1
|
Viitaniemi HM, Leder EH, Kauzál O, Stopková R, Stopka P, Lifjeld JT, Albrecht T. Impact of Z chromosome inversions on gene expression in testis and liver tissues in the zebra finch. Mol Ecol 2024; 33:e17236. [PMID: 38126688 PMCID: PMC11628666 DOI: 10.1111/mec.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023]
Abstract
Chromosomal inversions have been identified in many natural populations and can be responsible for novel traits and rapid adaptation. In zebra finch, a large region on the Z chromosome has been subject to multiple inversions, which have pleiotropic effects on multiple traits but especially on sperm phenotypes, such as midpiece and flagellum length. To understand the effect, the Z inversion has on these traits, we examined testis and liver transcriptomes of young males at different maturation times. We compared gene expression differences among three inversion karyotypes: AA, B*B* and AB*, where B* denotes the inverted regions on Z with respect to A. In testis, 794 differentially expressed genes were found and most of them were located on chromosome Z. They were functionally enriched for sperm-related traits. We also identified clusters of co-expressed genes that matched with the inversion-related sperm phenotypes. In liver, there were some enriched functions and some overrepresentation on chromosome Z with similar location as in testis. In both tissues, the overrepresented genes were located near the distal end of Z but also in the middle of the chromosome. For the heterokaryotype, we observed several genes with one allele being dominantly expressed, similar to expression patterns in one or the other homokaryotype. This was confirmed with SNPs for three genes, and interestingly one gene, DMGDH, had allele-specific expression originating mainly from one inversion haplotype in the testis, yet both inversion haplotypes were expressed equally in the liver. This karyotype-specific difference in tissue-specific expression suggests a pleiotropic effect of the inversion and thus suggests a mechanism for divergent phenotypic effects resulting from an inversion.
Collapse
Affiliation(s)
- Heidi M. Viitaniemi
- Institute of Vertebrate Biology, Czech Academy of SciencesBrnoCzech Republic
- Section of Ecology and Evolution, Department of BiologyUniversity of TurkuTurkuFinland
| | - Erica H. Leder
- Section of Ecology and Evolution, Department of BiologyUniversity of TurkuTurkuFinland
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
- Natural History MuseumUniversity of OsloOsloNorway
| | - Ondřej Kauzál
- Institute of Vertebrate Biology, Czech Academy of SciencesBrnoCzech Republic
| | - Romana Stopková
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Tomáš Albrecht
- Institute of Vertebrate Biology, Czech Academy of SciencesBrnoCzech Republic
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
2
|
Shaw DE, Ross WD, Lambert AV, White MA. Single cell RNA-sequencing reveals no evidence for meiotic sex chromosome inactivation in the threespine stickleback fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625488. [PMID: 39651240 PMCID: PMC11623615 DOI: 10.1101/2024.11.26.625488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Sex chromosomes often evolve unique patterns of gene expression in spermatogenesis. In many species, sex-linked genes are downregulated during meiosis in response to asynapsis of the heterogametic sex chromosome pair (meiotic sex chromosome inactivation; MSCI). Our understanding of this process has been limited to a handful of species, including mammals, Drosophila , and C. elegans. Based on findings from these taxa, MSCI has been viewed as likely a conserved process. However, in other groups like teleost fish, our understanding of this process is limited. Teleost fish are a noteworthy group to investigate because sex chromosomes can rapidly evolve between closely related species. Transcriptional profiling of spermatogenesis at the single-cell level is a useful approach to investigate whether MSCI occurs in other species with independently derived sex chromosomes. Here, we investigate whether MSCI occurs in the threespine stickleback fish ( Gasterosteus aculeatus ), which have an X and Y chromosome that evolved less than 26 million years ago. Using single-cell RNA-seq, we found that the X and Y chromosomes do not have a signature of MSCI, maintaining gene expression across meiosis. Using immunofluorescence, we also show the threespine stickleback do not form a condensed sex body around the X and Y, a conserved feature of MSCI in many species. We did not see patterns of gene content evolution documented in other species with MSCI. Y-linked ampliconic gene families were expressed across multiple stages of spermatogenesis, rather than being restricted to post-meiotic stages, like in mammals. Our work shows MSCI does not occur in the threespine stickleback fish and has not shaped the evolution of the Y chromosome. In addition, the absence of MSCI in the threespine stickleback suggests this process may not be a conserved feature of teleost fish and argues for additional investigation in other species. Author Summary As male germ cells enter meiosis, the X and Y chromosome of many species undergo a drastic repression of gene expression. In mammals, this process has been shown to be essential for fertility, and the expression of sex-linked genes can lead to meiotic arrest and cell death. This process has only been studied in a handful of organisms, which limits our understanding how conserved MSCI is across the tree of life. Teleost fish are an understudied group with many examples of independently derived sex chromosomes across closely related species. Here, we investigate whether MSCI occurs in the threespine stickleback fish, using single-cell transcriptional profiling. We found gene expression remains active throughout meiosis on the sex chromosomes, indicating MSCI does not occur. This indicates that MSCI is not a conserved feature of all taxa and is not an inevitable outcome of degenerating Y chromosomes.
Collapse
|
3
|
Santos JL, Parra MT, Arévalo S, Guajardo-Grence A, Page J, Suja JÁ, García de la Vega C, Viera A. B Chromosome Transcriptional Inactivation in the Spermatogenesis of the Grasshopper Eyprepocnemis plorans. Genes (Basel) 2024; 15:1512. [PMID: 39766780 PMCID: PMC11675390 DOI: 10.3390/genes15121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES We analyzed the relationship between synapsis, recombination, and transcription during the spermatogenesis of the grasshopper Eyprepocnemis plorans carrying B chromosomes (type B1). METHODS The progression of synapsis was interpreted according to the dynamics of the cohesin subunit SMC3 axes. DNA double-strand breaks were revealed by RAD51 immunolabeling, while transcriptional activity was determined by the presence of RNA polymerase II phosphorylated at serine 2 (pRNApol II) immunolabeling. The two repressive epigenetic modifications, histone H3 methylated at lysine 9 (H3K9me3) and histone H2AX phosphorylated at serine 139 (γ-H2AX), were employed to reveal transcriptional inactivity. RESULTS During prophase I, spermatocytes with one B1 chromosome showed overall transcription except in the regions occupied by both the X and the B1 chromosomes. This transcriptional inactivity was accompanied by the accumulation of repressive epigenetic modifications. When two B1 chromosomes were present, they could appear as a fully synapsed monochiasmatic bivalent, showing intense H3K9me3 labeling and absence of pRNApol II, while γ-H2AX labeling was similar to that shown by the autosomes. CONCLUSIONS According to our results, B1 transcriptional inactivation was triggered in spermatogonia, long before the beginning of meiosis, and was accompanied by H3K9me3 heterochromatinization that was maintained throughout spermatogenesis. Moreover, when two B1 were present, the transcriptional inactivation did not preclude synapsis and recombination achievement by these chromosomes.
Collapse
Affiliation(s)
- Juan Luis Santos
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - María Teresa Parra
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| | - Sara Arévalo
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| | - Andrea Guajardo-Grence
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| | - Jesús Page
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| | - José Ángel Suja
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| | - Carlos García de la Vega
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| | - Alberto Viera
- Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.T.P.); (S.A.); (A.G.-G.); (J.P.); (J.Á.S.); (C.G.d.l.V.)
| |
Collapse
|
4
|
Murat F, Mbengue N, Winge SB, Trefzer T, Leushkin E, Sepp M, Cardoso-Moreira M, Schmidt J, Schneider C, Mößinger K, Brüning T, Lamanna F, Belles MR, Conrad C, Kondova I, Bontrop R, Behr R, Khaitovich P, Pääbo S, Marques-Bonet T, Grützner F, Almstrup K, Schierup MH, Kaessmann H. The molecular evolution of spermatogenesis across mammals. Nature 2023; 613:308-316. [PMID: 36544022 PMCID: PMC9834047 DOI: 10.1038/s41586-022-05547-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/09/2022] [Indexed: 12/24/2022]
Abstract
The testis produces gametes through spermatogenesis and evolves rapidly at both the morphological and molecular level in mammals1-6, probably owing to the evolutionary pressure on males to be reproductively successful7. However, the molecular evolution of individual spermatogenic cell types across mammals remains largely uncharacterized. Here we report evolutionary analyses of single-nucleus transcriptome data for testes from 11 species that cover the three main mammalian lineages (eutherians, marsupials and monotremes) and birds (the evolutionary outgroup), and include seven primates. We find that the rapid evolution of the testis was driven by accelerated fixation rates of gene expression changes, amino acid substitutions and new genes in late spermatogenic stages, probably facilitated by reduced pleiotropic constraints, haploid selection and transcriptionally permissive chromatin. We identify temporal expression changes of individual genes across species and conserved expression programs controlling ancestral spermatogenic processes. Genes predominantly expressed in spermatogonia (germ cells fuelling spermatogenesis) and Sertoli (somatic support) cells accumulated on X chromosomes during evolution, presumably owing to male-beneficial selective forces. Further work identified transcriptomal differences between X- and Y-bearing spermatids and uncovered that meiotic sex-chromosome inactivation (MSCI) also occurs in monotremes and hence is common to mammalian sex-chromosome systems. Thus, the mechanism of meiotic silencing of unsynapsed chromatin, which underlies MSCI, is an ancestral mammalian feature. Our study illuminates the molecular evolution of spermatogenesis and associated selective forces, and provides a resource for investigating the biology of the testis across mammals.
Collapse
Affiliation(s)
- Florent Murat
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany. .,INRAE, LPGP, Rennes, France.
| | - Noe Mbengue
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany.
| | - Sofia Boeg Winge
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Timo Trefzer
- Berlin Institute of Health at Charité, University of Medicine Berlin, Corporate Member of the Free University of Berlin, Humboldt-University of Berlin, Berlin, Germany
| | - Evgeny Leushkin
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Mari Sepp
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | | | - Julia Schmidt
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Celine Schneider
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Katharina Mößinger
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Thoomke Brüning
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | - Francesco Lamanna
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany
| | | | - Christian Conrad
- Berlin Institute of Health at Charité, University of Medicine Berlin, Corporate Member of the Free University of Berlin, Humboldt-University of Berlin, Berlin, Germany
| | - Ivanela Kondova
- Biomedical Primate Research Center (BPRC), Rijswijk, the Netherlands
| | - Ronald Bontrop
- Biomedical Primate Research Center (BPRC), Rijswijk, the Netherlands
| | - Rüdiger Behr
- German Primate Center (DPZ), Platform Degenerative Diseases, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Philipp Khaitovich
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Miquel Crusafont Catalan Institute of Paleontology, Autonomous University of Barcelona, Barcelona, Spain
| | - Frank Grützner
- The Robinson Research Institute, School of Biological Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Henrik Kaessmann
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Nath S, Welch LA, Flanagan MK, White MA. Meiotic pairing and double-strand break formation along the heteromorphic threespine stickleback sex chromosomes. Chromosome Res 2022; 30:429-442. [PMID: 35635635 DOI: 10.1007/s10577-022-09699-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/25/2023]
Abstract
Double-strand break repair during meiosis is normally achieved using the homologous chromosome as a repair template. Heteromorphic sex chromosomes share little sequence homology, presenting unique challenges to the repair of double-strand breaks. Our understanding of how heteromorphic sex chromosomes behave during meiosis has been focused on ancient sex chromosomes, where the X and Y differ markedly in overall structure and gene content. It remains unclear how more recently evolved sex chromosomes that share considerably more sequence homology with one another pair and form double-strand breaks. One possibility is barriers to pairing evolve rapidly. Alternatively, recently evolved sex chromosomes may exhibit pairing and double-strand break repair that more closely resembles that of their autosomal ancestors. Here, we use the recently evolved X and Y chromosomes of the threespine stickleback fish (Gasterosteus aculeatus) to study patterns of pairing and double-stranded break formation using molecular cytogenetics. We found that the sex chromosomes of threespine stickleback fish did not pair exclusively in the pseudoautosomal region. Instead, the chromosomes fully paired in a non-homologous fashion. To achieve this, the X chromosome underwent synaptic adjustment during pachytene to match the axis length of the Y chromosome. Double-strand break formation and repair rate also matched that of the autosomes. Our results highlight that recently evolved sex chromosomes exhibit meiotic behavior that is reminiscent of autosomes and argues for further work to identify the homologous templates that are used to repair double-strand breaks on the X and Y chromosomes.
Collapse
Affiliation(s)
- Shivangi Nath
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Lucille A Welch
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Mary K Flanagan
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA
| | - Michael A White
- Department of Genetics, University of Georgia, 120 Green St, Athens, GA, 30602, USA.
| |
Collapse
|
6
|
Wang HY, Liu X, Chen JY, Huang Y, Lu Y, Tan F, Liu Q, Yang M, Li S, Zhang X, Qin Y, Ma W, Yang Y, Meng L, Liu K, Wang Q, Fan G, Nóbrega RH, Liu S, Piferrer F, Shao C. Single-cell-resolution transcriptome map revealed novel genes involved in testicular germ cell progression and somatic cells specification in Chinese tongue sole with sex reversal. SCIENCE CHINA LIFE SCIENCES 2022; 66:1151-1169. [PMID: 36437386 DOI: 10.1007/s11427-021-2236-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Female-to-male sex reversals (pseudomales) are common in lower vertebrates and have been found in natural populations, which is a concern under rapid changes in environmental conditions. Pseudomales can exhibit altered spermatogenesis. However, the regulatory mechanisms underlying pseudomale spermatogenesis remain unclear. Here, we characterized spermatogenesis in Chinese tongue sole (Cynoglossus semilaevis), a species with genetic and environmental sex determination, based on a high-resolution single-cell RNA-seq atlas of cells derived from the testes of genotypic males and pseudomales. We identified five germ cell types and six somatic cell types and obtained a single-cell atlas of dynamic changes in gene expression during spermatogenesis in Chinese tongue sole, including alterations in pseudomales. We detected decreased levels of Ca2+ signaling pathway-related genes in spermatogonia, insufficient meiotic initiation in spermatocytes, and a malfunction of somatic niche cells in pseudomales. However, a cluster of CaSR genes and MAPK signaling factors were upregulated in undifferentiated spermatogonia of pseudomales. Additionally, we revealed that Z chromosome-specific genes, such as piwil2, dhx37, and ehmt1, were important for spermatogenesis. These results improve our understanding of reproduction after female-to-male sex-reversal and provide new insights into the adaptability of reproductive strategies in lower vertebrates.
Collapse
|
7
|
Marín-Gual L, González-Rodelas L, M. Garcias M, Kratochvíl L, Valenzuela N, Georges A, Waters PD, Ruiz-Herrera A. Meiotic chromosome dynamics and double strand break formation in reptiles. Front Cell Dev Biol 2022; 10:1009776. [PMID: 36313577 PMCID: PMC9597255 DOI: 10.3389/fcell.2022.1009776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
During meiotic prophase I, tightly regulated processes take place, from pairing and synapsis of homologous chromosomes to recombination, which are essential for the generation of genetically variable haploid gametes. These processes have canonical meiotic features conserved across different phylogenetic groups. However, the dynamics of meiotic prophase I in non-mammalian vertebrates are poorly known. Here, we compare four species from Sauropsida to understand the regulation of meiotic prophase I in reptiles: the Australian central bearded dragon (Pogona vitticeps), two geckos (Paroedura picta and Coleonyx variegatus) and the painted turtle (Chrysemys picta). We first performed a histological characterization of the spermatogenesis process in both the bearded dragon and the painted turtle. We then analyzed prophase I dynamics, including chromosome pairing, synapsis and the formation of double strand breaks (DSBs). We show that meiosis progression is highly conserved in reptiles with telomeres clustering forming the bouquet, which we propose promotes homologous pairing and synapsis, along with facilitating the early pairing of micro-chromosomes during prophase I (i.e., early zygotene). Moreover, we detected low levels of meiotic DSB formation in all taxa. Our results provide new insights into reptile meiosis.
Collapse
Affiliation(s)
- Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria M. Garcias
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, NSW, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- *Correspondence: Aurora Ruiz-Herrera,
| |
Collapse
|
8
|
X Chromosome Inactivation during Grasshopper Spermatogenesis. Genes (Basel) 2021; 12:genes12121844. [PMID: 34946793 PMCID: PMC8700825 DOI: 10.3390/genes12121844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Regulation of transcriptional activity during meiosis depends on the interrelated processes of recombination and synapsis. In eutherian mammal spermatocytes, transcription levels change during prophase-I, being low at the onset of meiosis but highly increased from pachytene up to the end of diplotene. However, X and Y chromosomes, which usually present unsynapsed regions throughout prophase-I in male meiosis, undergo a specific pattern of transcriptional inactivation. The interdependence of synapsis and transcription has mainly been studied in mammals, basically in mouse, but our knowledge in other unrelated phylogenetically species is more limited. To gain new insights on this issue, here we analyzed the relationship between synapsis and transcription in spermatocytes of the grasshopper Eyprepocnemis plorans. Autosomal chromosomes of this species achieve complete synapsis; however, the single X sex chromosome remains always unsynapsed and behaves as a univalent. We studied transcription in meiosis by immunolabeling with RNA polymerase II phosphorylated at serine 2 and found that whereas autosomes are active from leptotene up to diakinesis, the X chromosome is inactive throughout meiosis. This inactivation is accompanied by the accumulation of, at least, two repressive epigenetic modifications: H3 methylated at lysine 9 and H2AX phosphorylated at serine 139. Furthermore, we identified that X chromosome inactivation occurs in premeiotic spermatogonia. Overall, our results indicate: (i) transcription regulation in E. plorans spermatogenesis differs from the canonical pattern found in mammals and (ii) X chromosome inactivation is likely preceded by a process of heterochromatinization before the initiation of meiosis.
Collapse
|
9
|
Ballantyne M, Taylor L, Hu T, Meunier D, Nandi S, Sherman A, Flack B, Henshall JM, Hawken RJ, McGrew MJ. Avian Primordial Germ Cells Are Bipotent for Male or Female Gametogenesis. Front Cell Dev Biol 2021; 9:726827. [PMID: 34660583 PMCID: PMC8511492 DOI: 10.3389/fcell.2021.726827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
In birds, males are the homogametic sex (ZZ) and females are the heterogametic sex (ZW). Here, we investigate the role of chromosomal sex and germ cell competition on avian germ cell differentiation. We recently developed genetically sterile layer cockerels and hens for use as surrogate hosts for primordial germ cell (PGC) transplantation. Using in vitro propagated and cryopreserved PGCs from a pedigree Silkie broiler breed, we now demonstrate that sterile surrogate layer hosts injected with same sex PGCs have normal fertility and produced pure breed Silkie broiler offspring when directly mated to each other in Sire Dam Surrogate mating. We found that female sterile hosts carrying chromosomally male (ZZ) PGCs formed functional oocytes and eggs, which gave rise to 100% male offspring after fertilization. Unexpectedly, we also observed that chromosomally female (ZW) PGCs carried by male sterile hosts formed functional spermatozoa and produced viable offspring. These findings demonstrate that avian PGCs are not sexually restricted for functional gamete formation and provide new insights for the cryopreservation of poultry and other bird species using diploid stage germ cells.
Collapse
Affiliation(s)
- Maeve Ballantyne
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Tropical Livestock Genetics and Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Lorna Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Tuanjun Hu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Tropical Livestock Genetics and Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Dominique Meunier
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Sunil Nandi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian Sherman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Mike J McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Tropical Livestock Genetics and Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Pajpach F, Wu T, Shearwin-Whyatt L, Jones K, Grützner F. Flavors of Non-Random Meiotic Segregation of Autosomes and Sex Chromosomes. Genes (Basel) 2021; 12:genes12091338. [PMID: 34573322 PMCID: PMC8471020 DOI: 10.3390/genes12091338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Segregation of chromosomes is a multistep process occurring both at mitosis and meiosis to ensure that daughter cells receive a complete set of genetic information. Critical components in the chromosome segregation include centromeres, kinetochores, components of sister chromatid and homologous chromosomes cohesion, microtubule organizing centres, and spindles. Based on the cytological work in the grasshopper Brachystola, it has been accepted for decades that segregation of homologs at meiosis is fundamentally random. This ensures that alleles on chromosomes have equal chance to be transmitted to progeny. At the same time mechanisms of meiotic drive and an increasing number of other examples of non-random segregation of autosomes and sex chromosomes provide insights into the underlying mechanisms of chromosome segregation but also question the textbook dogma of random chromosome segregation. Recent advances provide a better understanding of meiotic drive as a prominent force where cellular and chromosomal changes allow autosomes to bias their segregation. Less understood are mechanisms explaining observations that autosomal heteromorphism may cause biased segregation and regulate alternating segregation of multiple sex chromosome systems or translocation heterozygotes as an extreme case of non-random segregation. We speculate that molecular and cytological mechanisms of non-random segregation might be common in these cases and that there might be a continuous transition between random and non-random segregation which may play a role in the evolution of sexually antagonistic genes and sex chromosome evolution.
Collapse
Affiliation(s)
- Filip Pajpach
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
| | - Tianyu Wu
- Department of Central Laboratory, Clinical Laboratory, Jing’an District Centre Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Linda Shearwin-Whyatt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
| | - Keith Jones
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK;
| | - Frank Grützner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
- Correspondence:
| |
Collapse
|
11
|
Wang Z, Zhang J, Xu X, Witt C, Deng Y, Chen G, Meng G, Feng S, Xu L, Szekely T, Zhang G, Zhou Q. Phylogeny and sex chromosome evolution of palaeognathae. J Genet Genomics 2021; 49:109-119. [PMID: 34872841 DOI: 10.1016/j.jgg.2021.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Many paleognaths (ratites and tinamous) have a pair of homomorphic ZW sex chromosomes in contrast to the highly differentiated sex chromosomes of most other birds. To understand the evolutionary causes for the different tempos of sex chromosome evolution, we produced female genomes of 12 paleognathous species and reconstructed the phylogeny and the evolutionary history of paleognathous sex chromosomes. We uncovered that Palaeognathae sex chromosomes had undergone stepwise recombination suppression and formed a pattern of "evolutionary strata". Nine of the 15 studied species' sex chromosomes have maintained homologous recombination in their long pseudoautosomal regions extending more than half of the entire chromosome length. We found that in older strata, the W chromosome suffered more serious functional gene loss. Their homologous Z-linked regions, compared with other genomic regions, have produced an excess of species-specific autosomal duplicated genes that evolved female-specific expression, in contrast to their broadly expressed progenitors. We speculate the "defeminization" of Z chromosome with underrepresentation of female-biased genes and slow divergence of sex chromosomes of paleognaths might be related to their distinctive mode of sexual selection targeting females that evolved in their common ancestors.
Collapse
Affiliation(s)
- Zongji Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria; Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Xiaoman Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Christopher Witt
- Department of Biology and the Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Yuan Deng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Guangji Chen
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Guanliang Meng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
| | - Tamas Szekely
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Milner Center for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA1 7AY, UK
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria; Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China.
| |
Collapse
|
12
|
Muyle A, Bachtrog D, Marais GAB, Turner JMA. Epigenetics drive the evolution of sex chromosomes in animals and plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200124. [PMID: 33866802 DOI: 10.1098/rstb.2020.0124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We review how epigenetics affect sex chromosome evolution in animals and plants. In a few species, sex is determined epigenetically through the action of Y-encoded small RNAs. Epigenetics is also responsible for changing the sex of individuals through time, even in species that carry sex chromosomes, and could favour species adaptation through breeding system plasticity. The Y chromosome accumulates repeats that become epigenetically silenced which leads to an epigenetic conflict with the expression of Y genes and could accelerate Y degeneration. Y heterochromatin can be lost through ageing, which activates transposable elements and lowers male longevity. Y chromosome degeneration has led to the evolution of meiotic sex chromosome inactivation in eutherians (placentals) and marsupials, and dosage compensation mechanisms in animals and plants. X-inactivation convergently evolved in eutherians and marsupials via two independently evolved non-coding RNAs. In Drosophila, male X upregulation by the male specific lethal (MSL) complex can spread to neo-X chromosomes through the transposition of transposable elements that carry an MSL-binding motif. We discuss similarities and possible differences between plants and animals and suggest future directions for this dynamic field of research. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Aline Muyle
- University of California Irvine, Irvine, CA 92697, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Gabriel A B Marais
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622 Villeurbanne, France.,LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
13
|
Gil-Fernández A, Matveevsky S, Martín-Ruiz M, Ribagorda M, Parra MT, Viera A, Rufas JS, Kolomiets O, Bakloushinskaya I, Page J. Sex differences in the meiotic behavior of an XX sex chromosome pair in males and females of the mole vole Ellobius tancrei: turning an X into a Y chromosome? Chromosoma 2021; 130:113-131. [PMID: 33825031 DOI: 10.1007/s00412-021-00755-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023]
Abstract
Sex determination in mammals is usually provided by a pair of chromosomes, XX in females and XY in males. Mole voles of the genus Ellobius are exceptions to this rule. In Ellobius tancrei, both males and females have a pair of XX chromosomes that are indistinguishable from each other in somatic cells. Nevertheless, several studies on Ellobius have reported that the two X chromosomes may have a differential organization and behavior during male meiosis. It has not yet been demonstrated if these differences also appear in female meiosis. To test this hypothesis, we have performed a comparative study of chromosome synapsis, recombination, and histone modifications during male and female meiosis in E. tancrei. We observed that synapsis between the two X chromosomes is limited to the short distal (telomeric) regions of the chromosomes in males, leaving the central region completely unsynapsed. This uneven behavior of sex chromosomes during male meiosis is accompanied by structural modifications of one of the X chromosomes, whose axial element tends to appear fragmented, accumulates the heterochromatin mark H3K9me3, and is associated with a specific nuclear body that accumulates epigenetic marks and proteins such as SUMO-1 and centromeric proteins but excludes others such as H3K4me, ubiH2A, and γH2AX. Unexpectedly, sex chromosome synapsis is delayed in female meiosis, leaving the central region unsynapsed during early pachytene. This region accumulates γH2AX up to the stage in which synapsis is completed. However, there are no structural or epigenetic differences similar to those found in males in either of the two X chromosomes. Finally, we observed that recombination in the sex chromosomes is restricted in both sexes. In males, crossover-associated MLH1 foci are located exclusively in the distal regions, indicating incipient differentiation of one of the sex chromosomes into a neo-Y. Notably, in female meiosis, the central region of the X chromosome is also devoid of MLH1 foci, revealing a lack of recombination, possibly due to insufficient homology. Overall, these results reveal new clues about the origin and evolution of sex chromosomes.
Collapse
Affiliation(s)
- Ana Gil-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Ribagorda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Teresa Parra
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Viera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julio S Rufas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Oxana Kolomiets
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
14
|
Abstract
Darevskia rock lizards is a unique complex taxa, including more than thirty species, seven of which are parthenogenetic. In mixed populations of Darevskia lizards, tri- and tetraploid forms can be found. The most important issues in the theory of reticulate evolution of Darevskia lizards are the origin of parthenogenetic species and their taxonomic position. However, there is little data on how meiosis proceeds in these species. The present work reports the complex results of cytogenetics in a diploid parthenogenetic species – D. unisexualis. Here we detail the meiotic prophase I progression and the specific features оf mitotic chromosomes organization. The stages of meiosis prophase I were investigated by immunocytochemical analysis of preparations obtained from isolated primary oocytes of D. unisexualis in comparison with maternal species D. raddei nairensis. It has been shown that in D. unisexualis at the leptotene-zygotene stages the axial elements and the synaptonemal complex (SC) form typical “bouquets”. At the pachytene-diplotene stage, 18 autosomal SC-bivalents and thickened asynapted sex Z and w univalents were observed. The presence of SYCP1 protein between the lateral elements of autosomal chromosomes proved the formation of assembled SCs. Comparative genomic hybridization (CGH) on the mitotic metaphase chromosomes of D. unisexualis was carried out using the genomic DNA isolated from the parental species D. raddei nairensis and D. valentini. In the pericentromeric regions of half of the mitotic chromosomes of D. unisexualis, specific regions inherited from maternal species have been found. Following our results, we suggest a model for diploid germ cells formation from diploid oocytes without premeiotic duplication of chromosomes in the oogenesis of diploid parthenogenetic lizards D. unisexualis. Taken as a whole, our findings confirm the hybrid nature of D. unisexualis and shed light on heterozygosity and automixis in diploid parthenogenetic forms.
Collapse
|
15
|
Guioli S, Zhao D, Nandi S, Clinton M, Lovell-Badge R. Oestrogen in the chick embryo can induce chromosomally male ZZ left gonad epithelial cells to form an ovarian cortex that can support oogenesis. Development 2020; 147:dev181693. [PMID: 32001442 PMCID: PMC7055392 DOI: 10.1242/dev.181693] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022]
Abstract
In chickens, the embryonic ovary differentiates into two distinct domains before meiosis: a steroidogenic core (the female medulla), overlain by the germ cell niche (the cortex). The differentiation of the medulla is a cell-autonomous process based on chromosomal sex identity (CASI). In order to address the extent to which cortex differentiation depends on intrinsic or extrinsic factors, we generated models of gonadal intersex by mixing ZW (female) and ZZ (male) cells in gonadal chimeras, or by altering oestrogen levels of ZW and ZZ embryos. We found that CASI does not apply to the embryonic cortex. Both ZW and ZZ cells can form the cortex and this can happen independently of the phenotypic sex of the medulla as long as oestrogen is provided. We also show that the cortex-promoting activity of oestrogen signalling is mediated via estrogen receptor alpha within the left gonad epithelium. However, the presence of a medulla with an 'intersex' or male phenotype may compromise germ cell progression into meiosis, causing cortical germ cells to remain in an immature state in the embryo.
Collapse
Affiliation(s)
| | - Debiao Zhao
- The Roslin Institute and R(D)SVS, Gene Function and Development, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Sunil Nandi
- The Roslin Institute and R(D)SVS, Gene Function and Development, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Michael Clinton
- The Roslin Institute and R(D)SVS, Gene Function and Development, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | | |
Collapse
|
16
|
Activity and inactivity of moth sex chromosomes in somatic and meiotic cells. Chromosoma 2019; 128:533-545. [PMID: 31410566 DOI: 10.1007/s00412-019-00722-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
Moths and butterflies (Lepidoptera) are the most species-rich group of animals with female heterogamety, females mostly having a WZ, males a ZZ sex chromosome constitution. We studied chromatin conformation, activity, and inactivity of the sex chromosomes in the flour moth Ephestia kuehniella and the silkworm Bombyx mori, using immunostaining with anti-H3K9me2/3, anti-RNA polymerase II, and fluoro-uridine (FU) labelling of nascent transcripts, with conventional widefield fluorescence microscopy and 'spatial structured illumination microscopy' (3D-SIM). The Z chromosome is euchromatic in somatic cells and throughout meiosis. It is transcriptionally active in somatic cells and in the postpachaytene stage of meiosis. The W chromosome in contrast is heterochromatic in somatic cells as well as in meiotic cells at pachytene, but euchromatic and transcriptionally active like all other chromosomes at postpachytene. As the W chromosomes are apparently devoid of protein-coding genes, their transcripts must be non-coding. We found no indication of 'meiotic sex chromosome inactivation' (MSCI) in the two species.
Collapse
|
17
|
Sciurano RB, Pigozzi MI, Benavente R. Disassembly of the synaptonemal complex in chicken oocytes analyzed by super-resolution microscopy. Chromosoma 2019; 128:443-451. [PMID: 30793238 DOI: 10.1007/s00412-019-00693-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 12/27/2022]
Abstract
The synaptonemal complex is an evolutionarily conserved, supramolecular structure that holds the homologous chromosomes together during the pachytene stage of the first meiotic prophase. Among vertebrates, synaptonemal complex dynamics has been analyzed in mouse spermatocytes following the assembly of its components from leptotene to pachytene stages. With few exceptions, a detailed study of the disassembly of SCs and the behavior of SC components at recombination sites at the onset of diplotene has not been accomplished. Here, we describe for the first time the progressive disassembly of the SC in chicken oocytes during the initial steps of desynapsis using immunolocalization of specific SC proteins and super-resolution microscopy. We found that transverse filament protein SYCP1 and central element component SYCE3 remain associated with the lateral elements at the beginning of chromosomal axis separation. As the separation between lateral elements widens, these proteins eventually disappear, without any evidence of subsequent association. Our observations support the idea that post-translational modifications of the central region components have a role at the initial phases of the SC disassembly. At the crossover sites, signaled by persistent MLH1 foci, the central region proteins are no longer detected when the SYCP3-positive lateral elements are widely separated. These findings are indicative that SC disassembly follows a general pattern along the desynaptic bivalents. The present work shows that the use of avian oocytes at prophase I provides a valuable model to explore the time course and chromosomal localization of SC proteins and its relationship with local changes along meiotic bivalents.
Collapse
Affiliation(s)
- Roberta B Sciurano
- 2da. U.A. Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- CONICET, Buenos Aires, Argentina
| | - María Inés Pigozzi
- Instituto de Investigaciones Biomédicas, INBIOMED, CONICET-Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
18
|
Abstract
The evolution of heteromorphic sex chromosomes has occurred independently many times in different lineages. The differentiation of sex chromosomes leads to dramatic changes in sequence composition and function and guides the evolutionary trajectory and utilization of genes in pivotal sex determination and reproduction roles. In addition, meiotic recombination and pairing mechanisms are key in orchestrating the resultant impact, retention and maintenance of heteromorphic sex chromosomes, as the resulting exposure of unpaired DNA at meiosis triggers ancient repair and checkpoint pathways. In this review, we summarize the different ways in which sex chromosome systems are organized at meiosis, how pairing is affected, and differences in unpaired DNA responses. We hypothesize that lineage specific differences in meiotic organization is not only a consequence of sex chromosome evolution, but that the establishment of epigenetic changes on sex chromosomes contributes toward their evolutionary conservation.
Collapse
Affiliation(s)
- Tasman Daish
- Comparative Genome Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Frank Grützner
- Comparative Genome Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
19
|
Vujošević M, Rajičić M, Blagojević J. B Chromosomes in Populations of Mammals Revisited. Genes (Basel) 2018; 9:E487. [PMID: 30304868 PMCID: PMC6210394 DOI: 10.3390/genes9100487] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 01/23/2023] Open
Abstract
The study of B chromosomes (Bs) started more than a century ago, while their presence in mammals dates since 1965. As the past two decades have seen huge progress in application of molecular techniques, we decided to throw a glance on new data on Bs in mammals and to review them. We listed 85 mammals with Bs that make 1.94% of karyotypically studied species. Contrary to general view, a typical B chromosome in mammals appears both as sub- or metacentric that is the same size as small chromosomes of standard complement. Both karyotypically stable and unstable species possess Bs. The presence of Bs in certain species influences the cell division, the degree of recombination, the development, a number of quantitative characteristics, the host-parasite interactions and their behaviour. There is at least some data on molecular structure of Bs recorded in nearly a quarter of species. Nevertheless, a more detailed molecular composition of Bs presently known for six mammalian species, confirms the presence of protein coding genes, and the transcriptional activity for some of them. Therefore, the idea that Bs are inert is outdated, but the role of Bs is yet to be determined. The maintenance of Bs is obviously not the same for all species, so the current models must be adapted while bearing in mind that Bs are not inactive as it was once thought.
Collapse
Affiliation(s)
- Mladen Vujošević
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| | - Marija Rajičić
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| | - Jelena Blagojević
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| |
Collapse
|
20
|
Gu L, Walters JR. Evolution of Sex Chromosome Dosage Compensation in Animals: A Beautiful Theory, Undermined by Facts and Bedeviled by Details. Genome Biol Evol 2018; 9:2461-2476. [PMID: 28961969 PMCID: PMC5737844 DOI: 10.1093/gbe/evx154] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Many animals with genetic sex determination harbor heteromorphic sex chromosomes, where the heterogametic sex has half the gene dose of the homogametic sex. This imbalance, if reflected in the abundance of transcripts or proteins, has the potential to deleteriously disrupt interactions between X-linked and autosomal loci in the heterogametic sex. Classical theory predicts that molecular mechanisms will evolve to provide dosage compensation that recovers expression levels comparable to ancestral expression prior to sex chromosome divergence. Such dosage compensating mechanisms may also, secondarily, result in balanced sex-linked gene expression between males and females. However, numerous recent studies addressing sex chromosome dosage compensation (SCDC) in a diversity of animals have yielded a surprising array of patterns concerning dosage compensation in the heterogametic sex, as well as dosage balance between sexes. These results substantially contradict longstanding theory, catalyzing both novel perspectives and new approaches in dosage compensation research. In this review, we summarize the theory, analytical approaches, and recent results concerning evolutionary patterns of SCDC in animals. We also discuss methodological challenges and discrepancies encountered in this research, which often underlie conflicting results. Finally, we discuss what outstanding questions and opportunities exist for future research on SCDC.
Collapse
Affiliation(s)
- Liuqi Gu
- Department of Ecology & Evolution, University of Kansas
| | | |
Collapse
|
21
|
Gu L, Walters JR, Knipple DC. Conserved Patterns of Sex Chromosome Dosage Compensation in the Lepidoptera (WZ/ZZ): Insights from a Moth Neo-Z Chromosome. Genome Biol Evol 2017; 9:802-816. [PMID: 28338816 PMCID: PMC5381563 DOI: 10.1093/gbe/evx039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 02/07/2023] Open
Abstract
Where previously described, patterns of sex chromosome dosage compensation in the Lepidoptera (moths and butterflies) have several unusual characteristics. Other female-heterogametic (ZW/ZZ) species exhibit female Z-linked expression that is reduced compared with autosomal expression and male Z expression. In the Lepidoptera, however, Z expression typically appears balanced between sexes but overall reduced relative to autosomal expression, that is Z ≈ ZZ < AA. This pattern is not easily reconciled with theoretical expectations for the evolution of sex chromosome dosage compensation. Moreover, conflicting results linger due to discrepancies in data analyses and tissues sampled among lepidopterans. To address these issues, we performed RNA-seq to analyze sex chromosome dosage compensation in the codling moth, Cydia pomonella, which is a species from the earliest diverging lepidopteran lineage yet examined for dosage compensation and has a neo-Z chromosome resulting from an ancient Z:autosome fusion. While supported by intraspecific analyses, the Z ≈ ZZ < AA pattern was further evidenced by comparative study using autosomal orthologs of C. pomonella neo-Z genes in outgroup species. In contrast, dosage compensation appears to be absent in reproductive tissues. We thus argue that inclusion of reproductive tissues may explain the incongruence from a prior study on another moth species and that patterns of dosage compensation are likely conserved in the Lepidoptera. Notably, this pattern appears convergent with patterns in eutherian mammals (X ≈ XX < AA). Overall, our results contribute to the notion that the Lepidoptera present challenges both to classical theories regarding the evolution of sex chromosome dosage compensation and the emerging view of the association of dosage compensation with sexual heterogamety.
Collapse
Affiliation(s)
- Liuqi Gu
- Department of Entomology, Cornell University, Geneva, NY
| | - James R Walters
- Department of Ecology & Evolutionary Biology, The University of Kansas, Lawrence, KS
| | | |
Collapse
|
22
|
Taylor L, Carlson DF, Nandi S, Sherman A, Fahrenkrug SC, McGrew MJ. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development 2017; 144:928-934. [PMID: 28174243 PMCID: PMC5374353 DOI: 10.1242/dev.145367] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/12/2017] [Indexed: 12/28/2022]
Abstract
In this work we use TALE nucleases (TALENs) to target a reporter construct to the DDX4 (vasa) locus in chicken primordial germ cells (PGCs). Vasa is a key germ cell determinant in many animal species and is posited to control avian germ cell formation. We show that TALENs mediate homology-directed repair of the DDX4 locus on the Z sex chromosome at high (8.1%) efficiencies. Large genetic deletions of 30 kb encompassing the entire DDX4 locus were also created using a single TALEN pair. The targeted PGCs were germline competent and were used to produce DDX4 null offspring. In DDX4 knockout chickens, PGCs are initially formed but are lost during meiosis in the developing ovary, leading to adult female sterility. TALEN-mediated gene targeting in avian PGCs is therefore an efficient process. Summary: TALE nucleases are used to target the DDX4 (vasa) locus in chicken primordial germ cells and generate DDX4 knockouts, which provide insights into DDX4 function in early chick development.
Collapse
Affiliation(s)
- Lorna Taylor
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Daniel F Carlson
- Recombinetics Inc, 1246 University Avenue West, Suite 300, Saint Paul, MN 55104, USA
| | - Sunil Nandi
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Adrian Sherman
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Scott C Fahrenkrug
- Recombinetics Inc, 1246 University Avenue West, Suite 300, Saint Paul, MN 55104, USA
| | - Michael J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
23
|
Plasticity in the Meiotic Epigenetic Landscape of Sex Chromosomes in Caenorhabditis Species. Genetics 2016; 203:1641-58. [PMID: 27280692 DOI: 10.1534/genetics.116.191130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023] Open
Abstract
During meiosis in the heterogametic sex in some species, sex chromosomes undergo meiotic sex chromosome inactivation (MSCI), which results in acquisition of repressive chromatin and transcriptional silencing. In Caenorhabditis elegans, MSCI is mediated by MET-2 methyltransferase deposition of histone H3 lysine 9 dimethylation. Here we examined the meiotic chromatin landscape in germ lines of four Caenorhabditis species; C. remanei and C. brenneri represent ancestral gonochorism, while C. briggsae and C. elegans are two lineages that independently evolved hermaphroditism. While MSCI is conserved across all four species, repressive chromatin modifications are distinct and do not correlate with reproductive mode. In contrast to C. elegans and C. remanei germ cells where X chromosomes are enriched for histone H3 lysine 9 dimethylation, X chromosomes in C. briggsae and C. brenneri germ cells are enriched for histone H3 lysine 9 trimethylation. Inactivation of C. briggsae MET-2 resulted in germ-line X chromosome transcription and checkpoint activation. Further, both histone H3 lysine 9 di- and trimethylation were reduced in Cbr-met-2 mutant germ lines, suggesting that in contrast to C. elegans, H3 lysine 9 di- and trimethylation are interdependent. C. briggsae H3 lysine 9 trimethylation was redistributed in the presence of asynapsed chromosomes in a sex-specific manner in the related process of meiotic silencing of unsynapsed chromatin. However, these repressive marks did not influence X chromosome replication timing. Examination of additional Caenorhabditis species revealed diverse H3 lysine 9 methylation patterns on the X, suggesting that the sex chromosome epigenome evolves rapidly.
Collapse
|
24
|
Daish TJ, Casey AE, Grutzner F. Lack of sex chromosome specific meiotic silencing in platypus reveals origin of MSCI in therian mammals. BMC Biol 2015; 13:106. [PMID: 26652719 PMCID: PMC4676107 DOI: 10.1186/s12915-015-0215-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/27/2015] [Indexed: 11/25/2022] Open
Abstract
Background In therian mammals heteromorphic sex chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during meiotic prophase I while the autosomes maintain transcriptional activity. The evolution of this sex chromosome silencing is thought to result in retroposition of genes required in spermatogenesis from the sex chromosomes to autosomes. In birds sex chromosome specific silencing appears to be absent and global transcriptional reductions occur through pachytene and sex chromosome-derived autosomal retrogenes are lacking. Egg laying monotremes are the most basal mammalian lineage, feature a complex and highly differentiated XY sex chromosome system with homology to the avian sex chromosomes, and also lack autosomal retrogenes. In order to delineate the point of origin of sex chromosome specific silencing in mammals we investigated whether MSCI exists in platypus. Results Our results show that platypus sex chromosomes display only partial or transient colocalisation with a repressive histone variant linked to therian sex chromosome silencing and surprisingly lack a hallmark MSCI epigenetic signature present in other mammals. Remarkably, platypus instead feature an avian like period of general low level transcription through prophase I with the sex chromosomes and the future mammalian X maintaining association with a nucleolus-like structure. Conclusions Our work demonstrates for the first time that in mammals meiotic silencing of sex chromosomes evolved after the divergence of monotremes presumably as a result of the differentiation of the therian XY sex chromosomes. We provide a novel evolutionary scenario on how the future therian X chromosome commenced the trajectory toward MSCI. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0215-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tasman J Daish
- The Robinson Research Institute, School of Biological Sciences, University of Adelaide, Adelaide, 5005, South Australia, Australia.
| | - Aaron E Casey
- The Robinson Research Institute, School of Biological Sciences, University of Adelaide, Adelaide, 5005, South Australia, Australia.
| | - Frank Grutzner
- The Robinson Research Institute, School of Biological Sciences, University of Adelaide, Adelaide, 5005, South Australia, Australia.
| |
Collapse
|
25
|
Cloutier JM, Mahadevaiah SK, ElInati E, Nussenzweig A, Tóth A, Turner JMA. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals. PLoS Genet 2015; 11:e1005462. [PMID: 26509888 PMCID: PMC4624946 DOI: 10.1371/journal.pgen.1005462] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/23/2015] [Indexed: 11/19/2022] Open
Abstract
Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO) and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX). We find that DNA double-strand break (DSB) foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX) levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities. Chromosome abnormalities, such as aneuploidies and structural variants (i.e. translocations, inversions), are strikingly common in the human population, causing disorders such as Down syndrome and Turner syndrome. One important consequence of chromosome abnormalities in mammals is errors during meiosis, the specialized cell division that generates sperm and eggs for reproduction. As a result of these meiotic errors, patients with chromosome abnormalities oftentimes suffer from infertility due to loss of developing germ cells. The precise molecular mechanism for germ cell losses and infertility due to chromosome abnormalities is not well understood, but is hypothesized to result from a surveillance mechanism, which has evolved to prevent aneuploidies from developing from abnormal germ cells. In mammals, meiotic surveillance mechanisms have been hypothesized to monitor for unrepaired DNA double-strand breaks (DSB) and/or chromosome pairing/synapsis errors. Here we test these hypotheses using a variety of chromosomally variant mouse models. We find that germ cell loss in female mice with chromosome abnormalities is dependent on phosphorylation of the histone variant H2AFX, an epigenetic mark involved in the transcriptional silencing of asynapsed chromosomes during meiosis. These data inform a silencing-based mechanism of germ cell loss in patients with chromosome abnormalities and for the prophase I surveillance system which safeguards against aneuploidy.
Collapse
Affiliation(s)
| | | | - Elias ElInati
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Attila Tóth
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - James M. A. Turner
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
de Melo Bernardo A, Heeren AM, van Iperen L, Fernandes MG, He N, Anjie S, Noce T, Ramos ES, de Sousa Lopes SMC. Meiotic wave adds extra asymmetry to the development of female chicken gonads. Mol Reprod Dev 2015; 82:774-86. [PMID: 26096940 PMCID: PMC5034815 DOI: 10.1002/mrd.22516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/14/2015] [Indexed: 11/06/2022]
Abstract
Development of female gonads in the chicken is asymmetric. This asymmetry affects gene expression, morphology, and germ cell development; consequently only the left ovary develops into a functional organ, whereas the right ovary remains vestigial. In males, on the other hand, both gonads develop into functional testes. Here, we revisited the development of asymmetric traits in female (and male) chicken gonads between Hamburger Hamilton stage 16 (HH16) and hatching. At HH16, primordial germ cells migrated preferentially to the left gonad, accumulating in the left coelomic hinge between the gut mesentery and developing gonad in both males and females. Using the meiotic markers SYCP3 and phosphorylated H2AFX, we identified a previously undescribed, pronounced asymmetryc meiotic progression in the germ cells located in the central, lateral, and extreme cortical regions of the left female gonad from HH38 until hatching. Moreover, we observed that--in contrast to the current view--medullary germ cells are not apoptotic, but remain arrested in pre-leptotene until hatching. In addition to the systematic analysis of the asymmetric distribution of germ cells in female chicken gonads, we propose an updated model suggesting that the localization of germ cells--in the left or right gonad; in the cortex or medulla of the left gonad; and in the central part or the extremities of the left cortex--has direct consequences for their development and participation in adult reproduction.
Collapse
Affiliation(s)
- Ana de Melo Bernardo
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - A Marijne Heeren
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Maria Gomes Fernandes
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Nannan He
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Stafford Anjie
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Toshiaki Noce
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Ester Silveira Ramos
- Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands.,Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
27
|
Dean R, Mank JE. The role of sex chromosomes in sexual dimorphism: discordance between molecular and phenotypic data. J Evol Biol 2015; 27:1443-53. [PMID: 25105198 DOI: 10.1111/jeb.12345] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to initial sex determination, genes on the sex chromosomes are theorized to play a particularly important role in phenotypic differences between males and females. Sex chromosomes in many species display molecular signatures consistent with these theoretical predictions, particularly through sex-specific gene expression. However, the phenotypic implications of this molecular signature are unresolved, and the role of the sex chromosomes in quantitative genetic studies of phenotypic sex differences is largely equivocal. In this article, we examine molecular and phenotypic data in the light of theoretical predictions about masculinization and feminization of the sex chromosomes. Additionally, we discuss the role of genetic and regulatory complexities in the genome–phenotype relationship, and ultimately how these affect the overall role of the sex chromosomes in sex differences.
Collapse
|
28
|
Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED, Gilbert MTP, Zhang G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 2014; 346:1246338. [PMID: 25504727 PMCID: PMC6445272 DOI: 10.1126/science.1246338] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sex-specific chromosomes, like the W of most female birds and the Y of male mammals, usually have lost most genes owing to a lack of recombination. We analyze newly available genomes of 17 bird species representing the avian phylogenetic range, and find that more than half of them do not have as fully degenerated W chromosomes as that of chicken. We show that avian sex chromosomes harbor tremendous diversity among species in their composition of pseudoautosomal regions and degree of Z/W differentiation. Punctuated events of shared or lineage-specific recombination suppression have produced a gradient of "evolutionary strata" along the Z chromosome, which initiates from the putative avian sex-determining gene DMRT1 and ends at the pseudoautosomal region. W-linked genes are subject to ongoing functional decay after recombination was suppressed, and the tempo of degeneration slows down in older strata. Overall, we unveil a complex history of avian sex chromosome evolution.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Integrative Biology, University of California, Berkeley, CA94720, USA.
| | - Jilin Zhang
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China
| | - Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, CA94720, USA
| | - Na An
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China
| | - Quanfei Huang
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China
| | - Erich D Jarvis
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA laboratory, Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia
| | - Guojie Zhang
- China National Genebank, BGI-Shenzhen, Shenzhen, 518083. China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
29
|
Wang Z, Zhang J, Yang W, An N, Zhang P, Zhang G, Zhou Q. Temporal genomic evolution of bird sex chromosomes. BMC Evol Biol 2014; 14:250. [PMID: 25527260 PMCID: PMC4272511 DOI: 10.1186/s12862-014-0250-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 11/20/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sex chromosomes exhibit many unusual patterns in sequence and gene expression relative to autosomes. Birds have evolved a female heterogametic sex system (male ZZ, female ZW), through stepwise suppression of recombination between chrZ and chrW. To address the broad patterns and complex driving forces of Z chromosome evolution, we analyze here 45 newly available bird genomes and four species' transcriptomes, over their course of recombination loss between the sex chromosomes. RESULTS We show Z chromosomes in general have a significantly higher substitution rate in introns and synonymous protein-coding sites than autosomes, driven by the male-to-female mutation bias ('male-driven evolution' effect). Our genome-wide estimate reveals that the degree of such a bias ranges from 1.6 to 3.8 among different species. G + C content of third codon positions exhibits the same trend of gradual changes with that of introns, between chrZ and autosomes or regions with increasing ages of becoming Z-linked, therefore codon usage bias in birds is probably driven by the mutational bias. On the other hand, Z chromosomes also evolve significantly faster at nonsynonymous sites relative to autosomes ('fast-Z' evolution). And species with a lower level of intronic heterozygosities tend to evolve even faster on the Z chromosome. Further analysis of fast-evolving genes' enriched functional categories and sex-biased expression patterns support that, fast-Z evolution in birds is mainly driven by genetic drift. Finally, we show in species except for chicken, gene expression becomes more male-biased within Z-linked regions that have became hemizygous in females for a longer time, suggesting a lack of global dosage compensation in birds, and the reported regional dosage compensation in chicken has only evolved very recently. CONCLUSIONS In conclusion, we uncover that the sequence and expression patterns of Z chromosome genes covary with their ages of becoming Z-linked. In contrast to the mammalian X chromosomes, such patterns are mainly driven by mutational bias and genetic drift in birds, due to the opposite sex-biased inheritance of Z vs. X.
Collapse
Affiliation(s)
- Zongji Wang
- />School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 China
- />China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Jilin Zhang
- />China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Wei Yang
- />China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Na An
- />China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Pei Zhang
- />China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
| | - Guojie Zhang
- />China National GeneBank, BGI-Shenzhen, Shenzhen, 518083 China
- />Department of Biology, Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Qi Zhou
- />Department of Integrative Biology, University of California, Berkeley, CA94720 USA
| |
Collapse
|
30
|
Smeds L, Kawakami T, Burri R, Bolivar P, Husby A, Qvarnström A, Uebbing S, Ellegren H. Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes. Nat Commun 2014; 5:5448. [PMID: 25378102 PMCID: PMC4272252 DOI: 10.1038/ncomms6448] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023] Open
Abstract
The molecular characteristics of the pseudoautosomal region (PAR) of sex chromosomes
remain elusive. Despite significant genome-sequencing efforts, the PAR of highly
differentiated avian sex chromosomes remains to be identified. Here we use linkage
analysis together with whole-genome re-sequencing to uncover the 630-kb PAR of an
ecological model species, the collared flycatcher. The PAR contains 22 protein-coding
genes and is GC rich. The genetic length is 64 cM in female meiosis, consistent
with an obligate crossing-over event. Recombination is concentrated to a hotspot region,
with an extreme rate of >700 cM/Mb in a 67-kb segment. We find no signatures
of sexual antagonism and propose that sexual antagonism may have limited influence on
PAR sequences when sex chromosomes are nearly fully differentiated and when a
recombination hotspot region is located close to the PAR boundary. Our results
demonstrate that a very small PAR suffices to ensure homologous recombination and proper
segregation of sex chromosomes during meiosis. The genetic basis of sex chromosome pseudoautosomal regions (PAR) in
organisms with female heterogamety is largely unknown. Smeds et al. provide the
first molecular characterization of the PAR in birds with differentiated sex chromosomes
and show a potential recombination hotspot and no evidence for strong sexual antagonism in
this region.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Reto Burri
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Paulina Bolivar
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Arild Husby
- 1] Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden [2] Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Severin Uebbing
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
31
|
Mank JE, Hosken DJ, Wedell N. Conflict on the sex chromosomes: cause, effect, and complexity. Cold Spring Harb Perspect Biol 2014; 6:a017715. [PMID: 25280765 DOI: 10.1101/cshperspect.a017715] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intralocus sexual conflict and intragenomic conflict both affect sex chromosome evolution and can in extreme cases even cause the complete turnover of sex chromosomes. Additionally, established sex chromosomes often become the focus of heightened conflict. This creates a tangled relationship between sex chromosomes and conflict with respect to cause and effect. To further complicate matters, sexual and intragenomic conflict may exacerbate one another and thereby further fuel sex chromosome change. Different magnitudes and foci of conflict offer potential explanations for lineage-specific variation in sex chromosome evolution and answer long-standing questions as to why some sex chromosomes are remarkably stable, whereas others show rapid rates of evolutionary change.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - David J Hosken
- Centre for Ecology & Conservation, University of Exeter, Cornwall, Tremough, Penryn TR10 9EZ, United Kingdom
| | - Nina Wedell
- Centre for Ecology & Conservation, University of Exeter, Cornwall, Tremough, Penryn TR10 9EZ, United Kingdom
| |
Collapse
|
32
|
Abstract
In several different taxa, there is indubitable evidence of transcriptional silencing of the X and Y chromosomes in male meiotic cells of spermatogenesis. However, the so called meiotic sex chromosome inactivation (MSCI) has been recently a hot bed for debate in Drosophila melanogaster. This review covers cytological and genetic observations, data from transgenic constructs with testis-specific promoters, global expression profiles obtained from mutant, wild-type, larvae and adult testes as well as from cells of different stages of spermatogenesis. There is no dispute on that D. melanogaster spermatogenesis presents a down-regulation of X chromosome that does not result from the lack of dosage compensation. However, the issue is currently focused on the level of reduction of X-linked expression, the precise time it occurs and how many genes are affected. The deep examination of data and experiments in this review exposes the limitations intrinsic to the methods of studying MSCI in D. melanogaster. The current methods do not allow us to affirm anything else than the X chromosome down-regulation in meiosis (MSCI). Therefore, conclusion about level, degree or precise timing is inadequate until new approaches are implemented to know the details of MSCI or other processes involved for D. melanogaster model.
Collapse
Affiliation(s)
- Maria D Vibranovski
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil 05508
| |
Collapse
|
33
|
|
34
|
Taketo T, Naumova AK. Oocyte heterogeneity with respect to the meiotic silencing of unsynapsed X chromosomes in the XY female mouse. Chromosoma 2013; 122:337-49. [DOI: 10.1007/s00412-013-0415-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/26/2013] [Accepted: 05/13/2013] [Indexed: 12/16/2022]
|
35
|
Abstract
In male mammals, the X and Y chromosomes are transcriptionally silenced in primary spermatocytes by meiotic sex chromosome inactivation (MSCI) and remain repressed for the duration of spermatogenesis. Here, we test the longstanding hypothesis that disrupted MSCI might contribute to the preferential sterility of heterogametic hybrid males. We studied a cross between wild-derived inbred strains of Mus musculus musculus and M. m. domesticus in which sterility is asymmetric: F1 males with a M. m. musculus mother are sterile or nearly so while F1 males with a M. m. domesticus mother are normal. In previous work, we discovered widespread overexpression of X-linked genes in the testes of sterile but not fertile F1 males. Here, we ask whether this overexpression is specifically a result of disrupted MSCI. To do this, we isolated cells from different stages of spermatogenesis and measured the expression of several genes using quantitative PCR. We found that X overexpression in sterile F1 primary spermatocytes is coincident with the onset of MSCI and persists in postmeiotic spermatids. Using a series of recombinant X genotypes, we then asked whether X overexpression in hybrids is controlled by cis-acting loci across the X chromosome. We found that it is not. Instead, one large interval in the proximal portion of the M. m. musculus X chromosome is associated with both overexpression and the severity of sterility phenotypes in hybrids. These results demonstrate a strong association between X-linked hybrid male sterility and disruption of MSCI and suggest that trans-acting loci on the X are important for the transcriptional regulation of the X chromosome during spermatogenesis.
Collapse
|
36
|
Mikhaylova LM, Nurminsky DI. No severe and global X chromosome inactivation in meiotic male germline of Drosophila. BMC Biol 2012. [PMCID: PMC3391177 DOI: 10.1186/1741-7007-10-50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
This article is a response to Vibranovski et al. See correspondence article http://www.biomedcentral.com/1741-7007/10/49 and the original research article http://www.biomedcentral.com/1741-7007/9/29 We have previously reported a high propensity of testis-expressed X-linked genes to activation in meiotic cells, a similarity in global gene expression between the X chromosome and autosomes in meiotic germline, and under-representation of various types of tissue-specific genes on the X chromosome. Based on our findings and a critical review of the current literature, we believe that there is no global and severe silencing of the X chromosome in the meiotic male germline of Drosophila. The term 'meiotic sex chromosome inactivation' (MSCI) therefore seems misleading when used to describe the minor underexpression of the X chromosome in the testis of Drosophila, because this term erroneously implies a profound and widespread silencing of the X-linked genes, by analogy to the well-studied MSCI system in mammals, and therefore distracts from identification and analysis of the real mechanisms that orchestrate gene expression and evolution in this species.
Collapse
|
37
|
Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H. Birth and expression evolution of mammalian microRNA genes. Genome Res 2012; 23:34-45. [PMID: 23034410 PMCID: PMC3530682 DOI: 10.1101/gr.140269.112] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression, yet their origins and functional evolution in mammals remain little understood due to the lack of appropriate comparative data. Using RNA sequencing, we have generated extensive and comparable miRNA data for five organs in six species that represent all main mammalian lineages and birds (the evolutionary outgroup) with the aim to unravel the evolution of mammalian miRNAs. Our analyses reveal an overall expansion of miRNA repertoires in mammals, with threefold accelerated birth rates of miRNA families in placentals and marsupials, facilitated by the de novo emergence of miRNAs in host gene introns. Generally, our analyses suggest a high rate of miRNA family turnover in mammals with many newly emerged miRNA families being lost soon after their formation. Selectively preserved mammalian miRNA families gradually evolved higher expression levels, as well as altered mature sequences and target gene repertoires, and were apparently mainly recruited to exert regulatory functions in nervous tissues. However, miRNAs that originated on the X chromosome evolved high expression levels and potentially diverse functions during spermatogenesis, including meiosis, through selectively driven duplication-divergence processes. Overall, our study thus provides detailed insights into the birth and evolution of mammalian miRNA genes and the associated selective forces.
Collapse
Affiliation(s)
- Julien Meunier
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|