1
|
Dam MI, Ding BJ, Brauburger K, Wang HL, Powell D, Groot AT, Heckel DG, Löfstedt C. Sex pheromone biosynthesis in the Oriental fruit moth Grapholita molesta involves Δ8 desaturation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104307. [PMID: 40169039 DOI: 10.1016/j.ibmb.2025.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
The Oriental fruit moth Grapholita molesta is distributed throughout temperate regions and considered to be a pest in peach production and other high-value fruit crops in the rose family. Insecticide treatment has led to resistance development, but the use of sex pheromones in pest management has shown great promise. We investigated the pheromone biosynthesis pathway in G. molesta with the aim of elucidating pheromone evolution in the Olethreutinae subfamily of moths and harnessing pathway genes in biotechnological production of sex pheromone for use in pest management. In vivo labelling experiments suggested that an uncommon Δ8 fatty acyl desaturase is involved in sex pheromone biosynthesis. CRISPR/Cas9 knock-out of the highly expressed candidate desaturase gene Gmol_CPRQ almost completely blocked the production of Δ8 pheromone components in vivo. Heterologous expression of Gmol_CPRQ protein in yeast- or Sf9 insect cells, however, failed to demonstrate the expected Δ8 desaturase activity. Instead, Δ9 desaturase activity was observed. Co-expression in the yeast system of the electron donor, cytochrome b5, from G. molesta still produced only Δ9 desaturase activity. We suggest that Gmol_CPRQ is intimately involved in pheromone production in vivo, via an unknown reaction mechanism that may possibly involve another co-factor that is absent in the yeast and Sf9 expression systems, or depend on its subcellular site of activity. Solving this puzzle will shed further light on pheromone biosynthesis in the family Tortricidae and will be required for successful biotechnological production of fatty acids and pheromones requiring Δ8 desaturation.
Collapse
Affiliation(s)
- Marie Inger Dam
- Department of Biology, Lund University, 223 62, Lund, Sweden.
| | - Bao-Jian Ding
- Department of Biology, Lund University, 223 62, Lund, Sweden; Xianghu Laboratory, Xiaoshan District, Hangzhou, 311215, Zhejiang, PR China
| | | | - Hong-Lei Wang
- Department of Biology, Lund University, 223 62, Lund, Sweden; Xianghu Laboratory, Xiaoshan District, Hangzhou, 311215, Zhejiang, PR China
| | - Daniel Powell
- Department of Biology, Lund University, 223 62, Lund, Sweden; Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs QLD, 4556, Australia
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, GE Amsterdam, 1090, the Netherlands
| | - David G Heckel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, GE Amsterdam, 1090, the Netherlands; Department of Entomology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Christer Löfstedt
- Department of Biology, Lund University, 223 62, Lund, Sweden; Xianghu Laboratory, Xiaoshan District, Hangzhou, 311215, Zhejiang, PR China
| |
Collapse
|
2
|
Gao S, Xue S, Gao T, Lu R, Zhang X, Zhang Y, Zhang K, Li R. Transcriptome analysis reveals the role of Zelda in the regulation of embryonic and wing development of Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:587-597. [PMID: 37476851 DOI: 10.1017/s0007485323000263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Zinc finger protein (Zelda) of Tribolium castaneum (TcZelda) has been showed to play pivotal roles in embryonic development and metamorphosis. However, the regulatory mechanism of TcZelda associated with these physiology processes is unclear. Herein, the developmental expression profile showed that Zelda of T. castaneum was highly expressed in early eggs. Tissue expression profiling revealed that TcZelda was mainly expressed in the larval head and adult ovary of late adults and late larvae. TcZelda knockdown led to a 95% mortality rate in adults. These results suggested that TcZelda is related to the activation of the zygote genome in early embryonic development. Furthermore, 592 differentially expressed genes were identified from the dsZelda treated group. Compared with the control group, altered disjunction (ALD) and AGAP005368-PA (GAP) in the dsZelda group were significantly down-regulated, while TGF-beta, propeptide (TGF) was significantly up-regulated, suggesting that TcZelda may be involved in insect embryonic development. In addition, the expression of Ubx ultrabithorax (UBX), Cx cephalothorax (CX), En engrailed (EN), and two Endocuticle structural glycoprotein sgabd (ABD) genes were significantly down-regulated, suggesting that they may cooperate with TcZelda to regulate the development of insect wings. Additionally, Elongation (ELO), fatty acid synthase (FAS), and fatty acyl-CoA desaturase (FAD) expression was inhibited in dsZelda insects, which could disturb the lipase signaling pathways, thus, disrupting the insect reproductive system and pheromone synthesis. These results may help reveal the function of TcZelda in insects and the role of certain genes in the gene regulatory network and provide new ideas for the prevention and control of T. castaneum.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Shuang Xue
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Tian Gao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Ruixue Lu
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xinyi Zhang
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Yonglei Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kunpeng Zhang
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Ruimin Li
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| |
Collapse
|
3
|
Zhang B, Li F, Qu C, Duan H, Fu Y, Luo C. A novel domain-duplicated SlitFAR3 gene involved in sex pheromone biosynthesis in Spodoptera litura. INSECT SCIENCE 2023; 30:611-624. [PMID: 36302113 DOI: 10.1111/1744-7917.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 06/15/2023]
Abstract
Fatty acyl reductases (FARs) are key enzymes that participate in sex pheromone biosynthesis by reducing fatty acids to fatty alcohols. Lepidoptera typically harbor numerous FAR gene family members. Although FAR genes are involved in the biosynthesis of sex pheromones in moths, the key FAR gene of Spodoptera litura remains unclear. In this work, we predicted 30 FAR genes from the S. litura genome and identified a domain duplication within gene SlitFAR3, which exhibited high and preferential expression in the sexually mature female pheromone glands (PGs) and a rhythmic expression pattern during the scotophase of sex pheromone production. The molecular docking of SlitFAR3, as predicted using a 3D model, revealed a co-factor NADPH binding cavity and 2 substrate binding cavities. Functional expression in yeast cells combined with comprehensive gas chromatography indicated that the SlitFAR3 gene could produce fatty alcohol products. This study is the first to focus on the special phenomenon of FAR domain duplication, which will advance our understanding of biosynthesis-related genes from the perspective of evolutionary biology.
Collapse
Affiliation(s)
- Biyun Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengqi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
4
|
Lassance JM, Ding BJ, Löfstedt C. Evolution of the codling moth pheromone via an ancient gene duplication. BMC Biol 2021; 19:83. [PMID: 33892710 PMCID: PMC8063362 DOI: 10.1186/s12915-021-01001-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Defining the origin of genetic novelty is central to our understanding of the evolution of novel traits. Diversification among fatty acid desaturase (FAD) genes has played a fundamental role in the introduction of structural variation in fatty acyl derivatives. Because of its central role in generating diversity in insect semiochemicals, the FAD gene family has become a model to study how gene family expansions can contribute to the evolution of lineage-specific innovations. Here we used the codling moth (Cydia pomonella) as a study system to decipher the proximate mechanism underlying the production of the ∆8∆10 signature structure of olethreutine moths. Biosynthesis of the codling moth sex pheromone, (E8,E10)-dodecadienol (codlemone), involves two consecutive desaturation steps, the first of which is unusual in that it generates an E9 unsaturation. The second step is also atypical: it generates a conjugated diene system from the E9 monoene C12 intermediate via 1,4-desaturation. RESULTS Here we describe the characterization of the FAD gene acting in codlemone biosynthesis. We identify 27 FAD genes corresponding to the various functional classes identified in insects and Lepidoptera. These genes are distributed across the C. pomonella genome in tandem arrays or isolated genes, indicating that the FAD repertoire consists of both ancient and recent duplications and expansions. Using transcriptomics, we show large divergence in expression domains: some genes appear ubiquitously expressed across tissue and developmental stages; others appear more restricted in their expression pattern. Functional assays using heterologous expression systems reveal that one gene, Cpo_CPRQ, which is prominently and exclusively expressed in the female pheromone gland, encodes an FAD that possesses both E9 and ∆8∆10 desaturation activities. Phylogenetically, Cpo_CPRQ clusters within the Lepidoptera-specific ∆10/∆11 clade of FADs, a classic reservoir of unusual desaturase activities in moths. CONCLUSIONS Our integrative approach shows that the evolution of the signature pheromone structure of olethreutine moths relied on a gene belonging to an ancient gene expansion. Members of other expanded FAD subfamilies do not appear to play a role in chemical communication. This advises for caution when postulating the consequences of lineage-specific expansions based on genomics alone.
Collapse
Affiliation(s)
- Jean-Marc Lassance
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Bao-Jian Ding
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| |
Collapse
|
5
|
Godoy R, Machuca J, Venthur H, Quiroz A, Mutis A. An Overview of Antennal Esterases in Lepidoptera. Front Physiol 2021; 12:643281. [PMID: 33868009 PMCID: PMC8044547 DOI: 10.3389/fphys.2021.643281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
Lepidoptera are used as a model for the study of insect olfactory proteins. Among them, odorant degrading enzymes (ODEs), that degrade odorant molecules to maintain the sensitivity of antennae, have received less attention. In particular, antennal esterases (AEs; responsible for ester degradation) are crucial for intraspecific communication in Lepidoptera. Currently, transcriptomic and genomic studies have provided AEs in several species. However, efforts in gene annotation, classification, and functional assignment are still lacking. Therefore, we propose to combine evidence at evolutionary, structural, and functional level to update ODEs as well as key information into an easier classification, particularly of AEs. Finally, the kinetic parameters for putative inhibition of ODEs are discussed in terms of its role in future integrated pest management (IPM) strategies.
Collapse
Affiliation(s)
- Ricardo Godoy
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Juan Machuca
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
6
|
Yao S, Zhou S, Li X, Liu X, Zhao W, Wei J, Du M, An S. Transcriptome Analysis of Ostrinia furnacalis Female Pheromone Gland: Esters Biosynthesis and Requirement for Mating Success. Front Endocrinol (Lausanne) 2021; 12:736906. [PMID: 34603212 PMCID: PMC8485726 DOI: 10.3389/fendo.2021.736906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Female moths use sex pheromones to attract males, and corresponding regulatory mechanism underlying sex pheromone biosynthesis is species-dependent. However, the detailed mechanism involved in sex pheromone biosynthesis in Ostrinia furnacalis has not yet been fully addressed. In the present study, transcriptome sequencing of O. furnacalis pheromone glands screened a serials of candidate genes involved in sex pheromone biosynthesis. Our analysis showed that sex pheromone release in O. furnacalis females arrives its peak at the 2nd scotophase, consistent with its mating behavior. Pheromone biosynthesis-activating neuropeptide (PBAN) was confirmed to regulate sex pheromone biosynthesis, and Ca2+ is the secondary messenger of PBAN signaling in O. furnacalis. The functional analysis of candidate genes demonstrated that the decreased mRNA levels or activities of calcineurin (CaN) and acetyl-CoA carboxylase (ACC) led to significant decrease in sex pheromone production and female capability to attract males, as demonstrated by RNAi-mediated knockdown and pharmacological inhibitor assay. Most importantly, the activities of CaN and ACC depend on the activation of PBAN/PBANR/Ca2+. Furthermore, fatty-acyl reductase 14 was involved in PBAN-mediated sex pheromone biosynthesis. Altogether, our results demonstrated that PBAN regulates sex pheromone biosynthesis through PBANR/Ca2+/CaN/ACC pathway to promote sex pheromone biosynthesis in O. furnacalis and provided a reference for non-model organism to study neuropeptide signal transduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Jizhen Wei
- *Correspondence: Jizhen Wei, ; Shiheng An,
| | | | - Shiheng An
- *Correspondence: Jizhen Wei, ; Shiheng An,
| |
Collapse
|
7
|
Byers KJRP, Darragh K, Fernanda Garza S, Abondano Almeida D, Warren IA, Rastas PMA, Merrill RM, Schulz S, McMillan WO, Jiggins CD. Clustering of loci controlling species differences in male chemical bouquets of sympatric Heliconius butterflies. Ecol Evol 2021; 11:89-107. [PMID: 33437416 PMCID: PMC7790645 DOI: 10.1002/ece3.6947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
The degree to which loci promoting reproductive isolation cluster in the genome-that is, the genetic architecture of reproductive isolation-can influence the tempo and mode of speciation. Tight linkage between these loci can facilitate speciation in the face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera species, and the role of endogenously produced compounds as secondary metabolites decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius butterflies use male sex pheromones to both court females (aphrodisiac wing pheromones) and ward off male courtship (male-transferred antiaphrodisiac genital pheromones), and it is likely that these compounds play a role in reproductive isolation between Heliconius species. Using a set of backcross hybrids between H. melpomene and H. cydno, we investigated the genetic architecture of putative male pheromone compound production. We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential pheromone compounds. QTL clustered significantly on two chromosomes, chromosome 8 for genital compounds and chromosome 20 for wing compounds, and chromosome 20 was enriched for potential pheromone biosynthesis genes. There was minimal overlap between pheromone QTL and known QTL for mate choice and color pattern. Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, a color pattern locus known to play a role in reproductive isolation in these species. This tight clustering of putative pheromone loci might contribute to coincident reproductive isolating barriers, facilitating speciation despite ongoing gene flow.
Collapse
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| | - Kathy Darragh
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Evolution and EcologyUniversity of California DavisDavisCAUSA
| | - Sylvia Fernanda Garza
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Diana Abondano Almeida
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Institute for Ecology, Evolution and DiversityGoethe UniversitätFrankfurtGermany
| | - Ian A. Warren
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Richard M. Merrill
- Smithsonian Tropical Research InstitutePanamaPanama
- Division of Evolutionary BiologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Stefan Schulz
- Institute of Organic ChemistryDepartment of Life SciencesTechnische Universität BraunschweigBraunschweigGermany
| | | | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
| |
Collapse
|
8
|
Wang QH, Gong Q, Fang SM, Liu YQ, Zhang Z, Yu QY. Identification of genes involved in sex pheromone biosynthesis and metabolic pathway in the Chinese oak silkworm, Antheraea pernyi. Int J Biol Macromol 2020; 163:1487-1497. [PMID: 32755713 DOI: 10.1016/j.ijbiomac.2020.07.263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
Abstract
The Chinese oak silkworm, Antheraea pernyi, has not only been semi-domesticated as an important economical insect but also used for genetic research. The female moths of A. pernyi employ a pheromone blend containing (E,Z)-6,11-hexadecadienal (E6,Z11-16:Ald), (E,Z)-6,11-hexadecadienyl acetate (E6,Z11-16:OAc), and (E,Z)-4,9-tetradecadienyl acetate (E4,Z9-14:OAc). While its biosynthesis pathway is largely unknown. By deep sequencing and de novo assembly of sex pheromone gland (PG) transcriptome, we identified 141 candidate genes that are putatively related to pheromone biosynthesis, degradation, and chemoreception in A. pernyi. Gene expression patterns and phylogenetic analysis revealed that two desaturases (AperDES1 and 2), two fatty acid reductase (AperFAR1 and 2), and three acetyltransferase genes (AperACT1, 2 and 3) showed PG-biased or specific expression and were phylogenetically related to genes known to be involved in pheromone synthesis in other species. Furthermore, two carboxylesterases (AperCOE6 and 11) and two chemosensory protein (AperCSP1 and 6) were also expressed specifically or predominantly in the PGs, which might be related to sex pheromone degradation and transportation, respectively. Based on these results, the sex pheromone biosynthesis and metabolic pathway was proposed in A. pernyi. This study provides some crucial candidates for further functional elucidation, and may be used for interfering sexual communication in other Saturniidae pests.
Collapse
Affiliation(s)
- Qing-Hai Wang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Qian Gong
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Yan-Qun Liu
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Quan-You Yu
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
9
|
Petkevicius K, Löfstedt C, Borodina I. Insect sex pheromone production in yeasts and plants. Curr Opin Biotechnol 2020; 65:259-267. [DOI: 10.1016/j.copbio.2020.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/20/2020] [Indexed: 11/28/2022]
|
10
|
Hu P, Wang D, Gao C, Lu P, Tao J, Luo Y. Pheromone biosynthetic pathway and chemoreception proteins in sex pheromone gland of Eogystia hippophaecolus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100702. [PMID: 32544860 DOI: 10.1016/j.cbd.2020.100702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 01/06/2023]
Abstract
The moth Eogystia hippophaecolus (Hua et al.) is a major threat to sea buckthorn plantations in China. Specific and highly efficient artificial sex pheromone traps have been developed and used to control this pest species. However, the biosynthesis of sex pheromones Z7-14: Ac and E3-14:Ac remains poorly understood. We investigated the female pheromone gland transcriptome of E. hippophaecolus and identified two pheromone biosynthesis-activating neuropeptides (PBANs), two pheromone biosynthesis-activating neuropeptide receptors (PBANrs), five acetyl-CoA carboxylases (ACCs), six fatty acid synthases (FASs), 16 Acyl-CoA desaturases (DESs), 26 reductases (REDs), 13 acetyltransferases (ACTs), one fatty acid transport protein (FATP), one acyl-CoA-binding protein (ACBP), and five elongation of very long-chain fatty acid proteins (ELOs) in pheromone biosynthesis pathways. Additionally, we identified 11 odorant-degrading enzymes (ODEs) and 16 odorant-binding proteins (OBPs), 14 chemosensory proteins (CSPs), two sensory neuron membrane proteins (SNMPs), three odorant receptors (ORs), seven ionotropic receptors (IRs), and six gustatory receptors (GRs). 77 unigenes involved in female pheromone biosynthesis, 31 chemoreception proteins and 11 odorant degradation enzymes were identified, which provided insight into the regulation of the pheromone components and pheromone recognition in the sex pheromone gland, and knowledge pertinent to new integrated pest management strategy of interference pheromone biosynthesis and recognition.
Collapse
Affiliation(s)
- Ping Hu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; Guangxi University, Nanning 530004, China
| | - Dongbai Wang
- Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chenglong Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Pengfei Lu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
11
|
Leal Soares AM, B França PH, Triana MF, Dos Santos JM, S Dias-Pini N, F Goulart H, Araújo-Júnior JX, Goulart Santana AE. Identification of Δ6-unsaturated, monoenyl type I pheromone compounds from the cashew stem borer Anthistarcha binocularis (Lepidoptera: Gelechiidae). PEST MANAGEMENT SCIENCE 2020; 76:1435-1442. [PMID: 31639267 DOI: 10.1002/ps.5656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/22/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The cashew stem borer Anthistarcha binocularis (Meyrick) is a major pest in cashew orchards in Brazil. The damage caused by the larvae results in economic losses, and the available chemical control is not suitable because of the endophytic nature of A. binocularis. The identification of the A. binocularis sex pheromone could provide novel applications for the detection and monitoring of this species. RESULTS Two compounds from female sex gland extracts elicited electrophysiological responses on male antennae. They were identified as dodec-6-en-1-ol and dodec-6-en-1-yl acetate by gas chromatography-mass spectrometry. E/Z stereoisomers of both compounds were synthesized, and the electroantennograms for the synthetic compounds showed the strongest responses for the (E)-stereoisomers of the alcohol and acetate. In a field trial, the E6-12:OH/E6-12:OAc mixture attracted male A. binocularis, whereas the Z6-12:OH/Z6-12:OAc mixture attracted no specimens. CONCLUSIONS The bioactive compounds from the sex pheromone of A. binocularis have been identified as a mixture of two previously unidentified pheromone compounds: E6-12:OH and E6-12:OAc. The mixture of both compounds was attractive to males in preliminary field experiments, and this study is the first report of Δ6-unsaturated monoenyl pheromone compounds in Lepidoptera. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ariane M Leal Soares
- Agricultural Science Centre, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Paulo H B França
- Agricultural Science Centre, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Merybeth F Triana
- Agricultural Science Centre, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | | | - Henrique F Goulart
- Agricultural Science Centre, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - João X Araújo-Júnior
- School of Nursing and Pharmacy, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | |
Collapse
|
12
|
Guo S, Tian Z, Quan WL, Sun D, Liu W, Wang XP. Comparative transcriptomics of the pheromone glands provides new insights into the differentiation of sex pheromone between two host populations of Chilo suppressalis. Sci Rep 2020; 10:3499. [PMID: 32103103 PMCID: PMC7044216 DOI: 10.1038/s41598-020-60529-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
Reproductive isolation between different host populations is often based on intraspecific sex pheromone differences. The mechanisms underlying these differences have not been thoroughly elucidated to date. Previous studies suggested that Chilo suppressalis has differentiated into rice and water-oat host populations, and these two populations manifest clear differences in sex pheromone titer and mating rhythm. Hence, this moth is an ideal model to investigate the endogenous mechanisms of intraspecific reproductive isolation. Here, we identified a series of putative genes associated with sex pheromone biosynthesis based on the C. suppressalis pheromone gland transcriptome data. Transcripts of most genes were at higher level in the rice population. Then we obtained 11 pivotal differentially expressed genes (DEGs). The expression levels of these DEGs exhibited a distinct increase in the rice population. Moreover, we also observed the expression rhythm of these DEGs is discrepant between two host populations. Our study offers a new understanding to elucidate the mechanisms of intraspecific reproductive isolation.
Collapse
Affiliation(s)
- Shuang Guo
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wei-Li Quan
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dan Sun
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
13
|
Dou X, Zhang A, Jurenka R. Functional identification of fatty acyl reductases in female pheromone gland and tarsi of the corn earworm, Helicoverpa zea. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103260. [PMID: 31682920 DOI: 10.1016/j.ibmb.2019.103260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Most moths utilize sex pheromones released by the female to attract a mate. Females produce the sex pheromone in the pheromone gland in a biosynthetic pathway which consists of several key enzymes. Fatty acyl-CoA reductase is one of the key enzymes, which catalyzes the conversion of fatty acyl-CoA to the corresponding alcohol, playing an important role in producing the final proportion of each pheromone component. In Helicoverpa zea, (Z)-11-hexadecenal is the major sex pheromone component in female pheromone glands and previously a large amount of hexadecanal was also found in female and male tarsi. In our previous study, we compared the transcriptome between pheromone glands and tarsi and found 20 fatty acyl-CoA reductases in both tissues. In this study, we functionally characterized four FARs which were expressed at high levels according to the transcriptome of pheromone glands and tarsi. Fatty acyl-CoA reductase 1 was homologous to other moth pheromone gland specific fatty acyl-CoA reductases, and it was also present in male tarsi. Functional expression in yeast cells indicates that only fatty acyl-CoA reductase 1 was able to produce fatty alcohols. In addition, a decreased mRNA level of fatty acyl-CoA reductase 1 in female pheromone glands and male tarsi by RNAi knockdown caused a significant decrease in the production of (Z)-11-hexadecenal in pheromone glands and hexadecanal in male tarsi. This study is the first to demonstrate the direct function of a fatty acyl-CoA reductase in male tarsi and also confirms its role in sex pheromone biosynthesis in H. zea.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, Iowa State University, Ames, IA, 50010, USA
| | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Russell Jurenka
- Department of Entomology, Iowa State University, Ames, IA, 50010, USA.
| |
Collapse
|
14
|
Fu XB, Zhang YL, Qiu YL, Song XM, Wu F, Feng YL, Zhang JY, Li HL. Physicochemical Basis and Comparison of Two Type II Sex Pheromone Components Binding with Pheromone-Binding Protein 2 from Tea Geometrid, Ectropis obliqua. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13084-13095. [PMID: 30452261 DOI: 10.1021/acs.jafc.8b04510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lepidopteran geometrid moth can produce complex Type II sex pheromone components to attract males and trigger mating behavior. Although several sex pheromone components have been identified, it remains unclear whether their physicochemical roles in sex pheromone sensing are the same. Therefore, we utilized tea geometrid ( Ectropis obliqua) as an example model to investigate and compare the physicochemical basis of two key Type II sex pheromone components, cis-6,7-epoxy-(3Z,9Z)-3,9-octadecadiene ( Z3 Z9-6,7-epo-18:Hy) and ( Z, Z, Z)-3,6,9-octadecatriene (Z3Z6Z9-18:Hy), interacting with pheromone-binding protein 2 ( EoblPBP2) from E. obliqua. Multispectral, thermodynamic, docking, and site-directed mutagenesis indicated that the major sex pheromone component Z3Z9-6,7-epo-18:Hy is more susceptible to pH-tuned than the minor component Z3Z6Z9-18:Hy, whereas Z3Z6Z9-18:Hy seems to be more susceptible to temperature and amino acid mutations than Z3Z9-6,7-epo-18:Hy. Our study suggests that different components of Type II sex pheromone play different binding characters under specific conditions in the physicochemical behavior. This deeply supplements the theoretical knowledge of Type II pheromones involved in the recognition and discrimination in the Lepidopteran sex pheromones family.
Collapse
Affiliation(s)
- Xiao-Bin Fu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences , China Jiliang University , Hangzhou 310018 , China
| | - Ya-Li Zhang
- Hangzhou Tea Research Institute, China Coop. , Hangzhou 310016 , China
| | - Yi-Lei Qiu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences , China Jiliang University , Hangzhou 310018 , China
| | - Xin-Mi Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences , China Jiliang University , Hangzhou 310018 , China
| | - Fan Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences , China Jiliang University , Hangzhou 310018 , China
| | - Yi-Lu Feng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences , China Jiliang University , Hangzhou 310018 , China
| | - Jian-Yong Zhang
- Tea Research Institute , Chinese Academy of Agricultural Sciences , Hangzhou 310008 , China
| | | |
Collapse
|
15
|
Carabidae Semiochemistry: Current and Future Directions. J Chem Ecol 2018; 44:1069-1083. [PMID: 30232615 DOI: 10.1007/s10886-018-1011-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/27/2022]
Abstract
Ground beetles (Carabidae) are recognized for their diverse, chemically-mediated defensive behaviors. Produced using a pair of pygidial glands, over 250 chemical constituents have been characterized across the family thus far, many of which are considered allomones. Over the past century, our knowledge of Carabidae exocrine chemistry has increased substantially, yet the role of these defensive compounds in mediating behavior other than repelling predators is largely unknown. It is also unclear whether non-defensive compounds produced by ground beetles mediate conspecific and heterospecific interactions, such as sex-aggregation pheromones or kairomones, respectively. Here we review the current state of non-exocrine Carabidae semiochemistry and behavioral research, discuss the importance of semiochemical research including but not limited to allomones, and describe next-generation methods for elucidating the underlying genetics and evolution of chemically-mediated behavior.
Collapse
|
16
|
Tupec M, Buček A, Valterová I, Pichová I. Biotechnological potential of insect fatty acid-modifying enzymes. ACTA ACUST UNITED AC 2018; 72:387-403. [PMID: 28742527 DOI: 10.1515/znc-2017-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023]
Abstract
There are more than one million described insect species. This species richness is reflected in the diversity of insect metabolic processes. In particular, biosynthesis of secondary metabolites, such as defensive compounds and chemical signals, encompasses an extraordinarily wide range of chemicals that are generally unparalleled among natural products from other organisms. Insect genomes, transcriptomes and proteomes thus offer a valuable resource for discovery of novel enzymes with potential for biotechnological applications. Here, we focus on fatty acid (FA) metabolism-related enzymes, notably the fatty acyl desaturases and fatty acyl reductases involved in the biosynthesis of FA-derived pheromones. Research on insect pheromone-biosynthetic enzymes, which exhibit diverse enzymatic properties, has the potential to broaden the understanding of enzyme specificity determinants and contribute to engineering of enzymes with desired properties for biotechnological production of FA derivatives. Additionally, the application of such pheromone-biosynthetic enzymes represents an environmentally friendly and economic alternative to the chemical synthesis of pheromones that are used in insect pest management strategies.
Collapse
|
17
|
Grapputo A, Thrimawithana AH, Steinwender B, Newcomb RD. Differential gene expression in the evolution of sex pheromone communication in New Zealand's endemic leafroller moths of the genera Ctenopseustis and Planotortrix. BMC Genomics 2018; 19:94. [PMID: 29373972 PMCID: PMC5787247 DOI: 10.1186/s12864-018-4451-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/14/2018] [Indexed: 01/09/2023] Open
Abstract
Background Sex pheromone communication in moths has attracted the attention of evolutionary biologists due to the vast array of pheromone compounds used, addressing questions of how this diversity arose and how male reception has evolved in step with the female signal. Here we examine the role of changing gene expression in the evolution of mate recognition systems in leafroller moths, particularly focusing on genes involved in the biosynthetic pathways of sex pheromones in female pheromone glands and the peripheral reception repertoire in the antennae of males. From tissue-specific transcriptomes we mined and compared a database of genes expressed in the pheromone glands and antennae of males and females of four closely related species of leafroller moths endemic to New Zealand, Ctenopseutis herana and C. obliquana, and Planotortrix excessana and P. octo. The peculiarity of this group, compared to other Lepidoptera, is the use of (Z)-5-tetradecenyl acetate, (Z)-7-tetradecenyl acetate, and (Z)-8-tetradecenyl acetate as sex pheromone components. Results We identify orthologues of candidate genes from the pheromone biosynthesis pathway, degradation and transport, as well as genes of the periphery olfactory repertoire, including large families of binding proteins, receptors and odorant degrading enzymes. The production of distinct pheromone blends in the sibling species is associated with the differential expression of two desaturase genes, deast5 and desat7, in the pheromone glands. In male antennae, three odorant receptors, OR74, OR76a and OR30 are over-expressed, but their expression could not be clearly associated with the detection of species-specific pheromones components. In addition these species contain duplications of all three pheromone binding proteins (PBPs) that are also differentially expressed among species. Conclusions While in females differences in the expression of desaturases may be sufficient to explain pheromone blend differences among these New Zealand leafroller species, in males differential expression of several genes, including pheromone binding proteins, may underpin differences in the response by males to changing pheromone components among the species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4451-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Bernd Steinwender
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Yu X, Shen Y, Cui Q, Chen Y, Sun W, Huang X, Zhu Y. Silkworm
(Bombyx mori
) has the Capability to Accumulate C
20
and C
22
Polyunsaturated Fatty Acids. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xin‐Bo Yu
- School of BiotechnologySouthwest UniversityChongqingP.R. China
| | - Yi‐Yong Shen
- State Key Laboratory of Silkworm Genome BiologySouthwest UniversityChongqingP.R. China
| | - Qing‐Mei Cui
- School of BiotechnologySouthwest UniversityChongqingP.R. China
| | - Yu Chen
- State Key Laboratory of Silkworm Genome BiologySouthwest UniversityChongqingP.R. China
| | - Wei Sun
- Laboratory of Evolutionary and Functional GenomicsSchool of Life SciencesChongqing UniversityChongqingP.R. China
| | - Xian‐Zhi Huang
- State Key Laboratory of Silkworm Genome BiologySouthwest UniversityChongqingP.R. China
| | - Yong Zhu
- School of BiotechnologySouthwest UniversityChongqingP.R. China
| |
Collapse
|
19
|
Li RT, Ning C, Huang LQ, Dong JF, Li X, Wang CZ. Expressional divergences of two desaturase genes determine the opposite ratios of two sex pheromone components in Helicoverpa armigera and Helicoverpa assulta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:90-100. [PMID: 28986331 DOI: 10.1016/j.ibmb.2017.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 05/28/2023]
Abstract
The sympatric closely related species Helicoverpa armigera and Helicoverpa assulta use 97:3 and 7:93 of (Z)-11-hexadecenal and (Z)-9-hexadecenal, respectively, as their sex pheromone to find/locate correct sex mates. Moreover, (Z)-11-hexadecenyl alcohol and (Z)-9-hexadecenyl alcohol are more abundant in the pheromone gland of H. assulta than in that of H. armigera. To clarify the molecular basis of these differences, we sequenced the pheromone gland transcriptomes of the two species and compared the expression patterns of the candidate enzyme genes involved in the pheromone biosynthetic pathways by FPKM values and quantitative RT-PCR analysis. We found that the desaturase gene LPAQ expressed about 70 times higher in H. armigera than in H. assulta, whereas another desaturase gene NPVE expressed about 60 times higher in H. assulta than in H. armigera. We also observed significantly higher expression of the fatty acyl reductase (FAR) gene FAR1 and the aldehyde reductase (AR) gene AR3 in H. assulta than in H. armigera. Examination of the pheromone glands of the backcross offspring of their hybrids to H. assulta showed a positive linear correlation between the expression level of LPAQ and the amount of Z11-16:Ald and between the expression level of NPVE and the amount of Z9-16:Ald in the pheromone glands. Taken together, these data demonstrate that the expressional divergences of LPAQ and NPVE determine the opposite sex pheromone component ratios in the two species and the divergent expression of FAR1 and AR3 may account for the greater accumulation of alcohols in the pheromone gland of H. assulta.
Collapse
Affiliation(s)
- Rui-Ting Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun-Feng Dong
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Mann F, Vanjari S, Rosser N, Mann S, Dasmahapatra KK, Corbin C, Linares M, Pardo-Diaz C, Salazar C, Jiggins C, Schulz S. The Scent Chemistry of Heliconius Wing Androconia. J Chem Ecol 2017; 43:843-857. [PMID: 28791540 DOI: 10.1007/s10886-017-0867-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/26/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022]
Abstract
Neotropical Heliconius butterflies are members of various mimicry rings characterized by diverse colour patterns. In the present study we investigated whether a similar diversity is observed in the chemistry of volatile compounds present in male wing androconia. Recent research has shown that these androconia are used during courting of females. Three to five wild-caught male Heliconius individuals of 17 species and subspecies were analyzed by GC/MS. Most of the identified compounds originate from common fatty acids precursors, including aldehydes, alcohols, acetates or esters preferentially with a C18 and C20 chain, together with some alkanes. The compounds occurred in species-specific mixtures or signatures. For example, octadecanal is characteristic for H. melpomene, but variation in composition between the individuals was observed. Cluster analysis of compound occurrence in individual bouquets and analyses based on biosynthetic motifs such as functional group, chain length, or basic carbon-backbone modification were used to reveal structural patterns. Mimetic pairs contain different scent bouquets, but also some compounds in common, whereas sympatric species, both mimetic and non-mimetic, have more distinct compound compositions. The compounds identified here may play a role in mate choice thus helping maintain species integrity in a butterfly genus characterized by pervasive interspecific gene flow.
Collapse
Affiliation(s)
- Florian Mann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Sohini Vanjari
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Neil Rosser
- Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Sandra Mann
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Kanchon K Dasmahapatra
- Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Chris Corbin
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Mauricio Linares
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Cra. 24 No 63C-69, Bogotá D.C., 111221, Colombia
| | - Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Cra. 24 No 63C-69, Bogotá D.C., 111221, Colombia
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Cra. 24 No 63C-69, Bogotá D.C., 111221, Colombia
| | - Chris Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
| |
Collapse
|
21
|
Zhang QH, Wu ZN, Zhou JJ, Du YJ. Molecular and functional characterization of a candidate sex pheromone receptor OR1 in Spodoptera litura. INSECT SCIENCE 2017; 24:543-558. [PMID: 26573759 DOI: 10.1111/1744-7917.12294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Olfaction is primarily mediated by highly specified olfactory receptors (ORs). Here, we cloned and identified an olfactory receptor, named SlituOR1 (Genbank no. JN835269), from Spodoptera litura and found evidence that it is a candidate pheromone receptor. It exhibited male-biased expression in the antennae, where it was localized at the base of sensilla trichoidea, the antennal sensilla mainly responsive to pheromones in moths. Conserved orthologues of this receptor, found among known pheromone receptors within the Lepidoptera, and SlituOR1 were placed among a clade of candidate pheromone receptors in a phylogeny tree of insect OR gene sequences. SlituOR1 showed differential expression in S. litura populations attracted to traps baited with different ratios of the two sex pheromone components (9Z,11E)-tetradecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-tetradecadienyl acetate (Z9E12-14:OAc). Knocking down of SlituOR1 by RNA interference reduced the electroantennogram (EAG) response to Z9E11-14:OAc, and this result is consistent with the field trapping experiment. We infer that variation in transcription levels of olfactory receptors may modulate sex pheromone perception in male moths and could provide some of the flexibility required to maintain the functionality of communication with females when a population is adapting to a new niche and reproductive isolation becomes an advantage.
Collapse
Affiliation(s)
- Qin-Hui Zhang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhong-Nan Wu
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, BBSRC, Harpenden, Herts. AL5 2JQ, UK
| | - Yong-Jun Du
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
22
|
He P, Zhang YF, Hong DY, Wang J, Wang XL, Zuo LH, Tang XF, Xu WM, He M. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses. BMC Genomics 2017; 18:219. [PMID: 28249567 PMCID: PMC5333385 DOI: 10.1186/s12864-017-3592-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/14/2017] [Indexed: 11/25/2022] Open
Abstract
Background Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesis and degradation genes in various adult tissues in the diamondback moth (DBM), Plutella xylostella, which is a notorious vegetable pest worldwide. Results A massive transcriptome data (at least 39.04 Gb) was generated by sequencing 6 adult tissues including male antennae, female antennae, heads, legs, abdomen and female pheromone glands from DBM by using Illumina 4000 next-generation sequencing and mapping to a published DBM genome. Bioinformatics analysis yielded a total of 89,332 unigenes among which 87 transcripts were putatively related to seven gene families in the sex pheromone biosynthesis pathway. Among these, seven [two desaturases (DES), three fatty acyl-CoA reductases (FAR) one acetyltransferase (ACT) and one alcohol dehydrogenase (AD)] were mainly expressed in the pheromone glands with likely function in the three essential sex pheromone biosynthesis steps: desaturation, reduction, and esterification. We also identified 210 odorant-degradation related genes (including sex pheromone-degradation related genes) from seven major enzyme groups. Among these genes, 100 genes are new identified and two aldehyde oxidases (AOXs), one aldehyde dehydrogenase (ALDH), five carboxyl/cholinesterases (CCEs), five UDP-glycosyltransferases (UGTs), eight cytochrome P450 (CYP) and three glutathione S-transferases (GSTs) displayed more robust expression in the antennae, and thus are proposed to participate in the degradation of sex pheromone components and plant volatiles. Conclusions To date, this is the most comprehensive gene data set of sex pheromone biosynthesis and degradation enzyme related genes in DBM created by genome- and transcriptome-wide identification, characterization and expression profiling. Our findings provide a basis to better understand the function of genes with tissue enriched expression. The results also provide information on the genes involved in sex pheromone biosynthesis and degradation, and may be useful to identify potential gene targets for pest control strategies by disrupting the insect-insect communication using pheromone-based behavioral antagonists. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3592-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China.
| | - Yun-Fei Zhang
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Duan-Yang Hong
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, Guizhou Medical University, Huaxi university town, Guian new district, 550025, Guizhou, People's Republic of China
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China
| | - Xing-Liang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ling-Hua Zuo
- Agriculture Economic and Rural Development, RENMIN University of China, Beijing, 100872, People's Republic of China
| | - Xian-Fu Tang
- Guizhou Grass Jelly Biotechnology Company Limited, Chishui, Zhunyi, 564700, People's Republic of China
| | - Wei-Ming Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
23
|
Steinwender B, Thrimawithana AH, Crowhurst R, Newcomb RD. Odorant Receptors of the New Zealand Endemic Leafroller Moth Species Planotortrix octo and P. excessana. PLoS One 2016; 11:e0152147. [PMID: 27003722 PMCID: PMC4803216 DOI: 10.1371/journal.pone.0152147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/09/2016] [Indexed: 12/04/2022] Open
Abstract
Moths use their sense of smell to find food sources, mating partners and oviposition sites. For this they possess a family of odorant receptors (ORs). Some ORs are used by both sexes whereas others have sex-specific roles. For example, male moths possess ORs specifically tuned to sex pheromones produced by conspecific females. Here we identify sets of ORs from the antennae of New Zealand endemic leafroller moths Planotortrix octo (48 ORs) and P. excessana (47 ORs) using an RNA-Seq approach. Two orthologous ORs show male-biased expression in the adult antennae of both species (OR7 and OR30) and one other OR in each species was female-biased in its expression (PoctOR25, PexcOR14) by qPCR. PAML analysis conducted on male-biased ORs indicated positive selection acting on the male-biased OR7. The fact that OR7 is likely under positive selection, that it is male-biased in its expression and that its orthologue in C. obliquana, CoblOR7, responds to sex pheromone components also utilised by Planotortrix species, suggests that this receptor may also be important in sex pheromone reception in Planotortrix species.
Collapse
Affiliation(s)
- Bernd Steinwender
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| | | | - Ross Crowhurst
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Richard D. Newcomb
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
24
|
Abstract
Moth sexual pheromones are widely studied as a fine-tuned system of intraspecific sexual communication that reinforces interspecific reproductive isolation. However, their evolution poses a dilemma: How can the female pheromone and male preference simultaneously change to create a new pattern of species-specific attraction? Solving this puzzle requires us to identify the genes underlying intraspecific variation in signals and responses and to understand the evolutionary mechanisms responsible for their interspecific divergence. Candidate gene approaches and functional analyses have yielded insights into large families of biosynthetic enzymes and pheromone receptors, although the factors controlling their expression remain largely unexplored. Intra- and interspecific crosses have provided tantalizing evidence of regulatory genes, although, to date, mapping resolution has been insufficient to identify them. Recent advances in high-throughput genome and transcriptome sequencing, together with established techniques, have great potential to help scientists identify the specific genetic changes underlying divergence and resolve the mystery of how moth sexual communication systems evolve.
Collapse
Affiliation(s)
- Astrid T Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands;
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | - Teun Dekker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden;
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| |
Collapse
|
25
|
Bacquet PMB, Brattström O, Wang HL, Allen CE, Löfstedt C, Brakefield PM, Nieberding CM. Selection on male sex pheromone composition contributes to butterfly reproductive isolation. Proc Biol Sci 2015; 282:20142734. [PMID: 25740889 DOI: 10.1098/rspb.2014.2734] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Selection can facilitate diversification by inducing character displacement in mate choice traits that reduce the probability of maladaptive mating between lineages. Although reproductive character displacement (RCD) has been demonstrated in two-taxa case studies, the frequency of this process in nature is still debated. Moreover, studies have focused primarily on visual and acoustic traits, despite the fact that chemical communication is probably the most common means of species recognition. Here, we showed in a large, mostly sympatric, butterfly genus, a strong pattern of recurrent RCD for predicted male sex pheromone composition, but not for visual mate choice traits. Our results suggest that RCD is not anecdotal, and that selection for divergence in male sex pheromone composition contributed to reproductive isolation within the Bicyclus genus. We propose that selection may target olfactory mate choice traits as a more common sensory modality to ensure reproductive isolation among diverging lineages than previously envisaged.
Collapse
Affiliation(s)
- P M B Bacquet
- Evolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - O Brattström
- Department of Zoology, University Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - H-L Wang
- Department of Biology, Pheromone Group, Lund University, SE-223 62 Lund, Sweden
| | - C E Allen
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - C Löfstedt
- Department of Biology, Pheromone Group, Lund University, SE-223 62 Lund, Sweden
| | - P M Brakefield
- Department of Zoology, University Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - C M Nieberding
- Evolutionary Ecology and Genetics Group, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
26
|
Buček A, Matoušková P, Vogel H, Šebesta P, Jahn U, Weißflog J, Svatoš A, Pichová I. Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase. Proc Natl Acad Sci U S A 2015; 112:12586-91. [PMID: 26417103 PMCID: PMC4611599 DOI: 10.1073/pnas.1514566112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For sexual communication, moths primarily use blends of fatty acid derivatives containing one or more double bonds in various positions and configurations, called sex pheromones (SPs). To study the molecular basis of novel SP component (SPC) acquisition, we used the tobacco hornworm (Manduca sexta), which uses a blend of mono-, di-, and uncommon triunsaturated fatty acid (3UFA) derivatives as SP. We identified pheromone-biosynthetic fatty acid desaturases (FADs) MsexD3, MsexD5, and MsexD6 abundantly expressed in the M. sexta female pheromone gland. Their functional characterization and in vivo application of FAD substrates indicated that MsexD3 and MsexD5 biosynthesize 3UFAs via E/Z14 desaturation from diunsaturated fatty acids produced by previously characterized Z11-desaturase/conjugase MsexD2. Site-directed mutagenesis of sequentially highly similar MsexD3 and MsexD2 demonstrated that swapping of a single amino acid in the fatty acyl substrate binding tunnel introduces E/Z14-desaturase specificity to mutated MsexD2. Reconstruction of FAD gene phylogeny indicates that MsexD3 was recruited for biosynthesis of 3UFA SPCs in M. sexta lineage via gene duplication and neofunctionalization, whereas MsexD5 representing an alternative 3UFA-producing FAD has been acquired via activation of a presumably inactive ancestral MsexD5. Our results demonstrate that a change as small as a single amino acid substitution in a FAD enzyme might result in the acquisition of new SP compounds.
Collapse
Affiliation(s)
- Aleš Buček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Petra Matoušková
- Faculty of Pharmacy, Charles University in Prague, 500 05 Hradec Králové, Czech Republic
| | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Department of Entomology, D-07745, Jena, Germany
| | - Petr Šebesta
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Jerrit Weißflog
- Max Planck Institute for Chemical Ecology, Mass Spectrometry Group, D-07745, Jena, Germany
| | - Aleš Svatoš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic; Max Planck Institute for Chemical Ecology, Mass Spectrometry Group, D-07745, Jena, Germany
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic;
| |
Collapse
|
27
|
Antony B, Soffan A, Jakše J, Alfaifi S, Sutanto KD, Aldosari SA, Aldawood AS, Pain A. Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing. BMC Genomics 2015; 16:532. [PMID: 26187652 PMCID: PMC4506583 DOI: 10.1186/s12864-015-1710-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/22/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Insects use pheromones, chemical signals that underlie all animal behaviors, for communication and for attracting mates. Synthetic pheromones are widely used in pest control strategies because they are environmentally safe. The production of insect pheromones in transgenic plants, which could be more economical and effective in producing isomerically pure compounds, has recently been successfully demonstrated. This research requires information regarding the pheromone biosynthetic pathways and the characterization of pheromone biosynthetic enzymes (PBEs). We used Illumina sequencing to characterize the pheromone gland (PG) transcriptome of the Pyralid moth, Ephestia cautella, a destructive storage pest, to reveal putative candidate genes involved in pheromone biosynthesis, release, transport and degradation. RESULTS We isolated the E. cautella pheromone compound as (Z,E)-9,12-tetradecadienyl acetate, and the major pheromone precursors 16:acyl, 14:acyl, E14-16:acyl, E12-14:acyl and Z9,E12-14:acyl. Based on the abundance of precursors, two possible pheromone biosynthetic pathways are proposed. Both pathways initiate from C16:acyl-CoA, with one involving ∆14 and ∆9 desaturation to generate Z9,E12-14:acyl, and the other involving the chain shortening of C16:acyl-CoA to C14:acyl-CoA, followed by ∆12 and ∆9 desaturation to generate Z9,E12-14:acyl-CoA. Then, a final reduction and acetylation generates Z9,E12-14:OAc. Illumina sequencing yielded 83,792 transcripts, and we obtained a PG transcriptome of ~49.5 Mb. A total of 191 PBE transcripts, which included pheromone biosynthesis activating neuropeptides, fatty acid transport proteins, acetyl-CoA carboxylases, fatty acid synthases, desaturases, β-oxidation enzymes, fatty acyl-CoA reductases (FARs) and fatty acetyltransferases (FATs), were selected from the dataset. A comparison of the E. cautella transcriptome data with three other Lepidoptera PG datasets revealed that 45% of the sequences were shared. Phylogenetic trees were constructed for desaturases, FARs and FATs, and transcripts that clustered with the ∆14, ∆12 and ∆9 desaturases, PG-specific FARs and potential candidate FATs, respectively, were identified. Transcripts encoding putative pheromone degrading enzymes, and candidate pheromone carrier and receptor proteins expressed in the E. cautella PG, were also identified. CONCLUSIONS Our study provides important background information on the enzymes involved in pheromone biosynthesis. This information will be useful for the in vitro production of E. cautella sex pheromones and may provide potential targets for disrupting the pheromone-based communication system of E. cautella to prevent infestations.
Collapse
Affiliation(s)
- Binu Antony
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Alan Soffan
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
- Department of Plant Protection, King Saud University, EERU, Riyadh, Saudi Arabia.
| | - Jernej Jakše
- Agronomy Department, University of Ljubljana, Biotechnical Faculty, SI-1000, Ljubljana, Slovenia.
| | - Sulieman Alfaifi
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Koko D Sutanto
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | - Saleh A Aldosari
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, College of Food and Agricultural Sciences, Riyadh, 11451, Saudi Arabia.
| | | | - Arnab Pain
- BASE Division, KAUST, Thuwal, Jeddah, 23955-6900, Saudi Arabia.
| |
Collapse
|
28
|
Yew JY, Chung H. Insect pheromones: An overview of function, form, and discovery. Prog Lipid Res 2015; 59:88-105. [DOI: 10.1016/j.plipres.2015.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 05/01/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022]
|
29
|
Li ZQ, Zhang S, Luo JY, Wang CY, Lv LM, Dong SL, Cui JJ. Transcriptome comparison of the sex pheromone glands from two sibling Helicoverpa species with opposite sex pheromone components. Sci Rep 2015; 5:9324. [PMID: 25792497 PMCID: PMC4366804 DOI: 10.1038/srep09324] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/17/2015] [Indexed: 11/25/2022] Open
Abstract
Differences in sex pheromone component can lead to reproductive isolation. The sibling noctuid species, Helicoverpa armigera and Helicoverpa assulta, share the same two sex pheromone components, Z9-16:Ald and Z11-16:Ald, but in opposite ratios, providing an typical example of such reproductive isolation. To investigate how the ratios of the pheromone components are differently regulated in the two species, we sequenced cDNA libraries from the pheromone glands of H. armigera and H. assulta. After assembly and annotation, we identified 108 and 93 transcripts putatively involved in pheromone biosynthesis, transport, and degradation in H. armigera and H. assulta, respectively. Semi-quantitative RT-PCR, qRT-PCR, phylogenetic, and mRNA abundance analyses suggested that some of these transcripts involved in the sex pheromone biosynthesis pathways perform. Based on these results, we postulate that the regulation of desaturases, KPSE and LPAQ, might be key factor regulating the opposite component ratios in the two sibling moths. In addition, our study has yielded large-scale sequence information for further studies and can be used to identify potential targets for the bio-control of these species by disrupting their sexual communication.
Collapse
Affiliation(s)
- Zhao-Qun Li
- 1] State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China [2] College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Shuai Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Jun-Yu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Chun-Yi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Li-Min Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Shuang-Lin Dong
- College of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Jin-Jie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| |
Collapse
|
30
|
Pheromone receptor evolution in the cryptic leafroller species, Ctenopseustis obliquana and C. herana. J Mol Evol 2014; 80:42-56. [PMID: 25252791 DOI: 10.1007/s00239-014-9650-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
How new mate recognition systems evolve when changes are required in both the male and female components remains a conundrum. Here, we investigated the molecular basis of pheromone reception in two species of tortricid (leafroller) moth, Ctenopseustis obliquana and C. herana. Male C. obliquana are attracted to a 90:10 blend of (Z)-8-tetradecenyl acetate (Z8-14:OAc) and (Z)-5-tetradecenyl acetate (Z5-14:OAc), whereas C. herana males are attracted to Z5-14:OAc alone. We used a transcriptome sequencing approach from adult male and female antennae to identify 47 olfactory receptors (ORs) from each species and assessed their expression levels in male and female antennae using RNA-Seq counting and quantitative RT-PCR. Three male-biased and one female-biased OR were identified in C. obliquana by quantitative RT-PCR, and four male-biased and one female-biased receptor in C. herana. The male-biased receptors, CoblOR7, CoblOR30, CherOR7, CherOR30, CherOR1a and CherOR1b were tested for their ability to respond to sex pheromone components in a HEK293 cell calcium assay. CoblOR7 and CherOR7 responded to Z8-14:OAc, however, no receptor for Z5-14:OAc was identified. In addition to Z8-14:OAc, CherOR7 also responded to Z7-14:OAc, indicating that this receptor may be under relaxed constraint. Of the 29 amino acid differences between CoblOR7 and CherOR7, significantly more are located in the third and the sixth transmembrane domain regions. Overall, these findings are consistent with studies revealing the presence of neurons tuned to both Z8-14:OAc and Z5-14:OAc in both species, but that for C. herana males, the ability to detect Z8-14:OAc is currently not required.
Collapse
|
31
|
Engsontia P, Sangket U, Chotigeat W, Satasook C. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation. J Mol Evol 2014; 79:21-39. [PMID: 25038840 DOI: 10.1007/s00239-014-9633-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/06/2014] [Indexed: 12/22/2022]
Abstract
Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be in the extracellular and transmembrane regions of the newly duplicated genes, which might be associated with the evolution of the new pheromone receptors.
Collapse
Affiliation(s)
- Patamarerk Engsontia
- Department of Biology, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand,
| | | | | | | |
Collapse
|
32
|
Zhang YN, Xia YH, Zhu JY, Li SY, Dong SL. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker). J Chem Ecol 2014; 40:439-51. [PMID: 24817326 DOI: 10.1007/s10886-014-0433-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/17/2014] [Accepted: 04/21/2014] [Indexed: 12/01/2022]
Abstract
The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
33
|
Meesapyodsuk D, Qiu X. Structure determinants for the substrate specificity of acyl-CoA Δ9 desaturases from a marine copepod. ACS Chem Biol 2014; 9:922-34. [PMID: 24475735 DOI: 10.1021/cb400675d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In contrast to soluble acyl-ACP desaturases from plants, little is known about the structure-guiding principle underlying substrate specificity and regioselectivity of membrane-bound acyl-CoA desaturases from animals, mainly due to lack of the three-dimensional structure information. Here we report identification of two homologous membrane-bound acyl-CoA Δ9 desaturases (ChDes9-1 and ChDes9-2) from the marine copepod Calanus hyperboreus that accumulates more than 90% of total storage lipids in the form of wax esters. ChDes9-2 is a common Δ9 desaturase with substrate specificity to long chain fatty acid 18:0, while ChDes9-1 is a new type of Δ9 desaturase introducing a Δ9 double bond into a wide range of very long chain fatty acids ranging from 20:0 to 26:0. Reciprocal domain swapping and site-directed mutagenesis guided by the membrane topology revealed that presence or absence of an amphipathic and bulky residue, tyrosine, in the middle of the second transmembrane domain was important in determining the substrate specificity of the two desaturases. To examine the mechanistic structure for the substrate specificity, tyrosine-scanning mutagenesis was employed to systematically substitute the residues in the transmembrane domain of the very long chain desaturase. The results showed that the transmembrane domain formed an α-helix structure probably involved in formation of the substrate-binding pocket and the corresponding residue of the tyrosine likely resided at the critical position within the pocket mediating the interaction with the substrates, thereby specifying the chain length of the substrates.
Collapse
Affiliation(s)
| | - Xiao Qiu
- National Research
Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
34
|
Comparative transcriptome analysis of sex pheromone glands of two sympatric lepidopteran congener species. Genomics 2014; 103:308-15. [PMID: 24667245 DOI: 10.1016/j.ygeno.2014.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/21/2014] [Accepted: 02/28/2014] [Indexed: 11/21/2022]
Abstract
Two internal apple feeders of Grapholita molesta and Grapholita dimorpha share two major sex pheromone components (stereoisomers) and exhibit a similar circadian rhythm of mating behavior. This study aimed to determine the genetic factors diversifying these two congeners with respect to sex pheromone biosynthetic machinery. Transcriptomes of sex pheromone glands in both species were analyzed with a deep sequencing technology. To find out the gene(s) responsible for the stereoisomer ratios of G. molesta and G. dimorpha, a hypothetic sex pheromone biosynthetic pathway was predicted based on the transcriptomes of their sex pheromone glands. Some orthologs of Δ10 desaturase and FARs in the synthetic pathway were specifically expressed in sex pheromone glands. The relatively high variation in DNA sequence and expression levels between G. molesta and G. dimorpha suggest their crucial roles in generating differential ratios of the sex pheromone stereoisomers in these two sympatric congeners.
Collapse
|
35
|
A novel fatty acyl desaturase from the pheromone glands of Ctenopseustis obliquana and C. herana with specific Z5-desaturase activity on myristic acid. J Chem Ecol 2014; 40:63-70. [PMID: 24408442 PMCID: PMC3909261 DOI: 10.1007/s10886-013-0373-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/15/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022]
Abstract
Sexual communication in the Lepidoptera typically involves a female-produced sex pheromone that attracts males of the same species. The most common type of moth sex pheromone comprises individual or blends of fatty acyl derivatives that are synthesized by a specific enzymatic pathway in the female’s pheromone gland, often including a desaturation step. This reaction is catalyzed by fatty acyl desaturases that introduce double bonds at specific locations in the fatty acid precursor backbone. The two tortricid moths, Ctenopseustis obliquana and C. herana (brown-headed leafrollers), which are endemic in New Zealand, both use (Z)-5-tetradecenyl acetate as part of their sex pheromone. In C. herana, (Z)-5-tetradecenyl acetate is the sole component of the pheromone. Labeling experiments have revealed that this compound is produced via an unusual Δ5-desaturation of myristic acid. Previously six desaturases were identified from the pheromone glands of Ctenopseustis and its sibling genus Planotortrix, with one differentially regulated to produce the distinct blends used by individual species. However, none were able to conduct the Δ5-desaturation observed in C. herana, and presumably C. obliquana. We have now identified an additional desaturase gene, desat7, expressed in the pheromone glands of both Ctenopseustis species, which is not closely related to any previously described moth pheromone desaturase. The encoded enzyme displays Δ5-desaturase activity on myristic acid when heterologously expressed in yeast, but is not able to desaturate any other fatty acid (C8–C16). We conclude that desat7 represents a new group of desaturases that has evolved a role in the biosynthesis of sex pheromones in moths.
Collapse
|
36
|
Hagström ÅK, Wang HL, Liénard MA, Lassance JM, Johansson T, Löfstedt C. A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory. Microb Cell Fact 2013; 12:125. [PMID: 24330839 PMCID: PMC4126085 DOI: 10.1186/1475-2859-12-125] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Moths (Lepidoptera) are highly dependent on chemical communication to find a mate. Compared to conventional unselective insecticides, synthetic pheromones have successfully served to lure male moths as a specific and environmentally friendly way to control important pest species. However, the chemical synthesis and purification of the sex pheromone components in large amounts is a difficult and costly task. The repertoire of enzymes involved in moth pheromone biosynthesis in insecta can be seen as a library of specific catalysts that can be used to facilitate the synthesis of a particular chemical component. In this study, we present a novel approach to effectively aid in the preparation of semi-synthetic pheromone components using an engineered vector co-expressing two key biosynthetic enzymes in a simple yeast cell factory. RESULTS We first identified and functionally characterized a ∆11 Fatty-Acyl Desaturase and a Fatty-Acyl Reductase from the Turnip moth, Agrotis segetum. The ∆11-desaturase produced predominantly Z11-16:acyl, a common pheromone component precursor, from the abundant yeast palmitic acid and the FAR transformed a series of saturated and unsaturated fatty acids into their corresponding alcohols which may serve as pheromone components in many moth species. Secondly, when we co-expressed the genes in the Brewer's yeast Saccharomyces cerevisiae, a set of long-chain fatty acids and alcohols that are not naturally occurring in yeast were produced from inherent yeast fatty acids, and the presence of (Z)-11-hexadecenol (Z11-16:OH), demonstrated that both heterologous enzymes were active in concert. A 100 ml batch yeast culture produced on average 19.5 μg Z11-16:OH. Finally, we demonstrated that oxidized extracts from the yeast cells containing (Z)-11-hexadecenal and other aldehyde pheromone compounds elicited specific electrophysiological activity from male antennae of the Tobacco budworm, Heliothis virescens, supporting the idea that genes from different species can be used as a molecular toolbox to produce pheromone components or pheromone component precursors of potential use for control of a variety of moths. CONCLUSIONS This study is a first proof-of-principle that it is possible to "brew" biologically active moth pheromone components through in vitro co-expression of pheromone biosynthetic enzymes, without having to provide supplementary precursors. Substrates present in the yeast alone appear to be sufficient.
Collapse
Affiliation(s)
- Åsa K Hagström
- Pheromone Group, Department of Biology, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
37
|
Zhang DD, Löfstedt C. Functional evolution of a multigene family: orthologous and paralogous pheromone receptor genes in the turnip moth, Agrotis segetum. PLoS One 2013; 8:e77345. [PMID: 24130875 PMCID: PMC3795068 DOI: 10.1371/journal.pone.0077345] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022] Open
Abstract
Lepidopteran pheromone receptors (PRs), for which orthologies are evident among closely related species, provide an intriguing example of gene family evolution in terms of how new functions may arise. However, only a limited number of PRs have been functionally characterized so far and thus evolutionary scenarios suffer from elements of speculation. In this study we investigated the turnip moth Agrotis segetum, in which female moths produce a mixture of chemically related pheromone components that elicit specific responses from receptor cells on male antennae. We cloned nine A. segetum PR genes and the Orco gene by degenerate primer based RT-PCR. The nine PR genes, named as AsegOR1 and AsegOR3-10, fall into four distinct orthologous clusters of known lepidopteran PRs, of which one contains six paralogues. The paralogues are under relaxed selective pressure, contrasting with the purifying selection on other clusters. We identified the receptors AsegOR9, AsegOR4 and AsegOR5, specific for the respective homologous pheromone components (Z)-5-decenyl, (Z)-7-dodecenyl and (Z)-9-tetradecenyl acetates, by two-electrode voltage clamp recording from Xenopus laevis oocytes co-expressing Orco and each PR candidate. These receptors occur in three different orthologous clusters. We also found that the six paralogues with high sequence similarity vary dramatically in ligand selectivity and sensitivity. Different from AsegOR9, AsegOR6 showed a relatively large response to the behavioural antagonist (Z)-5-decenol, and a small response to (Z)-5-decenyl acetate. AsegOR1 was broadly tuned, but most responsive to (Z)-5-decenyl acetate, (Z)-7-dodecenyl acetate and the behavioural antagonist (Z)-8-dodecenyl acetate. AsegOR8 and AsegOR7, which differ from AsegOR6 and AsegOR1 by 7 and 10 aa respectively, showed much lower sensitivities. AsegOR10 showed only small responses to all the tested compounds. These results suggest that new receptors arise through gene duplication, and relaxed evolutionary constraints or positive selection among paralogues allow functional divergence to occur in spite of purifying selection being the norm.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | | |
Collapse
|
38
|
Albre J, Steinwender B, Newcomb RD. The evolution of desaturase gene regulation involved in sex pheromone production in leafroller moths of the genus planotortrix. ACTA ACUST UNITED AC 2013; 104:627-38. [PMID: 23894191 DOI: 10.1093/jhered/est043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The evolution of mating systems in leafroller moths involves differential regulation of a desaturase gene that produces distinct sex pheromones. In the genus Planotortrix, female P. octo predominantly emits (Z)-8-tetradecenyl acetate due to the expression of desat5 in their pheromone glands, whereas female P. excessana produces a blend of (Z)-5- and (Z)-7-tetradecenyl acetate and does not express desat5. In this study, F1 females from interspecific crosses of these species and F1 backcrosses to P. excessana expressed little, if any, desat5 in their pheromone glands, whereas F1 backcrosses to P. octo and F2 crosses displayed a range of expression levels of desat5, consistent with the action of a trans-acting repressor from P. excessana. Females expressing desat5 always produced (Z)-8-tetradecenyl acetate, and the presence of at least one P. octo-like allele of desat5 was required for the expression of desat5, suggesting a cis-regulatory factor from P. octo is necessary. Comparison of 1148bp upstream of the desat5 open reading frame revealed 35 differences, including a 7-bp insertion in P. octo. We argue these data best fit a model of pheromone evolution that involves changes in a trans-acting repressor and a cis-regulatory mutation in an activator binding site within the desat5 promoter.
Collapse
Affiliation(s)
- Jérôme Albre
- Molecular Sensing Team, Food Innovation, The New Zealand Institute for Plant & Food Research, Auckland 1142, New Zealand
| | | | | |
Collapse
|
39
|
Lassance JM, Liénard MA, Antony B, Qian S, Fujii T, Tabata J, Ishikawa Y, Löfstedt C. Functional consequences of sequence variation in the pheromone biosynthetic gene pgFAR for Ostrinia moths. Proc Natl Acad Sci U S A 2013; 110:3967-72. [PMID: 23407169 PMCID: PMC3593903 DOI: 10.1073/pnas.1208706110] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pheromones are central to the mating systems of a wide range of organisms, and reproductive isolation between closely related species is often achieved by subtle differences in pheromone composition. In insects and moths in particular, the use of structurally similar components in different blend ratios is usually sufficient to impede gene flow between taxa. To date, the genetic changes associated with variation and divergence in pheromone signals remain largely unknown. Using the emerging model system Ostrinia, we show the functional consequences of mutations in the protein-coding region of the pheromone biosynthetic fatty-acyl reductase gene pgFAR. Heterologous expression confirmed that pgFAR orthologs encode enzymes exhibiting different substrate specificities that are the direct consequences of extensive nonsynonymous substitutions. When taking natural ratios of pheromone precursors into account, our data reveal that pgFAR substrate preference provides a good explanation of how species-specific ratios of pheromone components are obtained among Ostrinia species. Moreover, our data indicate that positive selection may have promoted the observed accumulation of nonsynonymous amino acid substitutions. Site-directed mutagenesis experiments substantiate the idea that amino acid polymorphisms underlie subtle or drastic changes in pgFAR substrate preference. Altogether, this study identifies the reduction step as a potential source of variation in pheromone signals in the moth genus Ostrinia and suggests that selection acting on particular mutations provides a mechanism allowing pheromone reductases to evolve new functional properties that may contribute to variation in the composition of pheromone signals.
Collapse
|
40
|
Niehuis O, Buellesbach J, Gibson JD, Pothmann D, Hanner C, Mutti NS, Judson AK, Gadau J, Ruther J, Schmitt T. Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature 2013; 494:345-8. [PMID: 23407492 DOI: 10.1038/nature11838] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/12/2012] [Indexed: 01/28/2023]
Abstract
Sex pheromones play a pivotal role in the communication of many sexually reproducing organisms. Accordingly, speciation is often accompanied by pheromone diversification enabling proper mate finding and recognition. Current theory implies that chemical signals are under stabilizing selection by the receivers who thereby maintain the integrity of the signals. How the tremendous diversity of sex pheromones seen today evolved is poorly understood. Here we unravel the genetics of a newly evolved pheromone phenotype in wasps and present results from behavioural experiments indicating how the evolution of a new pheromone component occurred in an established sender-receiver system. We show that male Nasonia vitripennis evolved an additional pheromone compound differing only in its stereochemistry from a pre-existing one. Comparative behavioural studies show that conspecific females responded neutrally to the new pheromone phenotype when it evolved. Genetic mapping and gene knockdown show that a cluster of three closely linked genes accounts for the ability to produce this new pheromone phenotype. Our data suggest that new pheromone compounds can persist in a sender's population, without being selected against by the receiver and without the receiver having a pre-existing preference for the new pheromone phenotype, by initially remaining unperceived. Our results thus contribute valuable new insights into the evolutionary mechanisms underlying the diversification of sex pheromones. Furthermore, they indicate that the genetic basis of new pheromone compounds can be simple, allowing them to persist long enough in a population for receivers to evolve chemosensory adaptations for their exploitation.
Collapse
Affiliation(s)
- Oliver Niehuis
- Centre for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Olson-Manning CF, Wagner MR, Mitchell-Olds T. Adaptive evolution: evaluating empirical support for theoretical predictions. Nat Rev Genet 2012; 13:867-77. [PMID: 23154809 PMCID: PMC3748133 DOI: 10.1038/nrg3322] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adaptive evolution is shaped by the interaction of population genetics, natural selection and underlying network and biochemical constraints. Variation created by mutation, the raw material for evolutionary change, is translated into phenotypes by flux through metabolic pathways and by the topography and dynamics of molecular networks. Finally, the retention of genetic variation and the efficacy of selection depend on population genetics and demographic history. Emergent high-throughput experimental methods and sequencing technologies allow us to gather more evidence and to move beyond the theory in different systems and populations. Here we review the extent to which recent evidence supports long-established theoretical principles of adaptation.
Collapse
Affiliation(s)
- Carrie F. Olson-Manning
- Department of Biology, Box 90338, Program in Genetics and Genomics, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708
| | - Maggie R. Wagner
- Department of Biology, Box 90338, Program in Genetics and Genomics, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708
| | - Thomas Mitchell-Olds
- Department of Biology, Box 90338, Program in Genetics and Genomics, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708
| |
Collapse
|
42
|
Carraher C, Authier A, Steinwender B, Newcomb RD. Sequence comparisons of odorant receptors among tortricid moths reveal different rates of molecular evolution among family members. PLoS One 2012; 7:e38391. [PMID: 22701634 PMCID: PMC3372514 DOI: 10.1371/journal.pone.0038391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/04/2012] [Indexed: 11/20/2022] Open
Abstract
In insects, odorant receptors detect volatile cues involved in behaviours such as mate recognition, food location and oviposition. We have investigated the evolution of three odorant receptors from five species within the moth genera Ctenopseustis and Planotrotrix, family Tortricidae, which fall into distinct clades within the odorant receptor multigene family. One receptor is the orthologue of the co-receptor Or83b, now known as Orco (OR2), and encodes the obligate ion channel subunit of the receptor complex. In comparison, the other two receptors, OR1 and OR3, are ligand-binding receptor subunits, activated by volatile compounds produced by plants - methyl salicylate and citral, respectively. Rates of sequence evolution at non-synonymous sites were significantly higher in OR1 compared with OR2 and OR3. Within the dataset OR1 contains 109 variable amino acid positions that are distributed evenly across the entire protein including transmembrane helices, loop regions and termini, while OR2 and OR3 contain 18 and 16 variable sites, respectively. OR2 shows a high level of amino acid conservation as expected due to its essential role in odour detection; however we found unexpected differences in the rate of evolution between two ligand-binding odorant receptors, OR1 and OR3. OR3 shows high sequence conservation suggestive of a conserved role in odour reception, whereas the higher rate of evolution observed in OR1, particularly at non-synonymous sites, may be suggestive of relaxed constraint, perhaps associated with the loss of an ancestral role in sex pheromone reception.
Collapse
Affiliation(s)
- Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Astrid Authier
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Bernd Steinwender
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- The Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| | - Richard D. Newcomb
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- The Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
- * E-mail:
| |
Collapse
|