1
|
Kumar M, Sahoo SS, Jamaluddin MFB, Tanwar PS. Loss of liver kinase B1 in human seminoma. Front Oncol 2023; 13:1081110. [PMID: 36969070 PMCID: PMC10036840 DOI: 10.3389/fonc.2023.1081110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Testicular cancer is a common malignancy of young males and is believed to be originated from defective embryonic or adult germ cells. Liver kinase B1 (LKB1) is a serine/threonine kinase and a tumor suppressor gene. LKB1 is a negative regulator of the mammalian target of rapamycin (mTOR) pathway, often inactivated in many human cancer types. In this study, we investigated the involvement of LKB1 in the pathogenesis of testicular germ cell cancer. We performed immunodetection of LKB1 protein in human seminoma samples. A 3D culture model of human seminoma was developed from TCam-2 cells, and two mTOR inhibitors were tested for their efficacy against these cancer cells. Western blot and mTOR protein arrays were used to show that these inhibitors specifically target the mTOR pathway. Examination of LKB1 showed reduced expression in germ cell neoplasia in situ lesions and seminoma compared to adjacent normal-appearing seminiferous tubules where the expression of this protein was present in the majority of germ cell types. We developed a 3D culture model of seminoma using TCam-2 cells, which also showed reduced levels of LKB1 protein. Treatment of TCam-2 cells in 3D with two well-known mTOR inhibitors resulted in reduced proliferation and survival of TCam-2 cells. Overall, our results support that downregulation or loss of LKB1 marks the early stages of the pathogenesis of seminoma, and the suppression of downstream signaling to LKB1 might be an effective therapeutic strategy against this cancer type.
Collapse
|
2
|
Bovine and human endometrium-derived hydrogels support organoid culture from healthy and cancerous tissues. Proc Natl Acad Sci U S A 2022; 119:e2208040119. [PMID: 36279452 PMCID: PMC9636948 DOI: 10.1073/pnas.2208040119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organoid technology has provided unique insights into human organ development, function, and diseases. Patient-derived organoids are increasingly used for drug screening, modeling rare disorders, designing regenerative therapies, and understanding disease pathogenesis. However, the use of Matrigel to grow organoids represents a major challenge in the clinical translation of organoid technology. Matrigel is a poorly defined mixture of extracellular matrix proteins and growth factors extracted from the Engelbreth–Holm–Swarm mouse tumor. The extracellular matrix is a major driver of multiple cellular processes and differs significantly between tissues as well as in healthy and disease states of the same tissue. Therefore, we envisioned that the extracellular matrix derived from a native healthy tissue would be able to support organoid growth akin to organogenesis in vivo. Here, we have developed hydrogels from decellularized human and bovine endometrium. These hydrogels supported the growth of mouse and human endometrial organoids, which was comparable to Matrigel. Organoids grown in endometrial hydrogels were proteomically more similar to the native tissue than those cultured in Matrigel. Proteomic and Raman microspectroscopy analyses showed that the method of decellularization affects the biochemical composition of hydrogels and, subsequently, their ability to support organoid growth. The amount of laminin in hydrogels correlated with the number and shape of organoids. We also demonstrated the utility of endometrial hydrogels in developing solid scaffolds for supporting high-throughput, cell culture–based applications. In summary, endometrial hydrogels overcome a major limitation of organoid technology and greatly expand the applicability of organoids to understand endometrial biology and associated pathologies.
Collapse
|
3
|
Han TY, Ma B, Hu B, Xiang LB, Liu XW. Effects of Rapamycin Combined with Cisplatin on Tumor Necrosis Factor TNF-α in MG-63 Cells. Cell Transplant 2021; 29:963689720926153. [PMID: 32686984 PMCID: PMC7563936 DOI: 10.1177/0963689720926153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rapamycin (RAPA) and cisplatin (CDDP) are used as clinical drugs in the treatment of various tumors, but there are few studies on the combination of RAPA and CDDP. Tumor necrosis factor α (TNF-α) plays an important role in tumorigenesis and development. This study is to explore the effects of RAPA combined with CDDP on the expression of TNF-α in osteosarcoma MG-63 cells. MG-63 cells were routinely cultured and divided into a control group, a RAPA group (20 μM), a CDDP group (20 μM), and a RAPA + CDDP group (20 μM + 20 μM). The four groups were treated with drugs for 24 and 48 h, respectively. Real-time polymerase chain reaction (PCR), Western blot (WB), and immunocytochemistry (ICC) were adopted to detect the expression of TNF-α gene and protein. The results of PCR showed that both the separate drug use and drug combination could significantly lower the relative expression quantity of TNF-α gene (*P < 0.5), but the combination was more effective (*P < 0.5); the expression quantity of TNF-α gene in the RAPA + CDDP group at 48 h was much lower than that at 24 h (***P < 0.001). The results of WB showed that both the separate drug use and drug combination could significantly lower the relative expression quantity of TNF-α protein, and the combination was more effective than separate drug use (*P < 0.05) and more effective at 48 h (***P < 0.001); the expression quantity of TNF-α protein in the same group at 48 h was much lower than that at 24 h (*P < 0.05). The results of ICC showed that both the separate drug use and drug combination could significantly lower the relative expression quantity of TNF-α protein, and the combination was more effective than separate drug use (**P < 0.01) and more effective at 48 h (***P < 0.001); the expression quantity of TNF-α protein in the same group at 48 h was much lower than that at 24 h (**P < 0.01). RAPA combined with CDDP can significantly reduce the expression of TNF-α in MG-63 cells, which is time dependent.
Collapse
Affiliation(s)
- Tian-Yu Han
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.,Both the authors contributed equally to this article
| | - Bin Ma
- Division of Spine Surgery, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Both the authors contributed equally to this article
| | - Bing Hu
- Department of Medical Oncology, Shanghai Minhang TCM Hospital (Shanghai Minhang Hospital of Traditional Chinese Medicine), China
| | - Liang-Bi Xiang
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xin-Wei Liu
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Ghosh A, Syed SM, Kumar M, Carpenter TJ, Teixeira JM, Houairia N, Negi S, Tanwar PS. In Vivo Cell Fate Tracing Provides No Evidence for Mesenchymal to Epithelial Transition in Adult Fallopian Tube and Uterus. Cell Rep 2021; 31:107631. [PMID: 32402291 PMCID: PMC8094408 DOI: 10.1016/j.celrep.2020.107631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
The mesenchymal to epithelial transition (MET) is thought to be involved in the maintenance, repair, and carcinogenesis of the fallopian tube (oviduct) and uterine epithelium. However, conclusive evidence for the conversion of mesenchymal cells to epithelial cells in these organs is lacking. Using embryonal cell lineage tracing with reporters driven by mesenchymal cell marker genes of the female reproductive tract (AMHR2, CSPG4, and PDGFRβ), we show that these reporters are also expressed by some oviductal and uterine epithelial cells at birth. These mesenchymal reporter-positive epithelial cells are maintained in adult mice across multiple pregnancies, respond to ovarian hormones, and form organoids. However, no labeled epithelial cells are present in any oviductal or uterine epithelia when mesenchymal cell labeling was induced in adult mice. Organoids developed from mice labeled in adulthood were also negative for mesenchymal reporters. Collectively, our work found no definitive evidence of MET in the adult fallopian tube and uterine epithelium. Mesenchymal to epithelial transition (MET) is postulated to be involved in the maintenance and regeneration of the epithelium of female reproductive organs. Here, Ghosh et al. report no definitive evidence of MET in the adult epithelium of oviduct and uterus using in vivo cell lineage tracing and organoids.
Collapse
Affiliation(s)
- Arnab Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Shafiq M Syed
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Manish Kumar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Tyler J Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Nathaniel Houairia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Sumedha Negi
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Pradeep S Tanwar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
5
|
Rackley BB, Kiely E, Seong CS, Rupji M, Gilbert-Ross M. Oncogenic Ras cooperates with knockdown of the tumor suppressor Lkb1 by RNAi to override organ size limits in Drosophila wing tissue. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000223. [PMID: 32550498 PMCID: PMC7252341 DOI: 10.17912/micropub.biology.000223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Briana Brown Rackley
- Department of Hematology and Medical Oncology, Emory University School of Medicine
| | - Evan Kiely
- Department of Hematology and Medical Oncology, Emory University School of Medicine
| | - Chang-Soo Seong
- Department of Hematology and Medical Oncology, Emory University School of Medicine
| | - Manali Rupji
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute of Emory University
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Emory University School of Medicine,
Correspondence to: Melissa Gilbert-Ross ()
| |
Collapse
|
6
|
Syed SM, Kumar M, Ghosh A, Tomasetig F, Ali A, Whan RM, Alterman D, Tanwar PS. Endometrial Axin2 + Cells Drive Epithelial Homeostasis, Regeneration, and Cancer following Oncogenic Transformation. Cell Stem Cell 2019; 26:64-80.e13. [PMID: 31883834 DOI: 10.1016/j.stem.2019.11.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/09/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023]
Abstract
The remarkable regenerative capacity of the endometrium (the inner lining of the uterus) is essential for the sustenance of mammalian life. Over the years, the role of stem cells in endometrial functions and their pathologies has been suggested; however, the identity and location of such stem cells remain unclear. Here, we used in vivo lineage tracing to show that endometrial epithelium self-renews during development, growth, and regeneration and identified Axin2, a classical Wnt reporter gene, as a marker of long-lived bipotent epithelial progenitors that reside in endometrial glands. Axin2-expressing cells are responsible for epithelial regeneration in vivo and for endometrial organoid development in vitro. Ablation of Axin2+ cells severely impairs endometrial homeostasis and compromises its regeneration. More important, upon oncogenic transformation, these cells can lead to endometrial cancer. These findings provide valuable insights into the cellular basis of endometrial functions and diseases.
Collapse
Affiliation(s)
- Shafiq M Syed
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Manish Kumar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Arnab Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Florence Tomasetig
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ayesha Ali
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Renee M Whan
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dariusz Alterman
- School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Pradeep S Tanwar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
7
|
Atta IS. Study of the Association of Phosphatase and Tensin Homolog and p27 Expressions in Endometrial Hyperplasia and Carcinoma. J Microsc Ultrastruct 2019; 7:109-116. [PMID: 31548921 PMCID: PMC6753695 DOI: 10.4103/jmau.jmau_54_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction: Phosphatase and tensin homolog (PTEN) and p27 are commonly mutated gene in endometrial carcinoma (EC) and their association in development of EC has not been fully understood. The Aim of the Study: The aim is to clarify the association of PTEN and p27 in EC and their correlation with the histologic grade. Material and Methods: Paraffin-embedded 20 and 50 specimens representing EH and EC were collected, cut into 4 mm thick and stained with H&E stain for histopathological examination. All EC cases were graded according to the percentage of nonsquamous solid pattern into 3 grades. Immunohistochemical (IHC) analyses were done using a rabbit polyclonal anti-PTEN antibody and a rabbit monoclonal anti-p27 antibody. Evaluation of reactivity was categorized: 1+ (weak) = less than 10%, 2+ (moderate) = 11 to 50% and 3+ (strong) = more than 50% tumor. t-test, one way ANOVA and chi-square test were used in the statistical analysis. Results: Loss of PTEN was seen in 7/20 (35%) and 29/50 (58%) of EH and EC cases with significance (P =0.01824), opposite to 17/20 (85%) and 25/50 (50%) of p27 (P = 0.00334). Both antibodies showed significance in EH cases only (P = 0.00019). No correlation with the histological grade for both antibodies. Four major categories were formulated; PTEN+/p27+ (n = 2, 14, 10%, 28%), PTEN+/p27- (n = 5, 7; 25% and 14%), PTEN-/p27+ (n = 1, 11; 5%, 22%) PTEN-/p27- (n = 12, 18; 60%, 36%) cases of EH and EC, respectively with no significant difference obtained. Conclusion: Not all cases of PTEN negative EC showing p27 loss and vice versa. Despite many studies reacted with PTEN and p27 expression in EC, none of them is confirmatory to adjust the correlation between them in EC. So, more studies must be done to correlate between the degree of PTEN loss and p27 comprising all subtypes and grading of EC.
Collapse
Affiliation(s)
- Ihab Shafek Atta
- Department of Pathology, Faculty of Medicine, Assuit, Al-Azhar University, Egypt
| |
Collapse
|
8
|
He L, Wu MZ, Wang XB, Qiu XS, Wang EH, Wu GP. Tumor Suppressor LKB1 inhibits both the mRNA Expression and the Amplification of hTERC by the Phosphorylation of YAP in Lung Cancer Cells. J Cancer 2019; 10:3632-3638. [PMID: 31333780 PMCID: PMC6636284 DOI: 10.7150/jca.33237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Liver kinase B1 (LKB1) is a critical tumor suppressor that is frequently mutated in human cancers. LKB1 has serine/threonine protein kinase activity, which regulates gene expression by phosphorylation of Yes-Associated protein (YAP). The phosphorylation-dependent YAP shuttling is critically important intracellular mechanism in the Hippo pathway. In our previous study, we found that the amplification of hTERC was significant higher in the bronchial brushing cells of patients with lung cancer, however, the underlying molecular mechanism is not clear. In this study, we showed that LKB1 overexpression could phosphorylate YAP and promoted its nuclear rejection. Silencing LKB1 could dephosphorylate YAP and promoted its entry into the nucleus. Here, we found that LKB1 inhibited the mRNA expression and the amplification of hTERC. YAP further up-regulated hTERC at mRNA and gene amplification levels. Therefore, we suggest that LKB1 may inhibit the expression and amplification of hTERC through the axis of LKB1-pYAP(YAP)-hTERC.
Collapse
Affiliation(s)
- Ling He
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Ming-Zhe Wu
- Department of Gynecology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xu-Bo Wang
- Department of Pathology, Xuzhou City Hospital of TCM, Nanjing University of Chinese Medicine, Xuzhou 221000, China
| | - Xue-Shan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - En-Hua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | - Guang-Ping Wu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| |
Collapse
|
9
|
Al-Juboori AAA, Ghosh A, Jamaluddin MFB, Kumar M, Sahoo SS, Syed SM, Nahar P, Tanwar PS. Proteomic Analysis of Stromal and Epithelial Cell Communications in Human Endometrial Cancer Using a Unique 3D Co-Culture Model. Proteomics 2019; 19:e1800448. [PMID: 30865368 DOI: 10.1002/pmic.201800448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Indexed: 12/16/2022]
Abstract
Epithelial and stromal communications are essential for normal uterine functions and their dysregulation contributes to the pathogenesis of many diseases including infertility, endometriosis, and cancer. Although many studies have highlighted the advantages of culturing cells in 3D compared to the conventional 2D culture system, one of the major limitations of these systems is the lack of incorporation of cells from non-epithelial lineages. In an effort to develop a culture system incorporating both stromal and epithelial cells, 3D endometrial cancer spheroids are developed by co-culturing endometrial stromal cells with cancerous epithelial cells. The spheroids developed by this method are phenotypically comparable to in vivo endometrial cancer tissue. Proteomic analysis of the co-culture spheroids comparable to human endometrial tissue revealed 591 common proteins and canonical pathways that are closely related to endometrium biology. To determine the feasibility of using this model for drug screening, the efficacy of tamoxifen and everolimus is tested. In summary, a unique 3D model system of human endometrial cancer is developed that will serve as the foundation for the further development of 3D culture systems incorporating different cell types of the human uterus for deciphering the contributions of non-epithelial cells present in cancer microenvironment.
Collapse
Affiliation(s)
- Aminah Ali Abid Al-Juboori
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Arnab Ghosh
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Muhammad Fairuz Bin Jamaluddin
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Manish Kumar
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Subhransu Sekhar Sahoo
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Shafiq Mukhtar Syed
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Pravin Nahar
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, 2308, Australia.,Department of Maternity and Gynecology, John Hunter Hospital, New Lambton Heights, New South Wales, 2305, Australia
| | - Pradeep Singh Tanwar
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
10
|
The Effect of LKB1 Activity on the Sensitivity to PI3K/mTOR Inhibition in Non-Small Cell Lung Cancer. J Thorac Oncol 2019; 14:1061-1076. [PMID: 30825612 DOI: 10.1016/j.jtho.2019.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/28/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Liver kinase B1 (LKB1), also called serine/threonine kinase 11 (STK11), is a tumor suppressor that functions as master regulator of cell growth, metabolism, survival, and polarity. Approximately 30% to 35% of patients with NSCLC possess inactivated liver kinase B1 gene (LKB1), and these patients respond poorly to anti-programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) immunotherapy. Therefore, novel therapies targeting NSCLC with LKB1 loss are needed. METHODS We used a new in silico signaling analysis method to identify the potential therapeutic targets and reposition drugs by integrating gene expression data with the Kyoto Encyclopedia of Genes and Genomes signaling pathways. LKB1 wild-type and LKB1-deficient NSCLC cell lines, including knockout clones generated by clustered regularly interspaced short pallindromic repeats-Cas9, were treated with inhibitors of mechanistic target of rapamycin kinase (mTOR) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and a dual inhibitor. RESULTS In silico experiments showed that inhibition of both mTOR and PI3K can be synergistically effective in LKB1-deficient NSCLC. In vitro and in vivo experiments showed the synergistic effect of mTOR inhibition and PI3K inhibition in LKB1-mutant NSCLC cell lines. The sensitivity to dual inhibition of mTOR and PI3K is higher in LKB1-mutant cell lines than in wild-type cell lines. A higher compensatory increase in Akt phosphorylation after rapamycin treatment of LKB1-deficient cells than after rapamycin treatment of LKB1 wild-type cells is responsible for the synergistic effect of mTOR and PI3K inhibition. Dual inhibition of mTOR and PI3K resulted in a greater decrease in protein expression of cell cycle-regulating proteins in LKB1 knockout cells than in LKB1 wild-type cells. CONCLUSION Dual molecular targeted therapy for mTOR and PI3K may be a promising therapeutic strategy in the specific population of patients with lung cancer with LKB1 loss.
Collapse
|
11
|
Gastiazoro MP, Guerrero-Schimpf M, Durando M, Lazzarino GP, Andreoli MF, Zierau O, Luque EH, Ramos JG, Varayoud J. Induction of uterine hyperplasia after cafeteria diet exposure. Mol Cell Endocrinol 2018; 477:112-120. [PMID: 29908751 DOI: 10.1016/j.mce.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/16/2022]
Abstract
Our aim was to evaluate whether chronic administration of CAF affects the uterus and induces the morphological and molecular changes associated with endometrial hyperplasia. Female Wistar rats exposed to CAF from weaning for 20 weeks displayed increased energy intake, body weight and fat depots, but did not develop metabolic syndrome. The adult uteri showed an increase in glandular volume fraction and stromal area. The epithelial proliferation rate and protein expression of oestrogen receptor alpha (ERα) were also increased. The CAF diet enhanced leptin serum levels and the long form of leptin receptor (Ob-Rb) mRNA expression in the uterus. No changes were detected in either insulin serum levels or those of insulin growth factor I (IGF-I) mRNA expression. However the levels of IGF-I receptor (IGF-IR) mRNA were lower in CAF-fed animals. Overall, the results indicate that our rat model of the CAF diet produces morphological and molecular changes associated with uterine hyperplasia and could predispose to endometrial carcinogenesis.
Collapse
Affiliation(s)
- María Paula Gastiazoro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Marlise Guerrero-Schimpf
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Gisela Paola Lazzarino
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - María Florencia Andreoli
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Oliver Zierau
- Molecular Cell Physiology and Endocrinology, Institute for Zoology, Technische Universität Dresden, 01062, Dresden, Germany.
| | - Enrique Hugo Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Jorge Guillermo Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| |
Collapse
|
12
|
The Emerging Role of the Microenvironment in Endometrial Cancer. Cancers (Basel) 2018; 10:cancers10110408. [PMID: 30380719 PMCID: PMC6266917 DOI: 10.3390/cancers10110408] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer (EC) is one of the most frequently diagnosed cancers in women, and despite recent therapeutic advances, in many cases, treatment failure results in cancer recurrence, metastasis, and death. Current research demonstrates that the interactive crosstalk between two discrete cell types (tumor and stroma) promotes tumor growth and investigations have uncovered the dual role of the stromal cells in the normal and cancerous state. In contrast to tumor cells, stromal cells within the tumor microenvironment (TME) are genetically stable. However, tumor cells modify adjacent stromal cells in the TME. The alteration in signaling cascades of TME from anti-tumorigenic to pro-tumorigenic enhances metastatic potential and/or confers therapeutic resistance. Therefore, the TME is a fertile ground for the development of novel therapies. Furthermore, disrupting cancer-promoting signals from the TME or re-educating stromal cells may be an effective strategy to impair metastatic progression. Here, we review the paradoxical role of different non-neoplastic stromal cells during specific stages of EC progression. We also suggest that the inhibition of microenvironment-derived signals may suppress metastatic EC progression and offer novel potential therapeutic interventions.
Collapse
|
13
|
Liang X, Daikoku T, Terakawa J, Ogawa Y, Joshi AR, Ellenson LH, Sun X, Dey SK. The uterine epithelial loss of Pten is inefficient to induce endometrial cancer with intact stromal Pten. PLoS Genet 2018; 14:e1007630. [PMID: 30142194 PMCID: PMC6126871 DOI: 10.1371/journal.pgen.1007630] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/06/2018] [Accepted: 08/14/2018] [Indexed: 11/19/2022] Open
Abstract
Mutation of the tumor suppressor Pten often leads to tumorigenesis in various organs including the uterus. We previously showed that Pten deletion in the mouse uterus using a Pgr-Cre driver (Ptenf/fPgrCre/+) results in rapid development of endometrial carcinoma (EMC) with full penetration. We also reported that Pten deletion in the stroma and myometrium using Amhr2-Cre failed to initiate EMC. Since the Ptenf/fPgrCre/+ uterine epithelium was primarily affected by tumorigenesis despite its loss in both the epithelium and stroma, we wanted to know if Pten deletion in epithelia alone will induce tumorigenesis. We found that mice with uterine epithelial loss of Pten under a Ltf-iCre driver (Ptenf/f/LtfCre/+) develop uterine complex atypical hyperplasia (CAH), but rarely EMC even at 6 months of age. We observed that Ptenf/fPgrCre/+ uteri exhibit a unique population of cytokeratin 5 (CK5) and transformation related protein 63 (p63)-positive epithelial cells; these cells mark stratified epithelia and squamous differentiation. In contrast, Ptenf/fLtfCre/+ hyperplastic epithelia do not undergo stratification, but extensive epithelial cell apoptosis. This increased apoptosis is associated with elevation of TGFβ levels and activation of downstream effectors, SMAD2/3 in the uterine stroma. Our results suggest that stromal PTEN via TGFβ signaling restrains epithelial cell transformation from hyperplasia to carcinoma. In conclusion, this study, using tissue-specific deletion of Pten, highlights the epithelial-mesenchymal cross-talk in the genesis of endometrial carcinoma.
Collapse
Affiliation(s)
- Xiaohuan Liang
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Takiko Daikoku
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Institute for Experimental Animals, Kanazawa University Advanced Science Research Center, Kanazawa, Ishikawa, Japan
| | - Jumpei Terakawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Institute for Experimental Animals, Kanazawa University Advanced Science Research Center, Kanazawa, Ishikawa, Japan
| | - Yuya Ogawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ayesha R. Joshi
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital-Weill Medical College of Cornell University, New York, New York, United States of America
| | - Lora H. Ellenson
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital-Weill Medical College of Cornell University, New York, New York, United States of America
| | - Xiaofei Sun
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (XS); (SKD)
| | - Sudhansu K. Dey
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail: (XS); (SKD)
| |
Collapse
|
14
|
Overactive mTOR signaling leads to endometrial hyperplasia in aged women and mice. Oncotarget 2018; 8:7265-7275. [PMID: 27980219 PMCID: PMC5352319 DOI: 10.18632/oncotarget.13919] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/05/2016] [Indexed: 01/29/2023] Open
Abstract
During aging, uncontrolled epithelial cell proliferation in the uterus results in endometrial hyperplasia and/or cancer development. The mTOR signaling pathway is one of the major regulators of aging as suppression of this pathway prolongs lifespan in model organisms. Genetic alterations in this pathway via mutations and/or amplifications are often encountered in endometrial cancers. However, the exact contribution of mTOR signaling and uterine aging to endometrial pathologies is currently unclear. This study examined the role of mTOR signaling in uterine aging and its implications in the development of endometrial hyperplasia. The hyperplastic endometrium of both postmenopausal women and aged mice exhibited elevated mTOR activity as seen with increased expression of the pS6 protein. Analysis of uteri from Pten heterozygous and Pten overexpressing mice further confirmed that over-activation of mTOR signaling leads to endometrial hyperplasia. Pharmacological inhibition of mTOR signaling using rapamycin treatment suppressed endometrial hyperplasia in aged mice. Furthermore, treatment with mTOR inhibitors reduced colony size and proliferation of a PTEN negative endometrial cancer cell line in 3D culture. Collectively, this study suggests that hyperactivation of the mTOR pathway is involved in the development of endometrial hyperplasia in aged women and mice.
Collapse
|
15
|
Nagendra PB, Goad J, Nielsen S, Rassam L, Lombard JM, Nahar P, Tanwar PS. Ovarian hormones through Wnt signalling regulate the growth of human and mouse ovarian cancer initiating lesions. Oncotarget 2018; 7:64836-64853. [PMID: 27588493 PMCID: PMC5323120 DOI: 10.18632/oncotarget.11711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/21/2016] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer (OC) is the most deadly gynaecological disease largely because the majority of patients are asymptomatic and diagnosed at later stages when cancer has spread to other vital organs. Therefore, the initial stages of this disease are poorly characterised. Women with BRCA1/2 mutations have a genetic predisposition for developing OC, but not all of these women develop the disease. Epidemiological findings show that lifestyle factors such as contraceptive use and pregnancy, a progesterone dominant state, decrease the risk of getting OC. How ovarian hormones modify the risk of OC is currently unclear. Our study identifies activated Wnt signalling to be a marker for precursor lesions of OC and successfully develops a mouse model that mimics the earliest events in pathogenesis of OC by constitutively activating βcatenin. Using this model and human OC cells, we show that oestrogen promotes and progesterone suppresses the growth of OC cells.
Collapse
Affiliation(s)
- Prathima B Nagendra
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Jyoti Goad
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sarah Nielsen
- Hunter Cancer Biobank, University of Newcastle, Callaghan, New South Wales, Australia
| | - Loui Rassam
- Hunter Cancer Biobank, University of Newcastle, Callaghan, New South Wales, Australia.,School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Area Pathology Services, Calvary Mater Newcastle, Waratah, New South Wales, Australia
| | - Janine M Lombard
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Medical Oncology, Gynaecology Oncology, Calvary Mater Newcastle, Waratah, New South Wales, Australia
| | - Pravin Nahar
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,Gynaecology and Obstetrics, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pradeep S Tanwar
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
16
|
Ollila S, Domènech-Moreno E, Laajanen K, Wong IP, Tripathi S, Pentinmikko N, Gao Y, Yan Y, Niemelä EH, Wang TC, Viollet B, Leone G, Katajisto P, Vaahtomeri K, Mäkelä TP. Stromal Lkb1 deficiency leads to gastrointestinal tumorigenesis involving the IL-11-JAK/STAT3 pathway. J Clin Invest 2017; 128:402-414. [PMID: 29202476 DOI: 10.1172/jci93597] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Germline mutations in the gene encoding tumor suppressor kinase LKB1 lead to gastrointestinal tumorigenesis in Peutz-Jeghers syndrome (PJS) patients and mouse models; however, the cell types and signaling pathways underlying tumor formation are unknown. Here, we demonstrated that mesenchymal progenitor- or stromal fibroblast-specific deletion of Lkb1 results in fully penetrant polyposis in mice. Lineage tracing and immunohistochemical analyses revealed clonal expansion of Lkb1-deficient myofibroblast-like cell foci in the tumor stroma. Loss of Lkb1 in stromal cells was associated with induction of an inflammatory program including IL-11 production and activation of the JAK/STAT3 pathway in tumor epithelia concomitant with proliferation. Importantly, treatment of LKB1-defcient mice with the JAK1/2 inhibitor ruxolitinib dramatically decreased polyposis. These data indicate that IL-11-mediated induction of JAK/STAT3 is critical in gastrointestinal tumorigenesis following Lkb1 mutations and suggest that targeting this pathway has therapeutic potential in Peutz-Jeghers syndrome.
Collapse
Affiliation(s)
- Saara Ollila
- Research Programs Unit, Faculty of Medicine and.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University Medical Center, New York, New York, USA
| | - Eva Domènech-Moreno
- Research Programs Unit, Faculty of Medicine and.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kaisa Laajanen
- Research Programs Unit, Faculty of Medicine and.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Iris Pl Wong
- Research Programs Unit, Faculty of Medicine and.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sushil Tripathi
- Research Programs Unit, Faculty of Medicine and.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Nalle Pentinmikko
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Yajing Gao
- Research Programs Unit, Faculty of Medicine and.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Yan Yan
- Research Programs Unit, Faculty of Medicine and.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Elina H Niemelä
- Research Programs Unit, Faculty of Medicine and.,HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Irving Cancer Research Center, Columbia University Medical Center, New York, New York, USA
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Gustavo Leone
- Department of Cancer Biology and Genetics, College of Medicine, Department of Molecular Genetics, College of Biological Sciences, and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Pekka Katajisto
- HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Dietrich JE, Adeyemi O, Hakim J, Santos X, Bercaw-Pratt JL, Bournat JC, Chen CH, Jorgez CJ. Paratubal Cyst Size Correlates With Obesity and Dysregulation of the Wnt Signaling Pathway. J Pediatr Adolesc Gynecol 2017; 30:571-577. [PMID: 28456695 DOI: 10.1016/j.jpag.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/27/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
STUDY OBJECTIVE Paratubal cysts (PTCs) occur in 7%-10% of women, regardless of age. Although common, PTCs often are found incidentally because of the potential for these cysts to be asymptomatic. The specific aims of the study were to determine if PTC number and size correlated with signs of hyperandrogenism and obesity, as well as to investigate the molecular profiles of these PTCs in samples derived from female adolescents. DESIGN, SETTING, PARTICIPANTS, INTERVENTIONS, AND MAIN OUTCOME MEASURES: A prospective cohort study was performed in a single children's hospital. Girls 18 years of age or younger who underwent surgery for PTC suspected on the basis of the presence of a persistent adnexal cyst on imaging or a concern for adnexal torsion involving a cyst were consented to participate in the study. RESULTS Nineteen patients met enrollment criteria with a mean age at menarche of 11.2 ± 1.3 years. Most of the patients (84%; n = 16/19) had adnexal torsion at the time of diagnosis of PTC. Irregular menses and hirsutism was found in 52.6% (n = 10/19) of the patients, among whom 36.8% (n = 7/19) were obese. The mean PTC size was 10.4 ± 4.3 cm with 57.9% (n = 11/19) of the cohort having more than 1 PTC. When patients were compared on the basis of their body mass index, the size of PTCs was significantly larger in the overweight/obese group. The wingless-type (WNT) signaling members catenin beta 1 (CTNBB1) and wingless-type MMTV integration site family, member 7A (WNT7A) were upregulated in 86% (n = 12/14) and 79% (n = 11/14) of the patients, respectively. WNT7A was significantly upregulated in girls with 1 cyst and low body mass index. CONCLUSION A correlation exists between obesity, cyst size, and hyperandrogenism. Activation of the WNT/CTNBB1 pathway via WNT7A might play a role in PTC development.
Collapse
Affiliation(s)
- Jennifer E Dietrich
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Oluyemisi Adeyemi
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Julie Hakim
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Xiomara Santos
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Jennifer L Bercaw-Pratt
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Juan C Bournat
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas
| | - Ching H Chen
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas
| | - Carolina J Jorgez
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, Texas; Department of Urology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
18
|
LKB1 as a Tumor Suppressor in Uterine Cancer: Mouse Models and Translational Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:211-241. [PMID: 27910069 DOI: 10.1007/978-3-319-43139-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The LKB1 tumor suppressor was identified in 1998 as the gene mutated in the Peutz-Jeghers Syndrome (PJS), a hereditary cancer predisposition characterized by gastrointestinal polyposis and a high incidence of cancers, particularly carcinomas, at a variety of anatomic sites including the gastrointestinal tract, lung, and female reproductive tract. Women with PJS have a high incidence of carcinomas of the uterine corpus (endometrium) and cervix. The LKB1 gene is also somatically mutated in human cancers arising at these sites. Work in mouse models has highlighted the potency of LKB1 as an endometrial tumor suppressor and its distinctive roles in driving invasive and metastatic growth. These in vivo models represent tractable experimental systems for the discovery of underlying biological principles and molecular processes regulated by LKB1 in the context of tumorigenesis and also serve as useful preclinical model systems for experimental therapeutics. Here we review LKB1's known roles in mTOR signaling, metabolism, and cell polarity, with an emphasis on human pathology and mouse models relevant to uterine carcinogenesis, including cancers of the uterine corpus and cervix.
Collapse
|
19
|
Ghosh A, Syed SM, Tanwar PS. In vivo genetic cell lineage tracing reveals that oviductal secretory cells self-renew and give rise to ciliated cells. Development 2017; 144:3031-3041. [PMID: 28743800 DOI: 10.1242/dev.149989] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023]
Abstract
The epithelial lining of the fallopian tube is vital for fertility, providing nutrition to gametes and facilitating their transport. It is composed of two major cell types: secretory cells and ciliated cells. Interestingly, human ovarian cancer precursor lesions primarily consist of secretory cells. It is unclear why secretory cells are the dominant cell type in these lesions. Additionally, the underlying mechanisms governing fallopian tube epithelial homoeostasis are unknown. In the present study, we showed that across the different developmental stages of mouse oviduct, secretory cells are the most frequently dividing cells of the oviductal epithelium. In vivo genetic cell lineage tracing showed that secretory cells not only self-renew, but also give rise to ciliated cells. Analysis of a Wnt reporter mouse model and various Wnt target genes showed that the Wnt signaling pathway is involved in oviductal epithelial homoeostasis. By developing two triple-transgenic mouse models, we showed that Wnt/β-catenin signaling is essential for self-renewal as well as the differentiation of secretory cells. In summary, our results provide mechanistic insight into oviductal epithelial homoeostasis.
Collapse
Affiliation(s)
- Arnab Ghosh
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Shafiq M Syed
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Pradeep S Tanwar
- Gynaecology Oncology Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
20
|
Makker A, Goel MM, Mahdi AA, Bhatia V, Das V, Agarwal A, Pandey A. PI3K/Akt/mTOR signaling & its regulator tumour suppressor genes PTEN & LKB1 in human uterine leiomyomas. Indian J Med Res 2017; 143:S112-S119. [PMID: 27748285 PMCID: PMC5080920 DOI: 10.4103/0971-5916.191808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background & objectives: Despite their high occurrence and associated significant level of morbidity manifesting as spectrum of clinical symptoms, the pathogenesis of uterine leiomyomas (ULs) remains unclear. We investigated expression profile of tumour suppressor genes PTEN (phosphatase and tensin homolog deleted on chromosome ten) and LKB1 (liver kinase B1), and key signaling components of P13K (phosphatidylinositol 3-kinase)/Akt (protein kinase B)/mTOR (mammalian target of rapamycin) pathway in leiomyomas and adjacent normal myometrium in women of reproductive age, to explore the possibility of targeting this pathway for future therapeutic implications. Methods: Real time PCR (qPCR) was used to quantify relative gene expression levels of PTEN, Akt1, Akt2, mTOR, LKB1 and VEGFA (vascular endothelial growth factor A) in leiomyoma as compared to adjacent normal myometrium. Immunohistochemistry was subsequently performed to analyze expression of PTEN, phospho-Akt, phospho-mTOR, phospho-S6, LKB1 and VEGFA in leiomyoma and adjacent normal myometrium. Results: Significant upregulation of PTEN (2.52 fold; P=0.03) and LKB1 (3.93 fold; P=0.01), and downregulation of VEGFA (2.95 fold; P=0.01) genes were observed in leiomyoma as compared to normal myometrium. Transcript levels of Akt1, Akt2 and mTOR did not vary significantly between leiomyoma and myometrium. An increased immunoexpression of PTEN (P=0.015) and LKB1 (P<0.001) and decreased expression of VEGFA (P=0.01) was observed in leiomyoma as compared to myometrium. Immunostaining for activated (phosphorylated) Akt, mTOR and S6 was absent or low in majority of leiomyoma and myometrium. Interpretation & conclusions: Upregulation of PTEN and LKB1 in concert with negative or low levels of activated Akt, mTOR and S6 indicates that PI3K/Akt/mTOR pathway may not play a significant role in pathogenesis of leiomyoma.
Collapse
Affiliation(s)
- Annu Makker
- Post-Graduate Department of Pathology, King George's Medical University, Lucknow, India
| | - Madhu Mati Goel
- Post-Graduate Department of Pathology, King George's Medical University, Lucknow, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, India
| | - Vikram Bhatia
- Post-Graduate Department of Pathology, King George's Medical University, Lucknow, India
| | - Vinita Das
- Department of Obstetrics & Gynecology, King George's Medical University, Lucknow, India
| | - Anjoo Agarwal
- Department of Obstetrics & Gynecology, King George's Medical University, Lucknow, India
| | - Amita Pandey
- Department of Obstetrics & Gynecology, King George's Medical University, Lucknow, India
| |
Collapse
|
21
|
Inhibition of extracellular matrix mediated TGF-β signalling suppresses endometrial cancer metastasis. Oncotarget 2017; 8:71400-71417. [PMID: 29069715 PMCID: PMC5641058 DOI: 10.18632/oncotarget.18069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 01/06/2023] Open
Abstract
Although aggressive invasion and distant metastases are an important cause of morbidity and mortality in patients with endometrial cancer (EC), the requisite events determining this propensity are currently unknown. Using organotypic three-dimensional culture of endometrial cancer cell lines, we demonstrated anti-correlated TGF-β signalling gene expression patterns that arise among extracellular matrix (ECM)-attached cells. TGF-β pathway seemed to be active in EC cells forming non-glandular colonies in 3D-matrix but weaker in glandular colonies. Functionally we found that out of several ECM proteins, fibronectin relatively promotes Smad phosphorylation suggesting a potential role in regulating TGF-β signalling in non-glandular colonies. Importantly, alteration of TGF-β pathway induced EMT and MET in both type of colonies through slug protein. The results exemplify a crucial role of TGF-β pathway during EC metastasis in human patients and inhibition of the pathway in a murine model impaired tumour cell invasion and metastasis depicting an attractive target for therapeutic intervention of malignant tumour progression. These findings provide key insights into the role of ECM-derived TGF-β signalling to promote endometrial cancer metastasis and offer an avenue for therapeutic targeting of microenvironment derived signals along with tumour cells.
Collapse
|
22
|
Jia C, Medina V, Liu C, He L, Qian D, Taojian T, Okamoto CT, Stiles BL. Crosstalk of LKB1- and PTEN-regulated signals in liver morphogenesis and tumor development. Hepatol Commun 2017; 1:153-167. [PMID: 29152604 PMCID: PMC5687583 DOI: 10.1002/hep4.1027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Liver kinase B 1 (LKB1 or STK11) and phosphatase and tensin homologue deleted on chromosome 10 (PTEN) are two tumor suppressors that regulate the mammalian target of rapamycin signaling pathway. Deletion studies show that loss of either Lkb1 (Lkb+/–) or Pten (PtenloxP/loxP; Alb‐Cre+) leads to liver injury and development of hepatocarcinoma. In this study, we investigated the crosstalk of LKB1 and PTEN loss during tumorigenesis and liver development. We show that haplo‐insufficiency of Lkb1 in the liver leads to advanced tumor development in Pten‐null mice (PtenloxP/loxP; LkbloxP/+; Alb‐Cre+). Our analysis shows that LKB1 and PTEN interact with each other in their regulation of fatty acid synthase as well as p21 expression. The combined loss of LKB1 and PTEN (PtenloxP/loxP; LkbloxP/loxP; Alb‐Cre+) also leads to the inability to form zonal structures in the liver. The lack of metabolic zonal structures is consistent with the inability of the livers to store glycogen as well as elevated plasma bilirubin and alanine aminotransferase, indicative of liver dysfunction. These structural and functional defects are associated with cytoplasm distribution of a canalicular membrane protein multidrug resistant protein 2, which is responsible for clearing bilirubin. This observed regulation of multidrug resistant protein 2 by LKB1 likely contributes to the lack of cellular polarity and the early lethality phenotype associated with the homozygous loss of Lkb1 alone or in combination with Pten. Finally, Pten deletion does not rescue the precocious ductal plate formation reported for Lkb1‐deleted livers. Conclusion: Our study dissected the functional and molecular crosstalk of PTEN and LKB1 and elucidated key molecular targets for such interactions. (Hepatology Communications 2017;1:153‐167)
Collapse
Affiliation(s)
- Chengyou Jia
- Department of Nuclear Medicine, Central Laboratory for Medical Research, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Vivian Medina
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Chenchang Liu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Lina He
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Daohai Qian
- Department of Nuclear Medicine, Central Laboratory for Medical Research, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Tu Taojian
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Curtis T Okamoto
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033
| | - Bangyan L Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033.,Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
23
|
Specific deletion of LKB1/ Stk11 in the Müllerian duct mesenchyme drives hyperplasia of the periurethral stroma and tumorigenesis in male mice. Proc Natl Acad Sci U S A 2017; 114:3445-3450. [PMID: 28289208 DOI: 10.1073/pnas.1612284114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly all older men will experience lower urinary tract symptoms associated with benign prostatic hyperplasia (BPH), the etiology of which is not well understood. We have generated Stk11CKO mice by conditional deletion of the liver kinase B1 (LKB1) tumor suppressor gene, Stk11 (serine threonine kinase 11), in the fetal Müllerian duct mesenchyme (MDM), the caudal remnant of which is thought to be assimilated by the urogenital sinus primordial mesenchyme in males during fetal development. We show that MDM cells contribute to the postnatal stromal cells at the dorsal aspect of the prostatic urethra by lineage tracing. The Stk11CKO mice develop prostatic hyperplasia with bladder outlet obstruction, most likely because of stromal expansion. The stromal areas from prostates of Stk11CKO mice, with or without significant expansion, were estrogen receptor positive, which is consistent with both MD mesenchyme-derived cells and the purported importance of estrogen receptors in BPH development and/or progression. In some cases, stromal hyperplasia was admixed with epithelial metaplasia, sometimes with keratin pearls, consistent with squamous cell carcinomas. Mice with conditional deletion of both Stk11 and Pten developed similar features as the Stk11CKO mice, but at a highly accelerated rate, often within the first few months after birth. Western blot analyses showed that the loss of LKB1 and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) induces activation of the phospho-5' adenosine monophosphate-activated protein kinase and phospho-AKT serine/threonine kinase 1 signaling pathways, as well as increased total and active β-catenin. These results suggest that activation of these signaling pathways can induce hyperplasia of the MD stroma, which could play a significant role in the etiology of human BPH.
Collapse
|
24
|
Goad J, Ko YA, Kumar M, Syed SM, Tanwar PS. Differential Wnt signaling activity limits epithelial gland development to the anti-mesometrial side of the mouse uterus. Dev Biol 2017; 423:138-151. [PMID: 28153546 DOI: 10.1016/j.ydbio.2017.01.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 01/10/2023]
Abstract
In mice, implantation always occurs towards the antimesometrial side of the uterus, while the placenta develops at the mesometrial side. What determines this particular orientation of the implanting blastocyst remains unclear. Uterine glands are critical for implantation and pregnancy. In this study, we showed that uterine gland development and active Wnt signaling activity is limited to the antimesometrial side of the uterus. Dkk2, a known antagonist of Wnt signaling, is only present at the mesometrial side of the uterus. Imaging of whole uterus, thick uterine sections (100-1000µm), and individual glands revealed that uterine glands are simple tubes with branches that are directly connected to the luminal epithelium and are only present towards the antimesometrial side of the uterus. By developing a unique mouse model targeting the uterine epithelium, we demonstrated that Wnt/β-catenin signaling is essential for prepubertal gland formation and normal implantation, but dispensable for postpartum gland development and regeneration. Our results for the first time have provided a probable explanation for the antimesometrial bias for implantation.
Collapse
Affiliation(s)
- Jyoti Goad
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Yi-An Ko
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Manish Kumar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Shafiq M Syed
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Pradeep S Tanwar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
25
|
Germ cell specific overactivation of WNT/βcatenin signalling has no effect on folliculogenesis but causes fertility defects due to abnormal foetal development. Sci Rep 2016; 6:27273. [PMID: 27265527 PMCID: PMC4893675 DOI: 10.1038/srep27273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023] Open
Abstract
All the major components of the WNT signalling pathway are expressed in female germ cells and embryos. However, their functional relevance in oocyte biology is currently unclear. We examined ovaries collected from TCFGFP mice, a well-known Wnt reporter mouse model, and found dynamic changes in the Wnt/βcatenin signalling activity during different stages of oocyte development and maturation. To understand the functional importance of Wnt signalling in oocytes, we developed a mouse model with the germ cell-specific constitutive activation of βcatenin using cre recombinase driven by the DEAD (Asp-Glu-Ala-Asp) box protein 4 (Ddx4) gene promoter. Histopathological and functional analysis of ovaries from these mutant mice (Ctnnb1ex3cko) showed no defects in ovarian functions, oocytes, ovulation and early embryonic development. However, breeding of the Ctnnb1ex3cko female mice with males of known fertility never resulted in birth of mutant pups. Examination of uteri from time pregnant mutant females revealed defects in ectoderm differentiation leading to abnormal foetal development and premature death. Collectively, our work has established the role of active WNT/βcatenin signalling in oocyte biology and foetal development, and provides novel insights into the possible mechanisms of complications in human pregnancy such as repeated spontaneous abortion, sudden intrauterine unexpected foetal death syndrome and stillbirth.
Collapse
|
26
|
Kumar M, Syed SM, Taketo MM, Tanwar PS. Epithelial Wnt/βcatenin signalling is essential for epididymal coiling. Dev Biol 2016; 412:234-49. [DOI: 10.1016/j.ydbio.2016.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 02/04/2023]
|
27
|
Neto N, Cunha TM. Do hereditary syndrome-related gynecologic cancers have any specific features? Insights Imaging 2015; 6:545-52. [PMID: 26337050 PMCID: PMC4569599 DOI: 10.1007/s13244-015-0425-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
Abstract Hereditary syndromes are responsible for 10 % of gynaecologic cancers, among which hereditary breast-ovarian cancer and hereditary non-polyposis colon cancer syndromes, known as HBOC and Lynch syndromes respectively, present the highest relative risk. The latter predisposes to endometrial cancer and both contribute to ovarian cancer. Cowden syndrome-related endometrial cancer and the increased risk of ovarian, uterine and cervical cancers associated with Peutz-Jeghers syndrome, are also demonstrated, while Li-Fraumeni syndrome patients are prone to develop ovarian and endometrial cancers. Despite these syndromes’ susceptibility to gynaecologic cancers being consensual, it is still not clear whether these tumours have any epidemiologic, clinical, pathologic or imaging specific features that could allow any of the intervening physicians to raise suspicion of a hereditary syndrome in patients without known genetic risk. Moreover, controversy exists regarding both screening and surveillance schemes. Our literature review provides an updated perspective on the evidence-based specific features of tumours related to each of these syndromes as well as on the most accepted screening and surveillance guidelines. In addition, some illustrative cases are presented. Teaching Points • HBOC syndrome is mainly associated with ovarian HGSC, which arises in fallopian fimbriae. • LS-related endometrial tumours show histological diversity and predilection for lower uterine segment. • LS and CS-related ovarian cancers are mostly of non-serous type, usually endometrioid. • Ovarian SCTAT and cervical adenoma malignum are strongly associated with PJS. • Unfortunately, hereditary gynaecologic cancers do not seem to have distinctive imaging features.
Collapse
Affiliation(s)
- Nelson Neto
- Radiology Department, Centro Hospitalar de Lisboa Ocidental, Estrada do Forte do Alto do Duque, 1449-005, Lisboa, Portugal.
| | - Teresa Margarida Cunha
- Radiology Department, Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, 1009-023, Lisboa, Portugal
| |
Collapse
|
28
|
Momcilovic M, Shackelford DB. Targeting LKB1 in cancer - exposing and exploiting vulnerabilities. Br J Cancer 2015; 113:574-84. [PMID: 26196184 PMCID: PMC4647688 DOI: 10.1038/bjc.2015.261] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/02/2015] [Accepted: 06/07/2015] [Indexed: 12/13/2022] Open
Abstract
The LKB1 tumour suppressor is a serine/threonine kinase that functions as master regulator of cell growth, metabolism, survival and polarity. LKB1 is frequently mutated in human cancers and research spanning the last two decades have begun decoding the cellular pathways deregulated following LKB1 inactivation. This work has led to the identification of vulnerabilities present in LKB1-deficient tumour cells. Pre-clinical studies have now identified therapeutic strategies targeting this subset of tumours that promise to benefit this large patient population harbouring LKB1 mutations. Here, we review the current efforts that are underway to translate pre-clinical discovery of therapeutic strategies targeting LKB1 mutant cancers into clinical practice.
Collapse
Affiliation(s)
- M Momcilovic
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - D B Shackelford
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Kim J, Coffey DM, Ma L, Matzuk MM. The ovary is an alternative site of origin for high-grade serous ovarian cancer in mice. Endocrinology 2015; 156:1975-81. [PMID: 25815421 PMCID: PMC5393339 DOI: 10.1210/en.2014-1977] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 03/24/2015] [Indexed: 01/06/2023]
Abstract
Although named "ovarian cancer," it has been unclear whether the cancer actually arises from the ovary, especially for high-grade serous carcinoma (HGSC), also known as high-grade serous ovarian cancer, the most common and deadliest ovarian cancer. In addition, the tumor suppressor p53 is the most frequently mutated gene in HGSC. However, whether mutated p53 can cause HGSC remains unknown. In this study, we bred a p53 mutation, p53(R172H), into conditional Dicer-Pten double-knockout (DKO) mice, a mouse model duplicating human HGSC, to generate triple-mutant (TKO) mice. Like DKO mice, these TKO mice develop metastatic HGSCs originating from the fallopian tube. Unlike DKO mice, however, even after fallopian tubes are removed in TKO mice, ovaries alone can develop metastatic HGSCs, indicating that a p53 mutation can drive HGSC arising from the ovary. To confirm this, we generated p53(R172H)-Pten double-mutant mice, one of the genetic control lines for TKO mice. As anticipated, these double-mutant mice also develop metastatic HGSCs from the ovary, verifying the HGSC-forming ability of ovaries with a p53 mutation. Our study therefore shows that ovaries harboring a p53 mutation, as well as fallopian tubes, can be a distinct tissue source of high-grade serous ovarian cancer in mice.
Collapse
Affiliation(s)
- Jaeyeon Kim
- Departments of Pathology and Immunology (J.K., L.M., M.M.M.), Molecular and Cellular Biology (M.M.M.), Molecular and Human Genetics (M.M.M.), and Pharmacology (M.M.M.); Center for Drug Discovery (M.M.M.); Dan L. Duncan Cancer Center (J.K., M.M.M.), and Center for Reproductive Medicine (J.K., M.M.M.), Baylor College of Medicine; and Department of Pathology and Genomic Medicine (D.M.C.), Houston Methodist and Weill Medical College of Cornell University, Houston, Texas 77030
| | | | | | | |
Collapse
|
30
|
Loss of LKB1 and p53 synergizes to alter fallopian tube epithelial phenotype and high-grade serous tumorigenesis. Oncogene 2015; 35:59-68. [PMID: 25798842 DOI: 10.1038/onc.2015.62] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/09/2015] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
Liver kinase B1 (LKB1) is a tumor suppressor ubiquitously expressed serine/threonine protein kinase involved in energy metabolism and cellular polarity. In microarray experiments that compared normal tubal epithelium with high-grade serous carcinoma (HGSC), we observed a decrease in LKB1 mRNA expression in HGSC. In this study, we demonstrate that loss of cytoplasmic and nuclear LKB1 protein expression is frequently observed in tubal cancer precursor lesions as well as in both sporadic and hereditary HGSCs compared with other ovarian cancer histotypes. Bi-allelic genomic loss of LKB1 in HGSC did not account for the majority of cases with a decrease in protein expression. In vitro, shLKB1-fallopian tube epithelial (FTE) cells underwent premature cellular arrest and in ex vivo FTE culture, LKB1 loss and p53 mutant synergized to disrupt apical to basal polarity and decrease the number of ciliated cells. Overexpression of cyclin E1 allowed for bypass of LKB1-induced cellular arrest, and increased both proliferation and anchorage-independent growth of transformed FTE cells. These data suggest that LKB1 loss early in ovarian serous tumorigenesis has an integral role in tumor promotion by disrupting apical to basal polarity in the presence of mutated p53 in fallopian tube cells.
Collapse
|
31
|
Recent progress on liver kinase B1 (LKB1): expression, regulation, downstream signaling and cancer suppressive function. Int J Mol Sci 2014; 15:16698-718. [PMID: 25244018 PMCID: PMC4200829 DOI: 10.3390/ijms150916698] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/12/2014] [Accepted: 08/28/2014] [Indexed: 12/15/2022] Open
Abstract
Liver kinase B1 (LKB1), known as a serine/threonine kinase, has been identified as a critical cancer suppressor in many cancer cells. It is a master upstream kinase of 13 AMP-activated protein kinase (AMPK)-related protein kinases, and possesses versatile biological functions. LKB1 gene is mutated in many cancers, and its protein can form different protein complexes with different cellular localizations in various cell types. The expression of LKB1 can be regulated through epigenetic modification, transcriptional regulation and post-translational modification. LKB1 dowcnstream pathways mainly include AMPK, microtubule affinity regulating kinase (MARK), salt-inducible kinase (SIK), sucrose non-fermenting protein-related kinase (SNRK) and brain selective kinase (BRSK) signalings, etc. This review, therefore, mainly discusses recent studies about the expression, regulation, downstream signaling and cancer suppressive function of LKB1, which can be helpful for better understanding of this molecular and its significance in cancers.
Collapse
|
32
|
Kaneko-Tarui T, Commandeur AE, Patterson AL, DeKuiper JL, Petillo D, Styer AK, Teixeira JM. Hyperplasia and fibrosis in mice with conditional loss of the TSC2 tumor suppressor in Müllerian duct mesenchyme-derived myometria. Mol Hum Reprod 2014; 20:1126-34. [PMID: 25189766 DOI: 10.1093/molehr/gau077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Uterine leiomyomata are the most common tumors found in the female reproductive tract. Despite the high prevalence and associated morbidities of these benign tumors, little is known about the molecular basis of uterine leiomyoma development and progression. Loss of the Tuberous Sclerosis 2 (TSC2) tumor suppressor has been proposed as a mechanism important for the etiology of uterine leiomyomata based on the Eker rat model. However, conflicting evidence showing increased TSC2 expression has been reported in human uterine leiomyomata, suggesting that TSC2 might not be involved in the pathogenesis of this disorder. We have produced mice with conditional deletion of the Tsc2 gene in the myometria to determine whether loss of TSC2 leads to leiomyoma development in murine uteri. Myometrial hyperplasia and increased collagen deposition was observed in Tsc2(cKO) mice compared with control mice, but no leiomyomata were detected by post-natal week 24. Increased signaling activity of mammalian target of rapamycin complex 1, which is normally repressed by TSC2, was also detected in the myometria of Tsc2(cKO) mice. Treatment of the mutant mice with rapamycin significantly inhibited myometrial expansion, but treatment with the progesterone receptor modulator, mifepristone, did not. The ovaries of the Tsc2(cKO) mice appeared normal, but half the mice were infertile and most of the other half became infertile after a single litter, which was likely due to oviductal blockage. Our study shows that although TSC2 loss alone does not lead to leiomyoma development, it does lead to myometrial hyperplasia and fibrosis.
Collapse
Affiliation(s)
- Tomoko Kaneko-Tarui
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Arno E Commandeur
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda L Patterson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Justin L DeKuiper
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - David Petillo
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Aaron K Styer
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
33
|
Genetically engineered mouse models for epithelial ovarian cancer: are we there yet? Semin Cell Dev Biol 2014; 27:106-17. [PMID: 24685617 DOI: 10.1016/j.semcdb.2014.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022]
Abstract
The development of preclinical spontaneous genetically engineered mouse models (GEMMs) requires an understanding of the genetic basis of the human disease. Such robust models have proven invaluable for increasing understanding of human malignancies as well as identifying new biomarkers and testing new therapies for these diseases. While GEMMs have been reported for ovarian cancer, the majority have proven disappointing overall in their recapitulation of paired genetic and histological features especially for serous ovarian epithelial cancer. This review describes GEMMs for ovarian cancer, in particular, high grade serous ovarian cancer and assesses these in light of recent changes in our understanding of the human malignancy.
Collapse
|
34
|
Tanwar PS, Mohapatra G, Chiang S, Engler DA, Zhang L, Kaneko-Tarui T, Ohguchi Y, Birrer MJ, Teixeira JM. Loss of LKB1 and PTEN tumor suppressor genes in the ovarian surface epithelium induces papillary serous ovarian cancer. Carcinogenesis 2013; 35:546-53. [PMID: 24170201 DOI: 10.1093/carcin/bgt357] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Epithelial ovarian cancer presents mostly with serous, endometrioid or mucinous histology but is treated as a single disease. The development of histotype-specific therapy has been challenging because of the relative lack of studies attributing disrupted pathways to a distinct histotype differentiation. mTOR activation is frequently associated with poor prognosis in serous ovarian cancer, which is the most common and most deadly histotype. However, the mechanisms dysregulating mTOR in the pathogenesis of ovarian cancer are unknown. We detected copy number loss and correlated lower expression levels of LKB1, TSC1, TSC2 and PTEN tumor suppressor genes for upstream regulators of mTOR activity in up to 80% in primary ovarian serous tumor databases, with LKB1 allelic loss-predominant. Reduced LKB1 protein was usually associated with increased mTOR activity in both serous ovarian cancer cell lines and primary tumors. Conditional deletion of Lkb1 in murine ovarian surface epithelial (OSE) cells caused papillary hyperplasia and shedding but not tumors. Simultaneous deletion of Lkb1 and Pten, however, led to development of high-grade ovarian serous histotype tumors with 100% penetrance that expressed WT1, ERα, PAX8, TP53 and cytokeratin 8, typical markers used in the differential diagnosis of serous ovarian cancer. Neither hysterectomy nor salpingectomy interfered with progression of ovarian tumorigenesis, suggesting that neither uterine nor Fallopian tube epithelial cells were contributing to tumorigenesis. These results implicate LKB1 loss in the OSE in the pathogenesis of serous ovarian cancer and provide a compelling rationale for investigating the therapeutic potential of targeting LKB1 signaling in patients with this deadly disease.
Collapse
Affiliation(s)
- Pradeep S Tanwar
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Banno K, Kisu I, Yanokura M, Masuda K, Ueki A, Kobayashi Y, Hirasawa A, Aoki D. Hereditary gynecological tumors associated with Peutz-Jeghers syndrome (Review). Oncol Lett 2013; 6:1184-1188. [PMID: 24179492 PMCID: PMC3813608 DOI: 10.3892/ol.2013.1527] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/16/2013] [Indexed: 01/06/2023] Open
Abstract
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease that is characterized by gastrointestinal hamartomatous polyposis and mucocutaneous melanin spots. The tumor suppressor gene, STK11/LKB1, which is located on chromosome 19p13.3, has been reported to be responsible for this condition. PJS is complicated by benign and malignant tumors of various organs and complications from rare diseases, including sex cord tumor with annular tubules (SCTAT) and minimal deviation adenocarcinoma (MDA), which have also recently attracted attention in the field of gynecology. Among the total MDA cases, 10% are complications of PJS, and mutations in the STK11 gene are closely associated with the development and prognosis of MDA. Furthermore, a new type of uterine cervical tumor, lobular endocervical glandular hyperplasia (LEGH), has been identified and has been predicted to be a precancerous lesion of MDA. The first case of LEGH induced by a germline STK11 mutation has also been described. A high risk of endometrial cancer in PJS has also been reported. These developments suggest that PJS is an important syndrome of hereditary gynecological tumors that requires further study.
Collapse
Affiliation(s)
- Kouji Banno
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Shackelford DB. Unravelling the connection between metabolism and tumorigenesis through studies of the liver kinase B1 tumour suppressor. J Carcinog 2013; 12:16. [PMID: 24082825 PMCID: PMC3779404 DOI: 10.4103/1477-3163.116323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/12/2013] [Indexed: 12/15/2022] Open
Abstract
The liver kinase B1 (LKB1) tumour suppressor functions as a master regulator of growth, metabolism and survival in cells, which is frequently mutated in sporadic human non-small cell lung and cervical cancers. LKB1 functions as a key upstream activator of the AMP-activated protein kinase (AMPK), a central metabolic switch found in all eukaryotes that govern glucose and lipid metabolism and autophagy in response to alterations in nutrients and intracellular energy levels. The LKB1/AMPK signalling pathway suppresses mammalian target of rapamycin complex 1 (mTORC1), an essential regulator of cell growth in all eukaryotes that is deregulated in a majority of human cancers. LKB1 inactivation in cancer leads to both tumorigenesis and metabolic deregulation through the AMPK and mTORC1-signalling axis and there remain critical challenges to elucidate the direct role LKB1 inactivation plays in driving aberrant metabolism and tumour growth. This review addresses past and current efforts to delineate the molecular mechanisms fueling metabolic deregulation and tumorigenesis following LKB1 inactivation as well as translational promise of therapeutic strategies aimed at targeting LKB1-deficient tumors.
Collapse
Affiliation(s)
- David B Shackelford
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| |
Collapse
|
37
|
Janzen DM, Rosales MA, Paik DY, Lee DS, Smith DA, Witte ON, Iruela-Arispe ML, Memarzadeh S. Progesterone receptor signaling in the microenvironment of endometrial cancer influences its response to hormonal therapy. Cancer Res 2013; 73:4697-710. [PMID: 23744837 DOI: 10.1158/0008-5472.can-13-0930] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Progesterone, an agonist for the progesterone receptor (PR), can be an efficacious and well-tolerated treatment in endometrial cancer. The clinical use of progesterone is limited because of the lack of biomarkers that predict hormone sensitivity. Despite its efficacy in cancer therapy, mechanisms and site of action for progesterone remain unknown. Using an in vivo endometrial cancer mouse model driven by clinically relevant genetic changes but dichotomous responses to hormonal therapy, we show that signaling through stromal PR is necessary and sufficient for progesterone antitumor effects. Endometrial cancers resulting from epithelial loss of PTEN (PTENKO) were hormone sensitive and had abundant expression of stromal PR. Stromal deletion of PR as a single genetic change in these tumors induced progesterone resistance indicating that paracrine signaling through the stroma is essential for the progesterone therapeutic effects. A hormone-refractory endometrial tumor with low levels of stromal PR developed when activation of KRAS was coupled with PTEN-loss (PTENKO/Kras). The innate progesterone resistance in PTENKO/Kras tumors stemmed from methylation of PR in the tumor microenvironment. Add-back of stromal PR expressed from a constitutively active promoter sensitized these tumors to progesterone therapy. Results show that signaling through stromal PR is sufficient for inducing hormone responsiveness. Our findings suggest that epigenetic derepression of stromal PR could be a potential therapeutic target for sensitizing hormone-refractory endometrial tumors to progesterone therapy. On the basis of these results, stromal expression of PR may emerge as a reliable biomarker in predicting response to hormonal therapy.
Collapse
Affiliation(s)
- Deanna M Janzen
- Departments of Obstetrics and Gynecology, Molecular and Medical Pharmacology, and Molecular, Cell and Developmental Biology, David Geffen School of Medicine, Los Angeles, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Daikoku T, Yoshie M, Xie H, Sun X, Cha J, Ellenson LH, Dey SK. Conditional deletion of Tsc1 in the female reproductive tract impedes normal oviductal and uterine function by enhancing mTORC1 signaling in mice. Mol Hum Reprod 2013; 19:463-72. [PMID: 23475984 DOI: 10.1093/molehr/gat016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heightened mammalian target of rapamycin complex 1 (mTORC1) activity by genetic deletion of its direct inhibitor, Tsc1, is associated with aberrant development and dysfunction of the female reproductive tract in mice. Here, we compared the phenotypes of mice with conditional deletion of Tsc1 in the female reproductive tract by either progesterone receptor (PR)-Cre (Tsc1(PR(d/d))), which inactivates Tsc1 in all major cell types in the uterus (epithelium, stroma and myometrium), or anti-Mullerian hormone type 2 receptor (Amhr2)-Cre (Tsc1(Amhr2(d/d))), which inactivates stromal and myometrial Tsc1. Tsc1(PR(d/d)) and Tsc1(Amhr2(d/d)) females are infertile resulting from oviductal hyperplasia, retention of embryos in the oviduct and implantation failure. In contrast to the appropriate embryonic development after fertilization seen in Tsc1(Amhr2(d/d)) females, embryo development was disrupted in Tsc1(PR(d/d)) females. In addition, uteri in Tsc1(PR(d/d)) and Tsc1(Amhr2(d/d)) females showed epithelial hyperplasia but not endometrial cancer. In conclusion, Tsc1(PR(d/d)) and Tsc1(Amhr2(d/d)) have overlapping yet distinct phenotypes in the context of compartment-specific deletion of Tsc1.
Collapse
Affiliation(s)
- Takiko Daikoku
- Division of Reproductive Sciences, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, MLC 7045, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Garson K, Gamwell LF, Pitre EM, Vanderhyden BC. Technical challenges and limitations of current mouse models of ovarian cancer. J Ovarian Res 2012. [PMID: 23190474 PMCID: PMC3537528 DOI: 10.1186/1757-2215-5-39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The development of genetically engineered models (GEM) of epithelial ovarian cancer (EOC) has been very successful, with well validated models representing high grade and low grade serous adenocarcinomas and endometrioid carcinoma (EC). Most of these models were developed using technologies intended to target the ovarian surface epithelium (OSE), the cell type long believed to be the origin of EOC. More recent evidence has highlighted what is likely a more prevalent role of the secretory cell of the fallopian tube in the ontogeny of EOC, however none of the GEM of EOC have demonstrated successful targeting of this important cell type. The precise technologies exploited to develop the existing GEM of EOC are varied and carry with them advantages and disadvantages. The use of tissue specific promoters to model disease has been very successful, but the lack of any truly specific OSE or oviductal secretory cell promoters makes the outcomes of these models quite unpredictable. Effecting genetic change by the administration of adenoviral vectors expressing Cre recombinase may alleviate the perceived need for tissue specific promoters, however the efficiencies of infection of different cell types is subject to numerous biological parameters that may lead to preferential targeting of certain cell populations. One important future avenue of GEM of EOC is the evaluation of the role of genetic modifiers. We have found that genetic background can lead to contrasting phenotypes in one model of ovarian cancer, and data from other laboratories have also hinted that the exact genetic background of the model may influence the resulting phenotype. The different genetic backgrounds may modify the biology of the tumors in a manner that will be relevant to human disease, but they may also be modifying parameters which impact the response of the host to the technologies employed to develop the model.
Collapse
Affiliation(s)
- Kenneth Garson
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | | | | | | |
Collapse
|