look at the mechanisms vertebrate barrier proteins, such as USF1 and VEZF1, employ to counteract Polycomb- and heterochromatin-associated repression. We also undertake a critical analysis of whether CTCF could also act as a barrier protein. There is good evidence that barrier elements in vertebrates can form repressive chromatin domain boundaries. Future studies will determine whether barriers are frequently used to define repressive domain boundaries in vertebrates.
Collapse
Affiliation(s)
- Gráinne Barkess
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | |
Collapse
|