1
|
Zhou HR, Qian F, Du JL, Lin J, Liu ZZ, Yuan DY, Huang HW, Cai T, Li L, Chen S, Li QQ, He XJ. The conserved Pre-mRNA PROCESSING FACTOR 21 regulates the abscisic acid response and seed germination in Arabidopsis. PLANT PHYSIOLOGY 2025; 198:kiaf189. [PMID: 40344190 DOI: 10.1093/plphys/kiaf189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/06/2025] [Indexed: 05/11/2025]
Abstract
Seed germination is a critical developmental stage in the lifecycle of plants, and its regulation is essential for ensuring crop productivity, particularly under adverse environmental conditions. Here, we find that the Arabidopsis thaliana Pre-mRNA PROCESSING FACTOR 21 (PRP21) is crucial for regulating the abscisic acid (ABA) response and seed germination. Our RNA deep sequencing and poly(A) tag sequencing analyses reveal that PRP21 is involved in pre-mRNA splicing, genome-wide gene expression, and mRNA 3' end processing, highlighting its multifunctional role in gene regulation. Furthermore, PRP21 interacts with various splicing factors and small nuclear ribonucleoproteins, confirming its involvement in spliceosome assembly. Additionally, we demonstrate that PRP21 negatively regulates the expression of ABA-responsive genes, such as ABA INSENSITIVE 3 (ABI3), ABA INSENSITIVE 5 (ABI5), EARLY METHIONINE-LABELED 1 (EM1), and EM6, thereby modulating ABA response and seed germination. Our findings underscore the importance of PRP21 in coordinating transcriptional and post-transcriptional processes and provide insights into the molecular mechanisms underlying seed germination, potentially guiding crop improvement for stress tolerance.
Collapse
Affiliation(s)
- Hao-Ran Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feng Qian
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jin-Lu Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Juncheng Lin
- Synthetic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingshun Quinn Li
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 10084, China
| |
Collapse
|
2
|
Liu N, Li JX, Yuan DY, Su YN, Zhang P, Wang Q, Su XM, Li L, Li H, Chen S, He XJ. Essential angiosperm-specific subunits of HDA19 histone deacetylase complexes in Arabidopsis. EMBO J 2025:10.1038/s44318-025-00445-w. [PMID: 40295864 DOI: 10.1038/s44318-025-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Although the Arabidopsis thaliana RPD3-type histone deacetylase HDA19 and its close homolog HDA6 participate in SIN3-type histone deacetylase complexes, they display distinct biological roles, with the reason for these differences being poorly understood. This study identifies three angiosperm-specific HDA19-interacting homologous proteins, termed HDIP1, HDIP2, and HDIP3 (HDIP1/2/3). These proteins interact with HDA19 and other conserved histone deacetylase complex components, leading to the formation of HDA19-containing SIN3-type complexes, while they are not involved in the formation of HDA6-containing complexes. While mutants of conserved SIN3-type complex components show phenotypes divergent from the hda19 mutant, the hdip1/2/3 mutant closely phenocopies the hda19 mutant with respect to development, abscisic acid response, and drought stress tolerance. Genomic and transcriptomic analyses indicate that HDIP1/2/3 and HDA19 co-occupy chromatin and jointly repress gene transcription, especially for stress-related genes. An α-helix motif within HDIP1 has the capacity to bind to nucleosomes and architectural DNA, and is required for its function in Arabidopsis plants. These findings suggest that the angiosperm SIN3-type complexes have evolved to include additional subunits for the precise regulation of histone deacetylation and gene transcription.
Collapse
Affiliation(s)
- Na Liu
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Jia-Xin Li
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, China
| | - Pei Zhang
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Qi Wang
- National Institute of Biological Sciences, Beijing, China
| | - Xiao-Min Su
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Haitao Li
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Su XM, Yuan DY, Liu N, Zhang ZC, Yang M, Li L, Chen S, Zhou Y, He XJ. ALFIN-like proteins link histone H3K4me3 to H2A ubiquitination and coordinate diverse chromatin modifications in Arabidopsis. MOLECULAR PLANT 2025; 18:130-150. [PMID: 39668562 DOI: 10.1016/j.molp.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Trimethylation of histone H3K4 (H3K4me3) is widely distributed at numerous actively transcribed protein-coding genes throughout the genome. However, the interplay between H3K4me3 and other chromatin modifications in plants remains poorly understood. In this study, we show that the Arabidopsis thaliana ALFIN-LIKE (AL) proteins contain a C-terminal PHD finger capable of binding to H3K4me3 and a PHD-associated AL (PAL) domain that interacts with components of the Polycomb repressive complex 1, thereby facilitating H2A ubiquitination (H2Aub) at H3K4me3-enriched genes throughout the genome. Furthermore, we demonstrate that loss of function of SDG2, encoding a key histone H3K4 methyltransferase, leads to a reduction in H3K4me3 level, which subsequently causes a genome-wide decrease in H2Aub, revealing a strong association between H3K4me3 and H2Aub. Finally, we discover that the PAL domain of AL proteins interacts with various other chromatin-related proteins or complexes, including those involved in regulating H2A.Z deposition, H3K27me3 demethylation, histone deacetylation, and chromatin accessibility. Our genome-wide analysis suggests that the AL proteins play a crucial role in coordinating H3K4me3 with multiple other chromatin modifications across the genome.
Collapse
Affiliation(s)
- Xiao-Min Su
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Na Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhao-Chen Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Minqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Jian He
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China; National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
4
|
Zheng SY, Guan BB, Yuan DY, Zhao QQ, Ge W, Tan LM, Chen SS, Li L, Chen S, Xu RM, He XJ. Dual roles of the Arabidopsis PEAT complex in histone H2A deubiquitination and H4K5 acetylation. MOLECULAR PLANT 2023; 16:1847-1865. [PMID: 37822080 DOI: 10.1016/j.molp.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Histone H2A monoubiquitination is associated with transcriptional repression and needs to be removed by deubiquitinases to facilitate gene transcription in eukaryotes. However, the deubiquitinase responsible for genome-wide H2A deubiquitination in plants has yet to be identified. In this study, we found that the previously identified PWWP-EPCR-ARID-TRB (PEAT) complex components interact with both the ubiquitin-specific protease UBP5 and the redundant histone acetyltransferases HAM1 and HAM2 (HAM1/2) to form a larger version of PEAT complex in Arabidopsis thaliana. UBP5 functions as an H2A deubiquitinase in a nucleosome substrate-dependent manner in vitro and mediates H2A deubiquitination at the whole-genome level in vivo. HAM1/2 are shared subunits of the PEAT complex and the conserved NuA4 histone acetyltransferase complex, and are responsible for histone H4K5 acetylation. Within the PEAT complex, the PWWP components (PWWP1, PWWP2, and PWWP3) directly interact with UBP5 and are necessary for UBP5-mediated H2A deubiquitination, while the EPCR components (EPCR1 and EPCR2) directly interact with HAM1/2 and are required for HAM1/2-mediated H4K5 acetylation. Collectively, our study not only identifies dual roles of the PEAT complex in H2A deubiquitination and H4K5 acetylation but also illustrates how these processes collaborate at the whole-genome level to regulate the transcription and development in plants.
Collapse
Affiliation(s)
- Si-Yao Zheng
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Bin-Bin Guan
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | | | - Weiran Ge
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, Beijing, China
| | - Shan-Shan Chen
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Zheng G, Hu S, Cheng S, Wang L, Kan L, Wang Z, Xu Q, Liu Z, Kang C. Factor of DNA methylation 1 affects woodland strawberry plant stature and organ size via DNA methylation. PLANT PHYSIOLOGY 2023; 191:335-351. [PMID: 36200851 PMCID: PMC9806633 DOI: 10.1093/plphys/kiac462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an epigenetic process that directs silencing to specific genomic regions and loci. The biological functions of RdDM are not well studied in horticultural plants. Here, we isolated the ethyl methane-sulfonate-induced mutant reduced organ size (ros) producing small leaves, flowers, and fruits in woodland strawberry (Fragaria vesca) due to reduced cell numbers compared with that in the wild-type (WT). The candidate mutation causes a premature stop codon in FvH4_6g28780, which shares high similarity to Arabidopsis (Arabidopsis thaliana) Factor of DNA Methylation1 (FDM1) encoding an RdDM pathway component and was named FveFDM1. Consistently, the fvefdm1CR mutants generated by CRISPR/Cas9 also produced smaller organs. Overexpressing FveFDM1 in an Arabidopsis fdm1-1 fdm2-1 double mutant restored DNA methylation at the RdDM target loci. FveFDM1 acts in a protein complex with its homolog Involved in De Novo 2 (FveIDN2). Furthermore, whole-genome bisulfite sequencing revealed that DNA methylation, especially in the CHH context, was remarkably reduced throughout the genome in fvefdm1. Common and specific differentially expressed genes were identified in different tissues of fvefdm1 compared to in WT tissues. DNA methylation and expression levels of several gibberellic acid (GA) biosynthesis and cell cycle genes were validated. Moreover, the contents of GA and auxin were substantially reduced in the young leaves of fvefdm1 compared to in the WT. However, exogenous application of GA and auxin could not recover the organ size of fvefdm1. In addition, expression levels of FveFDM1, FveIDN2, Nuclear RNA Polymerase D1 (FveNRPD1), Domains Rearranged Methylase 2 (FveDRM2), and cell cycle genes were greatly induced by GA treatment. Overall, our work demonstrated the critical roles of FveFDM1 in plant growth and development via RdDM-mediated DNA methylation in horticultural crops.
Collapse
Affiliation(s)
- Guanghui Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shaoqiang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Simin Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liyang Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Lijun Kan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengming Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, Mary land 20742, USA
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
6
|
Shang JY, Cai XW, Su YN, Zhang ZC, Wang X, Zhao N, He XJ. Arabidopsis Trithorax histone methyltransferases are redundant in regulating development and DNA methylation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2438-2454. [PMID: 36354145 DOI: 10.1111/jipb.13406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Although the Trithorax histone methyltransferases ATX1-5 are known to regulate development and stress responses by catalyzing histone H3K4 methylation in Arabidopsis thaliana, it is unknown whether and how these histone methyltransferases affect DNA methylation. Here, we found that the redundant ATX1-5 proteins are not only required for plant development and viability but also for the regulation of DNA methylation. The expression and H3K4me3 levels of both RNA-directed DNA methylation (RdDM) genes (NRPE1, DCL3, IDN2, and IDP2) and active DNA demethylation genes (ROS1, DML2, and DML3) were downregulated in the atx1/2/4/5 mutant. Consistent with the facts that the active DNA demethylation pathway mediates DNA demethylation mainly at CG and CHG sites, and that the RdDM pathway mediates DNA methylation mainly at CHH sites, whole-genome DNA methylation analyses showed that hyper-CG and CHG DMRs in atx1/2/4/5 significantly overlapped with those in the DNA demethylation pathway mutant ros1 dml2 dml3 (rdd), and that hypo-CHH DMRs in atx1/2/4/5 significantly overlapped with those in the RdDM mutant nrpe1, suggesting that the ATX paralogues function redundantly to regulate DNA methylation by promoting H3K4me3 levels and expression levels of both RdDM genes and active DNA demethylation genes. Given that the ATX proteins function as catalytic subunits of COMPASS histone methyltransferase complexes, we also demonstrated that the COMPASS complex components function as a whole to regulate DNA methylation. This study reveals a previously uncharacterized mechanism underlying the regulation of DNA methylation.
Collapse
Affiliation(s)
- Ji-Yun Shang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhao-Chen Zhang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Nan Zhao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Jiang J, Ou X, Han D, He Z, Liu S, Mao N, Zhang Z, Peng CL, Lai J, Yang C. A diRNA-protein scaffold module mediates SMC5/6 recruitment in plant DNA repair. THE PLANT CELL 2022; 34:3899-3914. [PMID: 35775944 PMCID: PMC9516202 DOI: 10.1093/plcell/koac191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/21/2022] [Indexed: 06/06/2023]
Abstract
In eukaryotes, the STRUCTURAL MAINTENANCE OF CHROMOSOME 5/6 (SMC5/6) complex is critical to maintaining chromosomal structures around double-strand breaks (DSBs) in DNA damage repair. However, the recruitment mechanism of this conserved complex at DSBs remains unclear. In this study, using Arabidopsis thaliana as a model, we found that SMC5/6 localization at DSBs is dependent on the protein scaffold containing INVOLVED IN DE NOVO 2 (IDN2), CELL DIVISION CYCLE 5 (CDC5), and ALTERATION/DEFICIENCY IN ACTIVATION 2B (ADA2b), whose recruitment is further mediated by DNA-damage-induced RNAs (diRNAs) generated from DNA regions around DSBs. The physical interactions of protein components including SMC5-ADA2b, ADA2b-CDC5, and CDC5-IDN2 result in formation of the protein scaffold. Further analysis indicated that the DSB localization of IDN2 requires its RNA-binding activity and ARGONAUTE 2 (AGO2), indicating a role for the AGO2-diRNA complex in this process. Given that most of the components in the scaffold are conserved, the mechanism presented here, which connects SMC5/6 recruitment and small RNAs, will improve our understanding of DNA repair mechanisms in eukaryotes.
Collapse
Affiliation(s)
- Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Ou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhipeng He
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Song Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ning Mao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chang-Lian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
8
|
Qi PL, Zhou HR, Zhao QQ, Feng C, Ning YQ, Su YN, Cai XW, Yuan DY, Zhang ZC, Su XM, Chen SS, Li L, Chen S, He XJ. Characterization of an autonomous pathway complex that promotes flowering in Arabidopsis. Nucleic Acids Res 2022; 50:7380-7395. [PMID: 35766439 PMCID: PMC9303297 DOI: 10.1093/nar/gkac551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Although previous studies have identified several autonomous pathway components that are required for the promotion of flowering, little is known about how these components cooperate. Here, we identified an autonomous pathway complex (AuPC) containing both known components (FLD, LD and SDG26) and previously unknown components (EFL2, EFL4 and APRF1). Loss-of-function mutations of all of these components result in increased FLC expression and delayed flowering. The delayed-flowering phenotype is independent of photoperiod and can be overcome by vernalization, confirming that the complex specifically functions in the autonomous pathway. Chromatin immunoprecipitation combined with sequencing indicated that, in the AuPC mutants, the histone modifications (H3Ac, H3K4me3 and H3K36me3) associated with transcriptional activation are increased, and the histone modification (H3K27me3) associated with transcriptional repression is reduced, suggesting that the AuPC suppresses FLC expression at least partially by regulating these histone modifications. Moreover, we found that the AuPC component SDG26 associates with FLC chromatin via a previously uncharacterized DNA-binding domain and regulates FLC expression and flowering time independently of its histone methyltransferase activity. Together, these results provide a framework for understanding the molecular mechanism by which the autonomous pathway regulates flowering time.
Collapse
Affiliation(s)
- Pei-Lin Qi
- National Institute of Biological Sciences, Beijing 102206, China.,PTN Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao-Ran Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qiang-Qiang Zhao
- National Institute of Biological Sciences, Beijing 102206, China.,Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Chao Feng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong-Qiang Ning
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhao-Chen Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiao-Min Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shan-Shan Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Zhou JX, Su XM, Zheng SY, Wu CJ, Su YN, Jiang Z, Li L, Chen S, He XJ. The Arabidopsis NuA4 histone acetyltransferase complex is required for chlorophyll biosynthesis and photosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:901-914. [PMID: 35043580 DOI: 10.1111/jipb.13227] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 05/29/2023]
Abstract
Although two Enhancer of Polycomb-like proteins, EPL1A and EPL1B (EPL1A/B), are known to be conserved and characteristic subunits of the NuA4-type histone acetyltransferase complex in Arabidopsis thaliana, the biological function of EPL1A/B and the mechanism by which EPL1A/B function in the complex remain unknown. Here, we report that EPL1A/B are required for the histone acetyltransferase activity of the NuA4 complex on the nucleosomal histone H4 in vitro and for the enrichment of histone H4K5 acetylation at thousands of protein-coding genes in vivo. Our results suggest that EPL1A/B are required for linking the NuA4 catalytic subunits HISTONE ACETYLTRANSFERASE OF THE MYST FAMILY 1(HAM1) and HAM2 with accessory subunits in the NuA4 complex. EPL1A/B function redundantly in regulating plant development especially in chlorophyll biosynthesis and de-etiolation. The EPL1A/B-dependent transcription and H4K5Ac are enriched at genes involved in chlorophyll biosynthesis and photosynthesis. We also find that EAF6, another characteristic subunit of the NuA4 complex, contributes to de-etiolation. These results suggest that the Arabidopsis NuA4 complex components function as a whole to mediate histone acetylation and transcriptional activation specifically at light-responsive genes and are critical for photomorphogenesis.
Collapse
Affiliation(s)
- Jin-Xing Zhou
- College of Life Sciences, Beijing Normal University, Beijing, 100091, China
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xiao-Min Su
- College of Life Sciences, Beijing Normal University, Beijing, 100091, China
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Si-Yao Zheng
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Chan-Juan Wu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
FDDM1 and FDDM2, Two SGS3-like Proteins, Function as a Complex to Affect DNA Methylation in Arabidopsis. Genes (Basel) 2022; 13:genes13020339. [PMID: 35205382 PMCID: PMC8872474 DOI: 10.3390/genes13020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
DNA methylation is an important epigenetic modification required for the specific regulation of gene expression and the maintenance of genome stability in plants and animals. However, the mechanism of DNA demethylation remains largely unknown. Here, we show that two SGS3-like proteins, FACTOR OF DNA DEMETHYLATION 1 (FDDM1) and FDDM2, negatively affect the DNA methylation levels at ROS1-dependend DNA loci in Arabidopsis. FDDM1 binds dsRNAs with 5′ overhangs through its XS (rice gene X and SGS3) domain and forms a heterodimer with FDDM2 through its XH (rice gene X Homology) domain. A lack of FDDM1 or FDDM2 increased DNA methylation levels at several ROS1-dependent DNA loci. However, FDDM1 and FDDM2 may not have an additive effect on DNA methylation levels. Moreover, the XS and XH domains are required for the function of FDDM1. Taken together, these results suggest that FDDM1 and FDDM2 act as a heterodimer to positively modulate DNA demethylation. Our finding extends the function of plant-specific SGS3-like proteins.
Collapse
|
11
|
Wang L, Zheng K, Zeng L, Xu D, Zhu T, Yin Y, Zhan H, Wu Y, Yang DL. Reinforcement of CHH methylation through RNA-directed DNA methylation ensures sexual reproduction in rice. PLANT PHYSIOLOGY 2022; 188:1189-1209. [PMID: 34791444 PMCID: PMC8825330 DOI: 10.1093/plphys/kiab531] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/15/2021] [Indexed: 05/23/2023]
Abstract
DNA methylation is an important epigenetic mark that regulates the expression of genes and transposons. RNA-directed DNA methylation (RdDM) is the main molecular pathway responsible for de novo DNA methylation in plants. Although the mechanism of RdDM has been well studied in Arabidopsis (Arabidopsis thaliana), most mutations in RdDM genes cause no remarkable developmental defects in Arabidopsis. Here, we isolated and cloned Five Elements Mountain 1 (FEM1), which encodes RNA-dependent RNA polymerase 2 (OsRDR2) in rice (Oryza sativa). Mutation in OsRDR2 abolished the accumulation of 24-nt small interfering RNAs, and consequently substantially decreased genome-wide CHH (H = A, C, or T) methylation. Moreover, male and female reproductive development was disturbed, which led to sterility in osrdr2 mutants. We discovered that OsRDR2-dependent DNA methylation may regulate the expression of multiple key genes involved in stamen development, meiosis, and pollen viability. In wild-type (WT) plants but not in osrdr2 mutants, genome-wide CHH methylation levels were greater in panicles, stamens, and pistils than in seedlings. The global increase of CHH methylation in reproductive organs of the WT was mainly explained by the enhancement of RdDM activity, which includes OsRDR2 activity. Our results, which revealed a global increase in CHH methylation through enhancement of RdDM activity in reproductive organs, suggest a crucial role for OsRDR2 in the sexual reproduction of rice.
Collapse
Affiliation(s)
- Lili Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kezhi Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Longjun Zeng
- Yichun Academy of Science, Yichun 336000, Jiangxi Province, China
| | - Dachao Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yumeng Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huadong Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
In Response to Abiotic Stress, DNA Methylation Confers EpiGenetic Changes in Plants. PLANTS 2021; 10:plants10061096. [PMID: 34070712 PMCID: PMC8227271 DOI: 10.3390/plants10061096] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Epigenetics involves the heritable changes in patterns of gene expression determined by developmental and abiotic stresses, i.e., drought, cold, salinity, trace metals, and heat. Gene expression is driven by changes in DNA bases, histone proteins, the biogenesis of ncRNA, and changes in the nucleotide sequence. To cope with abiotic stresses, plants adopt certain changes driven by a sophisticated biological system. DNA methylation is a primary mechanism for epigenetic variation, which can induce phenotypic alterations in plants under stress. Some of the stress-driven changes in plants are temporary, while some modifications may be stable and inheritable to the next generations to allow them to cope with such extreme stress challenges in the future. In this review, we discuss the pivotal role of epigenetically developed phenotypic characteristics in plants as an evolutionary process participating in adaptation and tolerance responses to abiotic and biotic stresses that alter their growth and development. We emphasize the molecular process underlying changes in DNA methylation, differential variation for different species, the roles of non-coding RNAs in epigenetic modification, techniques for studying DNA methylation, and its role in crop improvement in tolerance to abiotic stress (drought, salinity, and heat). We summarize DNA methylation as a significant future research priority for tailoring crops according to various challenging environmental issues.
Collapse
|
13
|
Arabidopsis RPD3-like histone deacetylases form multiple complexes involved in stress response. J Genet Genomics 2021; 48:369-383. [PMID: 34144927 DOI: 10.1016/j.jgg.2021.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
The Arabidopsis thaliana RPD3-type histone deacetylases have been known to form conserved SIN3-type histone deacetylase complexes, but whether they form other types of complexes is unknown. Here, we perform affinity purification followed by mass spectrometry and demonstrate that the Arabidopsis RPD3-type histone deacetylases HDA6 and HDA19 interact with several previously uncharacterized proteins, thereby forming three types of plant-specific histone deacetylase complexes, which we named SANT, ESANT, and ARID. RNA-seq indicates that the newly identified components function together with HDA6 and HDA19 and coregulate the expression of a number of genes. HDA6 and HDA19 were previously thought to repress gene transcription by histone deacetylation. We find that the histone deacetylase complexes can repress gene expression via both histone deacetylation-dependent and -independent mechanisms. In the mutants of histone deacetylase complexes, the expression of a number of stress-induced genes is up-regulated, and several mutants of the histone deacetylase complexes show severe retardation in growth. Considering that growth retardation is thought to be a trade-off for an increase in stress tolerance, we infer that the histone deacetylase complexes identified in this study prevent overexpression of stress-induced genes and thereby ensure normal growth of plants under nonstress conditions.
Collapse
|
14
|
Rymen B, Ferrafiat L, Blevins T. Non-coding RNA polymerases that silence transposable elements and reprogram gene expression in plants. Transcription 2020; 11:172-191. [PMID: 33180661 PMCID: PMC7714444 DOI: 10.1080/21541264.2020.1825906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multisubunit RNA polymerase (Pol) complexes are the core machinery for gene expression in eukaryotes. The enzymes Pol I, Pol II and Pol III transcribe distinct subsets of nuclear genes. This family of nuclear RNA polymerases expanded in terrestrial plants by the duplication of Pol II subunit genes. Two Pol II-related enzymes, Pol IV and Pol V, are highly specialized in the production of regulatory, non-coding RNAs. Pol IV and Pol V are the central players of RNA-directed DNA methylation (RdDM), an RNA interference pathway that represses transposable elements (TEs) and selected genes. Genetic and biochemical analyses of Pol IV/V subunits are now revealing how these enzymes evolved from ancestral Pol II to sustain non-coding RNA biogenesis in silent chromatin. Intriguingly, Pol IV-RdDM regulates genes that influence flowering time, reproductive development, stress responses and plant–pathogen interactions. Pol IV target genes vary among closely related taxa, indicating that these regulatory circuits are often species-specific. Data from crops like maize, rice, tomato and Brassicarapa suggest that dynamic repositioning of TEs, accompanied by Pol IV targeting to TE-proximal genes, leads to the reprogramming of plant gene expression over short evolutionary timescales.
Collapse
Affiliation(s)
- Bart Rymen
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Laura Ferrafiat
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| | - Todd Blevins
- Institut de biologie moléculaire des plantes, Université de Strasbourg , Strasbourg, France
| |
Collapse
|
15
|
Zhang S, Wu XQ, Xie HT, Zhao SS, Wu JG. Multifaceted roles of RNA polymerase IV in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5725-5732. [PMID: 32969476 PMCID: PMC7541909 DOI: 10.1093/jxb/eraa346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We discuss the latest findings on RNA polymerase IV (Pol IV) in plant growth and development, providing new insights and expanding on new ideas for further, more in-depth research on Pol IV.
Collapse
Affiliation(s)
- Shuai Zhang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Qing Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Ting Xie
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shan-Shan Zhao
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian-Guo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Ning YQ, Liu N, Lan KK, Su YN, Li L, Chen S, He XJ. DREAM complex suppresses DNA methylation maintenance genes and precludes DNA hypermethylation. NATURE PLANTS 2020; 6:942-956. [PMID: 32661276 DOI: 10.1038/s41477-020-0710-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/27/2020] [Indexed: 05/27/2023]
Abstract
The DNA methyltransferases MET1 and CMT3 are known to be responsible for maintenance of DNA methylation at symmetric CG and CHG sites, respectively, in Arabidopsis thaliana. However, it is unknown how the expression of methyltransferase genes is regulated in different cell states and whether change in expression affects DNA methylation at the whole-genome level. Using a reverse genetic screen, we identified TCX5, a tesmin/TSO1-like CXC domain-containing protein, and demonstrated that it is a transcriptional repressor of genes required for maintenance of DNA methylation, which include MET1, CMT3, DDM1, KYP and VIMs. TCX5 functions redundantly with its paralogue TCX6 in repressing the expression of these genes. In the tcx5 tcx6 double mutant, expression of these genes is markedly increased, thereby leading to markedly increased DNA methylation at CHG sites and, to a lesser extent, at CG sites at the whole-genome level. Furthermore, our whole-genome DNA methylation analysis indicated that the CG and CHG methylation level is lower in differentiated quiescent cells than in dividing cells in the wild type but is comparable in the tcx5/6 mutant, suggesting that TCX5/6 are required for maintenance of the difference in DNA methylation between the two cell types. We identified TCX5/6-containing multi-subunit complexes, which are known as DREAM in other eukaryotes, and demonstrated that the Arabidopsis DREAM components function as a whole to preclude DNA hypermethylation. Given that the DREAM complexes are conserved from plants to animals, the preclusion of DNA hypermethylation by DREAM complexes may represent a conserved mechanism in eukaryotes.
Collapse
Affiliation(s)
- Yong-Qiang Ning
- National Institute of Biological Sciences, Beijing, China
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Na Liu
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ke-Ke Lan
- National Institute of Biological Sciences, Beijing, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
17
|
Zhou HR, Lin RN, Huang HW, Li L, Cai T, Zhu JK, Chen S, He XJ. The CCR4-NOT complex component NOT1 regulates RNA-directed DNA methylation and transcriptional silencing by facilitating Pol IV-dependent siRNA production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1503-1515. [PMID: 32412137 DOI: 10.1111/tpj.14818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 05/20/2023]
Abstract
Small interfering RNAs (siRNAs) are responsible for establishing and maintaining DNA methylation through the RNA-directed DNA methylation (RdDM) pathway in plants. Although siRNA biogenesis is well known, it is relatively unclear about how the process is regulated. By a forward genetic screen in Arabidopsis thaliana, we identified a mutant defective in NOT1 and demonstrated that NOT1 is required for transcriptional silencing at RdDM target genomic loci. We demonstrated that NOT1 is required for Pol IV-dependent siRNA accumulation and DNA methylation at a subset of RdDM target genomic loci. Furthermore, we revealed that NOT1 is a constituent of a multi-subunit CCR4-NOT deadenylase complex by immunoprecipitation combined with mass spectrometry and demonstrated that the CCR4-NOT components can function as a whole to mediate chromatin silencing. Therefore, our work establishes that the CCR4-NOT complex regulates the biogenesis of Pol IV-dependent siRNAs, and hence facilitates DNA methylation and transcriptional silencing in Arabidopsis.
Collapse
Affiliation(s)
- Hao-Ran Zhou
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Rong-Nan Lin
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Li Y, Yang J, Shang X, Lv W, Xia C, Wang C, Feng J, Cao Y, He H, Li L, Ma L. SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:321-335. [PMID: 31209881 DOI: 10.1111/nph.15990] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 05/08/2023]
Abstract
Ski-interacting protein (SKIP) is a bifunctional regulator of gene expression that works as a splicing factor as part of the spliceosome and as a transcriptional activator by interacting with EARLY FLOWERING 7 (ELF7). MOS4-Associated Complex 3A (MAC3A) and MAC3B interact physically and genetically with SKIP, mediate the alternative splicing of c. 50% of the expressed genes in the Arabidopsis genome, and are required for the splicing of a similar set of genes to that of SKIP. SKIP interacts physically and genetically with splicing factors and Polymerase-Associated Factor 1 complex (Paf1c) components. However, these splicing factors do not interact either physically or genetically with Paf1c components. The SKIP-spliceosome complex mediates circadian clock function and abiotic stress responses by controlling the alternative splicing of pre-mRNAs encoded by clock- and stress tolerance-related genes. The SKIP-Paf1c complex regulates the floral transition by activating FLOWERING LOCUS C (FLC) transcription. Our data reveal that SKIP regulates floral transition and environmental fitness via its incorporation into two distinct complexes that regulate gene expression transcriptionally and post-transcriptionally, respectively. It will be interesting to discover in future studies whether SKIP is required for integration of environmental fitness and growth by control of the incorporation of SKIP into spliceosome or Paf1c in plants.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jing Yang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Xudong Shang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Wenzhu Lv
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Congcong Xia
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Chen Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jinlin Feng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Hang He
- College of Life Sciences, Peking University, Beijing, 100048, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| |
Collapse
|
19
|
Abstract
DNA methylation is a conserved epigenetic modification that is important for gene regulation and genome stability. Aberrant patterns of DNA methylation can lead to plant developmental abnormalities. A specific DNA methylation state is an outcome of dynamic regulation by de novo methylation, maintenance of methylation and active demethylation, which are catalysed by various enzymes that are targeted by distinct regulatory pathways. In this Review, we discuss DNA methylation in plants, including methylating and demethylating enzymes and regulatory factors, and the coordination of methylation and demethylation activities by a so-called methylstat mechanism; the functions of DNA methylation in regulating transposon silencing, gene expression and chromosome interactions; the roles of DNA methylation in plant development; and the involvement of DNA methylation in plant responses to biotic and abiotic stress conditions.
Collapse
|
20
|
Pei L, Zhang L, Li J, Shen C, Qiu P, Tu L, Zhang X, Wang M. Tracing the origin and evolution history of methylation-related genes in plants. BMC PLANT BIOLOGY 2019; 19:307. [PMID: 31299897 PMCID: PMC6624907 DOI: 10.1186/s12870-019-1923-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/03/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND DNA methylation is a crucial epigenetic modification, which is involved in many biological processes, including gene expression regulation, embryonic development, cell differentiation and genomic imprinting etc. And it also involves many key regulatory genes in eukaryotes. By tracing the evolutionary history of methylation-related genes, we can understand the origin and expansion time of these genes, which helps to understand the evolutionary history of plants, and we can also understand the changes of DNA methylation patterns in different species. However, most studies on the evolution of methylation-related genes failed to be carried out for the whole DNA methylation pathway. RESULTS In this study, we conducted a comprehensive identification of 33 methylation-related genes in 77 species, and investigated gene origin and evolution throughout the plant kingdom. We found that the origin of genes responsible for methylation maintenance and demethylation evolved early, while most de novo methylation-related genes appeared late. The methylation-related genes were expanded by whole genome duplication and tandem replication, but were also accompanied by a large number of gene absence events in different species. The gene length and intron length varied a lot in different species, but exon structure and functional domains were relatively conserved. The phylogenetic relationships of methylation-related genes were traced to reveal the evolution history of DNA methylation in different species. The expression patterns of methylation-related genes have changed during the evolution of species, and the expression patterns of these genes in different species can be clustered into four categories. CONCLUSIONS The study describes a global characterization of DNA methylation-related genes in the plant kingdom. The similarities and differences in origin time, gene structure and phylogenetic relationship of these genes lead us to understand the evolutionary conservation and dynamics of DNA methylation in plants.
Collapse
Affiliation(s)
- Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Chao Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Ping Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
21
|
Basso A, Barcaccia G, Galla G. Annotation and Expression of IDN2-like and FDM-like Genes in Sexual and Aposporous Hypericum perforatum L. accessions. PLANTS (BASEL, SWITZERLAND) 2019; 8:E158. [PMID: 31181659 PMCID: PMC6631971 DOI: 10.3390/plants8060158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Abstract
The protein IDN2, together with the highly similar interactors FDM1 and FDM2, is required for RNA-directed DNA methylation (RdDM) and siRNA production. Epigenetic regulation of gene expression is required to restrict cell fate determination in A. thaliana ovules. Recently, three transcripts sharing high similarity with the A. thaliana IDN2 and FDM1-2 were found to be differentially expressed in ovules of apomictic Hypericum perforatum L. accessions. To gain further insight into the expression and regulation of these genes in the context of apomixis, we investigated genomic, transcriptional and functional aspects of the gene family in this species. The H. perforatum genome encodes for two IDN2-like and 7 FDM-like genes. Differential and heterochronic expression of FDM4-like genes was found in H. perforatum pistils. The involvement of these genes in reproduction and seed development is consistent with the observed reduction of the seed set and high variability in seed size in A. thaliana IDN2 and FDM-like knockout lines. Differential expression of IDN2-like and FDM-like genes in H. perforatum was predicted to affect the network of potential interactions between these proteins. Furthermore, pistil transcript levels are modulated by cytokinin and auxin but the effect operated by the two hormones depends on the reproductive phenotype.
Collapse
Affiliation(s)
- Andrea Basso
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell' Università, 1635020 Legnaro, Italy.
| | - Gianni Barcaccia
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell' Università, 1635020 Legnaro, Italy.
| | - Giulio Galla
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell' Università, 1635020 Legnaro, Italy.
| |
Collapse
|
22
|
Ning YQ, Chen Q, Lin RN, Li YQ, Li L, Chen S, He XJ. The HDA19 histone deacetylase complex is involved in the regulation of flowering time in a photoperiod-dependent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:448-464. [PMID: 30828924 DOI: 10.1111/tpj.14229] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
Chromatin modifications are known to affect flowering time in plants, but little is known about how these modifications regulate flowering time in response to environmental signals like photoperiod. In Arabidopsis thaliana, HDC1, a conserved subunit of the RPD3-like histone deacetylase (HDAC) complex, was previously reported to regulate flowering time via the same mechanism as does the HDAC HDA6. Here, we demonstrate that HDC1, SNLs and MSI1 are shared subunits of the HDA6 and HDA19 HDAC complexes. While the late-flowering phenotype of the hda6 mutant is independent of photoperiod, the hda19, hdc1 and snl2/3/4 mutants flower later than or at a similar time to the wild-type in long-day conditions but flower earlier than the wild-type in short-day conditions. Our genome-wide analyses indicate that the effect of hdc1 on histone acetylation and transcription is comparable with that of hda19 but is different from that of hda6. Especially, we demonstrate that the HDA19 complex directly regulates the expression of two flowering repressor genes related to the gibberellin signaling pathway. Thus, the study reveals a photoperiod-dependent role of the HDA19 HDAC complex in the regulation of flowering time.
Collapse
Affiliation(s)
- Yong-Qiang Ning
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Qing Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Rong-Nan Lin
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yong-Qiang Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
| |
Collapse
|
23
|
Zhao QQ, Lin RN, Li L, Chen S, He XJ. A methylated-DNA-binding complex required for plant development mediates transcriptional activation of promoter methylated genes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:120-139. [PMID: 30589221 DOI: 10.1111/jipb.12767] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 05/29/2023]
Abstract
Although the mechanism of DNA methylation-mediated gene silencing is extensively studied, relatively little is known about how promoter methylated genes are protected from transcriptional silencing. SUVH1, an Arabidopsis Su(var)3-9 homolog, was previously shown to be required for the expression of a few promoter methylated genes. By chromatin immunoprecipitation combined with sequencing, we demonstrate that SUVH1 binds to methylated genomic loci targeted by RNA-directed DNA methylation. SUVH1 and its homolog SUVH3 function partially redundantly and interact with three DNAJ domain-containing homologs, SDJ1, SDJ2, and SDJ3, thus forming a complex which we named SUVH-SDJ. The SUVH-SDJ complex components are co-localized in a large number of methylated promoters and are required for the expression of a subset of promoter methylated genes. We demonstrate that the SUVH-SDJ complex components have transcriptional activation activity. SUVH1 and SUVH3 function synergistically with SDJ1, SDJ2, and SDJ3 and are required for plant viability. This study reveals how the SUVH-SDJ complex protects promoter methylated genes from transcriptional silencing and suggests that the transcriptional activation of promoter methylated genes mediated by the SUVH-SDJ complex may play a critical role in plant growth and development.
Collapse
Affiliation(s)
- Qiang-Qiang Zhao
- National Institute of Biological Sciences, Beijing 102206, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Rong-Nan Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
24
|
Tan LM, Zhang CJ, Hou XM, Shao CR, Lu YJ, Zhou JX, Li YQ, Li L, Chen S, He XJ. The PEAT protein complexes are required for histone deacetylation and heterochromatin silencing. EMBO J 2018; 37:embj.201798770. [PMID: 30104406 DOI: 10.15252/embj.201798770] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/26/2023] Open
Abstract
In eukaryotes, heterochromatin regions are typically subjected to transcriptional silencing. DNA methylation has an important role in such silencing and has been studied extensively. However, little is known about how methylated heterochromatin regions are subjected to silencing. We conducted a genetic screen and identified an epcr (enhancer of polycomb-related) mutant that releases heterochromatin silencing in Arabidopsis thaliana We demonstrated that EPCR1 functions redundantly with its paralog EPCR2 and interacts with PWWP domain-containing proteins (PWWPs), AT-rich interaction domain-containing proteins (ARIDs), and telomere repeat binding proteins (TRBs), thus forming multiple functionally redundant protein complexes named PEAT (PWWPs-EPCRs-ARIDs-TRBs). The PEAT complexes mediate histone deacetylation and heterochromatin condensation and thereby facilitate heterochromatin silencing. In heterochromatin regions, the production of small interfering RNAs (siRNAs) and DNA methylation is repressed by the PEAT complexes. The study reveals how histone deacetylation, heterochromatin condensation, siRNA production, and DNA methylation interplay with each other and thereby maintain heterochromatin silencing.
Collapse
Affiliation(s)
- Lian-Mei Tan
- National Institute of Biological Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Cui-Jun Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Xiao-Mei Hou
- National Institute of Biological Sciences, Beijing, China
| | | | - Yu-Jia Lu
- National Institute of Biological Sciences, Beijing, China
| | - Jin-Xing Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Yong-Qiang Li
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China .,Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Tao J, Liang W, An G, Zhang D. OsMADS6 Controls Flower Development by Activating Rice FACTOR OF DNA METHYLATION LIKE1. PLANT PHYSIOLOGY 2018; 177:713-727. [PMID: 29717020 PMCID: PMC6001338 DOI: 10.1104/pp.18.00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/18/2018] [Indexed: 05/08/2023]
Abstract
OsMADS6, an ancient AGAMOUS-LIKE6 (AGL6)-like gene, has essential functions in specifying floral organ and meristem identity in rice (Oryza sativa). However, how AGL6 genes control flower development remains largely unknown. In this study, we report that OsMADS6 directly targets FACTOR OF DNA METHYLATION LIKE 1 (OsFDML1), a rice homolog of the SUPPRESSOR OF GENE SILENCING3-like gene FACTOR OF DNA METHYLATION 1 (FDM1) from Arabidopsis (Arabidopsis thaliana). Arabidopsis FDM1 is involved in RNA-directed DNA methylation and OsFDML1 regulates flower development. The expression of OsFDML1 overlaps with that of OsMADS6 in the palea primordia and the ovule, and OsMADS6 directly promotes OsFDML1 expression through binding to regions containing putative CArG motifs within the OsFDML1 promoter during rice spikelet development. Consistent with the phenotypes of osmads6 mutants, the osfdml1 mutants showed floral defects, including altered palea identity with lemma-like shape containing no marginal region of palea, increased numbers of stigmas and fused carpels, and meristem indeterminacy. Moreover, transgenic plants overexpressing OsFDML1 displayed floral defects, such as abnormal paleae. Phylogenetic analysis showed that OsFDML1 homologs exist only in terrestrial plants. In addition, protein-protein interaction assays showed that OsFDML1 interacts with its close paralog OsFDML2, similar to the activity of OsFDML1 homologs in Arabidopsis. These results provide insight into how the ancient AGL6 gene regulates floral development.
Collapse
Affiliation(s)
- Juhong Tao
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Wanqi Liang
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Gynheung An
- Crop Biotech Institute, Kyung Hee University, Youngin, Kyungbuk 446-701, Korea
| | - Dabing Zhang
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
- Crop Biotech Institute, Kyung Hee University, Youngin, Kyungbuk 446-701, Korea
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Urrbrae SA 5064, Australia
| |
Collapse
|
26
|
Wendte JM, Haag JR, Singh J, McKinlay A, Pontes OM, Pikaard CS. Functional Dissection of the Pol V Largest Subunit CTD in RNA-Directed DNA Methylation. Cell Rep 2018; 19:2796-2808. [PMID: 28658626 DOI: 10.1016/j.celrep.2017.05.091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/06/2017] [Accepted: 05/27/2017] [Indexed: 12/31/2022] Open
Abstract
Plant multisubunit RNA polymerase V (Pol V) transcription recruits Argonaute-small interfering RNA (siRNA) complexes that specify sites of RNA-directed DNA methylation (RdDM) for gene silencing. Pol V's largest subunit, NRPE1, evolved from the largest subunit of Pol II but has a distinctive C-terminal domain (CTD). We show that the Pol V CTD is dispensable for catalytic activity in vitro yet essential in vivo. One CTD subdomain (DeCL) is required for Pol V function at virtually all loci. Other CTD subdomains have locus-specific effects. In a yeast two-hybrid screen, the 3'→ 5' exoribonuclease RRP6L1 was identified as an interactor with the DeCL and glutamine-serine (QS)-rich subdomains located downstream of an Argonaute-binding subdomain. Experimental evidence indicates that RRP6L1 trims the 3' ends of Pol V transcripts sliced by Argonaute 4 (AGO4), suggesting a model whereby the CTD enables the spatial and temporal coordination of AGO4 and RRP6L1 RNA processing activities.
Collapse
Affiliation(s)
- Jered M Wendte
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Jeremy R Haag
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA; Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA
| | - Jasleen Singh
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Anastasia McKinlay
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA
| | - Olga M Pontes
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA
| | - Craig S Pikaard
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA; Department of Molecular and Cellular Biochemistry, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA; Howard Hughes Medical Institute, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
27
|
Liu W, Duttke SH, Hetzel J, Groth M, Feng S, Gallego-Bartolome J, Zhong Z, Kuo HY, Wang Z, Zhai J, Chory J, Jacobsen SE. RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. NATURE PLANTS 2018; 4:181-188. [PMID: 29379150 PMCID: PMC5832601 DOI: 10.1038/s41477-017-0100-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/27/2017] [Indexed: 05/03/2023]
Abstract
Small RNAs regulate chromatin modifications such as DNA methylation and gene silencing across eukaryotic genomes. In plants, RNA-directed DNA methylation (RdDM) requires 24-nucleotide small interfering RNAs (siRNAs) that bind to ARGONAUTE 4 (AGO4) and target genomic regions for silencing. RdDM also requires non-coding RNAs transcribed by RNA polymerase V (Pol V) that probably serve as scaffolds for binding of AGO4-siRNA complexes. Here, we used a modified global nuclear run-on protocol followed by deep sequencing to capture Pol V nascent transcripts genome-wide. We uncovered unique characteristics of Pol V RNAs, including a uracil (U) common at position 10. This uracil was complementary to the 5' adenine found in many AGO4-bound 24-nucleotide siRNAs and was eliminated in a siRNA-deficient mutant as well as in the ago4/6/9 triple mutant, suggesting that the +10 U signature is due to siRNA-mediated co-transcriptional slicing of Pol V transcripts. Expression of wild-type AGO4 in ago4/6/9 mutants was able to restore slicing of Pol V transcripts, but a catalytically inactive AGO4 mutant did not correct the slicing defect. We also found that Pol V transcript slicing required SUPPRESSOR OF TY INSERTION 5-LIKE (SPT5L), an elongation factor whose function is not well understood. These results highlight the importance of Pol V transcript slicing in RNA-mediated transcriptional gene silencing, which is a conserved process in many eukaryotes.
Collapse
Affiliation(s)
- Wanlu Liu
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Sascha H Duttke
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Jonathan Hetzel
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martin Groth
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA
| | - Javier Gallego-Bartolome
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hsuan Yu Kuo
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jixian Zhai
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Steven E Jacobsen
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, USA.
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Liu M, Ba Z, Costa-Nunes P, Wei W, Li L, Kong F, Li Y, Chai J, Pontes O, Qi Y. IDN2 Interacts with RPA and Facilitates DNA Double-Strand Break Repair by Homologous Recombination in Arabidopsis. THE PLANT CELL 2017; 29:589-599. [PMID: 28223440 PMCID: PMC5385954 DOI: 10.1105/tpc.16.00769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/17/2017] [Accepted: 02/17/2017] [Indexed: 05/26/2023]
Abstract
Repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genome integrity. We previously showed that DSB-induced small RNAs (diRNAs) facilitate homologous recombination-mediated DSB repair in Arabidopsis thaliana Here, we show that INVOLVED IN DE NOVO2 (IDN2), a double-stranded RNA binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA binding ARGONAUTE2 leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from single-stranded DNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair.
Collapse
Affiliation(s)
- Mingming Liu
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhaoqing Ba
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Pedro Costa-Nunes
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Wei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lanxia Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fansi Kong
- Bionova (Beijing) Biotech Co., Beijing 102206, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jijie Chai
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Olga Pontes
- Shanghai Center for Plant Stress Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
29
|
Wendte JM, Pikaard CS. The RNAs of RNA-directed DNA methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:140-148. [PMID: 27521981 DOI: 10.1016/j.bbagrm.2016.08.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
Abstract
RNA-directed chromatin modification that includes cytosine methylation silences transposable elements in both plants and mammals, contributing to genome defense and stability. In Arabidopsis thaliana, most RNA-directed DNA methylation (RdDM) is guided by small RNAs derived from double-stranded precursors synthesized at cytosine-methylated loci by nuclear multisubunit RNA Polymerase IV (Pol IV), in close partnership with the RNA-dependent RNA polymerase, RDR2. These small RNAs help keep transposons transcriptionally inactive. However, if transposons escape silencing, and are transcribed by multisubunit RNA polymerase II (Pol II), their mRNAs can be recognized and degraded, generating small RNAs that can also guide initial DNA methylation, thereby enabling subsequent Pol IV-RDR2 recruitment. In both pathways, the small RNAs find their target sites by interacting with longer noncoding RNAs synthesized by multisubunit RNA Polymerase V (Pol V). Despite a decade of progress, numerous questions remain concerning the initiation, synthesis, processing, size and features of the RNAs that drive RdDM. Here, we review recent insights, questions and controversies concerning RNAs produced by Pols IV and V, and their functions in RdDM. We also provide new data concerning Pol V transcript 5' and 3' ends. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Jered M Wendte
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA
| | - Craig S Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, 915 E. Third Street, Bloomington, IN 47405, USA; Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
30
|
Jing Y, Sun H, Yuan W, Wang Y, Li Q, Liu Y, Li Y, Qian W. SUVH2 and SUVH9 Couple Two Essential Steps for Transcriptional Gene Silencing in Arabidopsis. MOLECULAR PLANT 2016; 9:1156-1167. [PMID: 27216319 DOI: 10.1016/j.molp.2016.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/07/2016] [Accepted: 05/15/2016] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, an RNA-directed DNA methylation pathway (RdDM) is responsible for de novo establishment of DNA methylation and contributes to transcriptional gene silencing. Recently, the microrchidia (MORC)-type ATPases were shown to play essential roles in enforcing transcriptional gene silencing of a subset of genes and transposons by regulating the formation of higher-order chromatin architecture. However, how MORC proteins cooperate with the RdDM pathway components to regulate gene expression remains largely unclear. In this study, SUVH9 and MORC6 were identified from a screening of suppressors of idm1, which is a mutant defective in active DNA demethylation. SUVH9 and MORC6 are required for silencing of two reporter genes and some endogenous genes without enhancing DNA methylation levels. SUVH9, one of SU(VAR)3-9 homologs involved in RdDM, directly interacts with MORC6 and its two close homologs, MORC1 and MORC2. Similar to MORC6, SUVH9 and its homolog SUVH2 are required for heterochromatin condensation and formation of 3D chromatin architecture at SDC and Solo-LTR loci. We propose that SUVH2 and SUVH9 bind to the methylated DNA and facilitate the recruitment of a chromatin-remodeling complex to the target loci in association with MORC proteins.
Collapse
Affiliation(s)
- Yuqing Jing
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Han Sun
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Yuan
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yue Wang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Qi Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yannan Liu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
31
|
Two Components of the RNA-Directed DNA Methylation Pathway Associate with MORC6 and Silence Loci Targeted by MORC6 in Arabidopsis. PLoS Genet 2016; 12:e1006026. [PMID: 27171427 PMCID: PMC4865133 DOI: 10.1371/journal.pgen.1006026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/13/2016] [Indexed: 01/10/2023] Open
Abstract
The SU(VAR)3-9 homolog SUVH9 and the double-stranded RNA-binding protein IDN2 were thought to be components of an RNA-directed DNA methylation (RdDM) pathway in Arabidopsis. We previously found that SUVH9 interacts with MORC6 but how the interaction contributes to transcriptional silencing remains elusive. Here, our genetic analysis indicates that SUVH2 and SUVH9 can either act in the same pathway as MORC6 or act synergistically with MORC6 to mediate transcriptional silencing. Moreover, we demonstrate that IDN2 interacts with MORC6 and mediates the silencing of a subset of MORC6 target loci. Like SUVH2, SUVH9, and IDN2, other RdDM components including Pol IV, Pol V, RDR2, and DRM2 are also required for transcriptional silencing at a subset of MORC6 target loci. MORC6 was previously shown to mediate transcriptional silencing through heterochromatin condensation. We demonstrate that the SWI/SNF chromatin-remodeling complex components SWI3B, SWI3C, and SWI3D interact with MORC6 as well as with SUVH9 and then mediate transcriptional silencing. These results suggest that the RdDM components are involved not only in DNA methylation but also in MORC6-mediated heterochromatin condensation. This study illustrates how DNA methylation is linked to heterochromatin condensation and thereby enhances transcriptional silencing at methylated genomic regions. DNA methylation is a conserved epigenetic mark that is required for the silencing of transposons and introduced transgenes in eukaryotes. An RNA-directed DNA methylation pathway mediates de novo DNA methylation and thereby leads to transcriptional silencing in Arabidopsis. In this study, we find that two RNA-directed DNA methylation components interact with the microrchidia (MORC) protein MORC6 and lead to transcriptional silencing through a mechanism that is distinct from the RNA-directed DNA methylation pathway. MORC6 was previously thought to mediate transcriptional silencing through heterochromatin condensation. Our study suggests that the interaction of the RNA-directed DNA methylation components with MORC6 may mediate a link between DNA methylation and heterochromatin condensation.
Collapse
|
32
|
Abstract
Long noncoding RNAs (lncRNAs) are pivotal regulators of genome structure and gene expression. LncRNAs can directly interact with chromatin-modifying enzymes and nucleosome-remodeling factors to control chromatin structure and accessibility of genetic information. Moreover, lncRNA expression can be controlled by chromatin-remodeling factors, suggesting a feedback circuit of regulation. Here, we discuss the recent advances of lncRNA studies, focusing on the function and mechanism of lncRNA-chromatin interactions.
Collapse
Affiliation(s)
- Pei Han
- a Krannert Institute of Cardiology and Division of Cardiology ; Department of Medicine; Indiana University School of Medicine ; Indianapolis , IN USA.,b Division of Cardiovascular Medicine; Stanford University School of Medicine ; Stanford , CA USA
| | - Ching-Pin Chang
- a Krannert Institute of Cardiology and Division of Cardiology ; Department of Medicine; Indiana University School of Medicine ; Indianapolis , IN USA.,c Department of Biochemistry and Molecular Biology ; Indiana University School of Medicine ; Indianapolis , IN USA.,d Department of Medical and Molecular Genetics ; Indiana University School of Medicine ; Indianapolis , IN USA
| |
Collapse
|
33
|
Du JL, Zhang SW, Huang HW, Cai T, Li L, Chen S, He XJ. The Splicing Factor PRP31 Is Involved in Transcriptional Gene Silencing and Stress Response in Arabidopsis. MOLECULAR PLANT 2015; 8:1053-68. [PMID: 25684655 DOI: 10.1016/j.molp.2015.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/11/2015] [Accepted: 02/05/2015] [Indexed: 05/10/2023]
Abstract
Although DNA methylation is known to play an important role in the silencing of transposable elements (TEs) and introduced transgenes, the mechanisms that generate DNA methylation-independent transcriptional silencing are poorly understood. Previous studies suggest that RNA-directed DNA methylation (RdDM) is required for the silencing of the RD29A-LUC transgene in the Arabidopsis ros1 mutant background with defective DNA demethylase. Loss of function of ARGONAUTE 4 (AGO4) gene, which encodes a core RdDM component, partially released the silencing of RD29A-LUC in the ros1/ago4 double mutant plants. A forward genetic screen was performed to identify the mutants with elevated RD29A-LUC transgene expression in the ros1/ago4 mutant background. We identified a mutation in the homologous gene of PRP31, which encodes a conserved pre-mRNA splicing factor that regulates the formation of the U4/U6.U5 snRNP complex in fungi and animals. We previously demonstrated that the splicing factors ZOP1 and STA1 contribute to transcriptional gene silencing. Here, we reveal that Arabidopsis PRP31 associates with ZOP1, STA1, and several other splicing-related proteins, suggesting that these splicing factors are both physically and functionally connected. We show that Arabidopsis PRP31 participates in transcriptional gene silencing. Moreover, we report that PRP31, STA1, and ZOP1 are required for development and stress response. Under cold stress, PRP31 is not only necessary for pre-mRNA splicing but also for regulation of cold-responsive gene expression. Our results suggest that the splicing machinery has multiple functions including pre-mRNA splicing, gene regulation, transcriptional gene silencing, and stress response.
Collapse
Affiliation(s)
- Jin-Lu Du
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Su-Wei Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
34
|
The Cytosolic Iron-Sulfur Cluster Assembly Protein MMS19 Regulates Transcriptional Gene Silencing, DNA Repair, and Flowering Time in Arabidopsis. PLoS One 2015; 10:e0129137. [PMID: 26053632 PMCID: PMC4459967 DOI: 10.1371/journal.pone.0129137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/05/2015] [Indexed: 11/19/2022] Open
Abstract
MMS19 is an essential component of the cytoplasmic iron-sulfur (Fe-S) cluster assembly complex in fungi and mammals; the mms19 null mutant alleles are lethal. Our study demonstrates that MMS19/MET18 in Arabidopsis thaliana interacts with the cytoplasmic Fe-S cluster assembly complex but is not an essential component of the complex. We find that MMS19 also interacts with the catalytic subunits of DNA polymerases, which have been demonstrated to be involved in transcriptional gene silencing (TGS), DNA repair, and flowering time regulation. Our results indicate that MMS19 has a similar biological function, suggesting a functional link between MMS19 and DNA polymerases. In the mms19 null mutant, the assembly of Fe-S clusters on the catalytic subunit of DNA polymerase α is reduced but not blocked, which is consistent with the viability of the mutant. Our study suggests that MMS19 assists the assembly of Fe-S clusters on DNA polymerases in the cytosol, thereby facilitating transcriptional gene silencing, DNA repair, and flowering time control.
Collapse
|
35
|
Xie M, Yu B. siRNA-directed DNA Methylation in Plants. Curr Genomics 2015; 16:23-31. [PMID: 25937811 PMCID: PMC4412961 DOI: 10.2174/1389202915666141128002211] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/02/2022] Open
Abstract
DNA cytosine methylationis an important epigenetic process that is correlated with transgene silencing, transposon suppression, and gene imprinting. In plants, small interfering RNAs (siRNAs) can trigger DNA methylation at loci containing their homolog sequences through a process called RNA-directed DNA methylation (RdDM). In canonical RdDM, 24 nucleotide (nt) siRNAs (ra-siRNAs) will be loaded into their effector protein called ARGONAUTE 4 (AGO4) and subsequently targeted to RdDM loci through base-pairing with the non-coding transcripts produced by DNA-directed RNA Polymerase V. Then, the AGO4-ra-siRNA will recruit the DNA methyltransferase to catalyze de novo DNA methylation. Recent studies also identified non-canonical RdDM pathways that involve microRNAs or 21 nt siRNAs. These RdDM pathways are biologically important since they control responses biotic and abiotic stresses, maintain genome stability and regulate development. Here, we summarize recent pro-gresses of mechanisms governing canonical and non-canonical RdDM pathways.
Collapse
Affiliation(s)
- Meng Xie
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0660, USA
| | - Bin Yu
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0660, USA
| |
Collapse
|
36
|
Abstract
Plants use 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs (lncRNAs) to direct de novo DNA methylation and transcriptional gene silencing. This process is called RNA-directed DNA methylation (RdDM). An important question in the RdDM model is what explains the target specificity of RNA polymerase IV (Pol IV), the enzyme that initiates siRNA production. Two recent papers addressed this question by characterizing the DTF1/SHH1 protein, which contains a homeodomain in the N-terminus and a novel histone-binding domain SAWADEE in the C terminus. Here we review the main results of the two studies and discuss several possible mechanisms that could contribute to Pol IV and Pol V recruitment.
Collapse
Affiliation(s)
- Heng Zhang
- Shanghai Center for Plant Stress Biology; Shanghai Institute of Biological Sciences; Chinese Academy of Sciences; Shanghai, P.R. China
| | - Xinjian He
- National Institute of Biological Sciences; Beijing, P.R. China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology; Shanghai Institute of Biological Sciences; Chinese Academy of Sciences; Shanghai, P.R. China; Department of Horticulture and Landscape Architecture; Purdue University; West Lafayette, IN USA
| |
Collapse
|
37
|
Ning YQ, Ma ZY, Huang HW, Mo H, Zhao TT, Li L, Cai T, Chen S, Ma L, He XJ. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res 2015; 43:1469-84. [PMID: 25578968 PMCID: PMC4330355 DOI: 10.1093/nar/gku1382] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The histone demethylase JMJ14 catalyzes histone demethylation at lysine 4 of histone 3 and is involved in transcriptional repression and flowering time control in Arabidopsis. Here, we report that JMJ14 is physically associated with two previously uncharacterized NAC transcription factors, NAC050 and NAC052. The NAC050/052-RNAi plants and the CRISPR-CAS9-mediated nac050/052 double mutant plants show an early flowering phenotype, which is similar to the phenotype of jmj14, suggesting a functional association between JMJ14 and NAC050/052. RNA-seq data indicated that hundreds of common target genes are co-regulated by JMJ14 and NAC50/052. Our ChIP analysis demonstrated that JMJ14 and NAC050 directly bind to co-upregulated genes shared in jmj14 and NAC050/052-RNAi, thereby facilitating H3K4 demethylation and transcriptional repression. The NAC050/052 recognition DNA cis-element was identified by an electrophoretic mobility shift assay at the promoters of its target genes. Together, our study identifies two novel NAC transcription repressors and demonstrates that they are involved in transcriptional repression and flowering time control by associating with the histone demethylase JMJ14.
Collapse
Affiliation(s)
- Yong-Qiang Ning
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ze-Yang Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huixian Mo
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ting-ting Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
38
|
Matzke MA, Kanno T, Matzke AJM. RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:243-67. [PMID: 25494460 DOI: 10.1146/annurev-arplant-043014-114633] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an epigenetic process in plants that involves both short and long noncoding RNAs. The generation of these RNAs and the induction of RdDM rely on complex transcriptional machineries comprising two plant-specific, RNA polymerase II (Pol II)-related RNA polymerases known as Pol IV and Pol V, as well as a host of auxiliary factors that include both novel and refashioned proteins. We present current views on the mechanism of RdDM with a focus on evolutionary innovations that occurred during the transition from a Pol II transcriptional pathway, which produces mRNA precursors and numerous noncoding RNAs, to the Pol IV and Pol V pathways, which are specialized for RdDM and gene silencing. We describe recently recognized deviations from the canonical RdDM pathway, discuss unresolved issues, and speculate on the biological significance of RdDM for flowering plants, which have a highly developed Pol V pathway.
Collapse
Affiliation(s)
- Marjori A Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; , ,
| | | | | |
Collapse
|
39
|
SNF2 chromatin remodeler-family proteins FRG1 and -2 are required for RNA-directed DNA methylation. Proc Natl Acad Sci U S A 2014; 111:17666-71. [PMID: 25425661 DOI: 10.1073/pnas.1420515111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA methylation in Arabidopsis thaliana is maintained by at least four different enzymes: DNA methyltransferase1 (MET1), chromomethylase3 (CMT3), domains rearranged methyltransferase2 (DRM2), and chromomethylase2 (CMT2). However, DNA methylation is established exclusively by the enzyme DRM2, which acts in the RNA-directed DNA methylation (RdDM) pathway. Some RdDM components belong to gene families and have partially redundant functions, such as the endoribonucleases dicer-like 2, 3, and 4, and involved in de novo2 (IDN2) interactors IDN2-like 1 and 2. Traditional mutagenesis screens usually fail to detect genes if they are redundant, as the loss of one gene can be compensated by a related gene. In an effort to circumvent this issue, we used coexpression data to identify closely related genes that are coregulated with genes in the RdDM pathway. Here we report the discovery of two redundant proteins, SNF2-ring-helicase-like1 and -2 (FRG1 and -2) that are putative chromatin modifiers belonging to the SNF2 family of helicase-like proteins. Analysis of genome-wide bisulfite sequencing shows that simultaneous mutations of FRG1 and -2 cause defects in methylation at specific RdDM targeted loci. We also show that FRG1 physically associates with Su(var)3-9-related SUVR2, a known RdDM component, in vivo. Combined, our results identify FRG1 and FRG2 as previously unidentified components of the RdDM machinery.
Collapse
|
40
|
SUVR2 is involved in transcriptional gene silencing by associating with SNF2-related chromatin-remodeling proteins in Arabidopsis. Cell Res 2014; 24:1445-65. [PMID: 25420628 PMCID: PMC4260354 DOI: 10.1038/cr.2014.156] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/22/2014] [Accepted: 10/29/2014] [Indexed: 12/13/2022] Open
Abstract
The SU(VAR)3-9-like histone methyltransferases usually catalyze repressive histone H3K9 methylation and are involved in transcriptional gene silencing in eukaryotic organisms. We identified a putative SU(VAR)3-9-like histone methyltransferase SUVR2 by a forward genetic screen and demonstrated that it is involved in transcriptional gene silencing at genomic loci targeted by RNA-directed DNA methylation (RdDM). We found that SUVR2 has no histone methyltransferase activity and the conserved catalytic sites of SUVR2 are dispensable for the function of SUVR2 in transcriptional silencing. SUVR2 forms a complex with its close homolog SUVR1 and associate with three previously uncharacterized SNF2-related chromatin-remodeling proteins CHR19, CHR27, and CHR28. SUVR2 was previously thought to be a component in the RdDM pathway. We demonstrated that SUVR2 contributes to transcriptional gene silencing not only at a subset of RdDM target loci but also at many RdDM-independent target loci. Our study suggests that the involvement of SUVR2 in transcriptional gene silencing is related to nucleosome positioning mediated by its associated chromatin-remodeling proteins.
Collapse
|
41
|
Abstract
RNA-directed DNA methylation (RdDM) is the major small RNA-mediated epigenetic pathway in plants. RdDM requires a specialized transcriptional machinery that comprises two plant-specific RNA polymerases - Pol IV and Pol V - and a growing number of accessory proteins, the functions of which in the RdDM mechanism are only partially understood. Recent work has revealed variations in the canonical RdDM pathway and identified factors that recruit Pol IV and Pol V to specific target sequences. RdDM, which transcriptionally represses a subset of transposons and genes, is implicated in pathogen defence, stress responses and reproduction, as well as in interallelic and intercellular communication.
Collapse
|
42
|
Butt H, Graner S, Luschnig C. Expression analysis of Arabidopsis XH/XS-domain proteins indicates overlapping and distinct functions for members of this gene family. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1217-27. [PMID: 24574485 PMCID: PMC3935573 DOI: 10.1093/jxb/ert480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
RNA-directed DNA methylation (RdDM) is essential for de novo DNA methylation in higher plants, and recent reports established novel elements of this silencing pathway in the model organism Arabidopsis thaliana. Involved in de novo DNA methylation 2 (IDN2) and the closely related factor of DNA methylation (FDM) are members of a plant-specific family of dsRNA-binding proteins characterized by conserved XH/XS domains and implicated in the regulation of RdDM at chromatin targets. Genetic analyses have suggested redundant as well as non-overlapping activities for different members of the gene family. However, detailed insights into the function of XH/XS-domain proteins are still elusive. By the generation and analysis of higher-order mutant combinations affected in IDN2 and further members of the gene family, we have provided additional evidence for their redundant activity. Distinct roles for members of the XH/XS-domain gene family were indicated by differences in their expression and subcellular localization. Fluorescent protein-tagged FDM genes were expressed either in nuclei or in the cytoplasm, suggestive of activities of XH/XS-domain proteins in association with chromatin as well as outside the nuclear compartment. In addition, we observed altered location of a functional FDM1-VENUS reporter from the nucleus into the cytoplasm under conditions when availability of further FDM proteins was limited. This is suggestive of a mechanism by which redistribution of XH/XS-domain proteins could compensate for the loss of closely related proteins.
Collapse
Affiliation(s)
- Haroon Butt
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Sonja Graner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| |
Collapse
|
43
|
Liu ZW, Shao CR, Zhang CJ, Zhou JX, Zhang SW, Li L, Chen S, Huang HW, Cai T, He XJ. The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. PLoS Genet 2014; 10:e1003948. [PMID: 24465213 PMCID: PMC3898904 DOI: 10.1371/journal.pgen.1003948] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/25/2013] [Indexed: 12/05/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) is required for transcriptional silencing of transposons and other DNA repeats in Arabidopsis thaliana. Although previous research has demonstrated that the SET domain-containing SU(VAR)3–9 homologs SUVH2 and SUVH9 are involved in the RdDM pathway, the underlying mechanism remains unknown. Our results indicated that SUVH2 and/or SUVH9 not only interact with the chromatin-remodeling complex termed DDR (DMS3, DRD1, and RDM1) but also with the newly characterized complex composed of two conserved Microrchidia (MORC) family proteins, MORC1 and MORC6. The effect of suvh2suvh9 on Pol IV-dependent siRNA accumulation and DNA methylation is comparable to that of the Pol V mutant nrpe1 and the DDR complex mutant dms3, suggesting that SUVH2 and SUVH9 are functionally associated with RdDM. Our CHIP assay demonstrated that SUVH2 and SUVH9 are required for the occupancy of Pol V at RdDM loci and facilitate the production of Pol V-dependent noncoding RNAs. Moreover, SUVH2 and SUVH9 are also involved in the occupancy of DMS3 at RdDM loci. The putative catalytic active site in the SET domain of SUVH2 is dispensable for the function of SUVH2 in RdDM and H3K9 dimethylation. We propose that SUVH2 and SUVH9 bind to methylated DNA and facilitate the recruitment of Pol V to RdDM loci by associating with the DDR complex and the MORC complex. Small RNA-induced transcriptional silencing at transposable elements and other DNA repeats is an evolutionarily conserved mechanism in plants, fungi, and animals. In Arabidopsis thaliana, an RNA-directed DNA methylation pathway is involved in transcriptional silencing. Noncoding RNAs produced by the plant-specific DNA-dependent RNA polymerase V are required for RNA-directed DNA methylation. A chromatin-remodeling complex was previously demonstrated to be required for the occupancy of DNA-dependent RNA polymerase V at RNA-directed DNA methylation loci. Our results suggest that two putative histone methyltransferases are inactive in their enzymatic activity and act as adaptor proteins to facilitate the recruitment of DNA-dependent RNA polymerase V to chromatin by associating with the chromatin-remodeling complex. In combination with previous studies, we propose that the inactive histone methyltransferases bind to methylated DNA, thereby linking DNA methylation to Pol V transcription at RNA-directed DNA methylation loci.
Collapse
Affiliation(s)
- Zhang-Wei Liu
- National Institute of Biological Sciences, Beijing, China
| | | | - Cui-Jun Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Jin-Xing Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Su-Wei Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
44
|
Xu C, Tian J, Mo B. siRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein Cell 2013; 4:656-63. [PMID: 23943321 DOI: 10.1007/s13238-013-3052-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/04/2013] [Indexed: 12/25/2022] Open
Abstract
Heterochromatic siRNAs regulate transcriptional gene silencing by inducing DNA methylation and histone H3K9 dimethylation. Recent advances have revealed the distinct phases involved in siRNA mediated silencing pathway, although the precise functions of a number of factors remain undesignated, putative mechanisms for the connection between DNA and histone methylation have been investigated, and much effort has been invested to understand the biological functions of siRNA-mediated epigenetic modification. In this review, we summarize the mechanism of siRNA-mediated epigenetic modification, which involves the production of siRNA and the recruitments of DNA and histone methytransferases to the target sequences assisted by complementary pairing between 24-nt siRNAs and nascent scaffold RNAs, the roles of siRNA-mediated epigenetic modification in maintaining genome stability and regulating gene expression have been discussed, newly identified players of the siRNA mediated silencing pathway have also been introduced.
Collapse
Affiliation(s)
- Chi Xu
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing Tian
- College of Life Science, Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, Shenzhen University, Shenzhen, 518060, China
| | - Beixin Mo
- College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
45
|
De Novo Methyltransferase, OsDRM2, Interacts with the ATP-Dependent RNA Helicase, OseIF4A, in Rice. J Mol Biol 2013; 425:2853-66. [DOI: 10.1016/j.jmb.2013.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/17/2013] [Accepted: 05/28/2013] [Indexed: 12/12/2022]
|
46
|
DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV. Proc Natl Acad Sci U S A 2013; 110:8290-5. [PMID: 23637343 DOI: 10.1073/pnas.1300585110] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA methylation is an important epigenetic mark in many eukaryotic organisms. De novo DNA methylation in plants can be achieved by the RNA-directed DNA methylation (RdDM) pathway, where the plant-specific DNA-dependent RNA polymerase IV (Pol IV) transcribes target sequences to initiate 24-nt siRNA production and action. The putative DNA binding protein DTF1/SHH1 of Arabidopsis has been shown to associate with Pol IV and is required for 24-nt siRNA accumulation and transcriptional silencing at several RdDM target loci. However, the extent and mechanism of DTF1 function in RdDM is unclear. We show here that DTF1 is necessary for the accumulation of the majority of Pol IV-dependent 24-nt siRNAs. It is also required for a large proportion of Pol IV-dependent de novo DNA methylation. Interestingly, there is a group of RdDM target loci where 24-nt siRNA accumulation but not DNA methylation is dependent on DTF1. DTF1 interacts directly with the chromatin remodeling protein CLASSY 1 (CLSY1), and both DTF1 and CLSY1 are associated in vivo with Pol IV but not Pol V, which functions downstream in the RdDM effector complex. DTF1 and DTF2 (a DTF1-like protein) contain a SAWADEE domain, which was found to bind specifically to histone H3 containing H3K9 methylation. Taken together, our results show that DTF1 is a core component of the RdDM pathway, and suggest that DTF1 interacts with CLSY1 to assist in the recruitment of Pol IV to RdDM target loci where H3K9 methylation may be an important feature. Our results also suggest the involvement of DTF1 in an important negative feedback mechanism for DNA methylation at some RdDM target loci.
Collapse
|
47
|
A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Mol Cell 2012; 49:298-309. [PMID: 23246435 PMCID: PMC3560041 DOI: 10.1016/j.molcel.2012.11.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/24/2012] [Accepted: 11/06/2012] [Indexed: 12/21/2022]
Abstract
RNA-mediated transcriptional silencing prevents deleterious effects of transposon activity and controls the expression of protein-coding genes. It involves long noncoding RNAs (lncRNAs). In Arabidopsis thaliana, some of those lncRNAs are produced by a specialized RNA Polymerase V (Pol V). The mechanism by which lncRNAs affect chromatin structure and mRNA production remains mostly unknown. Here we identify the SWI/SNF ATP-dependent nucleosome-remodeling complex as a component of the RNA-mediated transcriptional silencing pathway. We found that SWI3B, an essential subunit of the SWI/SNF complex, physically interacts with a lncRNA-binding protein, IDN2. SWI/SNF subunits contribute to lncRNA-mediated transcriptional silencing. Moreover, Pol V mediates stabilization of nucleosomes on silenced regions. We propose that Pol V-produced lncRNAs mediate transcriptional silencing by guiding the SWI/SNF complex and establishing positioned nucleosomes on specific genomic loci. We further propose that guiding ATP-dependent chromatin-remodeling complexes may be a more general function of lncRNAs.
Collapse
|
48
|
Xie M, Ren G, Zhang C, Yu B. The DNA- and RNA-binding protein FACTOR of DNA METHYLATION 1 requires XH domain-mediated complex formation for its function in RNA-directed DNA methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:491-500. [PMID: 22757778 DOI: 10.1111/j.1365-313x.2012.05092.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Studies have identified a sub-group of SGS3-LIKE proteins including FDM1-5 and IDN2 as key components of RNA-directed DNA methylation pathway (RdDM). Although FDM1 and IDN2 bind RNAs with 5' overhangs, their functions in the RdDM pathway remain to be examined. Here we show that FDM1 interacts with itself and with IDN2. Gel filtration suggests that FDM1 may exist as a homodimer in a heterotetramer complex in vivo. The XH domain of FDM1 mediates the FDM1-FDM1 and FDM1-IDN2 interactions. Deletion of the XH domain disrupts FDM1 complex formation and results in loss-of-function of FDM1. These results demonstrate that XH domain-mediated complex formation of FDM1 is required for its function in RdDM. In addition, FDM1 binds unmethylated but not methylated DNAs through its coiled-coil domain. RNAs with 5' overhangs does not compete with DNA for binding by FDM1, indicating that FDM1 may bind DNA and RNA simultaneously. These results provide insight into how FDM1 functions in RdDM.
Collapse
Affiliation(s)
- Meng Xie
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0660, USA
| | | | | | | |
Collapse
|
49
|
Wierzbicki AT. The role of long non-coding RNA in transcriptional gene silencing. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:517-22. [PMID: 22960034 DOI: 10.1016/j.pbi.2012.08.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/16/2012] [Indexed: 05/03/2023]
Abstract
Transcriptional gene silencing controls the activity of transposable elements and expression of protein-coding genes. It requires non-coding transcription, which in plants is performed by RNA Polymerases IV and V (Pol IV and Pol V). Pol IV produces precursors for siRNA biogenesis while Pol V produces scaffold transcripts required for siRNAs and associated proteins to recognize their target loci. In this review I discuss the mechanisms used by Pol IV and Pol V to mediate repressive chromatin modifications. I further discuss the mechanisms controlling non-coding transcription and their role in regulation of genome activity.
Collapse
Affiliation(s)
- Andrzej T Wierzbicki
- University of Michigan, Department of Molecular, Cellular and Developmental Biology, Ann Arbor, MI 48109, USA.
| |
Collapse
|
50
|
Finke A, Kuhlmann M, Mette MF. IDN2 has a role downstream of siRNA formation in RNA-directed DNA methylation. Epigenetics 2012; 7:950-60. [PMID: 22810086 PMCID: PMC3427290 DOI: 10.4161/epi.21237] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In plants, a particular class of short interfering (si)RNAs can serve as a signal to induce cytosine methylation at homologous genomic regions. If the targeted DNA has promoter function, this RNA-directed DNA methylation (RdDM) can result in transcriptional gene silencing (TGS). RNA-directed transcriptional gene silencing (RdTGS) of transgenes provides a versatile system for the study of epigenetic gene regulation. We used transcription of a nopaline synthase promoter (ProNOS)-inverted repeat (IR) to provide a RNA signal that triggers de novo cytosine methylation and TGS of a homologous ProNOS copy in trans. Utilizing a ProNOS-NPTII reporter gene showing high sensitivity to silencing in this two component system, a forward genetic screen for EMS-induced no rna-directed transcriptional silencing (nrd) mutations was performed in Arabidopsis thaliana. Three nrd mutant lines were found to contain one novel loss-of-function allele of idn2/rdm12 and two of nrpd2a/nrpe2a. IDN2/RDM12 encodes a XH/XS domain protein that is able to bind double-stranded RNA with 5′ overhangs, while NRPD2a/NRPE2a encodes the common second-largest subunit of the plant specific DNA-dependent RNA polymerases IV and V involved in silencing processes. Both idn2/rdm12 and nrpd2a/nrpe2a release target transgene expression and reduce CHH context methylation at transgenic as well as endogenous RdDM target regions to similar extents. Nevertheless, accumulation of IR-derived siRNA is not affected, allowing us to present a refined model for the pathway of RdDM and RdTGS that positions function of IDN2 downstream of siRNA formation and points to an important role for its XH domain.
Collapse
Affiliation(s)
- Andreas Finke
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | | |
Collapse
|