1
|
Abumuslem M, Toktay H, Sadder MT, Dababat AA, Salem NM, AL-Banna L. Morphological and Biochemical Changes in the Mediterranean Cereal Cyst Nematode ( Heterodera latipons) during Diapause. Pathogens 2024; 13:656. [PMID: 39204256 PMCID: PMC11357521 DOI: 10.3390/pathogens13080656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
The cereal cyst nematode (Heterodera latipons) is becoming an economically important species in global cereal production as it is being identified in many new cereal cultivated areas and causes significant losses. Consequently, understanding its biology becomes crucial for researchers in identifying its vulnerabilities and implementing effective control measures. In the current study, different morphological and biochemical changes of H. latipons cysts containing eggs with infective juveniles from a barley field in Jordan were studied during the summer of 2021, at two sample dates. The first, at the harvest of the cereal crop (June 2021), when the infective second-stage juveniles (J2s) were initiating diapause, and the second, before planting the sequent cereal crop (late October 2021), when the J2s were ending diapause. The studied population was characterized morphologically and molecularly, showing 98.4% molecular similarity to both JOD from Jordan and Syrian "300" isolates of H. latipons. The obtained results and observations revealed that there were dramatic changes in all the investigated features of the cysts and eggs they contained. Morphological changes such as cyst color, sub-crystalline layer, and thickness of the rigid eggshell wall were observed. A slight change in the emergence time of J2s from cysts was observed without any difference in the number of emerged J2s. The results of biochemical changes showed that the total contents of carbohydrates, glycogen, trehalose, glycerol, and protein were higher in cysts collected in October when compared to those cysts collected in June. The SDS-PAGE pattern indicated the presence of a protein with the size of ca. 100 kDa in both sampling dates, whereas another protein (ca. 20 kDa) was present only in the cysts of October. Furthermore, the expression of trehalase (tre) gene was detected only in H. latipons collected in October. The outcomes of this study provide new helpful information that elucidates diapause in H. latipons and may be used for the implementation of new management strategies of cyst nematodes.
Collapse
Affiliation(s)
- Motasem Abumuslem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan; (M.A.); (N.M.S.)
| | - Halil Toktay
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Türkiye;
| | - Monther T. Sadder
- Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| | - Abdelfattah A. Dababat
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan; (M.A.); (N.M.S.)
- International Maize and Wheat Improvement Centre (CIMMYT), Ankara 06000, Türkiye
| | - Nida’ M. Salem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan; (M.A.); (N.M.S.)
| | - Luma AL-Banna
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan; (M.A.); (N.M.S.)
| |
Collapse
|
2
|
Du Z, Tong D, Chen X, Wu F, Jiang S, Zhang J, Yang Y, Wang R, Gantuya S, Davaajargal T, Lkhagvatseren S, Batsukh Z, Du A, Ma G. Genome-wide RNA interference of the nhr gene family in barber's pole worm identified members crucial for larval viability in vitro. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105609. [PMID: 38806077 DOI: 10.1016/j.meegid.2024.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Nuclear hormone receptors (NHRs) are emerging target candidates against nematode infection and resistance. However, there is a lack of comprehensive information on NHR-coding genes in parasitic nematodes. In this study, we curated the nhr gene family for 60 major parasitic nematodes from humans and animals. Compared with the free-living model organism Caenorhabditis elegans, a remarkable contraction of the nhr family was revealed in parasitic species, with genetic diversification and conservation unveiled among nematode Clades I (10-13), III (16-42), IV (33-35) and V (25-64). Using an in vitro biosystem, we demonstrated that 40 nhr genes in a blood-feeding nematode Haemonchus contortus (clade V; barber's pole worm) were responsive to host serum and one nhr gene (i.e., nhr-64) was consistently stimulated by anthelmintics (i.e., ivermectin, thiabendazole and levamisole); Using a high-throughput RNA interference platform, we knocked down 43 nhr genes of H. contortus and identified at least two genes that are required for the viability (i.e., nhr-105) and development (i.e., nhr-17) of the infective larvae of this parasitic nematode in vitro. Harnessing this preliminary functional atlas of nhr genes for H. contortus will prime the biological studies of this gene family in nematode genetics, infection, and anthelmintic metabolism within host animals, as well as the promising discovery of novel intervention targets.
Collapse
Affiliation(s)
- Zhendong Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Danni Tong
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Shengjun Jiang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jingju Zhang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Sambuu Gantuya
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Tserennyam Davaajargal
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Sukhbaatar Lkhagvatseren
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia.
| | - Zayat Batsukh
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia.
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China; Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
3
|
Chamoli M, Rane A, Foulger A, Chinta SJ, Shahmirzadi AA, Kumsta C, Nambiar DK, Hall D, Holcom A, Angeli S, Schmidt M, Pitteri S, Hansen M, Lithgow GJ, Andersen JK. A drug-like molecule engages nuclear hormone receptor DAF-12/FXR to regulate mitophagy and extend lifespan. NATURE AGING 2023; 3:1529-1543. [PMID: 37957360 PMCID: PMC10797806 DOI: 10.1038/s43587-023-00524-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Autophagy-lysosomal function is crucial for maintaining healthy lifespan and preventing age-related diseases. The transcription factor TFEB plays a key role in regulating this pathway. Decreased TFEB expression is associated with various age-related disorders, making it a promising therapeutic target. In this study, we screened a natural product library and discovered mitophagy-inducing coumarin (MIC), a benzocoumarin compound that enhances TFEB expression and lysosomal function. MIC robustly increases the lifespan of Caenorhabditis elegans in an HLH-30/TFEB-dependent and mitophagy-dependent manner involving DCT-1/BNIP3 while also preventing mitochondrial dysfunction in mammalian cells. Mechanistically, MIC acts by inhibiting ligand-induced activation of the nuclear hormone receptor DAF-12/FXR, which, in turn, induces mitophagy and extends lifespan. In conclusion, our study uncovers MIC as a promising drug-like molecule that enhances mitochondrial function and extends lifespan by targeting DAF-12/FXR. Furthermore, we discovered DAF-12/FXR as a previously unknown upstream regulator of HLH-30/TFEB and mitophagy.
Collapse
Affiliation(s)
| | - Anand Rane
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Anna Foulger
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, Vallejo, CA, USA
| | - Azar Asadi Shahmirzadi
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - David Hall
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Angelina Holcom
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | - Minna Schmidt
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | - Malene Hansen
- Buck Institute for Research on Aging, Novato, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
4
|
Godoy LF, Hochbaum D. Transcriptional and spatiotemporal regulation of the dauer program. Transcription 2023; 14:27-48. [PMID: 36951297 PMCID: PMC10353326 DOI: 10.1080/21541264.2023.2190295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Caenorhabditis elegans can enter a diapause stage called "dauer" when it senses that the environment is not suitable for development. This implies a detour from the typical developmental trajectory and requires a tight control of the developmental clock and a massive tissue remodeling. In the last decades, core components of the signaling pathways that govern the dauer development decision have been identified, but the tissues where they function for the acquisition of dauer-specific traits are still under intense study. Growing evidence demonstrates that these pathways engage in complex cross-talk and feedback loops. In this review, we summarize the current knowledge regarding the transcriptional regulation of the dauer program and the relevant tissues for its achievement. A better understanding of this process will provide insight on how developmental plasticity is achieved and how development decisions are under a robust regulation to ensure an all-or-nothing response. Furthermore, this developmental decision can also serve as a simplified model for relevant developmental disorders.Abbreviations: AID Auxin Induced Degron DA dafachronic acid Daf-c dauer formation constitutive Daf-d dauer formation defective DTC Distal Tip Cells ECM modified extracellular matrix GPCRs G protein-coupled receptors IIS insulin/IGF-1 signaling ILPs insulin-like peptides LBD Ligand Binding Domain PDL4 Post Dauer L4 TGF-β transforming growth factor beta WT wild-type.
Collapse
Affiliation(s)
- Luciana F Godoy
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Zhang Y, Chen H, Huang C. Optimizing health-span: advances in stem cell medicine and longevity research. MEDICAL REVIEW (2021) 2023; 3:351-355. [PMID: 38235402 PMCID: PMC10790209 DOI: 10.1515/mr-2023-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 01/19/2024]
Affiliation(s)
- Yue Zhang
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdon, China
- Hezhou (the City of Longevity) Dongrong Yao Medicine Research Institute, Joint Institute of Shenzhen University and Hezhou Hospital for Traditional Chinese Medicine, Hezhou, Guangxi, China
- Department of Rheumatology and Immunology, The First Clinical College of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hexin Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cibo Huang
- Department of Rheumatology, Immunology and Gerontology, South-China Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, National Center of Gerontology, Beijing Hospital, Beijing, China
| |
Collapse
|
6
|
Sun H, Hobert O. Temporal transitions in the postembryonic nervous system of the nematode Caenorhabditis elegans: Recent insights and open questions. Semin Cell Dev Biol 2023; 142:67-80. [PMID: 35688774 DOI: 10.1016/j.semcdb.2022.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
After the generation, differentiation and integration into functional circuitry, post-mitotic neurons continue to change certain phenotypic properties throughout postnatal juvenile stages until an animal has reached a fully mature state in adulthood. We will discuss such changes in the context of the nervous system of the nematode C. elegans, focusing on recent descriptions of anatomical and molecular changes that accompany postembryonic maturation of neurons. We summarize the characterization of genetic timer mechanisms that control these temporal transitions or maturational changes, and discuss that many but not all of these transitions relate to sexual maturation of the animal. We describe how temporal, spatial and sex-determination pathways are intertwined to sculpt the emergence of cell-type specific maturation events. Finally, we lay out several unresolved questions that should be addressed to move the field forward, both in C. elegans and in vertebrates.
Collapse
Affiliation(s)
- Haosheng Sun
- Department of Cell, Developmental, and Integrative Biology. University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, USA
| |
Collapse
|
7
|
Zhang MG, Sternberg PW. Both entry to and exit from diapause arrest in Caenorhabditis elegans are regulated by a steroid hormone pathway. Development 2022; 149:274989. [PMID: 35394033 PMCID: PMC9148571 DOI: 10.1242/dev.200173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
Abstract
Diapause arrest in animals such as Caenorhabditis elegans is tightly regulated so that animals make appropriate developmental decisions amidst environmental challenges. Fully understanding diapause requires mechanistic insight of both entry and exit from the arrested state. Although a steroid hormone pathway regulates the entry decision into C. elegans dauer diapause, its role in the exit decision is less clear. A complication to understanding steroid hormonal regulation of dauer has been the peculiar fact that steroid hormone mutants such as daf-9 form partial dauers under normal growth conditions. Here, we corroborate previous findings that daf-9 mutants remain capable of forming full dauers under unfavorable growth conditions and establish that the daf-9 partial dauer state is likely a partially exited dauer that has initiated but cannot complete the dauer exit process. We show that the steroid hormone pathway is both necessary for and promotes complete dauer exit, and that the spatiotemporal dynamics of steroid hormone regulation during dauer exit resembles that of dauer entry. Overall, dauer entry and dauer exit are distinct developmental decisions that are both controlled by steroid hormone signaling. Summary: In animals such as Caenorhabditis elegans, a steroid hormone pathway controls both the entry and exit decisions into and out of the developmentally arrested dauer state in response to environmental signaling.
Collapse
Affiliation(s)
- Mark G. Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
8
|
Jofré DM, Hoffman DK, Cervino AS, Hahn GM, Grundy M, Yun S, Amrit FRG, Stolz DB, Godoy LF, Salvatore E, Rossi FA, Ghazi A, Cirio MC, Yanowitz JL, Hochbaum D. The CHARGE syndrome ortholog CHD-7 regulates TGF-β pathways in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2022; 119:e2109508119. [PMID: 35394881 PMCID: PMC9169646 DOI: 10.1073/pnas.2109508119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
CHARGE syndrome is a complex developmental disorder caused by mutations in the chromodomain helicase DNA-binding protein-7 (CHD7) and characterized by retarded growth and malformations in the heart and nervous system. Despite the public health relevance of this disorder, relevant cellular pathways and targets of CHD7 that relate to disease pathology are still poorly understood. Here we report that chd-7, the nematode ortholog of Chd7, is required for dauer morphogenesis, lifespan determination, stress response, and body size determination. Consistent with our discoveries, we found chd-7 to be allelic to scd-3, a previously identified dauer suppressor from the DAF-7/ tumor growth factor-β (TGF-β) pathway. Epistatic analysis places CHD-7 at the level of the DAF-3/DAF-5 complex, but we found that CHD-7 also directly impacts the expression of multiple components of this pathway. Transcriptomic analysis revealed that chd-7 mutants fail to repress daf-9 for execution of the dauer program. In addition, CHD-7 regulates the DBL-1/BMP pathway components and shares roles in male tail development and cuticle synthesis. To explore a potential conserved function for chd-7 in vertebrates, we used Xenopus laevis embryos, an established model to study craniofacial development. Morpholino-mediated knockdown of Chd7 led to a reduction in col2a1 messenger RNA (mRNA) levels, a collagen whose expression depends on TGF-β signaling. Both embryonic lethality and craniofacial defects in Chd7-depleted tadpoles were partially rescued by overexpression of col2a1 mRNA. We suggest that Chd7 has conserved roles in regulation of the TGF-β signaling pathway and pathogenic Chd7 could lead to a defective extracellular matrix deposition.
Collapse
Affiliation(s)
- Diego M. Jofré
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | | | - Ailen S. Cervino
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Gabriella M. Hahn
- Interdisciplinary Biomedical Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Sijung Yun
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Francis R. G. Amrit
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Donna B. Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA 15213
| | - Luciana F. Godoy
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Esteban Salvatore
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Fabiana A. Rossi
- Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Austral, B1630 Pilar, Argentina
| | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Cell Biology & Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - M. Cecilia Cirio
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Judith L. Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA 15213
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Daniel Hochbaum
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| |
Collapse
|
9
|
Suriyalaksh M, Raimondi C, Mains A, Segonds-Pichon A, Mukhtar S, Murdoch S, Aldunate R, Krueger F, Guimerà R, Andrews S, Sales-Pardo M, Casanueva O. Gene regulatory network inference in long-lived C. elegans reveals modular properties that are predictive of novel aging genes. iScience 2022; 25:103663. [PMID: 35036864 PMCID: PMC8753122 DOI: 10.1016/j.isci.2021.103663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/09/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
We design a “wisdom-of-the-crowds” GRN inference pipeline and couple it to complex network analysis to understand the organizational principles governing gene regulation in long-lived glp-1/Notch Caenorhabditis elegans. The GRN has three layers (input, core, and output) and is topologically equivalent to bow-tie/hourglass structures prevalent among metabolic networks. To assess the functional importance of structural layers, we screened 80% of regulators and discovered 50 new aging genes, 86% with human orthologues. Genes essential for longevity—including ones involved in insulin-like signaling (ILS)—are at the core, indicating that GRN's structure is predictive of functionality. We used in vivo reporters and a novel functional network covering 5,497 genetic interactions to make mechanistic predictions. We used genetic epistasis to test some of these predictions, uncovering a novel transcriptional regulator, sup-37, that works alongside DAF-16/FOXO. We present a framework with predictive power that can accelerate discovery in C. elegans and potentially humans. Gene-regulatory inference provides global network of long-lived animals The large-scale topology of the network has an hourglass structure Membership to the core of the hourglass is a good predictor of functionality Discovered 50 novel aging genes, including sup-37, a DAF-16 dependent gene
Collapse
Affiliation(s)
| | | | - Abraham Mains
- Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | | | | | | | - Rebeca Aldunate
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Felix Krueger
- Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Roger Guimerà
- ICREA, Barcelona 08010, Catalonia, Spain.,Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Catalonia, Spain
| | - Simon Andrews
- Babraham Institute, Babraham, Cambridge CB22 3AT, UK
| | - Marta Sales-Pardo
- Department of Chemical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Catalonia, Spain
| | | |
Collapse
|
10
|
Perez MF, Shamalnasab M, Mata-Cabana A, Della Valle S, Olmedo M, Francesconi M, Lehner B. Neuronal perception of the social environment generates an inherited memory that controls the development and generation time of C. elegans. Curr Biol 2021; 31:4256-4268.e7. [PMID: 34358445 DOI: 10.1016/j.cub.2021.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022]
Abstract
An old and controversial question in biology is whether information perceived by the nervous system of an animal can "cross the Weismann barrier" to alter the phenotypes and fitness of their progeny. Here, we show that such intergenerational transmission of sensory information occurs in the model organism, C. elegans, with a major effect on fitness. Specifically, that perception of social pheromones by chemosensory neurons controls the post-embryonic timing of the development of one tissue, the germline, relative to others in the progeny of an animal. Neuronal perception of the social environment thus intergenerationally controls the generation time of this animal.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Mehrnaz Shamalnasab
- Université de Lyon, ENS de Lyon, Université de Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d'Italie, Site Jacques Monod, 69007 Lyon, France
| | - Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Simona Della Valle
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mirko Francesconi
- Université de Lyon, ENS de Lyon, Université de Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d'Italie, Site Jacques Monod, 69007 Lyon, France.
| | - Ben Lehner
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
11
|
Salzberg Y, Gat A, Oren-Suissa M. One template, two outcomes: How does the sex-shared nervous system generate sex-specific behaviors? Curr Top Dev Biol 2020; 144:245-268. [PMID: 33992155 DOI: 10.1016/bs.ctdb.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sex-specific behaviors are common in nature and are crucial for reproductive fitness and species survival. A key question in the field of sex/gender neurobiology is whether and to what degree the sex-shared nervous system differs between the sexes in the anatomy, connectivity and molecular identity of its components. An equally intriguing issue is how does the same sex-shared neuronal template diverge to mediate distinct behavioral outputs in females and males. This chapter aims to present the most up-to-date understanding of how this task is achieved in C. elegans. The vast majority of neurons in C. elegans are shared among the two sexes in terms of their lineage history, anatomical position and neuronal identity. Yet a substantial amount of evidence points to the hermaphrodite-male counterparts of some neurons expressing different genes and forming different synaptic connections. This, in turn, enables the same cells and circuits to transmit discrete signals in the two sexes and ultimately execute different functions. We review the various sex-shared behavioral paradigms that have been shown to be sexually dimorphic in recent years, discuss the mechanisms that underlie these examples, refer to the developmental regulation of neuronal dimorphism and suggest evolutionary concepts that emerge from the data.
Collapse
Affiliation(s)
- Yehuda Salzberg
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Gat
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Oren-Suissa
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Bayer EA, Sun H, Rafi I, Hobert O. Temporal, Spatial, Sexual and Environmental Regulation of the Master Regulator of Sexual Differentiation in C. elegans. Curr Biol 2020; 30:3604-3616.e3. [DOI: 10.1016/j.cub.2020.06.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/04/2020] [Accepted: 06/17/2020] [Indexed: 12/23/2022]
|
13
|
Long T, Alberich M, André F, Menez C, Prichard RK, Lespine A. The development of the dog heartworm is highly sensitive to sterols which activate the orthologue of the nuclear receptor DAF-12. Sci Rep 2020; 10:11207. [PMID: 32641726 PMCID: PMC7343802 DOI: 10.1038/s41598-020-67466-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023] Open
Abstract
Prevention therapy against Dirofilaria immitis in companion animals is currently threatened by the emergence of isolates resistant to macrocyclic lactone anthelmintics. Understanding the control over developmental processes in D. immitis is important for elucidating new approaches to heartworm control. The nuclear receptor DAF-12 plays a role in the entry and exit of dauer stage in Caenorhabditis elegans and in the development of free-living infective third-stage larvae (iL3) of some Clade IV and V parasitic nematodes. We identified a DAF-12 ortholog in the clade III nematode D. immitis and found that it exhibited a much higher affinity for dafachronic acids than described with other nematode DAF-12 investigated so far. We also modelled the DimDAF-12 structure and characterized the residues involved with DA binding. Moreover, we showed that cholesterol derivatives impacted the molting process from the iL3 to the fourth-stage larvae. Since D. immitis is unable to synthesize cholesterol and only completes its development upon host infection, we hypothesize that host environment contributes to its further molting inside the host vertebrate. Our discovery contributes to a better understanding of the developmental checkpoints of D. immitis and offers new perspectives for the development of novel therapies against filarial infections.
Collapse
Affiliation(s)
- Thavy Long
- INTHERES, Université de Toulouse, INRAE, ENVT, 31027, Toulouse Cedex 3, France.
- Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, H9X3V9, QC, Canada.
| | - Mélanie Alberich
- INTHERES, Université de Toulouse, INRAE, ENVT, 31027, Toulouse Cedex 3, France
| | - François André
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Cécile Menez
- INTHERES, Université de Toulouse, INRAE, ENVT, 31027, Toulouse Cedex 3, France
| | - Roger K Prichard
- Institute of Parasitology, McGill University, Sainte-Anne-De-Bellevue, H9X3V9, QC, Canada
| | - Anne Lespine
- INTHERES, Université de Toulouse, INRAE, ENVT, 31027, Toulouse Cedex 3, France.
| |
Collapse
|
14
|
Wang H, Webster P, Chen L, Fisher AL. Cell-autonomous and non-autonomous roles of daf-16 in muscle function and mitochondrial capacity in aging C. elegans. Aging (Albany NY) 2020; 11:2295-2311. [PMID: 31017874 PMCID: PMC6520005 DOI: 10.18632/aging.101914] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/10/2019] [Indexed: 12/24/2022]
Abstract
Sarcopenia, defined as the loss of skeletal muscle mass and strength, contributes to disability and health-related conditions with aging. In vitro studies indicate that age-related mitochondrial dysfunction could play a central role in the development and progression of sarcopenia, but because of limitations in the methods employed, how aging affects muscle mitochondrial function in vivo is not fully understood. We use muscle-targeted fluorescent proteins and the ratiometric ATP reporter, ATeam, to examine changes in muscle mitochondrial mass and morphology, and intracellular ATP levels in C. elegans. We find that the preserved muscle function in aging daf-2 mutants is associated with higher muscle mitochondrial mass, preserved mitochondrial morphology, and higher levels of intracellular ATP. These phenotypes require the daf-16/FOXO transcription factor. Via the tissue-specific rescue of daf-16, we find that daf-16 activity in either muscle or neurons is sufficient to enhance muscle mitochondrial mass, whereas daf-16 activity in the muscle is required for the enhanced muscle function and mobility of the daf-2 mutants. Finally, we show through the use of drugs known to enhance mitochondrial activity that augmenting mitochondrial function leads to improved mobility during aging. These results suggest an important role for mitochondrial function in muscle aging.
Collapse
Affiliation(s)
- Hongning Wang
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229, USA.,Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA
| | - Phillip Webster
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229, USA.,Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA
| | - Lizhen Chen
- Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA.,Department of Cell Systems and Anatomy, UTHSCSA, San Antonio, TX 78229, USA
| | - Alfred L Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, UTHSCSA, San Antonio, TX 78229, USA.,Center for Healthy Aging, UTHSCSA, San Antonio, TX 78229, USA.,GRECC, South Texas VA Healthcare System, San Antonio, TX 78229, USA.,Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
15
|
Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. ADVANCES IN PARASITOLOGY 2020; 108:175-229. [PMID: 32291085 DOI: 10.1016/bs.apar.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past two decades, significant progress has been made in the sequencing, assembly, annotation and analyses of genomes and transcriptomes of parasitic worms of socioeconomic importance. This progress has somewhat improved our knowledge and understanding of these pathogens at the molecular level. However, compared with the free-living nematode Caenorhabditis elegans, the areas of functional genomics, transcriptomics, proteomics and metabolomics of parasitic nematodes are still in their infancy, and there are major gaps in our knowledge and understanding of the molecular biology of parasitic nematodes. The information on signalling molecules, molecular pathways and microRNAs (miRNAs) that are known to be involved in developmental processes in C. elegans and the availability of some molecular resources (draft genomes, transcriptomes and some proteomes) for selected parasitic nematodes provide a basis to start exploring the developmental biology of parasitic nematodes. Indeed, some studies have identified molecules and pathways that might associate with developmental processes in related, parasitic nematodes, such as Haemonchus contortus (barber's pole worm). However, detailed information is often scant and 'omics resources are limited, preventing a proper integration of 'omic data sets and comprehensive analyses. Moreover, little is known about the functional roles of pheromones, hormones, signalling pathways and post-transcriptional/post-translational regulations in the development of key parasitic nematodes throughout their entire life cycles. Although C. elegans is an excellent model to assist molecular studies of parasitic nematodes, its use is limited when it comes to explorations of processes that are specific to parasitism within host animals. A deep understanding of parasitic nematodes, such as H. contortus, requires substantially enhanced resources and the use of integrative 'omics approaches for analyses. The improved genome and well-established in vitro larval culture system for H. contortus provide unprecedented opportunities for comprehensive studies of the transcriptomes (mRNA and miRNA), proteomes (somatic, excretory/secretory and phosphorylated proteins) and lipidomes (e.g., polar and neutral lipids) of this nematode. Such resources should enable in-depth explorations of its developmental biology at a level, not previously possible. The main aims of this review are (i) to provide a background on the development of nematodes, with a particular emphasis on the molecular aspects involved in the dauer formation and exit in C. elegans; (ii) to critically appraise the current state of knowledge of the developmental biology of parasitic nematodes and identify key knowledge gaps; (iii) to cover salient aspects of H. contortus, with a focus on the recent advances in genomics, transcriptomics, proteomics and lipidomics as well as in vitro culturing systems; (iv) to review recent advances in our knowledge and understanding of the molecular and developmental biology of H. contortus using an integrative multiomics approach, and discuss the implications of this approach for detailed explorations of signalling molecules, molecular processes and pathways likely associated with nematode development, adaptation and parasitism, and for the identification of novel intervention targets against these pathogens. Clearly, the multiomics approach established recently is readily applicable to exploring a wide range of interesting and socioeconomically significant parasitic worms (including also trematodes and cestodes) at the molecular level, and to elucidate host-parasite interactions and disease processes.
Collapse
|
16
|
The C. elegans intestine: organogenesis, digestion, and physiology. Cell Tissue Res 2019; 377:383-396. [DOI: 10.1007/s00441-019-03036-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
|
17
|
Arsenic Trioxide in Synergy with Vitamin D Rescues the Defective VDR-PPAR- γ Functional Module of Autophagy in Rheumatoid Arthritis. PPAR Res 2019; 2019:6403504. [PMID: 31205465 PMCID: PMC6530228 DOI: 10.1155/2019/6403504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/17/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
Dysregulated autophagy leads to autoimmune diseases including rheumatoid arthritis (RA). Arsenic trioxide (ATO) is a single agent used for the treatment of acute promyelocytic leukemia and is highly promising for other malignancies but is also attractive for RA, although its relationship with autophagy remains to be further clarified and its application optimized. For the first time, we report a defective functional module of autophagy comprising the Vitamin D receptor (VDR), PPAR-γ, microtubule-associated protein 1 light-chain 3 (LC3), and p62 which appears in RA synovial fibroblasts. ATO alleviated RA symptoms by boosting effective autophagic flux through significantly downregulating p62, the inflammation and catabolism protein. Importantly, low-dose ATO synergizes with Vitamin D in RA treatment.
Collapse
|
18
|
Ma G, Wang T, Korhonen PK, Stroehlein AJ, Young ND, Gasser RB. Dauer signalling pathway model for Haemonchus contortus. Parasit Vectors 2019; 12:187. [PMID: 31036054 PMCID: PMC6489264 DOI: 10.1186/s13071-019-3419-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/28/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Signalling pathways have been extensively investigated in the free-living nematode Caenorhabditis elegans, but very little is known about these pathways in parasitic nematodes. Here, we constructed a model for the dauer-associated signalling pathways in an economically highly significant parasitic worm, Haemonchus contortus. METHODS Guided by data and information available for C. elegans, we used extensive genomic and transcriptomic datasets to infer gene homologues in the dauer-associated pathways, explore developmental transcriptomic, proteomic and phosphoproteomic profiles in H. contortus and study selected molecular structures. RESULTS The canonical cyclic guanosine monophosphate (cGMP), transforming growth factor-β (TGF-β), insulin-like growth factor 1 (IGF-1) and steroid hormone signalling pathways of H. contortus were inferred to represent a total of 61 gene homologues. Compared with C. elegans, H. contortus has a reduced set of genes encoding insulin-like peptides, implying evolutionary and biological divergences between the parasitic and free-living nematodes. Similar transcription profiles were found for all gene homologues between the infective stage of H. contortus and dauer stage of C. elegans. High transcriptional levels for genes encoding G protein-coupled receptors (GPCRs), TGF-β, insulin-like ligands (e.g. ins-1, ins-17 and ins-18) and transcriptional factors (e.g. daf-16) in the infective L3 stage of H. contortus were suggestive of critical functional roles in this stage. Conspicuous protein expression patterns and extensive phosphorylation of some components of these pathways suggested marked post-translational modifications also in the L3 stage. The high structural similarity in the DAF-12 ligand binding domain among nematodes indicated functional conservation in steroid (i.e. dafachronic acid) signalling linked to worm development. CONCLUSIONS Taken together, this pathway model provides a basis to explore hypotheses regarding biological processes and regulatory mechanisms (via particular microRNAs, phosphorylation events and/or lipids) associated with the development of H. contortus and related nematodes as well as parasite-host cross talk, which could aid the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Andreas J. Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
19
|
The Long Non-Coding RNA lep-5 Promotes the Juvenile-to-Adult Transition by Destabilizing LIN-28. Dev Cell 2019; 49:542-555.e9. [PMID: 30956008 DOI: 10.1016/j.devcel.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 10/02/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
Biological roles for most long non-coding RNAs (lncRNAs) remain mysterious. Here, using forward genetics, we identify lep-5, a lncRNA acting in the C. elegans heterochronic (developmental timing) pathway. Loss of lep-5 delays hypodermal maturation and male tail tip morphogenesis (TTM), hallmarks of the juvenile-to-adult transition. We find that lep-5 is a ∼600 nt cytoplasmic RNA that is conserved across Caenorhabditis and possesses three essential secondary structure motifs but no essential open reading frames. lep-5 expression is temporally controlled, peaking prior to TTM onset. Like the Makorin LEP-2, lep-5 facilitates the degradation of LIN-28, a conserved miRNA regulator specifying the juvenile state. Both LIN-28 and LEP-2 associate with lep-5 in vivo, suggesting that lep-5 directly regulates LIN-28 stability and may function as an RNA scaffold. These studies identify a key biological role for a lncRNA: by regulating protein stability, it provides a temporal cue to facilitate the juvenile-to-adult transition.
Collapse
|
20
|
Dulovic A, Streit A. RNAi-mediated knockdown of daf-12 in the model parasitic nematode Strongyloides ratti. PLoS Pathog 2019; 15:e1007705. [PMID: 30925161 PMCID: PMC6457571 DOI: 10.1371/journal.ppat.1007705] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/10/2019] [Accepted: 03/13/2019] [Indexed: 01/27/2023] Open
Abstract
The gene daf-12 has long shown to be involved in the dauer pathway in Caenorhabditis elegans (C. elegans). Due to the similarities of the dauer larvae of C. elegans and infective larvae of certain parasitic nematodes such as Strongyloides spp., this gene has also been suspected to be involved in the development of infective larvae. Previous research has shown that the application of dafachronic acid, the steroid hormone ligand of DAF-12 in C. elegans, affects the development of infective larvae and metabolism in Strongyloides. However, a lack of tools for either forward or reverse genetics within Strongyloides has limited studies of gene function within these important parasites. After determining whether Strongyloides had the requisite proteins for RNAi, we developed and report here the first successful RNAi by soaking protocol for Strongyloides ratti (S. ratti) and use this protocol to study the functions of daf-12 within S. ratti. Suppression of daf-12 in S. ratti severely impairs the formation of infective larvae of the direct cycle and redirects development towards the non-infective (non-dauer) free-living life cycle. Further, daf-12(RNAi) S. ratti produce slightly but significantly fewer offspring and these offspring are developmentally delayed or incapable of completing their development to infective larvae (L3i). Whilst the successful daf-12(RNAi) L3i are still able to infect a new host, the resulting infection is less productive and shorter lived. Further, daf-12 knockdown affects metabolism in S. ratti resulting in a shift from aerobic towards anaerobic fat metabolism. Finally, daf-12(RNAi) S. ratti have reduced tolerance of temperature stress.
Collapse
Affiliation(s)
- Alex Dulovic
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Baden-Württemberg, Germany
| | - Adrian Streit
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Baden-Württemberg, Germany
| |
Collapse
|
21
|
Ma G, Wang T, Korhonen PK, Nie S, Reid GE, Stroehlein AJ, Koehler AV, Chang BCH, Hofmann A, Young ND, Gasser RB. Comparative bioinformatic analysis suggests that specific dauer-like signalling pathway components regulate Toxocara canis development and migration in the mammalian host. Parasit Vectors 2019; 12:32. [PMID: 30642380 PMCID: PMC6332619 DOI: 10.1186/s13071-018-3265-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/12/2018] [Indexed: 01/28/2023] Open
Abstract
Background Toxocara canis is quite closely related to Ascaris suum but its biology is more complex, involving a phase of arrested development (diapause or hypobiosis) in tissues as well as transplacental and transmammary transmission routes. In the present study, we explored and compared dauer-like signalling pathways of T. canis and A. suum to infer which components in these pathways might associate with, or regulate, this added complexity in T. canis. Methods Guided by information for Caenorhabditis elegans, we bioinformatically inferred and compared components of dauer-like signalling pathways in T. canis and A. suum using genomic and transcriptomic data sets. In these two ascaridoids, we also explored endogenous dafachronic acids (DAs), which are known to be critical in regulating larval developmental processes in C. elegans and other nematodes, by liquid chromatography-mass spectrometry (LC-MS). Results Orthologues of C. elegans dauer signalling genes were identified in T. canis (n = 55) and A. suum (n = 51), inferring the presence of a dauer-like signalling pathway in both species. Comparisons showed clear differences between C. elegans and these ascaridoids as well as between T. canis and A. suum, particularly in the transforming growth factor-β (TGF-β) and insulin-like signalling pathways. Specifically, in both A. suum and T. canis, there was a paucity of genes encoding SMAD transcription factor-related protein (daf-3, daf-5, daf-8 and daf-14) and insulin/insulin-like peptide (daf-28, ins-4, ins-6 and ins-7) homologues, suggesting an evolution and adaptation of the signalling pathway in these parasites. In T. canis, there were more orthologues coding for homologues of antagonist insulin-like peptides (Tc-ins-1 and Tc-ins-18), an insulin receptor substrate (Tc-ist-1) and a serine/threonine kinase (Tc-akt-1) than in A. suum, suggesting potentiated functional roles for these molecules in regulating larval diapause and reactivation. A relatively conserved machinery was proposed for DA synthesis in the two ascaridoids, and endogenous Δ4- and Δ7-DAs were detected in them by LC-MS analysis. Differential transcription analysis between T. canis and A. suum suggests that ins-17 and ins-18 homologues are specifically involved in regulating development and migration in T. canis larvae in host tissues. Conclusion The findings of this study provide a basis for functional explorations of insulin-like peptides, signalling hormones (i.e. DAs) and related nuclear receptors, proposed to link to development and/or parasite-host interactions in T. canis. Elucidating the functional roles of these molecules might contribute to the discovery of novel anthelmintic targets in ascaridoids. Electronic supplementary material The online version of this article (10.1186/s13071-018-3265-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Shuai Nie
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gavin E Reid
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
22
|
Wang Z, Schaffer NE, Kliewer SA, Mangelsdorf DJ. Nuclear receptors: emerging drug targets for parasitic diseases. J Clin Invest 2017; 127:1165-1171. [PMID: 28165341 PMCID: PMC5373876 DOI: 10.1172/jci88890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Parasitic worms infect billions of people worldwide. Current treatments rely on a small group of drugs that have been used for decades. A shortcoming of these drugs is their inability to target the intractable infectious stage of the parasite. As well-known therapeutic targets in mammals, nuclear receptors have begun to be studied in parasitic worms, where they are widely distributed and play key roles in governing metabolic and developmental transcriptional networks. One such nuclear receptor is DAF-12, which is required for normal nematode development, including the all-important infectious stage. Here we review the emerging literature that implicates DAF-12 and potentially other nuclear receptors as novel anthelmintic targets.
Collapse
Affiliation(s)
| | | | | | - David J. Mangelsdorf
- Department of Pharmacology
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
23
|
Takemura T, Okabe M. Serum α-klotho concentrations during preimplantation can predict aging or quality of human oocytes and clinical pregnancy rates. SPRINGERPLUS 2016; 5:53. [PMID: 26835233 PMCID: PMC4720619 DOI: 10.1186/s40064-016-1706-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022]
Abstract
Background To discover simple biomarkers to evaluate the aging or quality of human oocytes and clinical pregnancy rates is needed. However, the association among serum α-klotho concentrations during preimplantation, the aging or quality of human oocytes and clinical pregnancy rates has not been investigated. Findings
The serum α-klotho concentrations during preimplantation decreased due to aging (p < 0.001), whereas the maturation rates of human oocytes (p < 0.001) and the fertilization rates (p < 0.001) improved in association with increased serum α-klotho concentrations. Furthermore, multiple logistic regression analysis showed that the clinical pregnancy rates were influenced by serum α-klotho concentrations during preimplantation (p < 0.001), the patient’s age (p = 0.003), maturation rates of human oocytes (p < 0.001), fertilization rates (p < 0.001) and the serum 25 (OH) D levels (p < 0.001) regardless of race (p = 0.29) and BMI (p = 0.96). Conclusion
The serum α-klotho concentrations during preimplantation would be a simple biomarker in order to predict the aging or quality of human oocytes and clinical pregnancy rates.
Collapse
Affiliation(s)
- Takashi Takemura
- Reproductive Medicine Institute Japan, Nakano-ku, Chuo, 3-37-12, Tokyo, 164-0011 Japan
| | - Midori Okabe
- Reproductive Medicine Institute Japan, Nakano-ku, Chuo, 3-37-12, Tokyo, 164-0011 Japan
| |
Collapse
|
24
|
Albarqi MMY, Stoltzfus JD, Pilgrim AA, Nolan TJ, Wang Z, Kliewer SA, Mangelsdorf DJ, Lok JB. Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid. PLoS Pathog 2016; 12:e1005358. [PMID: 26727267 PMCID: PMC4703199 DOI: 10.1371/journal.ppat.1005358] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022] Open
Abstract
The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 μM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 μM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24-48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 μM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 μM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest; and that endogenous DA production regulates iL3 activation.
Collapse
Affiliation(s)
- Mennatallah M. Y. Albarqi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Hollins University, Roanoke, Virginia, United States of America
| | - Jonathan D. Stoltzfus
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Hollins University, Roanoke, Virginia, United States of America
| | - Adeiye A. Pilgrim
- Department of Biology, Hollins University, Roanoke, Virginia, United States of America
| | - Thomas J. Nolan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhu Wang
- Department of Pharmacology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
| | - Steven A. Kliewer
- Department of Pharmacology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
| | - David J. Mangelsdorf
- Department of Pharmacology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kaplan REW, Chen Y, Moore BT, Jordan JM, Maxwell CS, Schindler AJ, Baugh LR. dbl-1/TGF-β and daf-12/NHR Signaling Mediate Cell-Nonautonomous Effects of daf-16/FOXO on Starvation-Induced Developmental Arrest. PLoS Genet 2015; 11:e1005731. [PMID: 26656736 PMCID: PMC4676721 DOI: 10.1371/journal.pgen.1005731] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/18/2015] [Indexed: 11/23/2022] Open
Abstract
Nutrient availability has profound influence on development. In the nematode C. elegans, nutrient availability governs post-embryonic development. L1-stage larvae remain in a state of developmental arrest after hatching until they feed. This “L1 arrest” (or "L1 diapause") is associated with increased stress resistance, supporting starvation survival. Loss of the transcription factor daf-16/FOXO, an effector of insulin/IGF signaling, results in arrest-defective and starvation-sensitive phenotypes. We show that daf-16/FOXO regulates L1 arrest cell-nonautonomously, suggesting that insulin/IGF signaling regulates at least one additional signaling pathway. We used mRNA-seq to identify candidate signaling molecules affected by daf-16/FOXO during L1 arrest. dbl-1/TGF-β, a ligand for the Sma/Mab pathway, daf-12/NHR and daf-36/oxygenase, an upstream component of the daf-12 steroid hormone signaling pathway, were up-regulated during L1 arrest in a daf-16/FOXO mutant. Using genetic epistasis analysis, we show that dbl-1/TGF-β and daf-12/NHR steroid hormone signaling pathways are required for the daf-16/FOXO arrest-defective phenotype, suggesting that daf-16/FOXO represses dbl-1/TGF-β, daf-12/NHR and daf-36/oxygenase. The dbl-1/TGF-β and daf-12/NHR pathways have not previously been shown to affect L1 development, but we found that disruption of these pathways delayed L1 development in fed larvae, consistent with these pathways promoting development in starved daf-16/FOXO mutants. Though the dbl-1/TGF-β and daf-12/NHR pathways are epistatic to daf-16/FOXO for the arrest-defective phenotype, disruption of these pathways does not suppress starvation sensitivity of daf-16/FOXO mutants. This observation uncouples starvation survival from developmental arrest, indicating that DAF-16/FOXO targets distinct effectors for each phenotype and revealing that inappropriate development during starvation does not cause the early demise of daf-16/FOXO mutants. Overall, this study shows that daf-16/FOXO promotes developmental arrest cell-nonautonomously by repressing pathways that promote larval development. Animals must cope with feast and famine in the wild. Environmental fluctuations require a balancing act between development in favorable conditions and survival during starvation. Disruption of the pathways that govern this balance can lead to cancer, where cells proliferate when they should not, and metabolic diseases, where nutrient sensing is impaired. In the roundworm Caenorhabditis elegans, larval development is controlled by nutrient availability. Larvae are able to survive starvation by stopping development and starting again after feeding. Stopping and starting development in this multicellular animal requires signaling to coordinate development across tissues and organs. How such coordination is accomplished is poorly understood. Insulin/insulin-like growth factor (IGF) signaling governs larval development in response to nutrient availability. Here we show that insulin/IGF signaling activity in one tissue can affect the development of other tissues, suggesting regulation of additional signaling pathways. We identified two pathways that promote development in fed larvae and are repressed by lack of insulin/IGF signaling in starved larvae. Repression of these pathways is crucial to stopping development throughout the animal during starvation. These three pathways are widely conserved and associated with disease, suggesting the nutrient-dependent regulatory network they comprise is important to human health.
Collapse
Affiliation(s)
- Rebecca E. W. Kaplan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Yutao Chen
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Brad T. Moore
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - James M. Jordan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Colin S. Maxwell
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Adam J. Schindler
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Narasimhan K, Lambert SA, Yang AWH, Riddell J, Mnaimneh S, Zheng H, Albu M, Najafabadi HS, Reece-Hoyes JS, Fuxman Bass JI, Walhout AJM, Weirauch MT, Hughes TR. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities. eLife 2015; 4. [PMID: 25905672 PMCID: PMC4434323 DOI: 10.7554/elife.06967] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs. DOI:http://dx.doi.org/10.7554/eLife.06967.001 Many scientists use ‘model’ species—such as the fruit fly or a nematode worm called Caenorhabditis elegans—in their research because these organisms have useful features that make it easier to carry out many experiments. For example, C. elegans has a smaller genome compared to many other animals, which is useful for studying the roles of individual genes or stretches of DNA. Transcription factors are a type of protein that can bind to specific stretches of DNA and help to switch certain genes on or off. These ‘motifs’ may be close to the gene or further away in the genome, and therefore, must stand out amongst the rest of the DNA, like lights on a landing strip. However, the motifs for only 10% of the estimated 763 transcription factors in C. elegans have been identified so far. In this study, Narasimhan, Lambert, Yang et al. used a technique called a ‘protein binding microarray’ to identify the motifs for many more of the C. elegans transcription factors. These findings were then used to predict motifs for other transcription factors. Together, these methods increased the proportion of C. elegans transcription factors with known DNA-binding motifs from 10% to around 40%. Now that more DNA motifs have been identified, it is possible to look for similarities and differences between them. For example, Narasimhan, Lambert, Yang et al. found that transcription factors with similar sequences can bind to very varied motifs. On the other hand, some transcription factors that are very different are able to recognize very similar motifs. The experiments also indicate that motifs found very close to genes—in sequences known as ‘promoters’—may be able to interact with many proteins to influence the activity of genes. Narasimhan, Lambert, Yang et al.'s findings increase the number of C. elegans transcription factors with a motif, bringing the knowledge of these proteins more in line with the better-studied transcription factors of humans and fruit flies. The next challenge is to identify DNA motifs for the remaining 60% of transcription factors. DOI:http://dx.doi.org/10.7554/eLife.06967.002
Collapse
Affiliation(s)
- Kamesh Narasimhan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Samuel A Lambert
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ally W H Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Jeremy Riddell
- Department of Molecular and Cellular Physiology, Systems Biology and Physiology Program, University of Cincinnati, Cincinnati, United States
| | - Sanie Mnaimneh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Hong Zheng
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Mihai Albu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Hamed S Najafabadi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - John S Reece-Hoyes
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Juan I Fuxman Bass
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Albertha J M Walhout
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Caenorhabditis elegans microRNAs of the let-7 family act in innate immune response circuits and confer robust developmental timing against pathogen stress. Proc Natl Acad Sci U S A 2015; 112:E2366-75. [PMID: 25897023 DOI: 10.1073/pnas.1422858112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals maintain their developmental robustness against natural stresses through numerous regulatory mechanisms, including the posttranscriptional regulation of gene expression by microRNAs (miRNAs). Caenorhabditis elegans miRNAs of the let-7 family (let-7-Fam) function semiredundantly to confer robust stage specificity of cell fates in the hypodermal seam cell lineages. Here, we show reciprocal regulatory interactions between let-7-Fam miRNAs and the innate immune response pathway in C. elegans. Upon infection of C. elegans larvae with the opportunistic human pathogen Pseudomonas aeruginosa, the developmental timing defects of certain let-7-Fam miRNA mutants are enhanced. This enhancement is mediated by the p38 MAPK innate immune pathway acting in opposition to let-7-Fam miRNA activity, possibly via the downstream Activating Transcription Factor-7 (ATF-7). Furthermore, let-7-Fam miRNAs appear to exert negative regulation on the worm's resistance to P. aeruginosa infection. Our results show that the inhibition of pathogen resistance by let-7 involves downstream heterochronic genes and the p38 MAPK pathway. These findings suggest that let-7-Fam miRNAs are integrated into innate immunity gene regulatory networks, such that this family of miRNAs modulates immune responses while also ensuring robust timing of developmental events under pathogen stress.
Collapse
|
28
|
Synthetic DAF-12 modulators with potential use in controlling the nematode life cycle. Biochem J 2015; 465:175-84. [PMID: 25374049 DOI: 10.1042/bj20140833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dafachronic acids (DAs) are 3-keto cholestenoic acids bearing a carboxylic acid moiety at the end of the steroid side chain. These compounds interact with the DAF-12 receptor, a ligand-dependent transcription factor that acts as a molecular switch mediating the choice between arrest at diapause or progression to reproductive development and adult lifespan in different nematodes. Recently, we reported that the 27-nor-Δ4-DA was able to directly activate DAF-12 in a transactivation cell-based luciferase assay and rescued the Mig phenotype of daf-9(rh50) Caenorhabditis elegans mutants. In the present paper, to investigate further the relationship between the structure of the steroid side chain and DAF-12 activity, we evaluated the in vitro and in vivo activity of Δ4-DA analogues with modified side chains using transactivation cell-based assays and daf-9(dh6) C. elegans mutants. Our results revealed that introduction of a 24,25-double bond on the cholestenoic acid side chain did not affect DAF-12 activity, whereas shortening the side chain lowered the activity. Most interestingly, the C24 alcohol 24-hydroxy-4-cholen-3-one (6) was an antagonist of the DAF-12 receptor both in vitro and in vivo.
Collapse
|
29
|
Cohen ML, Kim S, Morita K, Kim SH, Han M. The GATA factor elt-1 regulates C. elegans developmental timing by promoting expression of the let-7 family microRNAs. PLoS Genet 2015; 11:e1005099. [PMID: 25816370 PMCID: PMC4376641 DOI: 10.1371/journal.pgen.1005099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/24/2015] [Indexed: 01/03/2023] Open
Abstract
Postembryonic development in Caenorhabditis elegans is a powerful model for the study of the temporal regulation of development and for the roles of microRNAs in controlling gene expression. Stable switch-like changes in gene expression occur during development as stage-specific microRNAs are expressed and subsequently down-regulate other stage-specific factors, driving developmental progression. Key genes in this regulatory network are phylogenetically conserved and include the post-transcriptional microRNA repressor LIN-28; the nuclear hormone receptor DAF-12; and the microRNAs LIN-4, LET-7, and the three LET-7 family miRNAs (miR-48, miR-84, and miR-241). DAF-12 is known to regulate transcription of miR-48, miR-84 and miR-241, but its contribution is insufficient to account for all of the transcriptional regulation implied by the mutant phenotypes. In this work, the GATA-family transcription factor ELT-1 is identified from a genetic enhancer screen as a regulator of developmental timing in parallel to DAF-12, and is shown to do so by promoting the expression of the LET-7, miR-48, miR-84, and miR-241 microRNAs. The role of ELT-1 in developmental timing is shown to be separate from its role in cell-fate maintenance during post-embryonic development. In addition, analysis of Chromatin Immnoprecipitation (ChIP) data from the modENCODE project and this work suggest that the contribution of ELT-1 to the control of let-7 family microRNA expression is likely through direct transcription regulation. In the nematode roundworm C. elegans, seam cells, a type of adult stem cell, divide in a completely predictable manner throughout post-embryonic development. Study of the control of the timing of these cells’ division and differentiation led to the discovery of the first microRNAs, which are small non-coding RNAs that regulate the expression of protein-coding mRNAs, but knowledge of the regulation of expression of microRNAs themselves within C. elegans stem cells remains incomplete. In this study, the GATA-family transcription factor elt-1, known to be important for the formation and maintenance of tissues during embryonic and post-embryonic development, is found to regulate the expression of let-7 family microRNAs in stem cells during late developmental stages. It is found to do so redundantly with daf-12, the only other transcription factor previously known to directly regulate microRNA expression in C. elegans. In addition, the presence of ELT-1 in vivo binding near microRNA coding DNA sequences suggests that its contribution to the regulation of microRNA expression is likely through direct regulation of transcription. Stem cells are important in development, tissue homeostasis, and malignancy, so additional knowledge of the mechanisms underlying their maintenance, renewal, and differentiation is of broad interest.
Collapse
Affiliation(s)
- Max L. Cohen
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Sunhong Kim
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Incurable Disease Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Kiyokazu Morita
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Seong Heon Kim
- Incurable Disease Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Min Han
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
30
|
Wang Z, Stoltzfus J, You YJ, Ranjit N, Tang H, Xie Y, Lok JB, Mangelsdorf DJ, Kliewer SA. The nuclear receptor DAF-12 regulates nutrient metabolism and reproductive growth in nematodes. PLoS Genet 2015; 11:e1005027. [PMID: 25774872 PMCID: PMC4361679 DOI: 10.1371/journal.pgen.1005027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 01/27/2015] [Indexed: 12/22/2022] Open
Abstract
Appropriate nutrient response is essential for growth and reproduction. Under favorable nutrient conditions, the C. elegans nuclear receptor DAF-12 is activated by dafachronic acids, hormones that commit larvae to reproductive growth. Here, we report that in addition to its well-studied role in controlling developmental gene expression, the DAF-12 endocrine system governs expression of a gene network that stimulates the aerobic catabolism of fatty acids. Thus, activation of the DAF-12 transcriptome coordinately mobilizes energy stores to permit reproductive growth. DAF-12 regulation of this metabolic gene network is conserved in the human parasite, Strongyloides stercoralis, and inhibition of specific steps in this network blocks reproductive growth in both of the nematodes. Our study provides a molecular understanding for metabolic adaptation of nematodes to their environment, and suggests a new therapeutic strategy for treating parasitic diseases.
Collapse
Affiliation(s)
- Zhu Wang
- Deparment of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jonathan Stoltzfus
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Young-jai You
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Najju Ranjit
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hao Tang
- Department of Clinical Science, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Yang Xie
- Department of Clinical Science, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - James B. Lok
- Department of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David J. Mangelsdorf
- Deparment of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Steven A. Kliewer
- Deparment of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| |
Collapse
|
31
|
Weaver BP, Zabinsky R, Weaver YM, Lee ES, Xue D, Han M. CED-3 caspase acts with miRNAs to regulate non-apoptotic gene expression dynamics for robust development in C. elegans. eLife 2014; 3:e04265. [PMID: 25432023 PMCID: PMC4279084 DOI: 10.7554/elife.04265] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/26/2014] [Indexed: 12/29/2022] Open
Abstract
Genetic redundancy and pleiotropism have limited the discovery of functions associated with miRNAs and other regulatory mechanisms. To overcome this, we performed an enhancer screen for developmental defects caused by compromising both global miRISC function and individual genes in Caenorhabditis elegans. Among 126 interactors with miRNAs, we surprisingly found the CED-3 caspase that has only been well studied for its role in promoting apoptosis, mostly through protein activation. We provide evidence for a non-apoptotic function of CED-3 caspase that regulates multiple developmental events through proteolytic inactivation. Specifically, LIN-14, LIN-28, and DISL-2 proteins are known miRNA targets, key regulators of developmental timing, and/or stem cell pluripotency factors involved in miRNA processing. We show CED-3 cleaves these proteins in vitro. We also show CED-3 down-regulates LIN-28 in vivo, possibly rendering it more susceptible to proteasomal degradation. This mechanism may critically contribute to the robustness of gene expression dynamics governing proper developmental control. DOI:http://dx.doi.org/10.7554/eLife.04265.001 For an organism to develop from a single cell into a collection of many different, specialized cells, different genes must be switched on or off at particular times. However, some of these genes involved in development are ‘redundant’ and carry out the same or similar tasks. This acts like a backup system, so if one of the genes is unable to complete a task, the others can compensate and the organism will still develop correctly. To produce a protein from a gene, the DNA sequence that makes up the gene is used as a template to create another molecule called messenger RNA. Genes can also be ‘silenced’—prevented from making proteins—by small molecules called microRNAs, which bind to messenger RNA molecules and mark them for destruction. MicroRNA molecules therefore play an important role in controlling development. However, as many microRNA molecules often work together, and as many genes are redundant, it can be difficult to discover the effects of specific microRNAs. It is also difficult to discover whether any other mechanisms work alongside the microRNAs to control development. Weaver, Zabinsky et al. used mutant forms of the nematode worm Caenorhabditis elegans, in which microRNA gene regulation did not work correctly, to investigate the mechanisms that work alongside microRNAs to control development. Genes in these worms were silenced; those silenced genes that caused additional developmental defects were considered likely to work ‘redundantly’ in the same role as a microRNA molecule. This revealed over one hundred genes that were previously unknown to work with microRNA molecules. Weaver, Zabinsky et al. focused on one of these genes, called ced-3. The CED-3 protein produced from this gene is known to execute programmed cell death, a carefully controlled process also known as apoptosis, but was not known to have other developmental functions. However, the worms with mutant forms of the ced-3 gene already have problems performing apoptosis but are otherwise relatively normal, so Weaver, Zabinsky et al. reasoned that the CED-3 protein must also have another role in development. Further investigation revealed that ced-3 mutations most severely disrupt development when they are combined with mutations in one particular family of microRNAs. These microRNAs are particularly important for controlling both when cells specialize into a particular type of cell, and the timing of when certain stages of development happen. Experiments using purified proteins showed that CED-3 breaks down three proteins that are produced from genes controlled by this family of microRNA molecules, and one of these proteins was also broken down by CED-3 in experiments with mutant worms. Weaver, Zabinsky et al. therefore propose that CED-3 is part of a semi-redundant system that ensures the proteins are produced at the right level and at the right time even if the microRNAs insufficiently regulate them. This finding demonstrated both a specific role and specific targets for the CED-3 protein during development, entirely distinct from its role in apoptosis. Although Weaver, Zabinsky et al. have identified a large number of genes that work alongside microRNAs to control development, these are only the genes that cause obvious developmental defects in healthy worms. Further experiments using similar techniques performed on worms under stress may reveal yet more such genes. DOI:http://dx.doi.org/10.7554/eLife.04265.002
Collapse
Affiliation(s)
- Benjamin P Weaver
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Rebecca Zabinsky
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Yi M Weaver
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Eui Seung Lee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Min Han
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
32
|
Watson E, Walhout AJM. Caenorhabditis elegans metabolic gene regulatory networks govern the cellular economy. Trends Endocrinol Metab 2014; 25:502-8. [PMID: 24731597 PMCID: PMC4178166 DOI: 10.1016/j.tem.2014.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 11/24/2022]
Abstract
Diet greatly impacts metabolism in health and disease. In response to the presence or absence of specific nutrients, metabolic gene regulatory networks sense the metabolic state of the cell and regulate metabolic flux accordingly, for instance by the transcriptional control of metabolic enzymes. Here, we discuss recent insights regarding metazoan metabolic regulatory networks using the nematode Caenorhabditis elegans as a model, including the modular organization of metabolic gene regulatory networks, the prominent impact of diet on the transcriptome and metabolome, specialized roles of nuclear hormone receptors (NHRs) in responding to dietary conditions, regulation of metabolic genes and metabolic regulators by miRNAs, and feedback between metabolic genes and their regulators.
Collapse
Affiliation(s)
- Emma Watson
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, 55 North Lake Ave, Worcester, MA, 01655, USA
| | - Albertha J M Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, 55 North Lake Ave, Worcester, MA, 01655, USA.
| |
Collapse
|
33
|
Posadas DM, Carthew RW. MicroRNAs and their roles in developmental canalization. Curr Opin Genet Dev 2014; 27:1-6. [PMID: 24791686 PMCID: PMC4125612 DOI: 10.1016/j.gde.2014.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/15/2014] [Indexed: 01/01/2023]
Abstract
Robustness is a fundamental property of biological systems. The type of robustness that ensures uniform phenotypic outcomes in the face of variation during an organism's development is called canalization. Here, we discuss the roles that microRNAs play in providing canalization to animal development, citing recent theoretical and experimental advances. MicroRNAs repress protein expression, and they do this in ways that create thresholds in expression and provide adaptation to regulatory networks. Numerous examples have now been described where the developmental impact of environmental variation is suppressed by individual microRNAs. A recent paper has found that the impact of genomic variation between individuals is similarly suppressed by a microRNA operating in a developmental network. Thus, genetic variability is held in check, which is potentially important for both animal evolution and manifestation of disease.
Collapse
Affiliation(s)
- Diana M Posadas
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
34
|
Huang TF, Cho CY, Cheng YT, Huang JW, Wu YZ, Yeh AYC, Nishiwaki K, Chang SC, Wu YC. BLMP-1/Blimp-1 regulates the spatiotemporal cell migration pattern in C. elegans. PLoS Genet 2014; 10:e1004428. [PMID: 24968003 PMCID: PMC4072510 DOI: 10.1371/journal.pgen.1004428] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/20/2014] [Indexed: 12/31/2022] Open
Abstract
Spatiotemporal regulation of cell migration is crucial for animal development and organogenesis. Compared to spatial signals, little is known about temporal signals and the mechanisms integrating the two. In the Caenorhabditis elegans hermaphrodite, the stereotyped migration pattern of two somatic distal tip cells (DTCs) is responsible for shaping the gonad. Guidance receptor UNC-5 is necessary for the dorsalward migration of DTCs. We found that BLMP-1, similar to the mammalian zinc finger transcription repressor Blimp-1/PRDI-BF1, prevents precocious dorsalward turning by inhibiting precocious unc-5 transcription and is only expressed in DTCs before they make the dorsalward turn. Constitutive expression of blmp-1 when BLMP-1 would normally disappear delays unc-5 transcription and causes turn retardation, demonstrating the functional significance of blmp-1 down-regulation. Correct timing of BLMP-1 down-regulation is redundantly regulated by heterochronic genes daf-12, lin-29, and dre-1, which regulate the temporal fates of various tissues. DAF-12, a steroid hormone receptor, and LIN-29, a zinc finger transcription factor, repress blmp-1 transcription, while DRE-1, the F-Box protein of an SCF ubiquitin ligase complex, binds to BLMP-1 and promotes its degradation. We have therefore identified a gene circuit that integrates the temporal and spatial signals and coordinates with overall development of the organism to direct cell migration during organogenesis. The tumor suppressor gene product FBXO11 (human DRE-1 ortholog) also binds to PRDI-BF1 in human cell cultures. Our data suggest evolutionary conservation of these interactions and underscore the importance of DRE-1/FBXO11-mediated BLMP-1/PRDI-BF1 degradation in cellular state transitions during metazoan development. The migratory path of DTCs determines the shape of the C. elegans gonad. How the spatiotemporal migration pattern is regulated is not clear. We identified a conserved transcription factor BLMP-1 as a central component of a gene regulatory circuit required for the spatiotemporal control of DTC migration. BLMP-1 levels regulate the timing of the DTC dorsal turn, as high levels delay the turn and low levels result in an early turn. We identify and characterize upstream regulators that control BLMP-1 levels. These regulators function in two ways, i.e. by destabilization of BLMP-1 through ubiquitin-mediated proteolysis and by transcriptional repression of the blmp-1 gene to down-regulate BLMP-1. Interestingly, blmp-1 also negatively controls these regulators. Our data suggest that a dietary signal input acts together with a double-negative feedback loop to switch DTCs from the “blmp-1-on” to the “blmp-1-off” state, promoting their dorsal turn. Furthermore, we show that some protein interactions in the circuit are conserved in C. elegans and humans. Our work defines a novel function of the conserved blmp-1 gene in the temporal control of cell migration, and establishes a gene regulatory circuit that integrates the temporal and spatial inputs to direct cell migration during organogenesis.
Collapse
Affiliation(s)
- Tsai-Fang Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chun-Yi Cho
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Cheng
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Jheng-Wei Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yun-Zhe Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Athena Yi-Chun Yeh
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Kiyoji Nishiwaki
- Department of Bioscience, Kwansei Gakuin University, Gakuen, Sanda, Japan
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Ferguson AA, Roy S, Kormanik KN, Kim Y, Dumas KJ, Ritov VB, Matern D, Hu PJ, Fisher AL. TATN-1 mutations reveal a novel role for tyrosine as a metabolic signal that influences developmental decisions and longevity in Caenorhabditis elegans. PLoS Genet 2013; 9:e1004020. [PMID: 24385923 PMCID: PMC3868569 DOI: 10.1371/journal.pgen.1004020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Recent work has identified changes in the metabolism of the aromatic amino acid tyrosine as a risk factor for diabetes and a contributor to the development of liver cancer. While these findings could suggest a role for tyrosine as a direct regulator of the behavior of cells and tissues, evidence for this model is currently lacking. Through the use of RNAi and genetic mutants, we identify tatn-1, which is the worm ortholog of tyrosine aminotransferase and catalyzes the first step of the conserved tyrosine degradation pathway, as a novel regulator of the dauer decision and modulator of the daf-2 insulin/IGF-1-like (IGFR) signaling pathway in Caenorhabditis elegans. Mutations affecting tatn-1 elevate tyrosine levels in the animal, and enhance the effects of mutations in genes that lie within the daf-2/insulin signaling pathway or are otherwise upstream of daf-16/FOXO on both dauer formation and worm longevity. These effects are mediated by elevated tyrosine levels as supplemental dietary tyrosine mimics the phenotypes produced by a tatn-1 mutation, and the effects still occur when the enzymes needed to convert tyrosine into catecholamine neurotransmitters are missing. The effects on dauer formation and lifespan require the aak-2/AMPK gene, and tatn-1 mutations increase phospho-AAK-2 levels. In contrast, the daf-16/FOXO transcription factor is only partially required for the effects on dauer formation and not required for increased longevity. We also find that the controlled metabolism of tyrosine by tatn-1 may function normally in dauer formation because the expression of the TATN-1 protein is regulated both by daf-2/IGFR signaling and also by the same dietary and environmental cues which influence dauer formation. Our findings point to a novel role for tyrosine as a developmental regulator and modulator of longevity, and support a model where elevated tyrosine levels play a causal role in the development of diabetes and cancer in people.
Collapse
Affiliation(s)
- Annabel A. Ferguson
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sudipa Roy
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Kaitlyn N. Kormanik
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yongsoon Kim
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kathleen J. Dumas
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vladimir B. Ritov
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dietrich Matern
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Patrick J. Hu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Internal Medicine and Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alfred L. Fisher
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- GRECC, South Texas VA Health Care System, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Monsalve GC, Frand AR. Toward a unified model of developmental timing: A "molting" approach. WORM 2013; 1:221-30. [PMID: 24058853 PMCID: PMC3670223 DOI: 10.4161/worm.20874] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 02/06/2023]
Abstract
Animal development requires temporal coordination between recurrent processes and sequential events, but the underlying timing mechanisms are not yet understood. The molting cycle of C. elegans provides an ideal system to study this basic problem. We recently characterized LIN-42, which is related to the circadian clock protein PERIOD, as a key component of the developmental timer underlying rhythmic molting cycles. In this context, LIN-42 coordinates epithelial stem cell dynamics with progression of the molting cycle. Repeated actions of LIN-42 may enable the reprogramming of seam cell temporal fates, while stage-specific actions of LIN-42 and other heterochronic genes select fates appropriate for upcoming, rather than passing, life stages. Here, we discuss the possible configuration of the molting timer, which may include interconnected positive and negative regulatory loops among lin-42, conserved nuclear hormone receptors such as NHR-23 and -25, and the let-7 family of microRNAs. Physiological and environmental conditions may modulate the activities of particular components of this molting timer. Finding that LIN-42 regulates both a sleep-like behavioral state and epidermal stem cell dynamics further supports the model of functional conservation between LIN-42 and mammalian PERIOD proteins. The molting timer may therefore represent a primitive form of a central biological clock and provide a general paradigm for the integration of rhythmic and developmental processes.
Collapse
Affiliation(s)
- Gabriela C Monsalve
- Department of Biological Chemistry; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | | |
Collapse
|
37
|
Hansen M, Flatt T, Aguilaniu H. Reproduction, fat metabolism, and life span: what is the connection? Cell Metab 2013; 17:10-9. [PMID: 23312280 PMCID: PMC3567776 DOI: 10.1016/j.cmet.2012.12.003] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/23/2012] [Accepted: 12/06/2012] [Indexed: 11/20/2022]
Abstract
Reduced reproduction is associated with increased fat storage and prolonged life span in multiple organisms, but the underlying regulatory mechanisms remain poorly understood. Recent studies in several species provide evidence that reproduction, fat metabolism, and longevity are directly coupled. For instance, germline removal in the nematode Caenorhabditis elegans promotes longevity in part by modulating lipid metabolism through effects on fatty acid desaturation, lipolysis, and autophagy. Here, we review these recent studies and discuss the mechanisms by which reproduction modulates fat metabolism and life span. Elucidating the relationship between these processes could contribute to our understanding of age-related diseases including metabolic disorders.
Collapse
Affiliation(s)
- Malene Hansen
- Sanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and StemCell Research Center, Program of Development and Aging, La Jolla, CA, USA
| | - Thomas Flatt
- Institute of Population Genetics, Department of Biomedical Sciences, Vetmeduni Vienna, Vienna, Austria
- Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Berlin, Germany
- As of December 2012: Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Hugo Aguilaniu
- Ecole normale supérieure de Lyon; CNRS; Université de Lyon Claude Bernard; Molecular Biology of the Cell Laboratory/UMR5239, Lyon, France
| |
Collapse
|
38
|
Abstract
Hormones play a critical role in driving major stage transitions and developmental timing events in many species. In the nematode C. elegans the steroid hormone receptor, DAF-12, works at the confluence of pathways regulating developmental timing, stage specification, and longevity. DAF-12 couples environmental and physiologic signals to life history regulation, and it is embedded in a rich architecture governing diverse processes. Here, we highlight the molecular insights, extraordinary circuitry, and signaling pathways governing life stage transitions in the worm and how they have yielded fundamental insights into steroid regulation of biological time.
Collapse
Affiliation(s)
- Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| |
Collapse
|
39
|
|
40
|
Abstract
Epigenetic regulation and interactions between transcription factors and regulatory genomic regions play crucial roles in controlling transcriptional regulatory networks that drive development, environmental responses, and disease. Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) and ChIP followed by genomic tiling microarray hybridization (ChIP-chip) are the two of the most widely used technologies for genome-wide identification of DNA protein interactions and histone modification in vivo. Many algorithms and tools have been developed and evaluated that allow identification of transcription factor binding sites from ChIP-seq or ChIP-chip datasets. However, binding site identification is only the first step; the ultimate goal is to discover the regulatory network of the transcription factor (TF). Here, we present a common workflow for downstream analysis of ChIP-chip and ChIP-seq with an emphasis on annotating binding sites and integration with gene expression data to identify direct and indirect targets of the TF. These tools will help with the overall goal of unraveling transcriptional regulatory networks using datasets publicly available in GEO.
Collapse
|
41
|
Ghazi A. Transcriptional networks that mediate signals from reproductive tissues to influence lifespan. Genesis 2012; 51:1-15. [DOI: 10.1002/dvg.22345] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 12/15/2022]
|
42
|
Alvarez LD, Mañez PA, Estrin DA, Burton G. The Caenorhabditis elegans DAF-12 nuclear receptor: structure, dynamics, and interaction with ligands. Proteins 2012; 80:1798-809. [PMID: 22489014 DOI: 10.1002/prot.24076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/13/2012] [Accepted: 03/18/2012] [Indexed: 11/08/2022]
Abstract
A structure for the ligand binding domain (LBD) of the DAF-12 receptor from Caenorhabditis elegans was obtained from the X-ray crystal structure of the receptor LBD from Strongyloides stercoralis bound to (25R)-Δ(7)-dafachronic acid (DA) (pdb:3GYU). The model was constructed in the presence of the ligand using a combination of Modeller, Autodock, and molecular dynamics (MD) programs, and then its dynamical behavior was studied by MD. A strong ligand binding mode (LBM) was found, with the three arginines in the ligand binding pocket (LBP) contacting the C-26 carboxylate group of the DA. The quality of the ceDAF-12 model was then evaluated by constructing several ligand systems for which the experimental activity is known. Thus, the dynamical behavior of the ceDAF-12 complex with the more active (25S)-Δ(7)-DA showed two distinct binding modes, one of them being energetically more favorable compared with the 25R isomer. Then the effect of the Arg564Cys and Arg598Met mutations on the (25R)-Δ(7)-DA binding was analyzed. The MD simulations showed that in the first case the complex was unstable, consistent with the lack of transactivation activity of (25R)-Δ(7)-DA in this mutant. Instead, in the case of the Arg598Met mutant, known to produce a partial loss of activity, our model predicted smaller effects on the LBM with a more stable MD trajectory. The model also showed that removal of the C-25 methyl does not impede the simultaneous strong interaction of the carboxylate with the three arginines, predicting that 27-nor-DAs are putative ceDAF-12 ligands.
Collapse
Affiliation(s)
- Lautaro D Alvarez
- Departamento de Química Orgánica and UMYMFOR, CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
43
|
McCormick M, Chen K, Ramaswamy P, Kenyon C. New genes that extend Caenorhabditis elegans' lifespan in response to reproductive signals. Aging Cell 2012; 11:192-202. [PMID: 22081913 DOI: 10.1111/j.1474-9726.2011.00768.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In Caenorhabditis elegans and Drosophila, removing germline stem cells increases lifespan. In C. elegans, this lifespan extension requires DAF-16, a FOXO transcription factor, and DAF-12, a nuclear hormone receptor. To better understand the regulatory relationships between DAF-16 and DAF-12, we used microarray analysis to identify downstream genes. We found that these two transcription factors influence the expression of distinct but overlapping sets of genes in response to loss of the germline. In addition, we identified several new genes that are required for loss of the germline to increase lifespan. One, phi-62, encodes a conserved, predicted RNA-binding protein. PHI-62 influences DAF-16-dependent transcription, possibly by collaborating with TCER-1, a putative transcription elongation factor, and FTT-2, a 14-3-3 protein known to bind DAF-16. Three other genes encode proteins involved in lipid metabolism; one is a triacylglycerol lipase, and another is an acyl-CoA reductase. These genes do not noticeably affect bulk fat storage levels; therefore, we propose a model in which they may influence production of a lifespan-extending signal or metabolite.
Collapse
Affiliation(s)
- Mark McCormick
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
44
|
Saini R, Boland S, Kataeva O, Schmidt AW, Kurzchalia TV, Knölker HJ. Stereoselective synthesis and hormonal activity of novel dafachronic acids and naturally occurring steroids isolated from corals. Org Biomol Chem 2012; 10:4159-63. [PMID: 22434373 DOI: 10.1039/c2ob25394a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stereoselective synthesis of (25S)-Δ(1)-, (25S)-Δ(1,4)-, (25S)-Δ(1,7)-, (25S)-Δ(8(14))-, (25S)-Δ(4,6,8(14))-dafachronic acid, methyl (25S)-Δ(1,4)-dafachronate and (25S)-5α-hydroxy-3,6-dioxocholest-7-en-26-oic acid is described. (25S)-Δ(1,4)-Dafachronic acid and its methyl ester are natural products isolated from corals and have been obtained by synthesis for the first time. (25S)-5α-Hydroxy-3,6-dioxocholest-7-en-26-oic acid represents a promising synthetic precursor for cytotoxic marine steroids.
Collapse
Affiliation(s)
- Ratni Saini
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Zhang Y, Moriguchi H. Chromatin remodeling system, cancer stem-like attractors, and cellular reprogramming. Cell Mol Life Sci 2011; 68:3557-71. [PMID: 21909785 PMCID: PMC11115163 DOI: 10.1007/s00018-011-0808-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/01/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
The cancer cell attractors theory provides a next-generation understanding of carcinogenesis and natural explanation of punctuated clonal expansions of tumor progression. The impressive notion of atavism of cancer is now updated but more evidence is awaited. Besides, the mechanisms that the ectopic expression of some germline genes result in somatic tumors such as melanoma and brain tumors are emerging but are not well understood. Cancer could be triggered by cells undergoing abnormal cell attractor transitions, and may be reversible with "cyto-education". From mammals to model organisms like Caenorhabditis elegans and Drosophila melanogaster, the versatile Mi-2β/nucleosome remodeling and histone deacetylation complexes along with their functionally related chromatin remodeling complexes (CRCs), i.e., the dREAM/Myb-MuvB complex and Polycomb group complex are likely master regulators of cell attractors. The trajectory that benign cells switch to cancerous could be the reverse of navigation of embryonic cells converging from a series of intermediate transcriptional states to a final adult state, which is supported by gene expression dynamics inspector assays and some cross-species genetic evidence. The involvement of CRCs in locking cancer attractors may help find the recipes of perturbing genes to achieve successful reprogramming such that the reprogrammed cancer cell function in the same way as the normal cells.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215 USA
| | - Hisashi Moriguchi
- Department of Plastic and Reconstructive Surgery, School of Medicine, The University of Tokyo, Tokyo, Japan
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
46
|
Van Nostrand EL, Kim SK. Seeing elegance in gene regulatory networks of the worm. Curr Opin Genet Dev 2011; 21:776-86. [PMID: 21963133 DOI: 10.1016/j.gde.2011.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 01/09/2023]
Abstract
There has been a recent explosion in the wealth of genomic data available to C. elegans researchers, as efforts to characterize gene expression and its regulators at a molecular level have borne significant fruit. Detailed measurement of gene expression at a variety of developmental stages, and in numerous individual tissues, has dramatically increased our understanding of cell-type-specific gene expression networks. Characterization of the targets of transcription factors, chromatin-binding proteins, and miRNAs has provided genome-wide insights into the mechanisms governing gene expression. Development of new techniques have allowed this characterization to begin to shift from whole-organism studies to tissue-level, and even single-cell-level profiling, creating a first glimpse into gene regulatory circuits at the single-cell level in a living organism. Integration of these datasets has yielded novel insights into evolution, gene expression regulation, and the link between sequence and phenotype.
Collapse
Affiliation(s)
- Eric L Van Nostrand
- Department of Genetics, Stanford University Medical Center, Stanford, CA, USA
| | | |
Collapse
|