1
|
Znaidi R, Massiani-Beaudoin O, Mailly P, Monnet H, Bonnifet T, Joshi RL, Fuchs J. Nuclear translocation of the LINE-1 encoded ORF1 protein alters nuclear envelope integrity in human neurons. Brain Res 2025; 1857:149579. [PMID: 40157412 DOI: 10.1016/j.brainres.2025.149579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
LINE-1 retrotransposons are increasingly implicated in aging and neurodegenerative diseases, yet the precise pathogenic mechanisms remain elusive. While the endonuclease and reverse transcriptase activities of LINE-1-encoded ORF2p can induce DNA damage and inflammation, a role of LINE-1 ORF1p in cellular dysfunctions stays unassigned. Here we demonstrate, using a neuronal cellular model, that ORF1p translocates into the nucleus upon arsenite-induced stress, directly interacting with nuclear import (KPNB1), nuclear pore complex (NUP153), and nuclear lamina (Lamin B1) proteins. Nuclear translocation of ORF1p disrupts nuclear integrity, nucleocytoplasmic transport, and heterochromatin structure, features linked to neurodegeneration and aging. Elevated nuclear ORF1p levels induced either by arsenite-induced stress, ORF1p overexpression, or as observed in Parkinson's disease post-mortem brain tissues correlate with impaired nuclear envelope (NE) morphology. Stress-induced nuclear alterations are mitigated by blocking ORF1p nuclear import or with the anti-aging drug remodelin. This study thus reveals a pathogenic action of nuclear ORF1p in human neurons driving NE alterations and thereby contributing to LINE-1-mediated cell toxicity.
Collapse
Affiliation(s)
- Rania Znaidi
- CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | | | - Philippe Mailly
- Orion Imaging Facility, CIRB, Collège de France, Université PSL, CNRS, INSERM, Labex Memolife, 75005 Paris, France
| | - Héloïse Monnet
- Orion Imaging Facility, CIRB, Collège de France, Université PSL, CNRS, INSERM, Labex Memolife, 75005 Paris, France
| | - Tom Bonnifet
- CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Rajiv L Joshi
- CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France.
| | - Julia Fuchs
- CIRB, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France.
| |
Collapse
|
2
|
Zeng L, Yang J, Zhang C, Zhu J, Zhong S, Liu X, Xie H, Wang L, Chen L, Zhong M, Hua F, Liang W. Miro1: A potential target for treating neurological disorders. Neuroscience 2025; 577:228-239. [PMID: 40403957 DOI: 10.1016/j.neuroscience.2025.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/23/2025] [Accepted: 05/11/2025] [Indexed: 05/24/2025]
Abstract
The Miro1 protein is a member of the mitochondrial Rho GTPase (Miro) protein family and plays a crucial role in regulating the dynamic processes of mitochondria and participating in cellular movement and mitochondrial transport. In the nervous system, it ensures adequate energy supply for normal neuronal function and synaptic transmission. Additionally, Miro1 actively participates in the regulation of mitochondrial quality control and stress responses within neurons. Its primary function is to sense intracellular stress signals to regulate mitochondrial movement and metabolism, thereby adapting to environmental changes. Multiple studies have indicated that the Miro1 protein is associated with the pathogenesis of various neurological disorders, such as Alzheimer's Disease(AD), Parkinson's Disease(PD), and Amyotrophic Lateral Sclerosis(ALS). This article reviews the mechanistic role of Miro1 in these diseases and summarizes the latest research on its involvement in neurological disorders. These efforts aim to provide unified treatment strategies for certain neurological disorders and explore the potential for treating complex neurological diseases.
Collapse
Affiliation(s)
- Linghua Zeng
- Anesthesia Surgery Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China; Gannan Medical University, Ganzhou 341000 Jiangxi, PR China.
| | - Juan Yang
- Academic Affairs Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China.
| | - Conghui Zhang
- Gannan Medical University, Ganzhou 341000 Jiangxi, PR China.
| | - Junjie Zhu
- Gannan Medical University, Ganzhou 341000 Jiangxi, PR China.
| | - Saichun Zhong
- Department of Anesthesiology, Longnan First People's Hospital, Ganzhou 341000 Jiangxi, PR China.
| | - Xing Liu
- Anesthesia Surgery Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China.
| | - Haiyu Xie
- Anesthesia Surgery Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China.
| | - Lifeng Wang
- Anesthesia Surgery Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China.
| | - Li Chen
- Anesthesia Surgery Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China.
| | - Maolin Zhong
- Anesthesia Surgery Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China.
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, 1# Minde Road, Nanchang 330006 Jiangxi, PR China.
| | - Weidong Liang
- Anesthesia Surgery Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi, PR China; Gannan Medical University, Ganzhou 341000 Jiangxi, PR China.
| |
Collapse
|
3
|
Zhang Y, Rao X, Wang J, Liu H, Wang Q, Wang X, Hua F, Guan X, Lin Y. Mitochondria-Associated Membranes: A Key Point of Neurodegenerative Diseases. CNS Neurosci Ther 2025; 31:e70378. [PMID: 40406921 PMCID: PMC12099310 DOI: 10.1111/cns.70378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/12/2025] [Accepted: 03/29/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Neurodegenerative diseases pose significant health challenges in the 21st century, with increasing morbidity and mortality, particularly among the elderly population. One of the key factors contributing to the pathogenesis of these diseases is the disrupted crosstalk between mitochondria and the endoplasmic reticulum. Mitochondria-associated membranes (MAMs), which are regions where the ER interfaces with mitochondria, serve as crucial platforms facilitating communication between these organelles. OBJECTIVES This review focuses on the structural composition and functions of MAMs and highlights their roles. Additionally, in this review, we summarize the relationship between MAM dysfunction and various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and others. The involvement of key proteins such as Sig-1R, IP3R, and VAPB in maintaining ER-mitochondrial communication and their dysfunction in neurodegenerative diseases is emphasized. CONCLUSION Through analyzing the effects of MAM on neurodegenerative diseases, we provide the newest insights and potential therapeutic targets for the treatment of these debilitating conditions.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of AnesthesiologyNanchangJiangxi ProvinceChina
- Queen Mary CollegeNanchang UniversityNanchangJiangxi ProvinceChina
| | - Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of AnesthesiologyNanchangJiangxi ProvinceChina
| | - Jiayi Wang
- Jiangxi Provincial Key Laboratory of AnesthesiologyNanchangJiangxi ProvinceChina
- Queen Mary CollegeNanchang UniversityNanchangJiangxi ProvinceChina
| | - Hantian Liu
- Jiangxi Provincial Key Laboratory of AnesthesiologyNanchangJiangxi ProvinceChina
- Queen Mary CollegeNanchang UniversityNanchangJiangxi ProvinceChina
| | - Qixian Wang
- Jiangxi Provincial Key Laboratory of AnesthesiologyNanchangJiangxi ProvinceChina
- Queen Mary CollegeNanchang UniversityNanchangJiangxi ProvinceChina
| | - Xifeng Wang
- Jiangxi Provincial Key Laboratory of AnesthesiologyNanchangJiangxi ProvinceChina
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceChina
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of AnesthesiologyNanchangJiangxi ProvinceChina
| | - Xilong Guan
- Department of AnesthesiologyYingtan City People's HospitalYingtan CityJiangxi ProvinceChina
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of AnesthesiologyNanchangJiangxi ProvinceChina
| |
Collapse
|
4
|
Ogienko AA, Andreyeva EN, Yarinich LA, Pindyurin AV, Battulina NV, Omelina ES. Expression Pattern of the AB1-Gal4 Driver in Drosophila Third-Instar Larvae. Int J Mol Sci 2025; 26:3923. [PMID: 40362166 PMCID: PMC12071433 DOI: 10.3390/ijms26093923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Drosophila has provided a highly attractive model system for studying various tissue- and stage-specific processes as well as their pathologies, including a range of human diseases. The existence of a large number of diverse Gal4 drivers to precisely control the expression patterns of UAS transgenes simplifies such studies. However, the choice of driver is always critical, as its possible ectopic expression in non-target cells and tissues can directly impact the results. Therefore, it is very important to thoroughly characterize both the molecular nature and expression pattern of each Gal4 driver line. Here, we aim to fill such gaps regarding the AB1-Gal4 driver, which is typically used to express UAS transgenes in larval salivary glands. In this fly line, the P{GawB} enhancer trap construct encoding the Gal4 protein resides within overlapping evolutionary conserved spastin (spas) and Mitochondrial Rho (Miro) genes. Both these genes are expressed in a number of tissues, including the central nervous system (CNS), and their human orthologs are associated with neurodegenerative diseases. Consistently, we demonstrate that, in third-instar larvae, the expression pattern of AB1-Gal4 is also not restricted to salivary glands. We detect its activity in a subset of Elav-positive neurons in the CNS, including motor neurons, as well as in specific photoreceptor cells in eye discs.
Collapse
Affiliation(s)
| | | | | | | | | | - Evgeniya S. Omelina
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB SB RAS), 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Yin EP, Dieriks BV. Rethinking 'rare' PINK1 Parkinson's disease: A meta-analysis of geographical prevalence, phenotypic diversity, and α-synuclein pathology. JOURNAL OF PARKINSON'S DISEASE 2025; 15:41-65. [PMID: 39973502 DOI: 10.1177/1877718x241304814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
PTEN-induced kinase 1 (PINK1)-related Parkinson's disease (PD) is traditionally considered a rare autosomal recessive form of early-onset PD (EOPD), lacking classical Lewy body pathology. However, this characterization underestimates and oversimplifies PINK1-PD, largely due to a lack of extensive studies in diverse ethnic populations. This review and meta-analysis explores considerable variations in PINK1 variant rates and the wide heterogeneity influenced by patient- and variant-specific factors, delineating a more precise disease profile. Our findings reveal that PINK1-PD is more common than previously thought, with geographic 'hotspots' where up to 9% of EOPD cases are linked to PINK1 variants, including the pathogenic p.Leu347Pro variant affecting 1 in 1300 West Polynesians. Homozygous PINK1-PD typically manifests around age 35, predominantly affecting the lower limbs, with an excellent response to levodopa. Heterozygous PINK1-PD presents an 'intermediate' phenotype, with a later onset age (around 43 years) than homozygous PINK1-PD but earlier than idiopathic PD (typically after age 65). The severity of the phenotype is influenced by variant zygosity and pathogenicity, interacting with genetic and environmental factors to push some individuals beyond the disease threshold. Notably, females with PINK1-PD have earlier onset age than males, particularly in homozygous cases and when variants occur in the first half of PINK1's kinase domain. Contrary to traditional views, α-synuclein pathology is present in 87.5% of PINK1-PD postmortem cases across ages and variants. We challenge conventional views on PINK1-PD, highlighting distinct phenotypes influenced by zygosity, sex, and a role for α-synuclein pathology, urging for increased recognition and research of this not-so-rare disease.
Collapse
Affiliation(s)
- Eden Paige Yin
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Jiao F, Meng L, Du K, Li X. The autophagy-lysosome pathway: a potential target in the chemical and gene therapeutic strategies for Parkinson's disease. Neural Regen Res 2025; 20:139-158. [PMID: 38767483 PMCID: PMC11246151 DOI: 10.4103/nrr.nrr-d-23-01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 05/22/2024] Open
Abstract
Parkinson's disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such as α-synuclein in neurons. As one of the major intracellular degradation pathways, the autophagy-lysosome pathway plays an important role in eliminating these proteins. Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance of α-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson's disease. Moreover, multiple genes associated with the pathogenesis of Parkinson's disease are intimately linked to alterations in the autophagy-lysosome pathway. Thus, this pathway appears to be a promising therapeutic target for treatment of Parkinson's disease. In this review, we briefly introduce the machinery of autophagy. Then, we provide a description of the effects of Parkinson's disease-related genes on the autophagy-lysosome pathway. Finally, we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy-lysosome pathway and their applications in Parkinson's disease.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Lingyan Meng
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Kang Du
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Xuezhi Li
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
7
|
Zhang R, Yang H, Guo M, Niu S, Xue Y. Mitophagy and its regulatory mechanisms in the biological effects of nanomaterials. J Appl Toxicol 2024; 44:1834-1853. [PMID: 38642013 DOI: 10.1002/jat.4609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
Mitophagy is a selective cellular process critical for the removal of damaged mitochondria. It is essential in regulating mitochondrial number, ensuring mitochondrial functionality, and maintaining cellular equilibrium, ultimately influencing cell destiny. Numerous pathologies, such as neurodegenerative diseases, cardiovascular disorders, cancers, and various other conditions, are associated with mitochondrial dysfunctions. Thus, a detailed exploration of the regulatory mechanisms of mitophagy is pivotal for enhancing our understanding and for the discovery of novel preventive and therapeutic options for these diseases. Nanomaterials have become integral in biomedicine and various other sectors, offering advanced solutions for medical uses including biological imaging, drug delivery, and disease diagnostics and therapy. Mitophagy is vital in managing the cellular effects elicited by nanomaterials. This review provides a comprehensive analysis of the molecular mechanisms underpinning mitophagy, underscoring its significant influence on the biological responses of cells to nanomaterials. Nanoparticles can initiate mitophagy via various pathways, among which the PINK1-Parkin pathway is critical for cellular defense against nanomaterial-induced damage by promoting mitophagy. The role of mitophagy in biological effects was induced by nanomaterials, which are associated with alterations in Ca2+ levels, the production of reactive oxygen species, endoplasmic reticulum stress, and lysosomal damage.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Safreena N, Nair IC, Chandra G. Therapeutic potential of Parkin and its regulation in Parkinson's disease. Biochem Pharmacol 2024; 230:116600. [PMID: 39500382 DOI: 10.1016/j.bcp.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain substantia nigra, resulting in motor and non-motor symptoms. While the exact etiology of PD remains elusive, a growing body of evidence suggests that dysfunction in the parkin protein plays a pivotal role in the pathogenesis of the disease. Parkin is an E3 ubiquitin ligase that ubiquitinates substrate proteins to control a number of crucial cellular processes including protein catabolism, immune response, and cellular apoptosis.While autosomal recessive mutations in the PARK2 gene, which codes for parkin, are linked to an inherited form of early-onset PD, heterozygous mutations in PARK2 have also been reported in the more commonly occurring sporadic PD cases. Impairment of parkin's E3 ligase activity is believed to play a pathogenic role in both familial and sporadic forms of PD.This article provides an overview of the current understanding of the mechanistic basis of parkin's E3 ligase activity, its major physiological role in controlling cellular functions, and how these are disrupted in familial and sporadic PD. The second half of the manuscript explores the currently available and potential therapeutic strategies targeting parkin structure and/or function in order to slow down or mitigate the progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Narukkottil Safreena
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India
| | - Indu C Nair
- SAS SNDP Yogam College, Konni, Pathanamthitta 689691, Kerala, India
| | - Goutam Chandra
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India.
| |
Collapse
|
9
|
Boulton DP, Caino MC. Emerging roles for Mitochondrial Rho GTPases in tumor biology. J Biol Chem 2024; 300:107670. [PMID: 39128718 PMCID: PMC11402688 DOI: 10.1016/j.jbc.2024.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Mitochondrial Rho GTPases (MIRO1 and MIRO2) are primarily studied for their role as resident mitochondrial anchor proteins that facilitate mitochondria trafficking in neurons. However, it is now appreciated that these proteins have critical roles in cancer. In this review, we focus on examining the role of MIROs in cancer, including expression changes in tumors and the molecular mechanisms by which MIROs impact tumor cell growth, invasion, and metastasis. Additionally, we give an overview of how MIRO's functions in normal cells within the tumor microenvironment can support or inhibit tumor growth and metastasis. Although this is still an emerging field, the current consensus is that the MIROs primarily promote tumor progression of disparate tumor types. As mitochondrial proteins are now being targeted in the clinic, we discuss their potential as novel proteins to target in cancer.
Collapse
Affiliation(s)
- Dillon P Boulton
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA; Pharmacology Graduate Program, University of Colorado, Aurora, Colorado, USA
| | - M Cecilia Caino
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
10
|
Jenkins JE, Fazli M, Evans CS. Mitochondrial motility modulators coordinate quality control dynamics to promote neuronal health. Curr Opin Cell Biol 2024; 89:102383. [PMID: 38908094 DOI: 10.1016/j.ceb.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
Dysfunction in mitochondrial maintenance and trafficking is commonly correlated with the development of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Thus, biomedical research has been dedicated to understanding how architecturally complex neurons maintain and transport their mitochondria. However, the systems that coordinate mitochondrial QC (quality control) dynamics and trafficking in response to neuronal activity and stress are less understood. Additionally, the degree of integration between the processes of mitochondrial trafficking and QC is unclear. Recent work indicates that mitochondrial motility modulators (i.e., anchors and tethers) help coordinate mitochondrial health by mediating distinct, stress-level-appropriate QC pathways following mitochondrial damage. This review summarizes current evidence supporting the role of two mitochondrial motility modulators, Syntaphilin and Mitofusin 2, in coordinating mitochondrial QC to promote neuronal health. Exploring motility modulators' intricate regulatory molecular landscape may reveal new therapeutic targets for delaying disease progression and enhancing neuronal survival post-insult.
Collapse
Affiliation(s)
- Jennifer E Jenkins
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mohammad Fazli
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chantell S Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Pavlowsky A, Comyn T, Minatchy J, Geny D, Bun P, Danglot L, Preat T, Plaçais PY. Spaced training activates Miro/Milton-dependent mitochondrial dynamics in neuronal axons to sustain long-term memory. Curr Biol 2024; 34:1904-1917.e6. [PMID: 38642548 DOI: 10.1016/j.cub.2024.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Neurons have differential and fluctuating energy needs across distinct cellular compartments, shaped by brain electrochemical activity associated with cognition. In vitro studies show that mitochondria transport from soma to axons is key to maintaining neuronal energy homeostasis. Nevertheless, whether the spatial distribution of neuronal mitochondria is dynamically adjusted in vivo in an experience-dependent manner remains unknown. In Drosophila, associative long-term memory (LTM) formation is initiated by an early and persistent upregulation of mitochondrial pyruvate flux in the axonal compartment of neurons in the mushroom body (MB). Through behavior experiments, super-resolution analysis of mitochondria morphology in the neuronal soma and in vivo mitochondrial fluorescence recovery after photobleaching (FRAP) measurements in the axons, we show that LTM induction, contrary to shorter-lived memories, is sustained by the departure of some mitochondria from MB neuronal soma and increased mitochondrial dynamics in the axonal compartment. Accordingly, impairing mitochondrial dynamics abolished the increased pyruvate consumption, specifically after spaced training and in the MB axonal compartment, thereby preventing LTM formation. Our results thus promote reorganization of the mitochondrial network in neurons as an integral step in elaborating high-order cognitive processes.
Collapse
Affiliation(s)
- Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Typhaine Comyn
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - Julia Minatchy
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - David Geny
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Philippe Bun
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Lydia Danglot
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
12
|
Kulkarni PG, Mohire VM, Waghmare PP, Banerjee T. Interplay of mitochondria-associated membrane proteins and autophagy: Implications in neurodegeneration. Mitochondrion 2024; 76:101874. [PMID: 38514017 DOI: 10.1016/j.mito.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Since the discovery of membrane contact sites between ER and mitochondria called mitochondria-associated membranes (MAMs), several pieces of evidence identified their role in the regulation of different cellular processes such as Ca2+ signalling, mitochondrial transport, and dynamics, ER stress, inflammation, glucose homeostasis, and autophagy. The integrity of these membranes was found to be essential for the maintenance of these cellular functions. Accumulating pieces of evidence suggest that MAMs serve as a platform for autophagosome formation. However, the alteration within MAMs structure is associated with the progression of neurodegenerative diseases. Dysregulated autophagy is a hallmark of neurodegeneration. Here, in this review, we highlight the present knowledge on MAMs, their structural composition, and their roles in different cellular functions. We also discuss the association of MAMs proteins with impaired autophagy and their involvement in the progression of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007 India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
13
|
Li Y, Yang Z, Zhang S, Li J. Miro-mediated mitochondrial transport: A new dimension for disease-related abnormal cell metabolism? Biochem Biophys Res Commun 2024; 705:149737. [PMID: 38430606 DOI: 10.1016/j.bbrc.2024.149737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Mitochondria are versatile and highly dynamic organelles found in eukaryotic cells that play important roles in a variety of cellular processes. The importance of mitochondrial transport in cell metabolism, including variations in mitochondrial distribution within cells and intercellular transfer, has grown in recent years. Several studies have demonstrated that abnormal mitochondrial transport represents an early pathogenic alteration in a variety of illnesses, emphasizing its significance in disease development and progression. Mitochondrial Rho GTPase (Miro) is a protein found on the outer mitochondrial membrane that is required for cytoskeleton-dependent mitochondrial transport, mitochondrial dynamics (fusion and fission), and mitochondrial Ca2+ homeostasis. Miro, as a critical regulator of mitochondrial transport, has yet to be thoroughly investigated in illness. This review focuses on recent developments in recognizing Miro as a crucial molecule in controlling mitochondrial transport and investigates its roles in diverse illnesses. It also intends to shed light on the possibilities of targeting Miro as a therapeutic method for a variety of diseases.
Collapse
Affiliation(s)
- Yanxing Li
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Zhen Yang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Shumei Zhang
- Xi'an Jiaotong University Health Science Center, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Jianjun Li
- Department of Cardiology, Jincheng People's Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi, People's Republic of China.
| |
Collapse
|
14
|
Vedelek V, Jankovics F, Zádori J, Sinka R. Mitochondrial Differentiation during Spermatogenesis: Lessons from Drosophila melanogaster. Int J Mol Sci 2024; 25:3980. [PMID: 38612789 PMCID: PMC11012351 DOI: 10.3390/ijms25073980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Numerous diseases can arise as a consequence of mitochondrial malfunction. Hence, there is a significant focus on studying the role of mitochondria in cancer, ageing, neurodegenerative diseases, and the field of developmental biology. Mitochondria could exist as discrete organelles in the cell; however, they have the ability to fuse, resulting in the formation of interconnected reticular structures. The dynamic changes between these forms correlate with mitochondrial function and mitochondrial health, and consequently, there is a significant scientific interest in uncovering the specific molecular constituents that govern these transitions. Moreover, the specialized mitochondria display a wide array of variable morphologies in their cristae formations. These inner mitochondrial structures are closely associated with the specific functions performed by the mitochondria. In multiple cases, the presence of mitochondrial dysfunction has been linked to male sterility, as it has been observed to cause a range of abnormal spermatogenesis and sperm phenotypes in different species. This review aims to elucidate the dynamic alterations and functions of mitochondria in germ cell development during the spermatogenesis of Drosophila melanogaster.
Collapse
Affiliation(s)
- Viktor Vedelek
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Ferenc Jankovics
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
- Department of Medical Biology, Albert Szent-Györgyi Medical Centre, University of Szeged, 6720 Szeged, Hungary
| | - János Zádori
- Institute of Reproductive Medicine, Albert Szent-Györgyi Medical Centre, University of Szeged, 6723 Szeged, Hungary;
| | - Rita Sinka
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
15
|
Geng Z, Guan S, Wang S, Yu Z, Liu T, Du S, Zhu C. Intercellular mitochondrial transfer in the brain, a new perspective for targeted treatment of central nervous system diseases. CNS Neurosci Ther 2023; 29:3121-3135. [PMID: 37424172 PMCID: PMC10580346 DOI: 10.1111/cns.14344] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
AIM Mitochondria is one of the important organelles involved in cell energy metabolism and regulation and also play a key regulatory role in abnormal cell processes such as cell stress, cell damage, and cell canceration. Recent studies have shown that mitochondria can be transferred between cells in different ways and participate in the occurrence and development of many central nervous system diseases. We aim to review the mechanism of mitochondrial transfer in the progress of central nervous system diseases and the possibility of targeted therapy. METHODS The PubMed databank, the China National Knowledge Infrastructure databank, and Wanfang Data were searched to identify the experiments of intracellular mitochondrial transferrin central nervous system. The focus is on the donors, receptors, transfer pathways, and targeted drugs of mitochondrial transfer. RESULTS In the central nervous system, neurons, glial cells, immune cells, and tumor cells can transfer mitochondria to each other. Meanwhile, there are many types of mitochondrial transfer, including tunneling nanotubes, extracellular vesicles, receptor cell endocytosis, gap junction channels, and intercellular contact. A variety of stress signals, such as the release of damaged mitochondria, mitochondrial DNA, or other mitochondrial products and the elevation of reactive oxygen species, can trigger the transfer of mitochondria from donor cells to recipient cells. Concurrently, a variety of molecular pathways and related inhibitors can affect mitochondrial intercellular transfer. CONCLUSION This study reviews the phenomenon of intercellular mitochondrial transfer in the central nervous system and summarizes the corresponding transfer pathways. Finally, we propose targeted pathways and treatment methods that may be used to regulate mitochondrial transfer for the treatment of related diseases.
Collapse
Affiliation(s)
- Ziang Geng
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Shu Guan
- Department of Surgical Oncology and Breast SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Siqi Wang
- Department of Radiation OncologyThe First Hospital of China Medical UniversityShenyangChina
| | - Zhongxue Yu
- Department of Cardiovascular UltrasoundThe First Hospital of China Medical UniversityShenyangChina
| | - Tiancong Liu
- Department of OtolaryngologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Shaonan Du
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
| | - Chen Zhu
- Department of NeurosurgeryThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
16
|
Napolitano G, Fasciolo G, Muscari Tomajoli MT, Venditti P. Changes in the Mitochondria in the Aging Process-Can α-Tocopherol Affect Them? Int J Mol Sci 2023; 24:12453. [PMID: 37569829 PMCID: PMC10419829 DOI: 10.3390/ijms241512453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Aerobic organisms use molecular oxygen in several reactions, including those in which the oxidation of substrate molecules is coupled to oxygen reduction to produce large amounts of metabolic energy. The utilization of oxygen is associated with the production of ROS, which can damage biological macromolecules but also act as signaling molecules, regulating numerous cellular processes. Mitochondria are the cellular sites where most of the metabolic energy is produced and perform numerous physiological functions by acting as regulatory hubs of cellular metabolism. They retain the remnants of their bacterial ancestors, including an independent genome that encodes part of their protein equipment; they have an accurate quality control system; and control of cellular functions also depends on communication with the nucleus. During aging, mitochondria can undergo dysfunctions, some of which are mediated by ROS. In this review, after a description of how aging affects the mitochondrial quality and quality control system and the involvement of mitochondria in inflammation, we report information on how vitamin E, the main fat-soluble antioxidant, can protect mitochondria from age-related changes. The information in this regard is scarce and limited to some tissues and some aspects of mitochondrial alterations in aging. Improving knowledge of the effects of vitamin E on aging is essential to defining an optimal strategy for healthy aging.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Gianluca Fasciolo
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| | - Maria Teresa Muscari Tomajoli
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Paola Venditti
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| |
Collapse
|
17
|
Mattedi F, Lloyd-Morris E, Hirth F, Vagnoni A. Optogenetic cleavage of the Miro GTPase reveals the direct consequences of real-time loss of function in Drosophila. PLoS Biol 2023; 21:e3002273. [PMID: 37590319 PMCID: PMC10465005 DOI: 10.1371/journal.pbio.3002273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/29/2023] [Accepted: 07/22/2023] [Indexed: 08/19/2023] Open
Abstract
Miro GTPases control mitochondrial morphology, calcium homeostasis, and regulate mitochondrial distribution by mediating their attachment to the kinesin and dynein motor complex. It is not clear, however, how Miro proteins spatially and temporally integrate their function as acute disruption of protein function has not been performed. To address this issue, we have developed an optogenetic loss of function "Split-Miro" allele for precise control of Miro-dependent mitochondrial functions in Drosophila. Rapid optogenetic cleavage of Split-Miro leads to a striking rearrangement of the mitochondrial network, which is mediated by mitochondrial interaction with the microtubules. Unexpectedly, this treatment did not impact the ability of mitochondria to buffer calcium or their association with the endoplasmic reticulum. While Split-Miro overexpression is sufficient to augment mitochondrial motility, sustained photocleavage shows that Split-Miro is surprisingly dispensable to maintain elevated mitochondrial processivity. In adult fly neurons in vivo, Split-Miro photocleavage affects both mitochondrial trafficking and neuronal activity. Furthermore, functional replacement of endogenous Miro with Split-Miro identifies its essential role in the regulation of locomotor activity in adult flies, demonstrating the feasibility of tuning animal behaviour by real-time loss of protein function.
Collapse
Affiliation(s)
- Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Ethlyn Lloyd-Morris
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Frank Hirth
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
18
|
Razali K, Mohd Nasir MH, Kumar J, Mohamed WMY. Mitophagy: A Bridge Linking HMGB1 and Parkinson's Disease Using Adult Zebrafish as a Model Organism. Brain Sci 2023; 13:1076. [PMID: 37509008 PMCID: PMC10377498 DOI: 10.3390/brainsci13071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 07/30/2023] Open
Abstract
High-mobility group box 1 (HMGB1) has been implicated as a key player in two critical factors of Parkinson's disease (PD): mitochondrial dysfunction and neuroinflammation. However, the specific role of HMGB1 in PD remains elusive. We investigated the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration on mitochondrial dysfunction and HMGB1-associated inflammatory genes as well as locomotor activity in zebrafish, aiming to elucidate the role of HMGB1 in PD. Adult zebrafish received MPTP injections, and locomotor activity was measured at 24- and 48-h post-administration. Gene expression levels related to mitophagy (fis1, pink1, and park2) and HMGB1-mediated inflammation (hmgb1, tlr4, and nfkb) were quantified through RT-qPCR analysis. Following MPTP injection, the significant increase in transcript levels of fis1, pink1, and park2 indicated notable changes in PINK1/Parkin mitophagy, while the upregulation of hmgb1, tlr4, and nfkb genes pointed to the activation of the HMGB1/TLR4/NFκB inflammatory pathway. Furthermore, MPTP-injected zebrafish exhibited decreased locomotor activity, evident through reduced distance travelled, mean speed, and increased freezing durations. HMGB1 plays a major role in cellular processes as it is involved in both the mitophagy process and functions as a pro-inflammatory protein. MPTP administration in adult zebrafish activated mitophagy and inflammatory signaling, highlighting the significant role of HMGB1 as a mediator in both processes and further emphasizing its significant contribution to PD pathogenesis.
Collapse
Affiliation(s)
- Khairiah Razali
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan 25200, Pahang, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan 25200, Pahang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Kuala Lumpur 56000, Selangor, Malaysia
| | - Wael M Y Mohamed
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan 25200, Pahang, Malaysia
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt
| |
Collapse
|
19
|
Li S, Wang Y, Zhang X, Xiong X, Zhou F, Li X, Fan J, Liang X, Li G, Peng Y, Li Y. Mitochondrial damage-induced abnormal glucose metabolism with ageing in the hippocampus of APP/PS1 mice. Metabolomics 2023; 19:56. [PMID: 37289288 DOI: 10.1007/s11306-023-02023-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Accumulation of β-amyloid (Aβ) in neurons of patients with Alzheimer's disease (AD) inhibits the activity of key enzymes in mitochondrial metabolic pathways, triggering mitochondrial dysfunction, which plays an important role in the onset and development of AD. Mitophagy is a process whereby dysfunctional or damaged mitochondria are removed from the cell. Aberrant mitochondrial metabolism may hinder mitophagy, promote autophagosome accumulation, and lead to neuronal death. OBJECTIVES The aim of this experiment is to explore the mechanism of neuronal mitochondria damage in the hippocampus of different age APP/PS1 double transgenic AD mice, and to explore the related metabolites and metabolic pathways for further understanding of the pathogenesis, so as to provide new ideas and strategies for the treatment of AD. METHODS In this study, 24 APP/PS1(APPswe/PSEN1dE9) mice were divided into 3, 6, 9, and 12-month-old groups, and 6-month-old wild-type C57BL/6 mice were as controls. The Morris water maze test was used to evaluate learning and memory. Levels of Aβ were detected by immunohistochemistry. Electron microscopy was used to observe mitochondrial damage and autophagosome accumulation. Western blot was for measuring LC3, P62, PINK1, Parkin, Miro1, and Tom 20 protein expression levels. Gas chromatography coupled with mass spectrometry was used to screen differentially abundant metabolites. RESULTS The results showed that with the increase of age in APP/PS1 mice, cognitive impairment, hippocampal neuron mitochondrial damage, and autophagosome accumulation all increased. Furthermore, enhanced mitophagy and impaired mitochondrial clearance leading to metabolic abnormalities were observed with ageing in APP/PS1 mouse hippocampus. Especially, abnormal accumulation of succinic acid and citric acid in the Krebs cycle was observed. CONCLUSION This study investigated the abnormal glucose metabolism associated with age-related damage to mitochondria in the hippocampus of APP/PS1 mice. These findings provide new insights into the pathogenesis of AD.
Collapse
Affiliation(s)
- Shijie Li
- Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer(iCQBC), Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China
| | - Yangyang Wang
- School of Medicine, Chongqing University, Chongqing, 400030, P.R. China
| | - Xiong Zhang
- Basic Medicine College, Chongqing Medical University, Chongqing, P.R. China
| | - Xiaomin Xiong
- School of Medicine, Chongqing University, Chongqing, 400030, P.R. China
| | - Fanlin Zhou
- Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer(iCQBC), Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China
| | - Xiaoju Li
- Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer(iCQBC), Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China
| | - Jianing Fan
- School of Medicine, Chongqing University, Chongqing, 400030, P.R. China
| | - Xiao Liang
- School of Medicine, Chongqing University, Chongqing, 400030, P.R. China
| | - Guangxin Li
- Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer(iCQBC), Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China
| | - Yan Peng
- Teaching and Research Section of Pathology and Pathophysiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yu Li
- Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China.
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer(iCQBC), Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China.
- Department of Pathology, Chongqing University Cancer Hospital, Hanyu Road, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
20
|
Duarte FV, Ciampi D, Duarte CB. Mitochondria as central hubs in synaptic modulation. Cell Mol Life Sci 2023; 80:173. [PMID: 37266732 DOI: 10.1007/s00018-023-04814-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Mitochondria are present in the pre- and post-synaptic regions, providing the energy required for the activity of these very specialized neuronal compartments. Biogenesis of synaptic mitochondria takes place in the cell body, and these organelles are then transported to the synapse by motor proteins that carry their cargo along microtubule tracks. The transport of mitochondria along neurites is a highly regulated process, being modulated by the pattern of neuronal activity and by extracellular cues that interact with surface receptors. These signals act by controlling the distribution of mitochondria and by regulating their activity. Therefore, mitochondria activity at the synapse allows the integration of different signals and the organelles are important players in the response to synaptic stimulation. Herein we review the available evidence regarding the regulation of mitochondrial dynamics by neuronal activity and by neuromodulators, and how these changes in the activity of mitochondria affect synaptic communication.
Collapse
Affiliation(s)
- Filipe V Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- III - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniele Ciampi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
21
|
Jeong Y, Davis CHO, Muscarella AM, Deshpande V, Kim KY, Ellisman MH, Marsh-Armstrong N. Glaucoma-associated Optineurin mutations increase transmitophagy in a vertebrate optic nerve. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542507. [PMID: 37398269 PMCID: PMC10312487 DOI: 10.1101/2023.05.26.542507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We previously described a process referred to as transmitophagy where mitochondria shed by retinal ganglion cell (RGC) axons are transferred to and degraded by surrounding astrocytes in the optic nerve head of mice. Since the mitophagy receptor Optineurin (OPTN) is one of few large-effect glaucoma genes and axonal damage occurs at the optic nerve head in glaucoma, here we explored whether OPTN mutations perturb transmitophagy. Live-imaging of Xenopus laevis optic nerves revealed that diverse human mutant but not wildtype OPTN increase stationary mitochondria and mitophagy machinery and their colocalization within, and in the case of the glaucoma-associated OPTN mutations also outside of, RGC axons. These extra-axonal mitochondria are degraded by astrocytes. Our studies support the view that in RGC axons under baseline conditions there are low levels of mitophagy, but that glaucoma-associated perturbations in OPTN result in increased axonal mitophagy involving the shedding and astrocytic degradation of the mitochondria.
Collapse
Affiliation(s)
- Yaeram Jeong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | | | - Aaron M. Muscarella
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Viraj Deshpande
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Nicholas Marsh-Armstrong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Lead contact
| |
Collapse
|
22
|
Naren P, Samim KS, Tryphena KP, Vora LK, Srivastava S, Singh SB, Khatri DK. Microtubule acetylation dyshomeostasis in Parkinson's disease. Transl Neurodegener 2023; 12:20. [PMID: 37150812 PMCID: PMC10165769 DOI: 10.1186/s40035-023-00354-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The inter-neuronal communication occurring in extensively branched neuronal cells is achieved primarily through the microtubule (MT)-mediated axonal transport system. This mechanistically regulated system delivers cargos (proteins, mRNAs and organelles such as mitochondria) back and forth from the soma to the synapse. Motor proteins like kinesins and dynein mechanistically regulate polarized anterograde (from the soma to the synapse) and retrograde (from the synapse to the soma) commute of the cargos, respectively. Proficient axonal transport of such cargos is achieved by altering the microtubule stability via post-translational modifications (PTMs) of α- and β-tubulin heterodimers, core components constructing the MTs. Occurring within the lumen of MTs, K40 acetylation of α-tubulin via α-tubulin acetyl transferase and its subsequent deacetylation by HDAC6 and SIRT2 are widely scrutinized PTMs that make the MTs highly flexible, which in turn promotes their lifespan. The movement of various motor proteins, including kinesin-1 (responsible for axonal mitochondrial commute), is enhanced by this PTM, and dyshomeostasis of neuronal MT acetylation has been observed in a variety of neurodegenerative conditions, including Alzheimer's disease and Parkinson's disease (PD). PD is the second most common neurodegenerative condition and is closely associated with impaired MT dynamics and deregulated tubulin acetylation levels. Although the relationship between status of MT acetylation and progression of PD pathogenesis has become a chicken-and-egg question, our review aims to provide insights into the MT-mediated axonal commute of mitochondria and dyshomeostasis of MT acetylation in PD. The enzymatic regulators of MT acetylation along with their synthetic modulators have also been briefly explored. Moving towards a tubulin-based therapy that enhances MT acetylation could serve as a disease-modifying treatment in neurological conditions that lack it.
Collapse
Affiliation(s)
- Padmashri Naren
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Khan Sabiya Samim
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
23
|
Ko TK, Tan DJY. Is Disrupted Mitophagy a Central Player to Parkinson's Disease Pathology? Cureus 2023; 15:e35458. [PMID: 36860818 PMCID: PMC9969326 DOI: 10.7759/cureus.35458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 02/27/2023] Open
Abstract
Whilst the pathophysiology at a cellular level has been defined, the cause of Parkinson's disease (PD) remains poorly understood. This neurodegenerative disorder is associated with impaired dopamine transmission in the substantia nigra, and protein accumulations known as Lewy bodies are visible in affected neurons. Cell culture models of PD have indicated impaired mitochondrial function, so the focus of this paper is on the quality control processes involved in and around mitochondria. Mitochondrial autophagy (mitophagy) is the process through which defective mitochondria are removed from the cell by internalisation into autophagosomes which fuse with a lysosome. This process involves many proteins, notably including PINK1 and parkin, both of which are known to be coded on genes associated with PD. Normally in healthy individuals, PINK1 associates with the outer mitochondrial membrane, which then recruits parkin, activating it to attach ubiquitin proteins to the mitochondrial membrane. PINK1, parkin, and ubiquitin cooperate to form a positive feedback system which accelerates the deposition of ubiquitin on dysfunctional mitochondria, resulting in mitophagy. However, in hereditary PD, the genes encoding PINK1 and parkin are mutated, resulting in proteins that are less efficient at removing poorly performing mitochondria, leaving cells more vulnerable to oxidative stress and ubiquitinated inclusion bodies, such as Lewy bodies. Current research that looks into the connection between mitophagy and PD is promising, already yielding potentially therapeutic compounds; until now, pharmacological support for the mitophagy process has not been part of the therapeutic arsenal. Continued research in this area is warranted.
Collapse
Affiliation(s)
- Tsz Ki Ko
- Otolaryngology, College of Life Sciences, Leicester Medical School, George Davies Centre, Leicester, GBR
| | | |
Collapse
|
24
|
Davis K, Basu H, Izquierdo-Villalba I, Shurberg E, Schwarz TL. Miro GTPase domains regulate the assembly of the mitochondrial motor-adaptor complex. Life Sci Alliance 2023; 6:6/1/e202201406. [PMID: 36302649 PMCID: PMC9615026 DOI: 10.26508/lsa.202201406] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial transport relies on a motor-adaptor complex containing Miro1, a mitochondrial outer membrane protein with two GTPase domains, and TRAK1/2, kinesin-1, and dynein. Using a peroxisome-directed Miro1, we quantified the ability of GTPase mutations to influence the peroxisomal recruitment of complex components. Miro1 whose N-GTPase is locked in the GDP state does not recruit TRAK1/2, kinesin, or P135 to peroxisomes, whereas the GTP state does. Similarly, the expression of the MiroGAP VopE dislodges TRAK1 from mitochondria. Miro1 C-GTPase mutations have little influence on complex recruitment. Although Miro2 is thought to support mitochondrial motility, peroxisome-directed Miro2 did not recruit the other complex components regardless of the state of its GTPase domains. Neurons expressing peroxisomal Miro1 with the GTP-state form of the N-GTPase had markedly increased peroxisomal transport to growth cones, whereas the GDP-state caused their retention in the soma. Thus, the N-GTPase domain of Miro1 is critical for regulating Miro1's interaction with the other components of the motor-adaptor complex and thereby for regulating mitochondrial motility.
Collapse
Affiliation(s)
- Kayla Davis
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Himanish Basu
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Ismael Izquierdo-Villalba
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ethan Shurberg
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Thomas L Schwarz
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA .,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Braun MM, Puglielli L. Defective PTEN-induced kinase 1/Parkin mediated mitophagy and neurodegenerative diseases. Front Cell Neurosci 2022; 16:1031153. [PMID: 36339819 PMCID: PMC9630469 DOI: 10.3389/fncel.2022.1031153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/04/2022] [Indexed: 10/07/2023] Open
Abstract
The selective degradation of mitochondria through mitophagy is a crucial process for maintaining mitochondrial function and cellular health. Mitophagy is a specialized form of selective autophagy that uses unique machinery to recognize and target damaged mitochondria for mitophagosome- and lysosome-dependent degradation. This process is particularly important in cells with high metabolic activity like neurons, and the accumulation of defective mitochondria is a common feature among neurodegenerative disorders. Here, we describe essential steps involved in the induction and progression of mitophagy, and then highlight the various mechanisms that specifically contribute to defective mitophagy in highly prevalent neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Megan M. Braun
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, United States
| |
Collapse
|
26
|
Otero PA, Fricklas G, Nigam A, Lizama BN, Wills ZP, Johnson JW, Chu CT. Endogenous PTEN-Induced Kinase 1 Regulates Dendritic Architecture and Spinogenesis. J Neurosci 2022; 42:7848-7860. [PMID: 36414008 PMCID: PMC9581559 DOI: 10.1523/jneurosci.0785-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 01/12/2023] Open
Abstract
Mutations in PTEN-induced kinase 1 (PINK1) contribute to autosomal recessive Parkinson's disease with cognitive and neuropsychiatric comorbidities. Disturbances in dendritic and spine architecture are hallmarks of neurodegenerative and neuropsychiatric conditions, but little is known of the impact of PINK1 on these structures. We used Pink1 -/- mice to study the role of endogenous PINK1 in regulating dendritic architecture, spine density, and spine maturation. Pink1 -/- cortical neurons of unknown sex showed decreased dendritic arborization, affecting both apical and basal arbors. Dendritic simplification in Pink1 -/- neurons was primarily driven by diminished branching with smaller effects on branch lengths. Pink1 -/- neurons showed reduced spine density with a shift in morphology to favor filopodia at the expense of mushroom spines. Electrophysiology revealed significant reductions in miniature EPSC (mEPSC) frequency in Pink1 -/- neurons, consistent with the observation of decreased spine numbers. Transfecting with human PINK1 rescued changes in dendritic architecture, in thin, stubby, and mushroom spine densities, and in mEPSC frequency. Diminished spine density was also observed in Golgi-Cox stained adult male Pink1 -/- brains. Western blot study of Pink1 -/- brains of either sex revealed reduced phosphorylation of NSFL1 cofactor p47, an indirect target of PINK1. Transfection of Pink1 -/- neurons with a phosphomimetic p47 plasmid rescued dendritic branching and thin/stubby spine density with a partial rescue of mushroom spines, implicating a role for PINK1-regulated p47 phosphorylation in dendrite and spine development. These findings suggest that PINK1-dependent synaptodendritic alterations may contribute to the risk of cognitive and/or neuropsychiatric pathologies observed in PINK1-mutated families.SIGNIFICANCE STATEMENT Loss of PINK1 function has been implicated in both familial and sporadic neurodegenerative diseases. Yet surprisingly little is known of the impact of PINK1 loss on the fine structure of neurons. Neurons receive excitatory synaptic signals along a complex network of projections that form the dendritic tree, largely at tiny protrusions called dendritic spines. We studied cortical neurons and brain tissues from mice lacking PINK1. We discovered that PINK1 deficiency causes striking simplification of dendritic architecture associated with reduced synaptic input and decreased spine density and maturation. These changes are reversed by reintroducing human PINK1 or one of its downstream mediators into PINK1-deficient mouse neurons, indicating a conserved function, whose loss may contribute to neurodegenerative processes.
Collapse
Affiliation(s)
- P Anthony Otero
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Gabriella Fricklas
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Aparna Nigam
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Britney N Lizama
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zachary P Wills
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jon W Johnson
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Charleen T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
27
|
Abstract
The maintenance of a healthy mitochondrial network and the ability to adjust organelle population in response to internal or external stimuli are essential for the function and the survival of eukaryotic cells. Over the last two decades several studies have demonstrated the paramount importance of mitophagy, a selective form of autophagy that removes damaged and/or superfluous organelles, in organismal physiology. Post-mitotic neuronal cells are particularly vulnerable to mitochondrial damage, and mitophagy impairment has emerged as a causative factor in multiple neurodegenerative pathologies, including Alzheimer's disease and Parkinson's disease among others. Although mitochondrial turnover is a multifaceted process, neurons have to tackle additional complications, arising from their pronounced bioenergetic demands and their unique architecture and cellular polarisation that render the degradation of distal organelles challenging. Mounting evidence indicates that despite the functional conservation of mitophagy pathways, the unique features of neuronal physiology have led to the adaptation of compartmentalised solutions, which serve to ensure seamless mitochondrial removal in every part of the cell. In this review, we summarise the current knowledge concerning the molecular mechanisms that mediate mitophagy compartmentalisation and discuss their implications in various human pathologies.
Collapse
|
28
|
Vrijsen S, Vrancx C, Del Vecchio M, Swinnen JV, Agostinis P, Winderickx J, Vangheluwe P, Annaert W. Inter-organellar Communication in Parkinson's and Alzheimer's Disease: Looking Beyond Endoplasmic Reticulum-Mitochondria Contact Sites. Front Neurosci 2022; 16:900338. [PMID: 35801175 PMCID: PMC9253489 DOI: 10.3389/fnins.2022.900338] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/05/2022] [Indexed: 01/13/2023] Open
Abstract
Neurodegenerative diseases (NDs) are generally considered proteinopathies but whereas this may initiate disease in familial cases, onset in sporadic diseases may originate from a gradually disrupted organellar homeostasis. Herein, endolysosomal abnormalities, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and altered lipid metabolism are commonly observed in early preclinical stages of major NDs, including Parkinson's disease (PD) and Alzheimer's disease (AD). Among the multitude of underlying defective molecular mechanisms that have been suggested in the past decades, dysregulation of inter-organellar communication through the so-called membrane contact sites (MCSs) is becoming increasingly apparent. Although MCSs exist between almost every other type of subcellular organelle, to date, most focus has been put on defective communication between the ER and mitochondria in NDs, given these compartments are critical in neuronal survival. Contributions of other MCSs, notably those with endolysosomes and lipid droplets are emerging, supported as well by genetic studies, identifying genes functionally involved in lysosomal homeostasis. In this review, we summarize the molecular identity of the organelle interactome in yeast and mammalian cells, and critically evaluate the evidence supporting the contribution of disturbed MCSs to the general disrupted inter-organellar homeostasis in NDs, taking PD and AD as major examples.
Collapse
Affiliation(s)
- Stephanie Vrijsen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, Leuven, Belgium
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Mara Del Vecchio
- Laboratory of Functional Biology, Department of Biology, KU Leuven, Heverlee, Belgium
| | - Johannes V. Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, VIB-Center for Cancer Research, KU Leuven, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joris Winderickx
- Laboratory of Functional Biology, Department of Biology, KU Leuven, Heverlee, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Cheng XT, Huang N, Sheng ZH. Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 2022; 110:1899-1923. [PMID: 35429433 PMCID: PMC9233091 DOI: 10.1016/j.neuron.2022.03.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Mitochondria generate ATP essential for neuronal growth, function, and regeneration. Due to their polarized structures, neurons face exceptional challenges to deliver mitochondria to and maintain energy homeostasis throughout long axons and terminal branches where energy is in high demand. Chronic mitochondrial dysfunction accompanied by bioenergetic failure is a pathological hallmark of major neurodegenerative diseases. Brain injury triggers acute mitochondrial damage and a local energy crisis that accelerates neuron death. Thus, mitochondrial maintenance defects and axonal energy deficits emerge as central problems in neurodegenerative disorders and brain injury. Recent studies have started to uncover the intrinsic mechanisms that neurons adopt to maintain (or reprogram) axonal mitochondrial density and integrity, and their bioenergetic capacity, upon sensing energy stress. In this review, we discuss recent advances in how neurons maintain a healthy pool of axonal mitochondria, as well as potential therapeutic strategies that target bioenergetic restoration to power neuronal survival, function, and regeneration.
Collapse
Affiliation(s)
- Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
30
|
Leduc-Gaudet JP, Hussain SN, Gouspillou G. Parkin: A potential target to promote healthy aging. J Physiol 2022; 600:3405-3421. [PMID: 35691026 DOI: 10.1113/jp282567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022] Open
Abstract
Parkin is an E3 ubiquitin ligase mostly known for its role in regulating the removal of defective mitochondria via mitophagy. However, increasing experimental evidence that Parkin regulates several other aspects of mitochondrial biology in addition to its role in mitophagy has emerged over the past two decades. Indeed, Parkin has been shown to regulate mitochondrial biogenesis and dynamics and mitochondrial-derived vesicle formation, suggesting that Parkin plays key roles in maintaining healthy mitochondria. While Parkin is commonly described as a cytosolic E3 ubiquitin ligase, Parkin was also detected in other cellular compartments, including the nucleus, where it regulates transcription factors and acts as a transcription factor itself. New evidence also suggests that Parkin overexpression can be leveraged to delay aging. In D. melanogaster, for example, Parkin overexpression extends lifespan. In mammals, Parkin overexpression delays hallmarks of aging in several tissues and cell types. Parkin overexpression also confers protection in various models of cellular senescence and neurological disorders closely associated with aging, such as Alzheimer's and Parkinson's diseases. Recently, Parkin overexpression has also been shown to suppress tumor growth. In this review, we discuss newly emerging biological roles of Parkin as a modulator of cellular homeostasis, survival, and healthy aging, and we explore potential mechanisms through which Parkin exerts its beneficial effects on cellular health. Abstract figure legend Parkin: A potential target to promote healthy aging Illustration of key aspects of Parkin biology, including Parkin function and cellular localization and key roles in the regulation of mitochondrial quality control. The organs and systems in which Parkin overexpression was shown to exert protective effects relevant to the promotion of healthy aging are highlighted in the black rectangle at the bottom of the Figure. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jean-Philippe Leduc-Gaudet
- Department of Biomedical Sciences, Veneto Institute of Molecular Medicine, University of Padova, Padova, Italy.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC, Canada.,Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Département des sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Sabah Na Hussain
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC, Canada.,Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Gilles Gouspillou
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC, Canada.,Département des sciences de l'activité physique, Faculté des sciences, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| |
Collapse
|
31
|
Eldeeb MA, Thomas RA, Ragheb MA, Fallahi A, Fon EA. Mitochondrial quality control in health and in Parkinson's disease. Physiol Rev 2022; 102:1721-1755. [PMID: 35466694 DOI: 10.1152/physrev.00041.2021] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a central hub for cellular metabolism and intracellular signalling, the mitochondrion is a pivotal organelle, dysfunction of which has been linked to several human diseases including neurodegenerative disorders, and in particular Parkinson's disease. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to monitor, identify, repair and/or eliminate abnormal or misfolded proteins within the mitochondrion and/or the dysfunctional mitochondrion itself. Chaperones identify unstable or otherwise abnormal conformations in mitochondrial proteins and can promote their refolding to recover their correct conformation and stability. However, if repair is not possible, the abnormal protein is selectively degraded to prevent potentially damaging interactions with other proteins or its oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of such abnormal or misfolded protein species. Mitophagy (a specific kind of autophagy) mediates the selective elimination of dysfunctional mitochondria, in order to prevent the deleterious effects the dysfunctional organelles within the cell. Despite our increasing understanding of the molecular responses toward dysfunctional mitochondria, many key aspects remain relatively poorly understood. Herein, we review the emerging mechanisms of mitochondrial quality control including quality control strategies coupled to mitochondrial import mechanisms. In addition, we review the molecular mechanisms regulating mitophagy with an emphasis on the regulation of PINK1/PARKIN-mediated mitophagy in cellular physiology and in the context of Parkinson's disease cell biology.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rhalena A Thomas
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Armaan Fallahi
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
32
|
El Ganainy SO, Cijsouw T, Ali MA, Schoch S, Hanafy AS. Stereotaxic-assisted gene therapy in Alzheimer's and Parkinson's diseases: therapeutic potentials and clinical frontiers. Expert Rev Neurother 2022; 22:319-335. [PMID: 35319338 DOI: 10.1080/14737175.2022.2056446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders causing cognitive deficits and motor difficulties in the elderly. Conventional treatments are mainly symptomatic with little ability to halt disease progression. Gene therapies to correct or silence genetic mutations predisposing to AD or PD are currently being developed in preclinical studies and clinical trials, relying mostly on systemic delivery, which reduces their effectiveness. Imaging-guided stereotaxic procedures are used to locally deliver therapeutic cargos to well-defined brain sites, hence raising the question whether stereotaxic-assisted gene therapy has therapeutic potentials. AREAS COVERED The authors summarize the studies that investigated the use of gene therapy in PD and AD in animal and clinical studies over the past five years, with a special emphasis on the combinatorial potential with stereotaxic delivery. The advantages, limitations and futuristic challenges of this technique are discussed. EXPERT OPINION Robotic stereotaxis combined with intraoperative imaging has revolutionized brain surgeries. While gene therapies are bringing huge innovations to the medical field and new hope to AD and PD patients and medical professionals, the efficient and targeted delivery of such therapies is a bottleneck. We propose that careful application of stereotaxic delivery of gene therapies can improve PD and AD management. [Figure: see text].
Collapse
Affiliation(s)
- Samar O El Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Tony Cijsouw
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Susanne Schoch
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | | |
Collapse
|
33
|
Grespi F, Vianello C, Cagnin S, Giacomello M, De Mario A. The Interplay of Microtubules with Mitochondria–ER Contact Sites (MERCs) in Glioblastoma. Biomolecules 2022; 12:biom12040567. [PMID: 35454156 PMCID: PMC9030160 DOI: 10.3390/biom12040567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Gliomas are heterogeneous neoplasms, classified into grade I to IV according to their malignancy and the presence of specific histological/molecular hallmarks. The higher grade of glioma is known as glioblastoma (GB). Although progress has been made in surgical and radiation treatments, its clinical outcome is still unfavorable. The invasive properties of GB cells and glioma aggressiveness are linked to the reshaping of the cytoskeleton. Recent works suggest that the different susceptibility of GB cells to antitumor immune response is also associated with the extent and function of mitochondria–ER contact sites (MERCs). The presence of MERCs alterations could also explain the mitochondrial defects observed in GB models, including abnormalities of energy metabolism and disruption of apoptotic and calcium signaling. Based on this evidence, the question arises as to whether a MERCs–cytoskeleton crosstalk exists, and whether GB progression is linked to an altered cytoskeleton–MERCs interaction. To address this possibility, in this review we performed a meta-analysis to compare grade I and grade IV GB patients. From this preliminary analysis, we found that GB samples (grade IV) are characterized by altered expression of cytoskeletal and MERCs related genes. Among them, the cytoskeleton-associated protein 4 (CKAP4 or CLIMP-63) appears particularly interesting as it encodes a MERCs protein controlling the ER anchoring to microtubules (MTs). Although further in-depth analyses remain necessary, this perspective review may provide new hints to better understand GB molecular etiopathogenesis, by suggesting that cytoskeletal and MERCs alterations cooperate to exacerbate the cellular phenotype of high-grade GB and that MERCs players can be exploited as novel biomarkers/targets to enhance the current therapy for GB.
Collapse
Affiliation(s)
- Francesca Grespi
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
| | - Caterina Vianello
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
| | - Stefano Cagnin
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
- CRIBI Biotechnology Center, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- CIR-Myo Myology Center, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
| | - Marta Giacomello
- Department of Biology, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy; (F.G.); (C.V.); (S.C.)
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- Correspondence: (M.G.); (A.D.M.)
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58b, 35100 Padua, Italy
- Correspondence: (M.G.); (A.D.M.)
| |
Collapse
|
34
|
Steady-State Levels of Miro1 Linked to Phosphorylation at Serine 156 and Mitochondrial Respiration in Dopaminergic Neurons. Cells 2022; 11:cells11081269. [PMID: 35455950 PMCID: PMC9032684 DOI: 10.3390/cells11081269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Miro1 has emerged as an interesting target to study Parkinson’s disease-relevant pathways since it is a target of PINK1 and Parkin. Miro1 is a mitochondrial GTPase with the primary function of facilitating mitochondrial movement, and its knockout in mice is postnatally lethal. Here, we investigated the effect of the artificial RHOT1/Miro1 S156A mutation since it is a putative PINK1 phosphorylation site shown to be involved in Miro1 degradation and mitochondrial arrest during mitophagy. We gene-edited a homozygous phospho-null Miro1 S156A mutation in induced pluripotent stem cells to study the mutation in human dopaminergic neurons. This mutation causes a significant depletion of Miro1 steady-state protein levels and impairs further Miro1 degradation upon CCCP-induced mitophagy. However, mitochondrial mass measured by Tom20 protein levels, as well as mitochondrial area, are not affected in Miro1 S156A neurons. The mitochondria are slightly lengthened, which is in line with their increased turnover. Under basal conditions, we found no discernable effect of the mutation on mitochondrial movement in neurites. Interestingly, the S156A mutation leads to a significant reduction of mitochondrial oxygen consumption, which is accompanied by a depletion of OXPHOS complexes III and V. These effects are not mirrored by Miro1 knockdown in neuroblastoma cells, but they are observed upon differentiation. Undifferentiated Miro1 S156A neural precursor cells do not have decreased Miro1 levels nor OXPHOS complexes, suggesting that the effect of the mutation is tied to development. In mature dopaminergic neurons, the inhibition of Miro1 Ser156 phosphorylation elicits a mild loss of mitochondrial quality involving reduced mitochondrial membrane potential, which is sufficient to induce compensatory events involving OXPHOS. We suggest that the mechanism governing Miro1 steady-state levels depends on differentiation state and metabolic demand, thus underscoring the importance of this pathway in the pathobiology of Parkinson’s disease.
Collapse
|
35
|
Abstract
The brain is one of the most energetically demanding tissues in the human body, and mitochondrial pathology is strongly implicated in chronic neurodegenerative diseases. In contrast to acute brain injuries in which bioenergetics and cell death play dominant roles, studies modeling familial neurodegeneration implicate a more complex and nuanced relationship involving the entire mitochondrial life cycle. Recent literature on mitochondrial mechanisms in Parkinson's disease, Alzheimer's disease, frontotemporal dementia, Huntington's disease, and amyotrophic lateral sclerosis is reviewed with an emphasis on mitochondrial quality control, transport and synaptodendritic calcium homeostasis. Potential neuroprotective interventions include targeting the mitochondrial kinase PTEN-induced kinase 1 (PINK1), which plays a role in regulating not only multiple facets of mitochondrial biology, but also neuronal morphogenesis and dendritic arborization.
Collapse
Affiliation(s)
- Charleen T Chu
- Departments of Pathology and Ophthalmology, Pittsburgh Institute for Neurodegenerative Diseases, McGowan Institute for Regenerative Medicine, Center for Protein Conformational Diseases, Center for Neuroscience at the University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
36
|
Jeong YY, Han S, Jia N, Zhang M, Sheshadri P, Tammineni P, Cheung J, Nissenbaum M, Baskar SS, Kwan K, Margolis DJ, Jiang P, Kusnecov AW, Cai Q. Broad activation of the Parkin pathway induces synaptic mitochondrial deficits in early tauopathy. Brain 2022; 145:305-323. [PMID: 35022692 PMCID: PMC8967101 DOI: 10.1093/brain/awab243] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/20/2021] [Accepted: 06/17/2021] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial defects are a hallmark of early pathophysiology in Alzheimer's disease, with pathologically phosphorylated tau reported to induce mitochondrial toxicity. Mitophagy constitutes a key pathway in mitochondrial quality control by which damaged mitochondria are targeted for autophagy. However, few details are known regarding the intersection of mitophagy and pathologies in tauopathy. Here, by applying biochemical and cell biological approaches including time-lapse confocal imaging in live tauopathy neurons, combined with gene rescue experiments via stereotactic injections of adeno-associated virus particles into tauopathy mouse brains, electrophysiological recordings and behavioural tests, we demonstrate for the first time that mitochondrial distribution deficits at presynaptic terminals are an early pathological feature in tauopathy brains. Furthermore, Parkin-mediated mitophagy is extensively activated in tauopathy neurons, which accelerates mitochondrial Rho GTPase 1 (Miro1) turnover and consequently halts Miro1-mediated mitochondrial anterograde movement towards synaptic terminals. As a result, mitochondrial supply at tauopathy synapses is disrupted, impairing synaptic function. Strikingly, increasing Miro1 levels restores the synaptic mitochondrial population by enhancing mitochondrial anterograde movement and thus reverses tauopathy-associated synaptic failure. In tauopathy mouse brains, overexpression of Miro1 markedly elevates synaptic distribution of mitochondria and protects against synaptic damage and neurodegeneration, thereby counteracting impairments in learning and memory as well as synaptic plasticity. Taken together, our study reveals that activation of the Parkin pathway triggers an unexpected effect-depletion of mitochondria from synaptic terminals, a characteristic feature of early tauopathy. We further provide new mechanistic insights into how parkin activation-enhanced Miro1 degradation and impaired mitochondrial anterograde transport drive tauopathy-linked synaptic pathogenesis and establish a foundation for future investigations into new therapeutic strategies to prevent synaptic deterioration in Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Yu Young Jeong
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sinsuk Han
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nuo Jia
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mingyang Zhang
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Preethi Sheshadri
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Prasad Tammineni
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jasmine Cheung
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Marialaina Nissenbaum
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sindhuja S Baskar
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kelvin Kwan
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David J Margolis
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Peng Jiang
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexander W. Kusnecov
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Qian Cai
- Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
37
|
Rahul, Siddique YH. Drosophila: A Model to Study the Pathogenesis of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:259-277. [PMID: 35040399 DOI: 10.2174/1871527320666210809120621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Human Central Nervous System (CNS) is the complex part of the human body, which regulates multiple cellular and molecular events taking place simultaneously. Parkinsons Disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). The pathological hallmarks of PD are loss of dopaminergic neurons in the substantianigra (SN) pars compacta (SNpc) and accumulation of misfolded α-synuclein, in intra-cytoplasmic inclusions called Lewy bodies (LBs). So far, there is no cure for PD, due to the complexities of molecular mechanisms and events taking place during the pathogenesis of PD. Drosophila melanogaster is an appropriate model organism to unravel the pathogenicity not only behind PD but also other NDs. In this context as numerous biological functions are preserved between Drosophila and humans. Apart from sharing 75% of human disease-causing genes homolog in Drosophila, behavioral responses like memory-based tests, negative geotaxis, courtship and mating are also well studied. The genetic, as well as environmental factors, can be studied in Drosophila to understand the geneenvironment interactions behind the disease condition. Through genetic manipulation, mutant flies can be generated harboring human orthologs, which can prove to be an excellent model to understand the effect of the mutant protein on the pathogenicity of NDs.
Collapse
Affiliation(s)
- Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| |
Collapse
|
38
|
Qin Y, Wang X, Yan X, Zhu D, Wang J, Chen S, Wang S, Wen Y, Martyniuk CJ, Zhao Y. Developmental toxicity of fenbuconazole in zebrafish: effects on mitochondrial respiration and locomotor behavior. Toxicology 2022; 470:153137. [PMID: 35218879 DOI: 10.1016/j.tox.2022.153137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023]
Abstract
Triazole fungicides are used to control the disease of cereal crops but may also cause adverse effects on non-target organisms. There is a lack of toxicity data for some triazoles such as fenbuconazole in aquatic organisms. This research was conducted to evaluate the toxicity of fenbuconazole at environmentally relevant concentrations with attention on the mitochondria, antioxidant system, and locomotor activity in zebrafish. Zebrafish were exposed to one concentration of 5, 50, 200 or 500ng/L fenbuconazole for 96h. There was no effect on survival nor percentage of fish hatched, but exposure to 200 and 500ng/L fenbuconazole resulted in malformation and hypoactivity in zebrafish. Oxygen consumption rates (OCR) of embryos were measured to determine if the fungicide impaired mitochondrial respiration. Exposure to 500ng/L fenbuconazole reduced basal OCR and oligomycin-induced ATP linked respiration in exposed fish. Fenbuconazole reduced mitochondrial membrane potential and reduced the activities of mitochondrial Complex II and III. Transcript levels of both sdhc and cyc1, each related to Complex II and III, were also altered in expression by fenbuconazole exposure, consistent with mitochondrial dysfunction in embryos. Fenbuconazole activated the antioxidant system, based upon both transcriptional and enzymatic data in zebrafish. Consistent with mitochondrial impairment, molecular docking confirmed a strong binding capacity of the fungicide at the Qi site of Complex III, revealing this complex is susceptible to fenbuconazole. This study reveals potential toxicity pathways related to fenbuconazole exposure in aquatic organisms; such data can improve risk assessments for triazole fungicides.
Collapse
Affiliation(s)
- Yingju Qin
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Xiliang Yan
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Di Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, P. R. China
| | - Jia Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, P. R. China
| | - Siying Chen
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Shuo Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, P. R. China
| | - Yang Wen
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, School of Environmental Science and Engineering, Jilin Normal University, Siping, Jilin 136000, PR China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, Florida, 32611, USA
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, P. R. China.
| |
Collapse
|
39
|
Cai Q, Ganesan D. Regulation of neuronal autophagy and the implications in neurodegenerative diseases. Neurobiol Dis 2022; 162:105582. [PMID: 34890791 PMCID: PMC8764935 DOI: 10.1016/j.nbd.2021.105582] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Neurons are highly polarized and post-mitotic cells with the specific requirements of neurotransmission accompanied by high metabolic demands that create a unique challenge for the maintenance of cellular homeostasis. Thus, neurons rely heavily on autophagy that constitutes a key quality control system by which dysfunctional cytoplasmic components, protein aggregates, and damaged organelles are sequestered within autophagosomes and then delivered to the lysosome for degradation. While mature lysosomes are predominantly located in the soma of neurons, the robust, constitutive biogenesis of autophagosomes occurs in the synaptic terminal via a conserved pathway that is required to maintain synaptic integrity and function. Following formation, autophagosomes fuse with late endosomes and then are rapidly and efficiently transported by the microtubule-based cytoplasmic dynein motor along the axon toward the soma for lysosomal clearance. In this review, we highlight the recent knowledge of the roles of autophagy in neuronal health and disease. We summarize the available evidence about the normal functions of autophagy as a protective factor against neurodegeneration and discuss the mechanism underlying neuronal autophagy regulation. Finally, we describe how autophagy function is affected in major neurodegenerative diseases with a special focus on Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis.
Collapse
|
40
|
Liu JY, Inoshita T, Shiba-Fukushima K, Yoshida S, Ogata K, Ishihama Y, Imai Y, Hattori N. OUP accepted manuscript. Hum Mol Genet 2022; 31:2623-2638. [PMID: 35313349 PMCID: PMC9396936 DOI: 10.1093/hmg/ddac064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial kinase PTEN-induced kinase 1 (PINK1) and cytosolic ubiquitin ligase (E3) Parkin/PRKN are involved in mitochondrial quality control responses. PINK1 phosphorylates ubiquitin and the Parkin ubiquitin-like (Ubl) domain at serine 65 and promotes Parkin activation and translocation to damaged mitochondria. Upon Parkin activation, the Ubl domain is ubiquitinated at lysine (K) 27 and K48 residues. However, the contribution of K27/K48 ubiquitination toward Parkin activity remains unclear. In this study, ubiquitination of K56 (corresponding to K27 in the human), K77 (K48 in the human) or both was blocked by generating Drosophila Parkin (dParkin) mutants to examine the effects of Parkin Ubl domain ubiquitination on Parkin activation in Drosophila. The dParkin, in which K56 was replaced with arginine (dParkin K56R), rescued pupal lethality in flies by co-expression with PINK1, whereas dParkin K77R could not. The dParkin K56R exhibited reduced abilities of mitochondrial fragmentation and motility arrest, which are mediated by degrading Parkin E3 substrates Mitofusin and Miro, respectively. Pathogenic dParkin K56N, unlike dParkin K56R, destabilized the protein, suggesting that not only was dParkin K56N non-ubiquitin-modified at K56, but also the structure of the Ubl domain for activation was largely affected. Ubiquitin attached to K27 of the Ubl domain during PINK1-mediated Parkin activation was likely to be phosphorylated because human Parkin K27R weakened Parkin self-binding and activation in trans. Therefore, our findings suggest a new mechanism of Parkin activation, where an activation complex is formed through phospho-ubiquitin attachment on the K27 residue of the Parkin Ubl domain.
Collapse
Affiliation(s)
- Jun-Yi Liu
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tsuyoshi Inoshita
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kahori Shiba-Fukushima
- Department of Drug Development for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shigeharu Yoshida
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kosuke Ogata
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yuzuru Imai
- To whom correspondence should be addressed at: Yuzuru Imai, Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Tel: +81 368018332; Fax: +81-3-5800-0547; ; Nobutaka Hattori, Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, Tel: +81 358022731; Fax: +81-3-5800-0547;
| | - Nobutaka Hattori
- To whom correspondence should be addressed at: Yuzuru Imai, Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Tel: +81 368018332; Fax: +81-3-5800-0547; ; Nobutaka Hattori, Department of Neurology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan, Tel: +81 358022731; Fax: +81-3-5800-0547;
| |
Collapse
|
41
|
PINK1 signalling in neurodegenerative disease. Essays Biochem 2021; 65:913-923. [PMID: 34897410 PMCID: PMC8709887 DOI: 10.1042/ebc20210036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022]
Abstract
PTEN-induced kinase 1 (PINK1) impacts cell health and human pathology through diverse pathways. The strict processing of full-length PINK1 on the outer mitochondrial membrane populates a cytoplasmic pool of cleaved PINK1 (cPINK1) that is constitutively degraded. However, despite rapid proteasomal clearance, cPINK1 still appears to exert quality control influence over the neuronal protein homeostasis network, including protein synthesis and degradation machineries. The cytoplasmic concentration and activity of this molecule is therefore a powerful sensor that coordinates aspects of mitochondrial and cellular health. In addition, full-length PINK1 is retained on the mitochondrial membrane following depolarisation, where it is a powerful inducer of multiple mitophagic pathways. This function is executed primarily through the phosphorylation of several ubiquitin ligases, including its most widely studied substrate Parkin. Furthermore, the phosphorylation of both pro- and anti-apoptotic proteins by mitochondrial PINK1 acts as a pro-cellular survival signal when faced with apoptotic stimuli. Through these varied roles PINK1 directly influences functions central to cell dysfunction in neurodegenerative disease.
Collapse
|
42
|
Ma KY, Fokkens MR, van Laar T, Verbeek DS. Systematic analysis of PINK1 variants of unknown significance shows intact mitophagy function for most variants. NPJ Parkinsons Dis 2021; 7:113. [PMID: 34893635 PMCID: PMC8664852 DOI: 10.1038/s41531-021-00258-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/21/2021] [Indexed: 11/12/2022] Open
Abstract
Pathogenic variants in PINK1 cause early-onset Parkinson's disease. Although many PINK1 variants have been reported, the clinical significance is uncertain for the majority of them. To gain insights into the consequences of PINK1 missense variants in a systematic manner, we selected 50 PINK1 missense variants from patient- and population-wide databases and systematically classified them using Sherloc, a comprehensive framework for variant interpretation based on ACMG-AMP guidelines. We then performed functional experiments, including mitophagy and Parkin recruitment assays, to assess the downstream consequences of PINK1 variants. Analysis of PINK1 missense variants based on Sherloc showed that the patient databases over-annotate variants as likely pathogenic. Furthermore, our study shows that pathogenic PINK1 variants are most often linked to a loss-of-function for mitophagy and Parkin recruitment, while this is not observed for variants of unknown significance. In addition to the Sherloc framework, the added layer of evidence of our functional tests suggests a reclassification of 9/50 missense variants. In conclusion, we suggest the assessment of multiple layers of evidence, including functional data on top of available clinical and population-based data, to support the clinical classification of a variant and show that the presence of a missense variant in PINK1 in a Parkinson's disease case does not automatically imply pathogenicity.
Collapse
Affiliation(s)
- Kai Yu Ma
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel R Fokkens
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
43
|
Ganesan S, Parvathi VD. Deconstructing the molecular genetics behind the PINK1/Parkin axis in Parkinson’s disease using Drosophila melanogaster as a model organism. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00208-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Background
Parkinson’s disease (PD) is a multifactorial neurodegenerative disorder marked by the death of nigrostriatal dopaminergic neurons in response to the compounding effects of oxidative stress, mitochondrial dysfunction and protein aggregation. Transgenic Drosophila models have been used extensively to decipher the underlying genetic interactions that exacerbate neural health in PD. Autosomal recessive forms of the disease have been linked to mutations in the serine/threonine kinase PINK1(PTEN-Induced Putative Kinase 1) and E3 ligase Parkin, which function in an axis that is conserved in flies. This review aims to probe the current understanding of PD pathogenesis via the PINK1/Parkin axis while underscoring the importance of several molecular and pharmacologic rescues brought to light through studies in Drosophila.
Main body
Mutations in PINK1 and Parkin have been shown to affect the axonal transport of mitochondria within dopaminergic neurons and perturb the balance between mitochondrial fusion/fission resulting in abnormal mitochondrial morphology. As per studies in flies, ectopic expression of Fwd kinase and Atg-1 to promote fission and mitophagy while suppressing fusion via MUL1 E3 ligase may aid to halt mitochondrial aggregation and prolong the survival of dopaminergic neurons. Furthermore, upregulation of Hsp70/Hsp90 chaperone systems (Trap1, CHIP) to target misfolded mitochondrial respiratory complexes may help to preserve their bioenergetic capacity. Accumulation of reactive oxygen species as a consequence of respiratory complex dysfunction or antioxidant enzyme deficiency further escalates neural death by inducing apoptosis, lipid peroxidation and DNA damage. Fly studies have reported the induction of canonical Wnt signalling to enhance the activity of transcriptional co-activators (PGC1α, FOXO) which induce the expression of antioxidant enzymes. Enhancing the clearance of free radicals via uncoupling proteins (UCP4) has also been reported to ameliorate oxidative stress-induced cell death in PINK1/Parkin mutants.
Conclusion
While these novel mechanisms require validation through mammalian studies, they offer several explanations for the factors propagating dopaminergic death as well as promising insights into the therapeutic importance of transgenic fly models in PD.
Collapse
|
44
|
New perspectives on cytoskeletal dysregulation and mitochondrial mislocalization in amyotrophic lateral sclerosis. Transl Neurodegener 2021; 10:46. [PMID: 34789332 PMCID: PMC8597313 DOI: 10.1186/s40035-021-00272-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective, early degeneration of motor neurons in the brain and spinal cord. Motor neurons have long axonal projections, which rely on the integrity of neuronal cytoskeleton and mitochondria to regulate energy requirements for maintaining axonal stability, anterograde and retrograde transport, and signaling between neurons. The formation of protein aggregates which contain cytoskeletal proteins, and mitochondrial dysfunction both have devastating effects on the function of neurons and are shared pathological features across several neurodegenerative conditions, including ALS, Alzheimer's disease, Parkinson's disease, Huntington's disease and Charcot-Marie-Tooth disease. Furthermore, it is becoming increasingly clear that cytoskeletal integrity and mitochondrial function are intricately linked. Therefore, dysregulations of the cytoskeletal network and mitochondrial homeostasis and localization, may be common pathways in the initial steps of neurodegeneration. Here we review and discuss known contributors, including variants in genetic loci and aberrant protein activities, which modify cytoskeletal integrity, axonal transport and mitochondrial localization in ALS and have overlapping features with other neurodegenerative diseases. Additionally, we explore some emerging pathways that may contribute to this disruption in ALS.
Collapse
|
45
|
Markaki M, Tsagkari D, Tavernarakis N. Mitophagy mechanisms in neuronal physiology and pathology during ageing. Biophys Rev 2021; 13:955-965. [DOI: 10.1007/s12551-021-00894-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/01/2021] [Indexed: 12/26/2022] Open
|
46
|
Macroautophagy and Mitophagy in Neurodegenerative Disorders: Focus on Therapeutic Interventions. Biomedicines 2021; 9:biomedicines9111625. [PMID: 34829854 PMCID: PMC8615936 DOI: 10.3390/biomedicines9111625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy, a quality control mechanism, is an evolutionarily conserved pathway of lysosomal degradation of protein aggregates, pathogens, and damaged organelles. As part of its vital homeostatic role, macroautophagy deregulation is associated with various human disorders, including neurodegenerative diseases. There are several lines of evidence that associate protein misfolding and mitochondrial dysfunction in the etiology of Alzheimer’s, Parkinson’s, and Huntington’s diseases. Macroautophagy has been implicated in the degradation of different protein aggregates such as Aβ, tau, alpha-synuclein (α-syn), and mutant huntingtin (mHtt) and in the clearance of dysfunctional mitochondria. Taking these into consideration, targeting autophagy might represent an effective therapeutic strategy to eliminate protein aggregates and to improve mitochondrial function in these disorders. The present review describes our current understanding on the role of macroautophagy in neurodegenerative disorders and focuses on possible strategies for its therapeutic modulation.
Collapse
|
47
|
Disruption of Mitochondrial Homeostasis: The Role of PINK1 in Parkinson's Disease. Cells 2021; 10:cells10113022. [PMID: 34831247 PMCID: PMC8616241 DOI: 10.3390/cells10113022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
The progressive reduction of the dopaminergic neurons of the substantia nigra is the fundamental process underlying Parkinson’s disease (PD), while the mechanism of susceptibility of this specific neuronal population is largely unclear. Disturbances in mitochondrial function have been recognized as one of the main pathways in sporadic PD since the finding of respiratory chain impairment in animal models of PD. Studies on genetic forms of PD have provided new insight on the role of mitochondrial bioenergetics, homeostasis, and autophagy. PINK1 (PTEN-induced putative kinase 1) gene mutations, although rare, are the second most common cause of recessively inherited early-onset PD, after Parkin gene mutations. Our knowledge of PINK1 and Parkin function has increased dramatically in the last years, with the discovery that a process called mitophagy, which plays a key role in the maintenance of mitochondrial health, is mediated by the PINK1/Parkin pathway. In vitro and in vivo models have been developed, supporting the role of PINK1 in synaptic transmission, particularly affecting dopaminergic neurons. It is of paramount importance to further define the role of PINK1 in mitophagy and mitochondrial homeostasis in PD pathogenesis in order to delineate novel therapeutic targets.
Collapse
|
48
|
Lechado Terradas A, Zittlau KI, Macek B, Fraiberg M, Elazar Z, Kahle PJ. Regulation of mitochondrial cargo-selective autophagy by posttranslational modifications. J Biol Chem 2021; 297:101339. [PMID: 34688664 PMCID: PMC8591368 DOI: 10.1016/j.jbc.2021.101339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins. Clearance of bulk mitochondria occurs via a selective form of autophagy termed mitophagy. In yeast and some developing metazoan cells (e.g., oocytes and reticulocytes), mitochondria are largely removed by ubiquitin-independent mechanisms. In such cases, the regulation of mitophagy is mediated via phosphorylation of mitochondria-anchored autophagy receptors. On the other hand, ubiquitin-dependent recruitment of cytosolic autophagy receptors occurs in situations of cellular stress or disease, where dysfunctional mitochondria would cause oxidative damage. In mammalian cells, a well-studied ubiquitin-dependent mitophagy pathway induced by mitochondrial depolarization is regulated by the mitochondrial protein kinase PINK1, which upon activation recruits the ubiquitin ligase parkin. Here, we review mechanisms of mitophagy with an emphasis on posttranslational modifications that regulate various mitophagy pathways. We describe the autophagy components involved with particular emphasis on posttranslational modifications. We detail the phosphorylations mediated by PINK1 and parkin-mediated ubiquitylations of mitochondrial proteins that can be modulated by deubiquitylating enzymes. We also discuss the role of accessory factors regulating mitochondrial fission/fusion and the interplay with pro- and antiapoptotic Bcl-2 family members. Comprehensive knowledge of the processes of mitophagy is essential for the understanding of vital mitochondrial turnover in health and disease.
Collapse
Affiliation(s)
- Anna Lechado Terradas
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Milana Fraiberg
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Zvulun Elazar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
49
|
Naoi M, Maruyama W, Shamoto-Nagai M. Disease-modifying treatment of Parkinson's disease by phytochemicals: targeting multiple pathogenic factors. J Neural Transm (Vienna) 2021; 129:737-753. [PMID: 34654977 DOI: 10.1007/s00702-021-02427-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022]
Abstract
Parkinson's disease is characterized by typical motor symptoms, loss of dopamine neurons in the substantia nigra, and accumulation of Lewy body composed of mutated α-synuclein. However, now it is considered as a generalized disease with multiple pathological features. Present available treatments can ameliorate symptoms at least for a while, but only a few therapies could delay progressive neurodegeneration of dopamine neurons. Lewy body accumulates in peripheral tissues many years before motor dysfunction becomes manifest, suggesting that disease-modifying therapy should start earlier during the premotor stage. Long-termed regulation of lifestyle, diet and supplement of nutraceuticals may be possible ways for the disease-modification. Diet can reduce the incidence of Parkinson's disease and phytochemicals, major bioactive ingredients of herbs and plant food, modulate multiple pathogenic factors and exert neuroprotective effects in preclinical studies. This review presents mechanisms underlying neuroprotection of phytochemicals against neuronal cell death and α-synuclein toxicity in Parkinson's disease. Phytochemicals are antioxidants, maintain mitochondrial function and homeostasis, prevent intrinsic apoptosis and neuroinflammation, activate cellular signal pathways to induce anti-apoptotic and pro-survival genes, such as Bcl-2 protein family and neurotrophic factors, and promote cleavage of damaged mitochondria and α-synuclein aggregates. Phytochemicals prevent α-synuclein oligomerization and aggregation, and dissolve preformed α-synuclein aggregates. Novel neuroprotective agents are expected to develop based on the scaffold of phytochemicals permeable across the blood-brain-barrier, to increase the bioavailability, ameliorate brain dysfunction and prevent neurodegeneration.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| |
Collapse
|
50
|
Resveratrol Treatment in Human Parkin-Mutant Fibroblasts Modulates cAMP and Calcium Homeostasis Regulating the Expression of Mitochondria-Associated Membranes Resident Proteins. Biomolecules 2021; 11:biom11101511. [PMID: 34680144 PMCID: PMC8534032 DOI: 10.3390/biom11101511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkin plays an important role in ensuring efficient mitochondrial function and calcium homeostasis. Parkin-mutant human fibroblasts, with defective oxidative phosphorylation activity, showed high basal cAMP level likely ascribed to increased activity/expression of soluble adenylyl cyclase and/or low expression/activity of the phosphodiesterase isoform 4 and to a higher Ca2+ level. Overall, these findings support the existence, in parkin-mutant fibroblasts, of an abnormal Ca2+ and cAMP homeostasis in mitochondria. In our previous studies resveratrol treatment of parkin-mutant fibroblasts induced a partial rescue of mitochondrial functions associated with stimulation of the AMPK/SIRT1/PGC-1α pathway. In this study we provide additional evidence of the potential beneficial effects of resveratrol inducing an increase in the pre-existing high Ca2+ level and remodulation of the cAMP homeostasis in parkin-mutant fibroblasts. Consistently, we report in these fibroblasts higher expression of proteins implicated in the tethering of ER and mitochondrial contact sites along with their renormalization after resveratrol treatment. On this basis we hypothesize that resveratrol-mediated enhancement of the Ca2+ level, fine-tuned by the ER-mitochondria Ca2+ crosstalk, might modulate the pAMPK/AMPK pathway in parkin-mutant fibroblasts.
Collapse
|