1
|
Muhammad T, Edwards SL, Morphis AC, Johnson MV, Oliveira VD, Chamera T, Liu S, Nguyen NGT, Li J. Non-cell-autonomous regulation of germline proteostasis by insulin/IGF-1 signaling-induced dietary peptide uptake via PEPT-1. EMBO J 2024; 43:4892-4921. [PMID: 39284915 PMCID: PMC11535032 DOI: 10.1038/s44318-024-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 11/06/2024] Open
Abstract
Gametogenesis involves active protein synthesis and is proposed to rely on proteostasis. Our previous work in C. elegans indicates that germline development requires coordinated activities of insulin/IGF-1 signaling (IIS) and HSF-1, the central regulator of the heat shock response. However, the downstream mechanisms were not identified. Here, we show that depletion of HSF-1 from germ cells impairs chaperone gene expression, causing protein degradation and aggregation and, consequently, reduced fecundity and gamete quality. Conversely, reduced IIS confers germ cell resilience to HSF-1 depletion-induced protein folding defects and various proteotoxic stresses. Surprisingly, this effect was not mediated by an enhanced stress response, which underlies longevity in low IIS conditions, but by reduced ribosome biogenesis and translation rate. We found that IIS activates the expression of intestinal peptide transporter PEPT-1 by alleviating its repression by FOXO/DAF-16, allowing dietary proteins to be efficiently incorporated into an amino acid pool that fuels germline protein synthesis. Our data suggest this non-cell-autonomous pathway is critical for proteostasis regulation during gametogenesis.
Collapse
Affiliation(s)
- Tahir Muhammad
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Stacey L Edwards
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Allison C Morphis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Mary V Johnson
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Vitor De Oliveira
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Tomasz Chamera
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Siyan Liu
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | | | - Jian Li
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
2
|
Cheng M, Nie Y, Song M, Chen F, Yu Y. Forkhead box O proteins: steering the course of stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:7. [PMID: 38466341 DOI: 10.1186/s13619-024-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yujie Nie
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Song
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
3
|
Zhang Q, Tian Y, Fu Z, Wu S, Lan H, Zhou X, Shen W, Lou Y. The role of serum-glucocorticoid regulated kinase 1 in reproductive viability: implications from prenatal programming and senescence. Mol Biol Rep 2024; 51:376. [PMID: 38427115 PMCID: PMC10907440 DOI: 10.1007/s11033-024-09341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Organisms and cellular viability are of paramount importance to living creatures. Disruption of the balance between cell survival and apoptosis results in compromised viability and even carcinogenesis. One molecule involved in keeping this homeostasis is serum-glucocorticoid regulated kinase (SGK) 1. Emerging evidence points to a significant role of SGK1 in cell growth and survival, cell metabolism, reproduction, and life span, particularly in prenatal programming and reproductive senescence by the same token. Whether the hormone inducible SGK1 kinase is a major driver in the pathophysiological processes of prenatal programming and reproductive senescence? METHOD The PubMed/Medline, Web of Science, Embase/Ovid, and Elsevier Science Direct literature databases were searched for articles in English focusing on SGK1 published up to July 2023 RESULT: Emerging evidence is accumulating pointing to a pathophysiological role of the ubiquitously expressed SGK1 in the cellular and organismal viability. Under the regulation of specific hormones, extracellular stimuli, and various signals, SGK1 is involved in several biological processes relevant to viability, including cell proliferation and survival, cell migration and differentiation. In line, SGK1 contributes to the development of germ cells, embryos, and fetuses, whereas SGK1 inhibition leads to abnormal gametogenesis, embryo loss, and truncated reproductive lifespan. CONCLUTION SGK1 integrates a broad spectrum of effects to maintain the homeostasis of cell survival and apoptosis, conferring viability to multiple cell types as well as both simple and complex organisms, and thus ensuring appropriate prenatal development and reproductive lifespan.
Collapse
Affiliation(s)
- Qiying Zhang
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Ye Tian
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Zhujing Fu
- Jinhua Municipal Central Hospital, Jinhua, 321001, China
| | - Shuangyu Wu
- Medical School, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huizhen Lan
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Xuanle Zhou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Wendi Shen
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China
| | - Yiyun Lou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Tiyuchang Road, Hangzhou, 310007, Zhejiang, China.
| |
Collapse
|
4
|
Zhou L, Liu J, Bu LL, Liao DF, Cheng SW, Zheng XL. Curcumin Acetylsalicylate Extends the Lifespan of Caenorhabditis elegans. Molecules 2021; 26:molecules26216609. [PMID: 34771018 PMCID: PMC8586958 DOI: 10.3390/molecules26216609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Aspirin and curcumin have been reported to be beneficial to anti-aging in a variety of biological models. Here, we synthesized a novel compound, curcumin acetylsalicylate (CA), by combining aspirin and curcumin. We characterized how CA affects the lifespan of Caenorhabditis elegans (C. elegans) worms. Our results demonstrated that CA extended the lifespan of worms in a dose-dependent manner and reached its highest anti-aging effect at the concentration of 20 μM. In addition, CA reduced the deposition of lipofuscin or "age pigment" without affecting the reproductivity of worms. CA also caused a rightward shift of C. elegans lifespan curves in the presence of paraquat-induced (5 mM) oxidative stress or 37 °C acute heat shock. Additionally, CA treatment decreased the reactive oxygen species (ROS) level in C. elegans and increased the expression of downstream genes superoxide dismutase (sod)-3, glutathione S-transferase (gst)-4, heat shock protein (hsp)-16.2, and catalase-1 (ctl-1). Notably, CA treatment resulted in nuclear translocation of the DAF-16 transcription factor, which is known to stimulate the expression of SOD-3, GST-4, HSP-16, and CTL-1. CA did not produce a longevity effect in daf-16 mutants. In sum, our data indicate that CA delayed the aging of C. elegans without affecting reproductivity, and this effect may be mediated by its activation of DAF-16 and subsequent expression of antioxidative genes, such as sod-3 and gst-4. Our study suggests that novel anti-aging drugs may be developed by combining two individual drugs.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (J.L.)
| | - Jin Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (J.L.)
| | - Lan-Lan Bu
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (J.L.)
- Correspondence: (S.-W.C.); (X.-L.Z.); Tel.: +1 (403)-220-8715 (X.-L.Z.); Fax: +1 (403)-210-9180 (X.-L.Z.)
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Correspondence: (S.-W.C.); (X.-L.Z.); Tel.: +1 (403)-220-8715 (X.-L.Z.); Fax: +1 (403)-210-9180 (X.-L.Z.)
| |
Collapse
|
5
|
Edwards SL, Erdenebat P, Morphis AC, Kumar L, Wang L, Chamera T, Georgescu C, Wren JD, Li J. Insulin/IGF-1 signaling and heat stress differentially regulate HSF1 activities in germline development. Cell Rep 2021; 36:109623. [PMID: 34469721 PMCID: PMC8442575 DOI: 10.1016/j.celrep.2021.109623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Germline development is sensitive to nutrient availability and environmental perturbation. Heat shock transcription factor 1 (HSF1), a key transcription factor driving the cellular heat shock response (HSR), is also involved in gametogenesis. The precise function of HSF1 (HSF-1 in C. elegans) and its regulation in germline development are poorly understood. Using the auxin-inducible degron system in C. elegans, we uncovered a role of HSF-1 in progenitor cell proliferation and early meiosis and identified a compact but important transcriptional program of HSF-1 in germline development. Interestingly, heat stress only induces the canonical HSR in a subset of germ cells but impairs HSF-1 binding at its developmental targets. Conversely, insulin/insulin growth factor 1 (IGF-1) signaling dictates the requirement for HSF-1 in germline development and functions through repressing FOXO/DAF-16 in the soma to activate HSF-1 in germ cells. We propose that this non-cell-autonomous mechanism couples nutrient-sensing insulin/IGF-1 signaling to HSF-1 activation to support homeostasis in rapid germline growth.
Collapse
Affiliation(s)
- Stacey L Edwards
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Purevsuren Erdenebat
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Allison C Morphis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lalit Kumar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lai Wang
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Tomasz Chamera
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Constantin Georgescu
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jonathan D Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jian Li
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Zhao Y, Zhang B, Marcu I, Athar F, Wang H, Galimov ER, Chapman H, Gems D. Mutation of daf-2 extends lifespan via tissue-specific effectors that suppress distinct life-limiting pathologies. Aging Cell 2021; 20:e13324. [PMID: 33609424 PMCID: PMC7963334 DOI: 10.1111/acel.13324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/03/2021] [Accepted: 01/19/2021] [Indexed: 12/01/2022] Open
Abstract
In aging Caenorhabditis elegans, as in higher organisms, there is more than one cause of death. C. elegans exhibit early death with a swollen, infected pharynx (P death), and later death with pharyngeal atrophy (p death). Interventions that alter lifespan can differentially affect frequency and timing of each type of death, generating complex survival curve shapes. Here, we use mortality deconvolution analysis to investigate how reduction of insulin/IGF‐1 signaling (IIS), which increases lifespan (the Age phenotype), affects different forms of death. All daf‐2 insulin/IGF‐1 receptor mutants exhibit increased lifespan in the p subpopulation (p Age), while pleiotropic class 2 daf‐2 mutants show an additional marked reduction in P death frequency. The latter is promoted by pharyngeal expression of the IIS‐regulated DAF‐16 FOXO transcription factor, and at higher temperature by reduced pharyngeal pumping rate. Pharyngeal DAF‐16 also promotes p Age in class 2 daf‐2 mutants, revealing a previously unknown role for the pharynx in the regulation of aging. Necropsy analysis of daf‐2 interactions with the daf‐12 steroid receptor implies that previously described opposing effects of daf‐12 on daf‐2 longevity are attributable to internal hatching of larvae, rather than complex interactions between insulin/IGF‐1 and steroid signaling. These findings support the view that wild‐type IIS acts through multiple distinct mechanisms which promote different life‐limiting pathologies, each of which contribute to late‐life mortality. This study further demonstrates the utility of mortality deconvolution analysis to better understand the genetics of lifespan.
Collapse
Affiliation(s)
- Yuan Zhao
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Bruce Zhang
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Ioan Marcu
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Faria Athar
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Hongyuan Wang
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Evgeniy R. Galimov
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - Hannah Chapman
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| | - David Gems
- Research Department of Genetics, Evolution and Environment Institute of Healthy Ageing University College London London UK
| |
Collapse
|
7
|
Rikitake M, Matsuda A, Murata D, Dejima K, Nomura KH, Abbott KL, Mitani S, Nomura K. Analysis of GPI-anchored proteins involved in germline stem cell proliferation in the Caenorhabditis elegans germline stem cell niche. J Biochem 2020; 168:589-602. [PMID: 32844210 DOI: 10.1093/jb/mvaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/24/2020] [Indexed: 11/14/2022] Open
Abstract
Stem cells divide and undergo self-renewal depending on the signals received from the stem cell niche. This phenomenon is indispensable to maintain tissues and organs in individuals. However, not all the molecular factors and mechanisms of self-renewal are known. In our previous study, we reported that glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) synthesized in the distal tip cells (DTCs; the stem cell niche) are essential for germline stem cell proliferation in Caenorhabditis elegans. Here, we characterized the GPI-APs required for proliferation. We selected and verified the candidate GPI-APs synthesized in DTCs by RNA interference screening and found that F57F4.3 (GFI-1), F57F4.4 and F54E2.1 are necessary for germline proliferation. These proteins are likely involved in the same pathway for proliferation and activated by the transcription factor PQM-1. We further provided evidence suggesting that these GPI-APs act through fatty acid remodelling of the GPI anchor, which is essential for association with lipid rafts. These findings demonstrated that GPI-APs, particularly F57F4.3/4 and F54E2.1, synthesized in the germline stem cell niche are located in lipid rafts and involved in promoting germline stem cell proliferation in C. elegans. The findings may thus shed light on the mechanisms by which GPI-APs regulate stem cell self-renewal.
Collapse
Affiliation(s)
- Marika Rikitake
- Department of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 819-0395, Japan
| | - Ayako Matsuda
- Department of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 819-0395, Japan
| | - Daisuke Murata
- Department of Systems Life Sciences, Kyushu University Graduate School, Fukuoka 819-0395, Japan.,CREST (JST), Saitama 332-0012, Japan.,Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, 113 Hunterian, Baltimore, MD 21205, USA
| | - Katsufumi Dejima
- CREST (JST), Saitama 332-0012, Japan.,Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Kazuko H Nomura
- CREST (JST), Saitama 332-0012, Japan.,Department of Biology, Kyushu University, Fukuoka 819-0395, Japan
| | - Karen L Abbott
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, 9 Stephenson Cancer Center, Oklahoma City, OK 73104, USA.,SL Young Biomedical Research Center, 975 NE 10th St., BRC 409 North lab/411A Office, Little Rock, AR 72205, USA
| | - Shohei Mitani
- CREST (JST), Saitama 332-0012, Japan.,Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Kazuya Nomura
- CREST (JST), Saitama 332-0012, Japan.,Department of Biology, Kyushu University, Fukuoka 819-0395, Japan.,Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
8
|
Larrick JW, Larrick JW, Mendelsohn AR. SUMO Wrestles with Mitophagy to Extend Lifespan. Rejuvenation Res 2020; 23:527-532. [PMID: 33256568 DOI: 10.1089/rej.2020.2406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SUMOylation, a conserved protein post-translational modification that performs multiple functions including regulation of nuclear transport and transcription, is implicated in numerous biological processes including aging. RNAi knockdown of the sole Small Ubiquitin-like MOdifier (SUMO) gene, smo-1, in Caenorhabditis elegans shortened lifespan, whereas overexpression in the intestine modestly increased lifespan. Smo-1 is required for mitochondrial fission in a tissue-specific manner. Fission, in turn, is needed for mitophagy to maintain mitochondrial homeostasis during aging. SUMOlyation affects DAuer Formation (DAF)-16, which can be directly SUMOylated, and SKN-1, the homolog of mammalian Nrf2. These regulators play key roles in maintaining mitochondrial homeostasis. However, given the modest effect of overexpressing smo-1 on lifespan enhancement and potential interference with other genes that can promote increased lifespan, caution is advised in the translation of this study based on C. elegans. Although inhibitors of SUMOlyation have been developed for cancer and activators also have been identified, broad-acting biochemical pathway modifiers such as SUMO are often suboptimal drug targets and may not be as promising for antiaging applications as they first appear.
Collapse
Affiliation(s)
- James W Larrick
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| | | | - Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| |
Collapse
|
9
|
Blackwell TK, Sewell AK, Wu Z, Han M. TOR Signaling in Caenorhabditis elegans Development, Metabolism, and Aging. Genetics 2019; 213:329-360. [PMID: 31594908 PMCID: PMC6781902 DOI: 10.1534/genetics.119.302504] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/18/2019] [Indexed: 12/30/2022] Open
Abstract
The Target of Rapamycin (TOR or mTOR) is a serine/threonine kinase that regulates growth, development, and behaviors by modulating protein synthesis, autophagy, and multiple other cellular processes in response to changes in nutrients and other cues. Over recent years, TOR has been studied intensively in mammalian cell culture and genetic systems because of its importance in growth, metabolism, cancer, and aging. Through its advantages for unbiased, and high-throughput, genetic and in vivo studies, Caenorhabditis elegans has made major contributions to our understanding of TOR biology. Genetic analyses in the worm have revealed unexpected aspects of TOR functions and regulation, and have the potential to further expand our understanding of how growth and metabolic regulation influence development. In the aging field, C. elegans has played a leading role in revealing the promise of TOR inhibition as a strategy for extending life span, and identifying mechanisms that function upstream and downstream of TOR to influence aging. Here, we review the state of the TOR field in C. elegans, and focus on what we have learned about its functions in development, metabolism, and aging. We discuss knowledge gaps, including the potential pitfalls in translating findings back and forth across organisms, but also describe how TOR is important for C. elegans biology, and how C. elegans work has developed paradigms of great importance for the broader TOR field.
Collapse
Affiliation(s)
- T Keith Blackwell
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Aileen K Sewell
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| | - Ziyun Wu
- Research Division, Joslin Diabetes Center, Department of Genetics, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, and
- Howard Hughes Medical Institute, Boulder, Colorado
| |
Collapse
|
10
|
Kelley CA, Cram EJ. Stem Cells: Muscle Cells Enwrap Escaped Germline Stem Cells in C. elegans. Curr Biol 2019; 29:R150-R152. [PMID: 30836081 DOI: 10.1016/j.cub.2019.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interactions between the distal tip cell and germline stem cells maintain a proliferative pool of mitotic cells in the Caenorhabditis elegans gonad. A new study shows that escaped germline stem cells induce nearby muscle cells to reach out and wrap around them, forming an ectopic niche similar to the native gonadal germ cell niche.
Collapse
Affiliation(s)
| | - Erin J Cram
- Northeastern University, Department of Biology, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Gordon KL, Payne SG, Linden-High LM, Pani AM, Goldstein B, Hubbard EJA, Sherwood DR. Ectopic Germ Cells Can Induce Niche-like Enwrapment by Neighboring Body Wall Muscle. Curr Biol 2019; 29:823-833.e5. [PMID: 30799241 DOI: 10.1016/j.cub.2019.01.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Niche cell enwrapment of stem cells and their differentiating progeny is common and provides a specialized signaling and protective environment. Elucidating the mechanisms underlying enwrapment behavior has important basic and clinical significance in not only understanding how niches are formed and maintained but also how they can be engineered and how they are misregulated in human pathologies, such as cancer. Previous work in C. elegans found that, when germ cells, which are enwrapped by somatic gonadal niche cells, are freed into the body cavity, they embed into other tissues. We investigated this phenomenon using live-cell imaging and discovered that ectopic germ cells preferentially induce body-wall muscle to extend cellular processes that enwrap the germ cells, the extent of which was strikingly similar to the distal tip cell (DTC)-germ stem cell niche. Enwrapment was specific for escaped germ cells, and genetic analysis revealed it did not depend on pathways that control cell death and engulfment or muscle arm extension. Instead, using a large-scale RNAi screen and GFP knockin strains, we discovered that the enwrapping behavior of muscle relied upon the same suite of cell-cell adhesion molecules that functioned in the endogenous niche: the C. elegans E-cadherin HMR-1, its intracellular associates α-catenin (HMP-1) and β-catenin (HMP-2), and the L1CAM protein SAX-7. This ectopic niche-like behavior resembles the seed-and-soil model of cancer metastasis and offers a new model to understand factors regulating ectopic niche formation.
Collapse
Affiliation(s)
- Kacy L Gordon
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Sara G Payne
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Ariel M Pani
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology and Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - David R Sherwood
- Department of Biology, Duke University, Durham, NC 27708, USA; Regeneration Next, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
12
|
Senchuk MM, Dues DJ, Schaar CE, Johnson BK, Madaj ZB, Bowman MJ, Winn ME, Van Raamsdonk JM. Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genet 2018. [PMID: 29522556 PMCID: PMC5862515 DOI: 10.1371/journal.pgen.1007268] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Mild deficits in mitochondrial function have been shown to increase lifespan in multiple species including worms, flies and mice. Here, we study three C. elegans mitochondrial mutants (clk-1, isp-1 and nuo-6) to identify overlapping genetic pathways that contribute to their longevity. We find that genes regulated by the FOXO transcription factor DAF-16 are upregulated in all three strains, and that the transcriptional changes present in these worms overlap significantly with the long-lived insulin-IGF1 signaling pathway mutant daf-2. We show that DAF-16 and multiple DAF-16 interacting proteins (MATH-33, IMB-2, CST-1/2, BAR-1) are required for the full longevity of all three mitochondrial mutants. Our results suggest that the activation of DAF-16 in these mutants results from elevated levels of reactive oxygen species. Overall, this work reveals an overlapping genetic pathway required for longevity in three mitochondrial mutants, and, combined with previous work, demonstrates that DAF-16 is a downstream mediator of lifespan extension in multiple pathways of longevity. The use of genetic model organisms has permitted the identification of a large number of genes that influence longevity. These genes have been grouped into different pathways of lifespan extension, which have been proposed to modulate longevity by distinct mechanisms. In this work, we explore the mechanisms underlying longevity in three long-lived mitochondrial mutants in C. elegans. We find that all three mutants show upregulation of DAF-16/FOXO target genes and that DAF-16 as well as multiple proteins that function with DAF-16 are required for their longevity. Since DAF-16 has previously been shown to be responsible for the increase in lifespan resulting from decreasing insulin-IGF1 signaling, this indicates that different pathways of lifespan extension have overlapping mechanisms, and that DAF-16/FOXO is a common downstream mediator of longevity.
Collapse
Affiliation(s)
- Megan M. Senchuk
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Dylan J. Dues
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Claire E. Schaar
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Benjamin K. Johnson
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Zachary B. Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Megan J. Bowman
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Mary E. Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Jeremy M. Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease (LAND), Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
13
|
Abstract
It is now widely recognised that ageing and its associated functional decline are regulated by a wide range of molecules that fit into specific cellular pathways. Here, we describe several of the evolutionary conserved cellular signalling pathways that govern organismal ageing and discuss how their identification, and work on the individual molecules that contribute to them, has aided in the design of therapeutic strategies to alleviate the adverse effects of ageing and age-related disease.
Collapse
|
14
|
Tullet JM, Green JW, Au C, Benedetto A, Thompson MA, Clark E, Gilliat AF, Young A, Schmeisser K, Gems D. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell 2017; 16:1191-1194. [PMID: 28612944 PMCID: PMC5595692 DOI: 10.1111/acel.12627] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2017] [Indexed: 11/29/2022] Open
Abstract
In C. elegans, the skn‐1 gene encodes a transcription factor that resembles mammalian Nrf2 and activates a detoxification response. skn‐1 promotes resistance to oxidative stress (Oxr) and also increases lifespan, and it has been suggested that the former causes the latter, consistent with the theory that oxidative damage causes aging. Here, we report that effects of SKN‐1 on Oxr and longevity can be dissociated. We also establish that skn‐1 expression can be activated by the DAF‐16/FoxO transcription factor, another central regulator of growth, metabolism, and aging. Notably, skn‐1 is required for Oxr but not increased lifespan resulting from over‐expression of DAF‐16; concomitantly, DAF‐16 over‐expression rescues the short lifespan of skn‐1 mutants but not their hypersensitivity to oxidative stress. These results suggest that SKN‐1 promotes longevity by a mechanism other than protection against oxidative damage.
Collapse
Affiliation(s)
- Jennifer M.A. Tullet
- School of Biosciences; University of Kent; Canterbury Kent CT2 7NZ UK
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - James W. Green
- School of Biosciences; University of Kent; Canterbury Kent CT2 7NZ UK
| | - Catherine Au
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | | | | | - Emily Clark
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - Ann F. Gilliat
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - Adelaide Young
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - Kathrin Schmeisser
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| | - David Gems
- Institute of Healthy Ageing; Department of Genetics, Evolution and Environment; University College London; Gower Street London WC1E 6BT UK
| |
Collapse
|
15
|
Qi W, Yan Y, Pfeifer D, Donner v. Gromoff E, Wang Y, Maier W, Baumeister R. C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation. PLoS Genet 2017; 13:e1006801. [PMID: 28549065 PMCID: PMC5467913 DOI: 10.1371/journal.pgen.1006801] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 06/12/2017] [Accepted: 05/05/2017] [Indexed: 11/18/2022] Open
Abstract
Activation of the FOXO transcription factor DAF-16 by reduced insulin/IGF signaling (IIS) is considered to be beneficial in C. elegans due to its ability to extend lifespan and to enhance stress resistance. In the germline, cell-autonomous DAF-16 activity prevents stem cell proliferation, thus acting tumor-suppressive. In contrast, hypodermal DAF-16 causes a tumorous germline phenotype characterized by hyperproliferation of the germline stem cells and rupture of the adjacent basement membrane. Here we show that cross-talk between DAF-16 and the transforming growth factor ß (TGFß)/bone morphogenic protein (BMP) signaling pathway causes germline hyperplasia and results in disruption of the basement membrane. In addition to activating MADM/NRBP/hpo-11 gene alone, DAF-16 also directly interacts with both R-SMAD proteins SMA-2 and SMA-3 in the nucleus to regulate the expression of mTORC1 pathway. Knocking-down of BMP genes or each of the four target genes in the hypodermis was sufficient to inhibit germline proliferation, indicating a cell-non-autonomously controlled regulation of stem cell proliferation by somatic tissues. We propose the existence of two antagonistic DAF-16/FOXO functions, a cell-proliferative somatic and an anti-proliferative germline activity. Whereas germline hyperplasia under reduced IIS is inhibited by DAF-16 cell-autonomously, activation of somatic DAF-16 in the presence of active IIS promotes germline proliferation and eventually induces tumor-like germline growth. In summary, our results suggest a novel pathway crosstalk of DAF-16 and TGF-ß/BMP that can modulate mTORC1 at the transcriptional level to cause stem-cell hyperproliferation. Such cell-type specific differences may help explaining why human FOXO activity is considered to be tumor-suppressive in most contexts, but may become oncogenic, e.g. in chronic and acute myeloid leukemia. The transcription factor FOXO is a well-known tumor suppressor whose activity is controlled by nutrients and stress signaling. In the roundworm C. elegans, the activity of the FOXO protein DAF-16 is best known for its beneficial role in stress response and long lifespan. However, FOXO proteins may also promote tumor cell growth and maintenance in chronic and acute myeloid leukemia, suggesting that may have different roles in distinct contexts. Previously we have shown that selective activation of DAF-16 in the epidermis causes a tumorous growth in the stem cells of the C. elegans germline. Now we demonstrate that this oncogenic activity of DAF-16 is mediated by interactions with the transforming growth factor (TGFß)/Bone Morphogenic protein (BMP) signaling pathway. In the epidermis, direct binding of DAF-16 and R-SMAD proteins of the BMP pathway helps to activate genes involved in the mTORC1 signaling pathway that is frequently activated in tumors. We propose that the transcription factor DAF-16/FOXO may be controlled in different ways in the stem cells, in which its activity normally prevents tumor formation, and in other tissues, in which defects in controlling its activity may result in overwriting the beneficial stem cell activity to eventually promote tumor cell growth.
Collapse
Affiliation(s)
- Wenjing Qi
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
| | - Yijian Yan
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
| | - Dietmar Pfeifer
- Department of Internal Medicine, University Medical Center Freiburg, Freiburg, Baden-Wuerttemberg, Germany
| | - Erika Donner v. Gromoff
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
| | - Yimin Wang
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
| | - Wolfgang Maier
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
| | - Ralf Baumeister
- Bioinformatics and Molecular Genetics, Faculty of Biology, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
- Center for Biochemistry and Molecular Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
- Centre for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Baden-Wuerttemberg, Germany
- * E-mail:
| |
Collapse
|
16
|
Wang D, Hou L, Nakamura S, Su M, Li F, Chen W, Yan Y, Green CD, Chen D, Zhang H, Antebi A, Han JDJ. LIN-28 balances longevity and germline stem cell number in Caenorhabditis elegans through let-7/AKT/DAF-16 axis. Aging Cell 2017; 16:113-124. [PMID: 27730721 PMCID: PMC5242300 DOI: 10.1111/acel.12539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 01/23/2023] Open
Abstract
The RNA‐binding protein LIN‐28 was first found to control developmental timing in Caenorhabditis elegans. Later, it was found to play important roles in pluripotency, metabolism, and cancer in mammals. Here we report that a low dosage of lin‐28 enhanced stress tolerance and longevity, and reduced germline stem/progenitor cell number in C. elegans. The germline LIN‐28‐regulated microRNA let‐7 was required for these effects by targeting akt‐1/2 and decreasing their protein levels. AKT‐1/2 and the downstream DAF‐16 transcription factor were both required for the lifespan and germline stem cell effects of lin‐28. The pathway also mediated dietary restriction induced lifespan extension and reduction in germline stem cell number. Thus, the LIN‐28/let‐7/AKT/DAF‐16 axis we delineated here is a program that plays an important role in balancing reproduction and somatic maintenance and their response to the environmental energy level—a central dogma of the ‘evolutionary optimization’ of resource allocation that modulates aging.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Computational Biology; CAS Center for Excellence in Molecular Cell Science; Collaborative Innovation Center for Genetics and Developmental Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; 320 Yue Yang Road Shanghai 200031 China
- University of Chinese Academy of Science; Beijing 100049 China
| | - Lei Hou
- Key Laboratory of Computational Biology; CAS Center for Excellence in Molecular Cell Science; Collaborative Innovation Center for Genetics and Developmental Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; 320 Yue Yang Road Shanghai 200031 China
| | - Shuhei Nakamura
- Max Planck Institute for Biology of Ageing; Joseph-Stelzmann-Strasse 9b Cologne 50931 Germany
| | - Ming Su
- Key Laboratory of Computational Biology; CAS Center for Excellence in Molecular Cell Science; Collaborative Innovation Center for Genetics and Developmental Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; 320 Yue Yang Road Shanghai 200031 China
| | - Fang Li
- Key Laboratory of Computational Biology; CAS Center for Excellence in Molecular Cell Science; Collaborative Innovation Center for Genetics and Developmental Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; 320 Yue Yang Road Shanghai 200031 China
| | - Weiyang Chen
- Key Laboratory of Computational Biology; CAS Center for Excellence in Molecular Cell Science; Collaborative Innovation Center for Genetics and Developmental Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; 320 Yue Yang Road Shanghai 200031 China
| | - Yizhen Yan
- Key Laboratory of Computational Biology; CAS Center for Excellence in Molecular Cell Science; Collaborative Innovation Center for Genetics and Developmental Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; 320 Yue Yang Road Shanghai 200031 China
- University of Chinese Academy of Science; Beijing 100049 China
| | - Christopher D. Green
- Key Laboratory of Computational Biology; CAS Center for Excellence in Molecular Cell Science; Collaborative Innovation Center for Genetics and Developmental Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; 320 Yue Yang Road Shanghai 200031 China
| | - Di Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study; Model Animal Research Center; Nanjing University; Nanjing Jiangsu 210061 China
| | - Hong Zhang
- Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 China
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing; Joseph-Stelzmann-Strasse 9b Cologne 50931 Germany
| | - Jing-Dong J. Han
- Key Laboratory of Computational Biology; CAS Center for Excellence in Molecular Cell Science; Collaborative Innovation Center for Genetics and Developmental Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; 320 Yue Yang Road Shanghai 200031 China
| |
Collapse
|
17
|
Goszczynski B, Captan VV, Danielson AM, Lancaster BR, McGhee JD. A 44 bp intestine-specific hermaphrodite-specific enhancer from the C. elegans vit-2 vitellogenin gene is directly regulated by ELT-2, MAB-3, FKH-9 and DAF-16 and indirectly regulated by the germline, by daf-2/insulin signaling and by the TGF-β/Sma/Mab pathway. Dev Biol 2016; 413:112-27. [PMID: 26963674 DOI: 10.1016/j.ydbio.2016.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
Abstract
The Caenorhabditis elegans vitellogenin genes are transcribed in the intestine of adult hermaphrodites but not of males. A 44-bp region from the vit-2 gene promoter is able largely to reconstitute this tissue-, stage- and sex-specific-expression. This "enhancer" contains a binding site for the DM-domain factor MAB-3, the male-specific repressor of vitellogenesis, as well as an activator site that we show is the direct target of the intestinal GATA factor ELT-2. We further show that the enhancer is directly activated by the winged-helix/forkhead-factor FKH-9, (whose gene has been shown by others to be a direct target of DAF-16), by an unknown activator binding to the MAB-3 site, and by the full C. elegans TGF-β/Sma/Mab pathway acting within the intestine. The vit-2 gene has been shown by others to be repressed by the daf-2/daf-16 insulin signaling pathway, which so strongly influences aging and longevity in C. elegans. We show that the activity of the 44 bp vit-2 enhancer is abolished by loss of daf-2 but is restored by simultaneous loss of daf-16. DAF-2 acts from outside of the intestine but DAF-16 acts both from outside of the intestine and from within the intestine where it binds directly to the same non-canonical target site that interacts with FKH-9. Activity of the 44 bp vit-2 enhancer is also inhibited by loss of the germline, in a manner that is only weakly influenced by DAF-16 but that is strongly influenced by KRI-1, a key downstream effector in the pathway by which germline loss increases C. elegans lifespan. The complex behavior of this enhancer presumably allows vitellogenin gene transcription to adjust to demands of body size, germline proliferation and nutritional state but we suggest that the apparent involvement of this enhancer in aging and longevity "pathways" could be incidental.
Collapse
Affiliation(s)
- Barbara Goszczynski
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vasile V Captan
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alicia M Danielson
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brett R Lancaster
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
18
|
Ertl I, Porta-de-la-Riva M, Gómez-Orte E, Rubio-Peña K, Aristizábal-Corrales D, Cornes E, Fontrodona L, Osteikoetxea X, Ayuso C, Askjaer P, Cabello J, Cerón J. Functional Interplay of Two Paralogs Encoding SWI/SNF Chromatin-Remodeling Accessory Subunits During Caenorhabditis elegans Development. Genetics 2016; 202:961-75. [PMID: 26739451 PMCID: PMC4788132 DOI: 10.1534/genetics.115.183533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/21/2015] [Indexed: 12/16/2022] Open
Abstract
SWI/SNF ATP-dependent chromatin-remodeling complexes have been related to several cellular processes such as transcription, regulation of chromosomal stability, and DNA repair. The Caenorhabditis elegans gene ham-3 (also known as swsn-2.1) and its paralog swsn-2.2 encode accessory subunits of SWI/SNF complexes. Using RNA interference (RNAi) assays and diverse alleles we investigated whether ham-3 and swsn-2.2 have different functions during C. elegans development since they encode proteins that are probably mutually exclusive in a given SWI/SNF complex. We found that ham-3 and swsn-2.2 display similar functions in vulva specification, germline development, and intestinal cell proliferation, but have distinct roles in embryonic development. Accordingly, we detected functional redundancy in some developmental processes and demonstrated by RNA sequencing of RNAi-treated L4 animals that ham-3 and swsn-2.2 regulate the expression of a common subset of genes but also have specific targets. Cell lineage analyses in the embryo revealed hyper-proliferation of intestinal cells in ham-3 null mutants whereas swsn-2.2 is required for proper cell divisions. Using a proteomic approach, we identified SWSN-2.2-interacting proteins needed for early cell divisions, such as SAO-1 and ATX-2, and also nuclear envelope proteins such as MEL-28. swsn-2.2 mutants phenocopy mel-28 loss-of-function, and we observed that SWSN-2.2 and MEL-28 colocalize in mitotic and meiotic chromosomes. Moreover, we demonstrated that SWSN-2.2 is required for correct chromosome segregation and nuclear reassembly after mitosis including recruitment of MEL-28 to the nuclear periphery.
Collapse
Affiliation(s)
- Iris Ertl
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Porta-de-la-Riva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain C. elegans Core Facility, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Gómez-Orte
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Karinna Rubio-Peña
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Aristizábal-Corrales
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eric Cornes
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Fontrodona
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xabier Osteikoetxea
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Ayuso
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucia/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Julián Cerón
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
19
|
Anderson EN, Corkins ME, Li JC, Singh K, Parsons S, Tucey TM, Sorkaç A, Huang H, Dimitriadi M, Sinclair DA, Hart AC. C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins. Mech Ageing Dev 2016; 154:30-42. [PMID: 26854551 DOI: 10.1016/j.mad.2016.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/08/2016] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
Moderate stress can increase lifespan by hormesis, a beneficial low-level induction of stress response pathways. 5'-fluorodeoxyuridine (FUdR) is commonly used to sterilize Caenorhabditis elegans in aging experiments. However, FUdR alters lifespan in some genotypes and induces resistance to thermal and proteotoxic stress. We report that hypertonic stress in combination with FUdR treatment or inhibition of the FUdR target thymidylate synthase, TYMS-1, extends C. elegans lifespan by up to 30%. By contrast, in the absence of FUdR, hypertonic stress decreases lifespan. Adaptation to hypertonic stress requires diminished Notch signaling and loss of Notch co-ligands leads to lifespan extension only in combination with FUdR. Either FUdR treatment or TYMS-1 loss induced resistance to acute hypertonic stress, anoxia, and thermal stress. FUdR treatment increased expression of DAF-16 FOXO and the osmolyte biosynthesis enzyme GPDH-1. FUdR-induced hypertonic stress resistance was partially dependent on sirtuins and base excision repair (BER) pathways, while FUdR-induced lifespan extension under hypertonic stress conditions requires DAF-16, BER, and sirtuin function. Combined, these results demonstrate that FUdR, through inhibition of TYMS-1, activates stress response pathways in somatic tissues to confer hormetic resistance to acute and chronic stress. C. elegans lifespan studies using FUdR may need re-interpretation in light of this work.
Collapse
Affiliation(s)
- Edward N Anderson
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| | - Mark E Corkins
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| | - Jia-Cheng Li
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| | - Komudi Singh
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| | - Sadé Parsons
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| | - Tim M Tucey
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| | - Altar Sorkaç
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| | - Huiyan Huang
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| | - Maria Dimitriadi
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| | - David A Sinclair
- Department of Genetics, Harvard Medical School and Glenn Labs for Aging Research, Boston, MA 02115, USA.
| | - Anne C Hart
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA.
| |
Collapse
|
20
|
Zhang B, Xiao R, Ronan EA, He Y, Hsu AL, Liu J, Xu XZS. Environmental Temperature Differentially Modulates C. elegans Longevity through a Thermosensitive TRP Channel. Cell Rep 2015; 11:1414-24. [PMID: 26027928 DOI: 10.1016/j.celrep.2015.04.066] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/27/2015] [Accepted: 04/28/2015] [Indexed: 01/10/2023] Open
Abstract
Temperature profoundly affects aging in both poikilotherms and homeotherms. A general belief is that lower temperatures extend lifespan, whereas higher temperatures shorten it. Although this "temperature law" is widely accepted, it has not been extensively tested. Here, we systematically evaluated the role of temperature in lifespan regulation in C. elegans. We found that, although exposure to low temperatures at the adult stage prolongs lifespan, low-temperature treatment at the larval stage surprisingly reduces lifespan. Interestingly, this differential effect of temperature on longevity in larvae and adults is mediated by the same thermosensitive TRP channel TRPA-1 that signals to the transcription factor DAF-16/FOXO. DAF-16/FOXO and TRPA-1 act in larva to shorten lifespan but extend lifespan in adulthood. DAF-16/FOXO differentially regulates gene expression in larva and adult in a temperature-dependent manner. Our results uncover complexity underlying temperature modulation of longevity, demonstrating that temperature differentially regulates lifespan at different stages of life.
Collapse
Affiliation(s)
- Bi Zhang
- College of Life Science and Technology and Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rui Xiao
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth A Ronan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yongqun He
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ao-Lin Hsu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Liu
- College of Life Science and Technology and Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Chen P, DeWitt MR, Bornhorst J, Soares FA, Mukhopadhyay S, Bowman AB, Aschner M. Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson's disease. Metallomics 2015; 7:289-98. [PMID: 25531510 PMCID: PMC4479152 DOI: 10.1039/c4mt00292j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, yet its etiology and pathogenesis are poorly understood. PD is characterized by selective dopaminergic (DAergic) degeneration and progressive hypokinetic motor impairment. Mutations in dj-1 cause autosomal recessive early-onset PD. DJ-1 is thought to protect DAergic neurons via an antioxidant mechanism, but the precise basis of this protection has not yet been resolved. Aging and manganese (Mn) exposure are significant non-genetic risk factors for PD. Caenorhabditis elegans (C. elegans) is an optimal model for PD and aging studies because of its simple nervous system, conserved DAergic machinery, and short 20-day lifespan. Here we tested the hypothesis that C. elegans DJ-1 homologues were protective against Mn-induced DAergic toxicity in an age-dependent manner. We showed that the deletion of C. elegans DJ-1 related (djr) genes, djr-1.2, decreased survival after Mn exposure. djr-1.2, the DJ-1 homologue was expressed in DAergic neurons and its deletion decreased lifespan and dopamine (DA)-dependent dauer movement behavior after Mn exposure. We also tested the role of DAF-16 as a regulator of dj-1.2 interaction with Mn toxicity. Lifespan defects resulting from djr-1.2 deletion could be restored to normal by overexpression of either DJR-1.2 or DAF-16. Furthermore, dauer movement alterations after djr-1.2 deletion were abolished by constitutive activation of DAF-16 through mutation of its inhibitor, DAF-2 insulin receptor. Taken together, our results reveal PD-relevant interactions between aging, the PD environmental risk factor manganese, and homologues of the established PD genetic risk factor DJ-1. Our data demonstrate a novel role for the DJ-1 homologue, djr-1.2, in mitigating Mn-dependent lifespan reduction and DA signaling alterations, involving DAF-2/DAF-16 signaling.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Volovik Y, Moll L, Marques F, Maman M, Bejerano-Sagie M, Cohen E. Differential Regulation of the Heat Shock Factor 1 and DAF-16 by Neuronal nhl-1 in the Nematode C. elegans. Cell Rep 2014; 9:2192-205. [DOI: 10.1016/j.celrep.2014.11.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/28/2014] [Accepted: 11/19/2014] [Indexed: 11/26/2022] Open
|
23
|
Wang S, Teng X, Wang Y, Yu HQ, Luo X, Xu A, Wu L. Molecular control of arsenite-induced apoptosis in Caenorhabditis elegans: roles of insulin-like growth factor-1 signaling pathway. CHEMOSPHERE 2014; 112:248-255. [PMID: 25048913 DOI: 10.1016/j.chemosphere.2014.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/02/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
Apoptosis is one of the main cellular processes in responses to arsenic, the well known environmental carcinogen. By using the nematode Caenorhabditis elegans as an in vivo model, we found that insulin-like growth factor-1 networks and their target protein DAF-16/FOXO, known as key regulators of energy metabolism and growth, played important roles in arsenite-induced apoptosis. Inactivation of DAF-2, AGE-1 and AKT-1 caused worms more susceptible to arsenite-induced apoptosis, which could be attenuated by DAF-16 knockout. Worms with inactivated AKT-2 and SGK-1 or with constitutively activated PDK-1 and AKT-1 showed low levels of apoptosis, which could be elevated by DAF-16 mutation. Our results demonstrated that DAF-2/IGF-1R, AGE-1/PI3K, PDK-1/PDK1 and AKT-1/PKB negatively regulated the arsenite-induced apoptosis, whereas AKT-2 and SGK-1 acted proapoptotically. DAF-16/FOXO antagonized IGF-1 signals in signaling the arsenite-induced apoptosis, and apoptosis promoted by DAF-16 inactivation was attributed to its higher sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Shunchang Wang
- Department of Life Science, Huainan Normal University, Huainan 232001, China.
| | - Xiaoxue Teng
- Department of Life Science, Huainan Normal University, Huainan 232001, China; School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yun Wang
- Department of Life Science, Huainan Normal University, Huainan 232001, China
| | - Han-Qing Yu
- Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Xun Luo
- Department of Life Science, Huainan Normal University, Huainan 232001, China; Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - An Xu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lijun Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
24
|
van Oosten-Hawle P, Morimoto RI. Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses. ACTA ACUST UNITED AC 2014; 217:129-36. [PMID: 24353212 DOI: 10.1242/jeb.091249] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability of each cell within a metazoan to adapt to and survive environmental and physiological stress requires cellular stress-response mechanisms, such as the heat shock response (HSR). Recent advances reveal that cellular proteostasis and stress responses in metazoans are regulated by multiple layers of intercellular communication. This ensures that an imbalance of proteostasis that occurs within any single tissue 'at risk' is protected by a compensatory activation of a stress response in adjacent tissues that confers a community protective response. While each cell expresses the machinery for heat shock (HS) gene expression, the HSR is regulated cell non-autonomously in multicellular organisms, by neuronal signaling to the somatic tissues, and by transcellular chaperone signaling between somatic tissues and from somatic tissues to neurons. These cell non-autonomous processes ensure that the organismal HSR is orchestrated across multiple tissues and that transmission of stress signals between tissues can also override the neuronal control to reset cell- and tissue-specific proteostasis. Here, we discuss emerging concepts and insights into the complex cell non-autonomous mechanisms that control stress responses in metazoans and highlight the importance of intercellular communication for proteostasis maintenance in multicellular organisms.
Collapse
Affiliation(s)
- Patricija van Oosten-Hawle
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
25
|
DAF-16 target identification in C. elegans: past, present and future. Biogerontology 2014; 16:221-34. [PMID: 25156270 PMCID: PMC4361755 DOI: 10.1007/s10522-014-9527-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/13/2014] [Indexed: 12/28/2022]
Abstract
In C. elegans, mutations in the conserved insulin/IGF-1 signaling (IIS) pathway lead to a robust extension in lifespan, improved late life health, and protection from age-related disease. These effects are mediated by the FoxO transcription factor DAF-16 which lies downstream of the IIS kinase cascade. Identifying and functionally testing DAF-16 target genes has been a focal point of ageing research for the last 10 years. Here, I review the recent advances in identifying and understanding IIS/DAF-16 targets. These studies continue to reveal the intricate nature of the IIS/DAF-16 gene regulation network and are helping us to understand the mechanisms that control lifespan. Ageing and age related disease is an area of intense public interest, and the biochemical characterization of the genes involved will be critical for identifying drugs to improve the health of our ageing population.
Collapse
|
26
|
Identification of late larval stage developmental checkpoints in Caenorhabditis elegans regulated by insulin/IGF and steroid hormone signaling pathways. PLoS Genet 2014; 10:e1004426. [PMID: 24945623 PMCID: PMC4063711 DOI: 10.1371/journal.pgen.1004426] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/20/2014] [Indexed: 01/10/2023] Open
Abstract
Organisms in the wild develop with varying food availability. During periods of nutritional scarcity, development may slow or arrest until conditions improve. The ability to modulate developmental programs in response to poor nutritional conditions requires a means of sensing the changing nutritional environment and limiting tissue growth. The mechanisms by which organisms accomplish this adaptation are not well understood. We sought to study this question by examining the effects of nutrient deprivation on Caenorhabditis elegans development during the late larval stages, L3 and L4, a period of extensive tissue growth and morphogenesis. By removing animals from food at different times, we show here that specific checkpoints exist in the early L3 and early L4 stages that systemically arrest the development of diverse tissues and cellular processes. These checkpoints occur once in each larval stage after molting and prior to initiation of the subsequent molting cycle. DAF-2, the insulin/insulin-like growth factor receptor, regulates passage through the L3 and L4 checkpoints in response to nutrition. The FOXO transcription factor DAF-16, a major target of insulin-like signaling, functions cell-nonautonomously in the hypodermis (skin) to arrest developmental upon nutrient removal. The effects of DAF-16 on progression through the L3 and L4 stages are mediated by DAF-9, a cytochrome P450 ortholog involved in the production of C. elegans steroid hormones. Our results identify a novel mode of C. elegans growth in which development progresses from one checkpoint to the next. At each checkpoint, nutritional conditions determine whether animals remain arrested or continue development to the next checkpoint. Organisms in the wild often face long periods in which food is scarce. This may occur due to seasonal effects, loss of territory, or changes in predator-to-prey ratio. During periods of scarcity, organisms undergo adaptations to conserve resources and prolong survival. When nutrient deprivation occurs during development, physical growth and maturation to adulthood is delayed. These effects are also observed in malnourished individuals, who are smaller and reach puberty at later ages. Developmental arrest in response to nutrient scarcity requires a means of sensing changing nutrient conditions and coordinating an organism-wide response. How this occurs is not well understood. We assessed the developmental response to nutrient withdrawal in the nematode worm Caenorhabditis elegans. By removing food in the late larval stages, a period of extensive tissue formation, we have uncovered previously unknown checkpoints that occur at precise times in development. Diverse tissues and cellular processes arrest at the checkpoints. Insulin-like signaling and steroid hormone signaling regulate tissue arrest following nutrient withdrawal. These pathways are conserved in mammals and are linked to growth processes and diseases. Given that the pathways that respond to nutrition are conserved in animals, it is possible that similar checkpoints may also be important in human development.
Collapse
|
27
|
Wolf T, Qi W, Schindler V, Runkel ED, Baumeister R. Doxycyclin ameliorates a starvation-induced germline tumor in C. elegans daf-18/PTEN mutant background. Exp Gerontol 2014; 56:114-22. [PMID: 24746511 DOI: 10.1016/j.exger.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/19/2022]
Abstract
Managing available resources is a key necessity of each organism to cope with the environment. The nematode C. elegans responds to nutritional deprivation or harsh environmental conditions with a multitude of developmental adaptations, among them a starvation-induced quiescence at early larval development (L1). daf-18, the C. elegans homolog of the human tumor suppressor gene PTEN, is essential for the maintenance of survival and germline stem cell arrest during the L1 diapause. We show here that daf-18 mutants, independently to their failure to maintain G2 arrest of the primordial germ cells, develop a gonad phenotype after refeeding. This highly penetrant gonadal phenotype is further enhanced by a mutation in shc-1, encoding a protein homologous to the human adaptor ShcA. Features of this phenotype are a tumor-like phenotype encompassing hyper-proliferation of germ cell nuclei and disruption/invasion of the basement membrane surrounding the gonad. The penetrance of this phenotype is reduced by decreasing starvation temperature. In addition, it is also ameliorated in a dose-dependent way by exposure to the antibiotic doxycyclin either during starvation or during subsequent refeeding. Since, in eukaryotic cells, doxycyclin specifically blocks mitochondrial translation, our results suggest that daf-18 and shc-1;daf-18 mutants fail to adapt mitochondrial activity to reduced nutritional availability during early larval developing.
Collapse
Affiliation(s)
- Tim Wolf
- Faculty of Biology, Institute of Biology III, Albert-Ludwigs-University, D-79104 Freiburg, Germany
| | - Wenjing Qi
- Faculty of Biology, Institute of Biology III, Albert-Ludwigs-University, D-79104 Freiburg, Germany
| | - Verena Schindler
- Faculty of Biology, Institute of Biology III, Albert-Ludwigs-University, D-79104 Freiburg, Germany
| | - Eva Diana Runkel
- Faculty of Biology, Institute of Biology III, Albert-Ludwigs-University, D-79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University, D-79104 Freiburg, Germany
| | - Ralf Baumeister
- Faculty of Biology, Institute of Biology III, Albert-Ludwigs-University, D-79104 Freiburg, Germany; Faculty of Medicine, ZBMZ Centre of Biochemistry and Molecular Cell Research, Albert-Ludwigs-University, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University, D-79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University, D-79104 Freiburg, Germany.
| |
Collapse
|
28
|
Alic N, Tullet JM, Niccoli T, Broughton S, Hoddinott MP, Slack C, Gems D, Partridge L. Cell-nonautonomous effects of dFOXO/DAF-16 in aging. Cell Rep 2014; 6:608-16. [PMID: 24508462 PMCID: PMC3969275 DOI: 10.1016/j.celrep.2014.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/16/2013] [Accepted: 01/14/2014] [Indexed: 11/27/2022] Open
Abstract
Drosophila melanogaster and Caenorhabditis elegans each carry a single representative of the Forkhead box O (FoxO) family of transcription factors, dFOXO and DAF-16, respectively. Both are required for lifespan extension by reduced insulin/Igf signaling, and their activation in key tissues can extend lifespan. Aging of these tissues may limit lifespan. Alternatively, FoxOs may promote longevity cell nonautonomously by signaling to themselves (FoxO to FoxO) or other factors (FoxO to other) in distal tissues. Here, we show that activation of dFOXO and DAF-16 in the gut/fat body does not require dfoxo/daf-16 elsewhere to extend lifespan. Rather, in Drosophila, activation of dFOXO in the gut/fat body or in neuroendocrine cells acts on other organs to promote healthy aging by signaling to other, as-yet-unidentified factors. Whereas FoxO-to-FoxO signaling appears to be required for metabolic homeostasis, our results pinpoint FoxO-to-other signaling as an important mechanism through which localized FoxO activity ameliorates aging. dfoxo/daf-16 is not required beyond gut/adipose tissue to counteract aging Neuroendcrine dFOXO extends lifespan independently of dfoxo in other cell types In contrast, gut/adipose dFOXO requires dfoxo in other tissues to alter metabolism
Collapse
Affiliation(s)
- Nazif Alic
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Jennifer M Tullet
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Susan Broughton
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Matthew P Hoddinott
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| | - Cathy Slack
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - David Gems
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.
| |
Collapse
|
29
|
Riesen M, Feyst I, Rattanavirotkul N, Ezcurra M, Tullet JM, Papatheodorou I, Ziehm M, Au C, Gilliat AF, Hellberg J, Thornton JM, Gems D. MDL-1, a growth- and tumor-suppressor, slows aging and prevents germline hyperplasia and hypertrophy in C. elegans. Aging (Albany NY) 2014; 6:98-117. [PMID: 24531613 PMCID: PMC3969279 DOI: 10.18632/aging.100638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/14/2014] [Indexed: 11/25/2022]
Abstract
In C. elegans, increased lifespan in daf-2 insulin/IGF-1 receptor mutants is accompanied by up-regulation of the MDL-1 Mad basic helix-loop-helix leucine zipper transcription factor. Here we describe the role of mdl-1 in C. elegans germline proliferation and aging. The deletion allele mdl-1(tm311) shortened lifespan, and did so significantly more so in long-lived daf-2 mutants implying that mdl-1(+) contributes to effects of daf-2 on lifespan. mdl-1 mutant hermaphrodites also lay increased numbers of unfertilized oocytes. During aging, unfertilized oocytes in the uterus develop into tumors, whose development was accelerated by mdl-1(tm311). Opposite phenotypes were seen in daf-2 mutants, i.e. mdl-1 and daf-2 mutant germlines are hyperplastic and hypoplastic, respectively. Thus, MDL-1, like its mammalian orthologs, is an inhibitor of cell proliferation and growth that slows progression of an age-related pathology in C. elegans (uterine tumors). In addition, intestine-limited rescue of mdl-1 increased lifespan but not to wild type levels. Thus, mdl-1 likely acts both in the intestine and the germline to influence age-related mortality.
Collapse
Affiliation(s)
- Michèle Riesen
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Inna Feyst
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Nattaphong Rattanavirotkul
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Ezcurra
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jennifer M.A. Tullet
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Irene Papatheodorou
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Matthias Ziehm
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Catherine Au
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ann F. Gilliat
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Josephine Hellberg
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Janet M. Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
30
|
Estevez AO, Morgan KL, Szewczyk NJ, Gems D, Estevez M. The neurodegenerative effects of selenium are inhibited by FOXO and PINK1/PTEN regulation of insulin/insulin-like growth factor signaling in Caenorhabditis elegans. Neurotoxicology 2014; 41:28-43. [PMID: 24406377 PMCID: PMC3979119 DOI: 10.1016/j.neuro.2013.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 12/12/2022]
Abstract
Insulin/insulin-like signaling reduction alters selenium-induced neurodegeneration. Selenium induces nuclear translocation of DAF-16/FOXO3a. DAF-16 overexpression decreases GABAergic and cholinergic motor neuron degeneration. Loss of DAF-18/PTEN increases sensitivity to selenium-induced movement deficits. Glutathione requires DAF-18/PINK-1 to improve selenium-induced movement deficits.
Exposures to high levels of environmental selenium have been associated with motor neuron disease in both animals and humans and high levels of selenite have been identified in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). We have shown previously that exposures to high levels of sodium selenite in the environment of Caenorhabditis elegans adult animals can induce neurodegeneration and cell loss resulting in motor deficits and death and that this is at least partially caused by a reduction in cholinergic signaling across the neuromuscular junction. Here we provide evidence that reduction in insulin/insulin-like (IIS) signaling alters response to high dose levels of environmental selenium which in turn can regulate the IIS pathway. Most specifically we show that nuclear localization and thus activation of the DAF-16/forkhead box transcription factor occurs in response to selenium exposure although this was not observed in motor neurons of the ventral cord. Yet, tissue specific expression and generalized overexpression of DAF-16 can partially rescue the neurodegenerative and behavioral deficits observed with high dose selenium exposures in not only the cholinergic, but also the GABAergic motor neurons. In addition, two modifiers of IIS signaling, PTEN (phosphatase and tensin homolog, deleted on chromosome 10) and PINK1 (PTEN-induced putative kinase 1) are required for the cellular antioxidant reduced glutathione to mitigate the selenium-induced movement deficits. Studies have suggested that environmental exposures can lead to ALS or other neurological diseases and this model of selenium-induced neurodegeneration developed in a genetically tractable organism provides a tool for examining the combined roles of genetics and environment in the neuro-pathologic disease process.
Collapse
Affiliation(s)
- Annette O Estevez
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Kathleen L Morgan
- Veterans Affairs Pittsburgh Healthcare System, Research and Development (151U), University Drive C, Pittsburgh, PA 15240, USA.
| | - Nathaniel J Szewczyk
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - David Gems
- Institute of Healthy Ageing, and Department of Genetics, Evolution, and Environment, University College London, The Darwin Building, Gower Street, London WC1E 6BT, UK.
| | - Miguel Estevez
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ 85724, USA; Veterans Affairs Pittsburgh Healthcare System, Research and Development (151U), University Drive C, Pittsburgh, PA 15240, USA.
| |
Collapse
|