1
|
Calugaru K, Yu EY, Huang S, González-Rodríguez N, Coloma J, Lue NF. The yeast CST and Polα/primase complexes act in concert to ensure proper telomere maintenance and protection. Nucleic Acids Res 2025; 53:gkaf245. [PMID: 40245101 PMCID: PMC11997776 DOI: 10.1093/nar/gkaf245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Polα/primase (PP), the polymerase that initiates DNA synthesis at replication origins, also completes the task of genome duplication by synthesizing the telomere C-strand under the control of the CTC1/CDC13-STN1-TEN1 (CST) complex. Using cryo-electron microscopy (cryo-EM) structures of the human CST-Polα/primase-DNA complex as guides in conjunction with AlphaFold modeling, we identified structural elements in yeast CST and PP that promote complex formation. Mutating these structures in Candida glabrata Stn1, Ten1, Pri1, and Pri2 abrogated the stimulatory activity of CST on PP in vitro, supporting the functional relevance of the physical contacts in cryo-EM structures as well as the conservation of mechanisms between yeast and humans. Introducing these mutations into C. glabrata yielded two distinct groups of mutants. One group exhibited progressive, telomerase-dependent telomere elongation without evidence of DNA damage. The other manifested slow growth, telomere length heterogeneity, single-stranded DNA accumulation and elevated C-circles, which are indicative of telomere deprotection. These telomere deprotection phenotypes are altered or suppressed by mutations in multiple DNA damage response (DDR) and DNA repair factors. We conclude that in yeast, the telomerase inhibition and telomere protection function previously ascribed to the CST complex are mediated jointly by both CST and Polα/primase, highlighting the critical importance of a replicative DNA polymerase in telomere regulation.
Collapse
Affiliation(s)
- Kimberly Calugaru
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| | - Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| | - Sophie Huang
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| | - Nayim González-Rodríguez
- Structural Biology Programme, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3. 28029 Madrid, Spain
| | - Javier Coloma
- Structural Biology Programme, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3. 28029 Madrid, Spain
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, NY, NY 10065, United States
| |
Collapse
|
2
|
Nickens DG, Gray SJ, Simmons RH, Bochman ML. Dimerization of Cdc13 is essential for dynamic DNA exchange on telomeric DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645294. [PMID: 40196551 PMCID: PMC11974935 DOI: 10.1101/2025.03.25.645294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Single-stranded DNA (ssDNA) binding proteins (ssBPs) are essential in eukaryotes to protect telomeres from nuclease activity. In Saccharomyces cerevisiae , the ssBP Cdc13 is an essential protein that acts as a central regulator of telomere length homeostasis and chromosome end protection, both alone and as part of the Cdc13-Stn1-Ten1 (CST) complex. Cdc13 has high binding affinity for telomeric ssDNA, with a very slow off-rate. Previously, we reported that despite this tight ssDNA binding, Cdc13 rapidly exchanges between bound and unbound telomeric ssDNA substrates, even at sub-stoichiometric concentrations of competitor ssDNA. This dynamic DNA exchange (DDE) is dependent on the presence and length of telomeric repeat sequence ssDNA and requires both Cdc13 DNA binding domains, OB1 and OB3. Here we investigated if Cdc13 dimerization is important for DDE by characterizing the dimerization mutant Cdc13-L91R. Using mass photometry, we confirmed that Cdc13-L91R fails to dimerize in solution, even in the presence of ssDNA. Gel-based DDE assays revealed that Cdc13-L91R fails to undergo ssDNA exchange compared to recombinant wild-type protein. Biolayer interferometry demonstrated that this effect was not due to differences in ssDNA binding kinetics. Thus, dimerization of Cdc13 is essential for DDE, and we model how this may impact telomere biology in vivo . GRAPHICAL ABSTRACT
Collapse
|
3
|
Joo SY, Sung K, Lee H. Balancing act: BRCA2's elaborate management of telomere replication through control of G-quadruplex dynamicity. Bioessays 2024; 46:e2300229. [PMID: 38922965 DOI: 10.1002/bies.202300229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
In billion years of evolution, eukaryotes preserved the chromosome ends with arrays of guanine repeats surrounded by thymines and adenines, which can form stacks of four-stranded planar structure known as G-quadruplex (G4). The rationale behind the evolutionary conservation of the G4 structure at the telomere remained elusive. Our recent study has shed light on this matter by revealing that telomere G4 undergoes oscillation between at least two distinct folded conformations. Additionally, tumor suppressor BRCA2 exhibits a unique mode of interaction with telomere G4. To elaborate, BRCA2 directly interacts with G-triplex (G3)-derived intermediates that form during the interconversion of the two different G4 states. In doing so, BRCA2 remodels the G4, facilitating the restart of stalled replication forks. In this review, we succinctly summarize the findings regarding the dynamicity of telomeric G4, emphasize its importance in maintaining telomere replication homeostasis, and the physiological consequences of losing G4 dynamicity at the telomere.
Collapse
Affiliation(s)
- So Young Joo
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| | - Keewon Sung
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, South Korea
| | - Hyunsook Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Hara T, Nakaoka H, Miyoshi T, Ishikawa F. The CST complex facilitates cell survival under oxidative genotoxic stress. PLoS One 2023; 18:e0289304. [PMID: 37590191 PMCID: PMC10434909 DOI: 10.1371/journal.pone.0289304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
Genomic DNA is constantly exposed to a variety of genotoxic stresses, and it is crucial for organisms to be equipped with mechanisms for repairing the damaged genome. Previously, it was demonstrated that the mammalian CST (CTC1-STN1-TEN1) complex, which was originally identified as a single-stranded DNA-binding trimeric protein complex essential for telomere maintenance, is required for survival in response to hydroxyurea (HU), which induces DNA replication fork stalling. It is still unclear, however, how the CST complex is involved in the repair of diverse types of DNA damage induced by oxidizing agents such as H2O2. STN1 knockdown (KD) sensitized HeLa cells to high doses of H2O2. While H2O2 induced DNA strand breaks throughout the cell cycle, STN1 KD cells were as resistant as control cells to H2O2 treatment when challenged in the G1 phase of the cell cycle, but they were sensitive when exposed to H2O2 in S/G2/M phase. STN1 KD cells showed a failure of DNA synthesis and RAD51 foci formation upon H2O2 treatment. Chemical inhibition of RAD51 in shSTN1 cells did not exacerbate the sensitivity to H2O2, implying that the CST complex and RAD51 act in the same pathway. Collectively, our results suggest that the CST complex is required for maintaining genomic stability in response to oxidative DNA damage, possibly through RAD51-dependent DNA repair/protection mechanisms.
Collapse
Affiliation(s)
- Tomohiko Hara
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hidenori Nakaoka
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoicihiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Retrotransposon Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Coloma J, Gonzalez-Rodriguez N, Balaguer FA, Gmurczyk K, Aicart-Ramos C, Nuero ÓM, Luque-Ortega JR, Calugaru K, Lue NF, Moreno-Herrero F, Llorca O. Molecular architecture and oligomerization of Candida glabrata Cdc13 underpin its telomeric DNA-binding and unfolding activity. Nucleic Acids Res 2023; 51:668-686. [PMID: 36629261 PMCID: PMC9881146 DOI: 10.1093/nar/gkac1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The CST complex is a key player in telomere replication and stability, which in yeast comprises Cdc13, Stn1 and Ten1. While Stn1 and Ten1 are very well conserved across species, Cdc13 does not resemble its mammalian counterpart CTC1 either in sequence or domain organization, and Cdc13 but not CTC1 displays functions independently of the rest of CST. Whereas the structures of human CTC1 and CST have been determined, the molecular organization of Cdc13 remains poorly understood. Here, we dissect the molecular architecture of Candida glabrata Cdc13 and show how it regulates binding to telomeric sequences. Cdc13 forms dimers through the interaction between OB-fold 2 (OB2) domains. Dimerization stimulates binding of OB3 to telomeric sequences, resulting in the unfolding of ssDNA secondary structure. Once bound to DNA, Cdc13 prevents the refolding of ssDNA by mechanisms involving all domains. OB1 also oligomerizes, inducing higher-order complexes of Cdc13 in vitro. OB1 truncation disrupts these complexes, affects ssDNA unfolding and reduces telomere length in C. glabrata. Together, our results reveal the molecular organization of C. glabrata Cdc13 and how this regulates the binding and the structure of DNA, and suggest that yeast species evolved distinct architectures of Cdc13 that share some common principles.
Collapse
Affiliation(s)
- Javier Coloma
- Correspondence may also be addressed to Javier Coloma. Tel: +34 91 732 8000 (Ext 3033);
| | | | - Francisco A Balaguer
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Karolina Gmurczyk
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Óscar M Nuero
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Kimberly Calugaru
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Oscar Llorca
- To whom correspondence should be addressed. Tel: +34 91 732 8000 (Ext 3000);
| |
Collapse
|
6
|
Dorgaleleh S, Naghipoor K, Hajimohammadi Z, Dastaviz F, Oladnabi M. Molecular insight of dyskeratosis congenita: Defects in telomere length homeostasis. J Clin Transl Res 2022; 8:20-30. [PMID: 35097237 PMCID: PMC8791241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/23/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a rare disease and is a heterogenous disorder, with its inheritance patterns as autosomal dominant, autosomal recessive, and X-linked recessive. This disorder occurs due to faulty maintenance of telomeres in stem cells. This congenital condition is diagnosed with three symptoms: oral leukoplakia, nail dystrophy, and abnormal skin pigmentation. However, because it has a wide range of symptoms, it may have phenotypes similar to other diseases. For this reason, it is necessary to use methods of measuring the Telomere Length (TL) and determining the shortness of the telomere in these patients so that it can be distinguished from other diseases. Today, the Next Generation Sequencing technique accurately detects mutations in the target genes. AIM This work aims to review and summarize how each of the DC genes is involved in TL, and how to diagnose and differentiate the disease using clinical signs and methods to measure TL. It also offers treatments for DC patients, such as Hematopoietic Stem Cell Transplantation and Androgen therapy. RELEVANCE FOR PATIENTS In DC patients, the genes involved in telomere homeostasis are mutated. Because these patients may have an overlapping phenotype with other diseases, it is best to perform whole-exome sequencing after genetics counseling to find the relevant mutation. As DC is a multi-systemic disease, we need to monitor patients frequently through annual lung function tests, ultrasounds, gynecological examinations, and skin examinations.
Collapse
Affiliation(s)
- Saeed Dorgaleleh
- 1Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Karim Naghipoor
- 1Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Hajimohammadi
- 2Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Dastaviz
- 1Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Oladnabi
- 3Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran,4Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran,
Corresponding author: Morteza Oladnabi Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran. Tel: +981732459995
| |
Collapse
|
7
|
Par S, Vaides S, VanderVere-Carozza PS, Pawelczak KS, Stewart J, Turchi JJ. OB-Folds and Genome Maintenance: Targeting Protein-DNA Interactions for Cancer Therapy. Cancers (Basel) 2021; 13:3346. [PMID: 34283091 PMCID: PMC8269290 DOI: 10.3390/cancers13133346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Genome stability and maintenance pathways along with their requisite proteins are critical for the accurate duplication of genetic material, mutation avoidance, and suppression of human diseases including cancer. Many of these proteins participate in these pathways by binding directly to DNA, and a subset employ oligonucleotide/oligosaccharide binding folds (OB-fold) to facilitate the protein-DNA interactions. OB-fold motifs allow for sequence independent binding to single-stranded DNA (ssDNA) and can serve to position specific proteins at specific DNA structures and then, via protein-protein interaction motifs, assemble the machinery to catalyze the replication, repair, or recombination of DNA. This review provides an overview of the OB-fold structural organization of some of the most relevant OB-fold containing proteins for oncology and drug discovery. We discuss their individual roles in DNA metabolism, progress toward drugging these motifs and their utility as potential cancer therapeutics. While protein-DNA interactions were initially thought to be undruggable, recent reports of success with molecules targeting OB-fold containing proteins suggest otherwise. The potential for the development of agents targeting OB-folds is in its infancy, but if successful, would expand the opportunities to impinge on genome stability and maintenance pathways for more effective cancer treatment.
Collapse
Affiliation(s)
- Sui Par
- Indiana University Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.P.); (S.V.)
| | - Sofia Vaides
- Indiana University Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.P.); (S.V.)
| | | | | | - Jason Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
| | - John J. Turchi
- Indiana University Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.P.); (S.V.)
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- NERx Biosciences, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
8
|
Lin YY, Li MH, Chang YC, Fu PY, Ohniwa RL, Li HW, Lin JJ. Dynamic DNA Shortening by Telomere-Binding Protein Cdc13. J Am Chem Soc 2021; 143:5815-5825. [PMID: 33831300 DOI: 10.1021/jacs.1c00820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Telomeres are essential for chromosome maintenance. Cdc13 is a single-stranded telomeric DNA binding protein that caps telomeres and regulates telomerase function in yeast. Although specific binding of Cdc13 to telomeric DNA is critical for telomere protection, the detail mechanism how Cdc13-DNA complex protects telomere is unclear. Using two single-molecule methods, tethered particle motion and atomic force microscopy, we demonstrate that specific binding of Cdc13 on single-stranded telomeric DNA shortens duplex DNA into distinct states differed by ∼70-80 base pairs. DNA shortening by Cdc13 is dynamic and independent of duplex DNA sequences or length. Significantly, we found that Pif1 helicase is incapable of removing Cdc13 from the shortened DNA-Cdc13 complex, suggesting that Cdc13 forms structurally stable complex by shortening of the bound DNA. Together our data identified shortening of DNA by Cdc13 and provided an indication for efficient protection of telomere ends by the shortened DNA-Cdc13 complex.
Collapse
Affiliation(s)
- Yi-Yun Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Min-Hsuan Li
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Yen-Chan Chang
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Peng-Yu Fu
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan
| | - Ryosuke L Ohniwa
- Faculty of Medicine, University of Tsukuba, Ibaraki 305-8577, Japan.,Center for Biotechnology, National Taiwan University, Taipei City 10617, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei City 10617, Taiwan.,Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei City 112, Taiwan
| |
Collapse
|
9
|
Bonnell E, Pasquier E, Wellinger RJ. Telomere Replication: Solving Multiple End Replication Problems. Front Cell Dev Biol 2021; 9:668171. [PMID: 33869233 PMCID: PMC8047117 DOI: 10.3389/fcell.2021.668171] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic genomes are highly complex and divided into linear chromosomes that require end protection from unwarranted fusions, recombination, and degradation in order to maintain genomic stability. This is accomplished through the conserved specialized nucleoprotein structure of telomeres. Due to the repetitive nature of telomeric DNA, and the unusual terminal structure, namely a protruding single stranded 3' DNA end, completing telomeric DNA replication in a timely and efficient manner is a challenge. For example, the end replication problem causes a progressive shortening of telomeric DNA at each round of DNA replication, thus telomeres eventually lose their protective capacity. This phenomenon is counteracted by the recruitment and the activation at telomeres of the specialized reverse transcriptase telomerase. Despite the importance of telomerase in providing a mechanism for complete replication of telomeric ends, the majority of telomere replication is in fact carried out by the conventional DNA replication machinery. There is significant evidence demonstrating that progression of replication forks is hampered at chromosomal ends due to telomeric sequences prone to form secondary structures, tightly DNA-bound proteins, and the heterochromatic nature of telomeres. The telomeric loop (t-loop) formed by invasion of the 3'-end into telomeric duplex sequences may also impede the passage of replication fork. Replication fork stalling can lead to fork collapse and DNA breaks, a major cause of genomic instability triggered notably by unwanted repair events. Moreover, at chromosomal ends, unreplicated DNA distal to a stalled fork cannot be rescued by a fork coming from the opposite direction. This highlights the importance of the multiple mechanisms involved in overcoming fork progression obstacles at telomeres. Consequently, numerous factors participate in efficient telomeric DNA duplication by preventing replication fork stalling or promoting the restart of a stalled replication fork at telomeres. In this review, we will discuss difficulties associated with the passage of the replication fork through telomeres in both fission and budding yeasts as well as mammals, highlighting conserved mechanisms implicated in maintaining telomere integrity during replication, thus preserving a stable genome.
Collapse
Affiliation(s)
| | | | - Raymund J. Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Cancer Research Pavilion, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol 2021; 22:283-298. [PMID: 33564154 DOI: 10.1038/s41580-021-00328-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
11
|
Structural insights into telomere protection and homeostasis regulation by yeast CST complex. Nat Struct Mol Biol 2020; 27:752-762. [PMID: 32661422 DOI: 10.1038/s41594-020-0459-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/22/2020] [Indexed: 01/29/2023]
Abstract
Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance. Despite extensive studies, only structural information of individual domains of CST is available; the architecture of CST still remains unclear. Here, we report crystal structures of Kluyveromyces lactis Cdc13-telomeric-DNA, Cdc13-Stn1 and Stn1-Ten1 complexes and propose an integrated model depicting how CST assembles and plays its roles at telomeres. Surprisingly, two oligonucleotide/oligosaccharide-binding (OB) folds of Cdc13 (OB2 and OB4), previously believed to mediate Cdc13 homodimerization, actually form a stable intramolecular interaction. This OB2-OB4 module of Cdc13 is required for the Cdc13-Stn1 interaction that assembles CST into an architecture with a central ring-like core and multiple peripheral modules in a 2:2:2 stoichiometry. Functional analyses indicate that this unique CST architecture is essential for both telomere capping and homeostasis regulation. Overall, our results provide fundamentally valuable structural information regarding the CST complex and its roles in telomere biology.
Collapse
|
12
|
Lim CJ, Barbour AT, Zaug AJ, Goodrich KJ, McKay AE, Wuttke DS, Cech TR. The structure of human CST reveals a decameric assembly bound to telomeric DNA. Science 2020; 368:1081-1085. [PMID: 32499435 DOI: 10.1126/science.aaz9649] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
The CTC1-STN1-TEN1 (CST) complex is essential for telomere maintenance and resolution of stalled replication forks genome-wide. Here, we report the 3.0-angstrom cryo-electron microscopy structure of human CST bound to telomeric single-stranded DNA (ssDNA), which assembles as a decameric supercomplex. The atomic model of the 134-kilodalton CTC1 subunit, built almost entirely de novo, reveals the overall architecture of CST and the DNA-binding anchor site. The carboxyl-terminal domain of STN1 interacts with CTC1 at two separate docking sites, allowing allosteric mediation of CST decamer assembly. Furthermore, ssDNA appears to staple two monomers to nucleate decamer assembly. CTC1 has stronger structural similarity to Replication Protein A than the expected similarity to yeast Cdc13. The decameric structure suggests that CST can organize ssDNA analogously to the nucleosome's organization of double-stranded DNA.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Alexandra T Barbour
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Arthur J Zaug
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Karen J Goodrich
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Allison E McKay
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Deborah S Wuttke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
13
|
Abstract
Telomeres are special structures at the ends of chromosomes that play an
important role in the protection of the genetic material. Telomere composition
is very diverse; noticeable differences can often be observed even among
closely related species. Here, we identify the homolog of telomeric protein
Cdc13 in the thermotolerant yeast Hansenula polymorpha. We
show that it can specifically bind single-stranded telomeric DNA, as well as
interact with the Stn1 protein. In addition, we have uncovered an interaction
between Cdc13 and TERT (one of the core components of the telomerase complex),
which suggests that Cdc13 is potentially involved in telomerase recruitment to
telomeres in H. polymorpha.
Collapse
Affiliation(s)
- A. N. Malyavko
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russia
| | - O. A. Dontsova
- Faculty of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russia
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
14
|
Mersaoui SY, Bonnell E, Wellinger RJ. Nuclear import of Cdc13 limits chromosomal capping. Nucleic Acids Res 2019; 46:2975-2989. [PMID: 29432594 PMCID: PMC5887288 DOI: 10.1093/nar/gky085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/30/2018] [Indexed: 12/15/2022] Open
Abstract
Cdc13 is an essential protein involved in telomere maintenance and chromosome capping. Individual domain analyses on Cdc13 suggest the presence of four distinct OB-fold domains and one recruitment domain. However, it remained unclear how these sub-domains function in the context of the whole protein in vivo. Here, we use individual single domain deletions to address their roles in telomere capping. We find that the OB2 domain contains a nuclear localization signal that is essential for nuclear import of Cdc13 and therefore is required for chromosome capping. The karyopherin Msn5 is important for nuclear localization, and retention of Cdc13 in the nucleus also requires its binding to telomeres. Moreover, Cdc13 homodimerization occurs even if the protein is not bound to DNA and is in the cytoplasm. Hence, Cdc13 abundance in the nucleus and, in consequence, its capping function is strongly affected by nucleo-cytoplasmic transport as well as nuclear retention by DNA binding.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Erin Bonnell
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
15
|
Mersaoui SY, Wellinger RJ. Fine tuning the level of the Cdc13 telomere-capping protein for maximal chromosome stability performance. Curr Genet 2018; 65:109-118. [PMID: 30066139 DOI: 10.1007/s00294-018-0871-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Chromosome stability relies on an adequate length and complete replication of telomeres, the physical ends of chromosomes. Telomeres are composed of short direct repeat DNA and the associated nucleoprotein complex is essential for providing end-stability. In addition, the so-called end-replication problem of the conventional replication requires that telomeres be elongated by a special mechanism which, in virtually all organisms, is based by a reverse transcriptase, called telomerase. Although, at the conceptual level, telomere functions are highly similar in most organisms, the telomeric nucleoprotein composition appears to diverge significantly, in particular if it is compared between mammalian and budding yeast cells. However, over the last years, the CST complex has emerged as a central hub for telomere replication in most systems. Composed of three proteins, it is related to the highly conserved replication protein A complex, and in all systems studied, it coordinates telomerase-based telomere elongation with lagging-strand DNA synthesis. In budding yeast, the Cdc13 protein of this complex also is essential for telomerase recruitment and this specialisation is accompanied by additional regulatory adaptations. Based on recent results obtained in yeast, here, we review these issues and present an updated telomere replication hypothesis. We speculate that the similarities between systems far outweigh the differences, once we detach ourselves from the historic descriptions of the mechanisms in the various organisms.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
16
|
Barazas M, Annunziato S, Pettitt SJ, de Krijger I, Ghezraoui H, Roobol SJ, Lutz C, Frankum J, Song FF, Brough R, Evers B, Gogola E, Bhin J, van de Ven M, van Gent DC, Jacobs JJL, Chapman R, Lord CJ, Jonkers J, Rottenberg S. The CST Complex Mediates End Protection at Double-Strand Breaks and Promotes PARP Inhibitor Sensitivity in BRCA1-Deficient Cells. Cell Rep 2018; 23:2107-2118. [PMID: 29768208 PMCID: PMC5972230 DOI: 10.1016/j.celrep.2018.04.046] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/24/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022] Open
Abstract
Selective elimination of BRCA1-deficient cells by inhibitors of poly(ADP-ribose) polymerase (PARP) is a prime example of the concept of synthetic lethality in cancer therapy. This interaction is counteracted by the restoration of BRCA1-independent homologous recombination through loss of factors such as 53BP1, RIF1, and REV7/MAD2L2, which inhibit end resection of DNA double-strand breaks (DSBs). To identify additional factors involved in this process, we performed CRISPR/SpCas9-based loss-of-function screens and selected for factors that confer PARP inhibitor (PARPi) resistance in BRCA1-deficient cells. Loss of members of the CTC1-STN1-TEN1 (CST) complex were found to cause PARPi resistance in BRCA1-deficient cells in vitro and in vivo. We show that CTC1 depletion results in the restoration of end resection and that the CST complex may act downstream of 53BP1/RIF1. These data suggest that, in addition to its role in protecting telomeres, the CST complex also contributes to protecting DSBs from end resection.
Collapse
Affiliation(s)
- Marco Barazas
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Stefano Annunziato
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Inge de Krijger
- Division of Oncogenomics, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Hind Ghezraoui
- Genome Integrity Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Stefan J Roobol
- Department of Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Jessica Frankum
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Fei Fei Song
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Bastiaan Evers
- Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ewa Gogola
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Jinhyuk Bhin
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marieke van de Ven
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Mouse Clinic for Cancer and Aging Research (MCCA), Preclinical Intervention Unit, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Dik C van Gent
- Department of Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ross Chapman
- Genome Integrity Laboratory, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands.
| | - Sven Rottenberg
- Division of Molecular Pathology, Oncode Institute, the Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
17
|
Lue NF. Evolving Linear Chromosomes and Telomeres: A C-Strand-Centric View. Trends Biochem Sci 2018; 43:314-326. [PMID: 29550242 DOI: 10.1016/j.tibs.2018.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 02/08/2023]
Abstract
Recent studies have resulted in deeper understanding of a variety of telomere maintenance mechanisms as well as plausible models of telomere evolution. Often overlooked in the discussion of telomere regulation and evolution is the synthesis of the DNA strand that bears the 5'-end (i.e., the C-strand). Herein, I describe a scenario for telomere evolution that more explicitly accounts for the evolution of the C-strand synthesis machinery. In this model, CTC1-STN1-TEN1 (CST), the G-strand-binding complex that regulates primase-Pol α-mediated C-strand synthesis, emerges as a pivotal player and evolutionary link. Itself arising from RPA, CST not only coordinates telomere synthesis, but also gives rise to the POT1-TPP1 complex, which became part of shelterin and regulates telomerase in G-strand elongation.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology and Immunology, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
18
|
Stewart JA, Wang Y, Ackerson SM, Schuck PL. Emerging roles of CST in maintaining genome stability and human disease. Front Biosci (Landmark Ed) 2018; 23:1564-1586. [PMID: 29293451 DOI: 10.2741/4661] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human CTC1-STN1-TEN1 (CST) complex is a single-stranded DNA binding protein that shares homology with RPA and interacts with DNA polymerase alpha/primase. CST complexes are conserved from yeasts to humans and function in telomere maintenance. A common role of CST across species is in the regulation of telomere extension by telomerase and C-strand fill-in synthesis. However, recent studies also indicate that CST promotes telomere duplex replication as well the rescue of stalled DNA replication at non-telomeric sites. Furthermore, CST dysfunction and mutation is associated with several genetic diseases and cancers. In this review, we will summarize what is known about CST with a particular focus on the emerging roles of CST in DNA replication and human disease.
Collapse
Affiliation(s)
- Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA,
| | - Yilin Wang
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Stephanie M Ackerson
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Percy Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
19
|
Bhattacharjee A, Wang Y, Diao J, Price CM. Dynamic DNA binding, junction recognition and G4 melting activity underlie the telomeric and genome-wide roles of human CST. Nucleic Acids Res 2017; 45:12311-12324. [PMID: 29040642 PMCID: PMC5716219 DOI: 10.1093/nar/gkx878] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/22/2017] [Indexed: 11/14/2022] Open
Abstract
Human CST (CTC1-STN1-TEN1) is a ssDNA-binding complex that helps resolve replication problems both at telomeres and genome-wide. CST resembles Replication Protein A (RPA) in that the two complexes harbor comparable arrays of OB-folds and have structurally similar small subunits. However, the overall architecture and functions of CST and RPA are distinct. Currently, the mechanism underlying CST action at diverse replication issues remains unclear. To clarify CST mechanism, we examined the capacity of CST to bind and resolve DNA structures found at sites of CST activity. We show that CST binds preferentially to ss-dsDNA junctions, an activity that can explain the incremental nature of telomeric C-strand synthesis following telomerase action. We also show that CST unfolds G-quadruplex structures, thus providing a mechanism for CST to facilitate replication through telomeres and other GC-rich regions. Finally, smFRET analysis indicates that CST binding to ssDNA is dynamic with CST complexes undergoing concentration-dependent self-displacement. These findings support an RPA-based model where dissociation and re-association of individual OB-folds allow CST to mediate loading and unloading of partner proteins to facilitate various aspects of telomere replication and genome-wide resolution of replication stress.
Collapse
Affiliation(s)
| | - Yongyao Wang
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA.,School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Carolyn M Price
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
20
|
Lancrey A, Safa L, Chatain J, Delagoutte E, Riou JF, Alberti P, Saintomé C. The binding efficiency of RPA to telomeric G-strands folded into contiguous G-quadruplexes is independent of the number of G4 units. Biochimie 2017; 146:68-72. [PMID: 29191792 DOI: 10.1016/j.biochi.2017.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/24/2017] [Indexed: 11/18/2022]
Abstract
Replication protein A (RPA) is a single-stranded DNA binding protein involved in replication and in telomere maintenance. During telomere replication, G-quadruplexes (G4) can accumulate on the lagging strand template and need to be resolved. It has been shown that human RPA is able to unfold a single G4. Nevertheless, the G-strand of human telomeres is prone to fold into higher-order structures formed by contiguous G-quadruplexes. To understand how RPA deals with these structures, we studied its interaction with telomeric G-strands folding into an increasing number of contiguous G4s. The aim of this study was to determine whether the efficiency of binding/unfolding of hRPA to telomeric G-strands depends on the number of G4 units. Our data show that the number n of contiguous G4 units (n ≥ 2) does not affect the efficiency of hRPA to coat transiently exposed single-stranded telomeric G-strands. This feature may be essential in preventing instability due to G4 structures during telomere replication.
Collapse
Affiliation(s)
- Astrid Lancrey
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, F-75005, Paris, France
| | - Layal Safa
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, F-75005, Paris, France
| | - Jean Chatain
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, F-75005, Paris, France
| | - Emmanuelle Delagoutte
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, F-75005, Paris, France
| | - Jean-François Riou
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, F-75005, Paris, France
| | - Patrizia Alberti
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, F-75005, Paris, France.
| | - Carole Saintomé
- Structure et Instabilité des Génomes, Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS UMR 7196, INSERM U1154, 43 rue Cuvier, F-75005, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UFR927, F-75005, Paris, France.
| |
Collapse
|
21
|
Hsu M, Lue NF. The mechanisms of K. lactis Cdc13 in telomere DNA-binding and telomerase regulation. DNA Repair (Amst) 2017; 61:37-45. [PMID: 29197718 DOI: 10.1016/j.dnarep.2017.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/04/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022]
Abstract
Eukaryotic chromosome ends, or telomeres, are essential for genome stability and are protected by an intricate nucleoprotein assembly. Cdc13, the major single-strand telomere-binding protein in budding yeasts, mediates critical functions in both telomere protection and telomere elongation by telomerase. In particular, the interaction between S. cerevisiae Cdc13 and telomerase subunit Est1 has long served as a paradigm for telomerase regulation. However, despite extensive investigations, the role of this interaction in regulating telomerase recruitment or activation remains controversial. In addition, budding yeast telomere repeat sequences are extraordinarily variable and how Cdc13 orthologs recognize diverse repeats is not well understood. In this report, we examined these issues using an alternative model, K. lactis. We reconstituted a direct physical interaction between purified K. lactis Cdc13 and Est1, and by analyzing point mutations, we demonstrated a close correspondence between telomere maintenance defects in vivo and Cdc13-Est1 binding defects in vitro, thus supporting a purely recruitment function for this interaction in K. lactis. Because mutations in well aligned residues of Cdc13 and Est1 in S. cerevisiae and K. lactis do not cause identical defects, our results also point to significant evolutionary divergence in the Cdc13-Est1 interface. In addition, we found that K. lactic Cdc13, unlike previously characterized orthologs, recognizes an unusually long and non-G-rich target sequence, underscoring the flexibility of the Cdc13 DNA-binding domain. Analysis of K. lactis Cdc13 and Est1 thus broadens understanding of telomere and telomerase regulation in budding yeast.
Collapse
Affiliation(s)
- Min Hsu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
22
|
Yu EY, Hsu M, Holloman WK, Lue NF. Contributions of recombination and repair proteins to telomere maintenance in telomerase-positive and negative Ustilago maydis. Mol Microbiol 2017; 107:81-93. [PMID: 29052918 DOI: 10.1111/mmi.13866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 11/26/2022]
Abstract
Homologous recombination and repair factors are known to promote both telomere replication and recombination-based telomere extension. Herein, we address the diverse contributions of several recombination/repair proteins to telomere maintenance in Ustilago maydis, a fungus that bears strong resemblance to mammals with respect to telomere regulation and recombination mechanisms. In telomerase-positive U. maydis, deletion of rad51 and blm separately caused shortened but stably maintained telomeres, whereas deletion of both engendered similar telomere loss, suggesting that the repair proteins help to resolve similar problems in telomere replication. In telomerase-negative cells, the loss of Rad51 or Brh2 caused accelerated senescence and failure to generate survivors on semi-solid medium. However, slow growing survivors can be isolated through continuous liquid culturing, and these survivors exhibit type II-like as well as ALT-like telomere features. In contrast, the trt1Δ blmΔ double mutant gives rise to survivors as readily as the trt1Δ single mutant, and like the single mutant survivors, exhibit almost exclusively type I-like telomere features. In addition, we observed direct physical interactions between Blm and two telomere-binding proteins, which may thus recruit or regulate Blm at telomeres. Our findings provide the basis for further analyzing the interplays between telomerase, telomere replication, and telomere recombination.
Collapse
Affiliation(s)
- Eun Young Yu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center Weill Medical College of Cornell University, New York, NY, USA
| | - Min Hsu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center Weill Medical College of Cornell University, New York, NY, USA
| | - William K Holloman
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center Weill Medical College of Cornell University, New York, NY, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center Weill Medical College of Cornell University, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
23
|
Ganduri S, Lue NF. STN1-POLA2 interaction provides a basis for primase-pol α stimulation by human STN1. Nucleic Acids Res 2017; 45:9455-9466. [PMID: 28934486 PMCID: PMC5766158 DOI: 10.1093/nar/gkx621] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/06/2017] [Indexed: 01/12/2023] Open
Abstract
The CST (CTC1–STN1–TEN1) complex mediates critical functions in maintaining telomere DNA and overcoming genome-wide replication stress. A conserved biochemical function of the CST complex is its primase-Pol α (PP) stimulatory activity. In this report, we demonstrate the ability of purified human STN1 alone to promote PP activity in vitro. We show that this regulation is mediated primarily by the N-terminal OB fold of STN1, but does not require the DNA-binding activity of this domain. Rather, we observed a strong correlation between the PP-stimulatory activity of STN1 variants and their abilities to bind POLA2. Remarkably, the main binding target of STN1 in POLA2 is the latter's central OB fold domain. In the substrate-free structure of PP, this domain is positioned so as to block nucleic acid entry to the Pol α active site. Thus the STN1–POLA2 interaction may promote the necessary conformational change for nucleic acid delivery to Pol α and subsequent DNA synthesis. A disease-causing mutation in human STN1 engenders a selective defect in POLA2-binding and PP stimulation, indicating that these activities are critical for the in vivo function of STN1. Our findings have implications for the molecular mechanisms of PP, STN1 and STN1-related molecular pathology.
Collapse
Affiliation(s)
- Swapna Ganduri
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medical College, New York, NY 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
24
|
Abstract
Telomeres are specialized chromatin structures that protect chromosome ends from dangerous processing events. In most tissues, telomeres shorten with each round of cell division, placing a finite limit on cell growth. In rapidly dividing cells, including the majority of human cancers, cells bypass this growth limit through telomerase-catalyzed maintenance of telomere length. The dynamic properties of telomeres and telomerase render them difficult to study using ensemble biochemical and structural techniques. This review describes single-molecule approaches to studying how individual components of telomeres and telomerase contribute to function. Single-molecule methods provide a window into the complex nature of telomeres and telomerase by permitting researchers to directly visualize and manipulate the individual protein, DNA, and RNA molecules required for telomere function. The work reviewed in this article highlights how single-molecule techniques have been utilized to investigate the function of telomeres and telomerase.
Collapse
Affiliation(s)
- Joseph W Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; .,Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064; .,Center for Molecular Biology of RNA, Santa Cruz, California 95064
| |
Collapse
|
25
|
MTV, an ssDNA Protecting Complex Essential for Transposon-Based Telomere Maintenance in Drosophila. PLoS Genet 2016; 12:e1006435. [PMID: 27835648 PMCID: PMC5105952 DOI: 10.1371/journal.pgen.1006435] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022] Open
Abstract
Multiple complexes protect telomeres. In telomerase-maintained organisms, Shelterin related complexes occupy the duplex region while the CST and Tpp1-Pot1 complexes bind the single stranded overhang of telomeres. Drosophila uses a transposon-based mechanism for end protection. We showed that the HOAP-HipHop complex occupies the duplex region. Whether an ssDNA-binding complex exists is not known. Here we discover a novel protein, Tea, that is specifically enriched at telomeres to prevent telomere fusion. We also identify a complex consisting of Tea and two known capping proteins, Ver and Moi. The Moi-Tea-Ver (MTV) complex purified in vitro binds and protects ssDNA in a sequence-independent manner. Tea recruits Ver and Moi to telomeres, and point mutations disrupting MTV interaction in vitro result in telomere uncapping, consistent with these proteins functioning as a complex in vivo. MTV thus shares functional similarities with CST or TPP1-POT1 in protecting ssDNA, highlighting a conserved feature in end protecting mechanisms. Chromosome ends are protected by the telomere structure maintained by the telomerase enzyme in most organisms. The fruit fly Drosophila has fascinated the field as the only major model organism that relies solely on a telomerase-independent mechanism for end protection. The fly model is arguably the best system to reveal the most basic features of the telomere. Here we characterize the MTV complex in flies and suggest that MTV fulfills similar function as the ssDNA-binding complexes in other organisms. This is striking considering that MTV subunits display highly accelerated rates of protein evolution. Our findings will be of interest to scientists interested in the molecular mechanisms of telomere protection and evolution biologists interested in how telomere and telomeric functions evolve.
Collapse
|
26
|
Bhattacharjee A, Stewart J, Chaiken M, Price CM. STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function. PLoS Genet 2016; 12:e1006342. [PMID: 27690379 PMCID: PMC5045167 DOI: 10.1371/journal.pgen.1006342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/06/2016] [Indexed: 12/03/2022] Open
Abstract
Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. Mammalian CST (CTC1/STN1/TEN1) is a three protein complex that aids in several steps during telomere replication and has genome-wide roles during recovery from replication fork stalling. Loss of CST leads to abnormalities in telomere structure, genomic instability and defects in chromosome segregation. Currently, we do not understand how CST acts to ensure the resolution of very diverse types of replication problem. We set out to address this question by studying a mutant form of CST that was predicted to alter DNA binding. The mutations are in the STN1 subunit. In vivo, the STN1 mutant (STN1-OBM) affects some aspects of CST function while others are normal. The effects of STN1-OBM do not align with the telomeric versus non-telomeric roles of CST but instead separate out different aspects of CST function at telomeres and genome-wide. In vitro binding studies indicate that STN1-OBM disrupts binding to only short DNA substrates. Since CST is likely to encounter DNA substrates of varied length and structure in vivo as it helps resolve different replication problems, this finding starts to explain why STN1-OBM affects only certain aspects of CST function. Our in vitro binding studies also shed light on how CST actually binds to DNA and they suggest a novel “dynamic binding model” that provides a mechanistic explanation for how CST helps resolve a diverse array of replication problems to preserve genome stability.
Collapse
Affiliation(s)
- Anukana Bhattacharjee
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jason Stewart
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail: (JS); (CMP)
| | - Mary Chaiken
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Carolyn M. Price
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail: (JS); (CMP)
| |
Collapse
|
27
|
Lloyd NR, Dickey TH, Hom RA, Wuttke DS. Tying up the Ends: Plasticity in the Recognition of Single-Stranded DNA at Telomeres. Biochemistry 2016; 55:5326-40. [PMID: 27575340 PMCID: PMC5656232 DOI: 10.1021/acs.biochem.6b00496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Telomeres terminate nearly exclusively in single-stranded DNA (ssDNA) overhangs comprised of the G-rich 3' end. This overhang varies widely in length from species to species, ranging from just a few bases to several hundred nucleotides. These overhangs are not merely a remnant of DNA replication but rather are the result of complex further processing. Proper management of the telomeric overhang is required both to deter the action of the DNA damage machinery and to present the ends properly to the replicative enzyme telomerase. This Current Topic addresses the biochemical and structural features used by the proteins that manage these variable telomeric overhangs. The Pot1 protein tightly binds the single-stranded overhang, preventing DNA damage sensors from binding. Pot1 also orchestrates the access of telomerase to that same substrate. The remarkable plasticity of the binding interface exhibited by the Schizosaccharomyces pombe Pot1 provides mechanistic insight into how these roles may be accomplished, and disease-associated mutations clustered around the DNA-binding interface in the hPOT1 highlight the importance of this function. The budding yeast Cdc13-Stn1-Ten1, a telomeric RPA complex closely associated with telomere function, also interacts with ssDNA in a fashion that allows degenerate sequences to be recognized. A related human complex composed of hCTC1, hSTN1, and hTEN1 has recently emerged with links to both telomere maintenance and general DNA replication and also exhibits mutations associated with telomere pathologies. Overall, these sequence-specific ssDNA binders exhibit a range of recognition properties that allow them to perform their unique biological functions.
Collapse
Affiliation(s)
- Neil R. Lloyd
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Robert A. Hom
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
28
|
Lee JR, Xie X, Yang K, Zhang J, Lee SY, Shippen DE. Dynamic Interactions of Arabidopsis TEN1: Stabilizing Telomeres in Response to Heat Stress. THE PLANT CELL 2016; 28:2212-2224. [PMID: 27609839 PMCID: PMC5059806 DOI: 10.1105/tpc.16.00408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 05/15/2023]
Abstract
Telomeres are the essential nucleoprotein structures that provide a physical cap for the ends of linear chromosomes. The highly conserved CST (CTC1/STN1/TEN1) protein complex facilitates telomeric DNA replication and promotes telomere stability. Here we report three unexpected properties of Arabidopsis thaliana TEN1 that indicate it possesses functions distinct from other previously characterized telomere proteins. First, we show that telomeres in ten1 mutants are highly sensitive to thermal stress. Heat shock causes abrupt and dramatic loss of telomeric DNA in ten1 plants, likely via deletional recombination. Second, we show that AtTEN1 has the properties of a heat-shock induced molecular chaperone. At elevated temperature, AtTEN1 rapidly assembles into high molecular weight homo-oligomeric complexes that efficiently suppress heat-induced aggregation of model protein substrates in vitro. Finally, we report that AtTEN1 specifically protects CTC1 from heat-induced aggregation in vitro, and from heat-induced protein degradation and loss of telomere association in vivo. Collectively, these observations define Arabidopsis TEN1 as a highly dynamic protein that works in concert with CTC1 to preserve telomere integrity in response to environmental stress.
Collapse
Affiliation(s)
- Jung Ro Lee
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Xiaoyuan Xie
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Kailu Yang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21) and PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
29
|
Rice C, Skordalakes E. Structure and function of the telomeric CST complex. Comput Struct Biotechnol J 2016; 14:161-7. [PMID: 27239262 PMCID: PMC4872678 DOI: 10.1016/j.csbj.2016.04.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/25/2022] Open
Abstract
Telomeres comprise the ends of eukaryotic chromosomes and are essential for cell proliferation and genome maintenance. Telomeres are replicated by telomerase, a ribonucleoprotein (RNP) reverse transcriptase, and are maintained primarily by nucleoprotein complexes such as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, TPP1) and CST (Cdc13/Ctc1, Stn1, Ten1). The focus of this review is on the CST complex and its role in telomere maintenance. Although initially thought to be unique to yeast, it is now evident that the CST complex is present in a diverse range of organisms where it contributes to genome maintenance. The CST accomplishes these tasks via telomere capping and by regulating telomerase and DNA polymerase alpha-primase (polα-primase) access to telomeres, a process closely coordinated with the shelterin complex in most organisms. The goal of this review is to provide a brief but comprehensive account of the diverse, and in some cases organism-dependent, functions of the CST complex and how it contributes to telomere maintenance and cell proliferation.
Collapse
|
30
|
Lustig AJ. Potential Risks in the Paradigm of Basic to Translational Research: A Critical Evaluation of qPCR Telomere Size Techniques. JOURNAL OF CANCER EPIDEMIOLOGY & TREATMENT 2015; 1:28-37. [PMID: 26435846 PMCID: PMC4590993 DOI: 10.24218/jcet.2015.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Real time qPCR has become the method of choice for rapid large-scale telomere length measurements. Large samples sizes are critical for clinical trials, and epidemiological studies. QPCR has become such routine procedure that it is often used with little critical analysis. With proper controls, the mean telomere size can be derived from the data and even the size can be estimated. But there is a need for more consistent and reliable controls that will provide closer to the actual mean size can be obtained with uniform consensus controls. Although originating at the level of basic telomere research, many researchers less familiar with telomeres often misunderstand the source and significance of the qPCR metric. These include researchers and clinicians who are interested in having a rapid tool to produce exciting results in disease prognostics and diagnostics than in the multiple characteristics of telomeres that form the basis of the measurement. But other characteristics of the non-bimodal and heterogeneous telomeres as well as the complexities of telomere dynamics are not easily related to qPCR mean telomere values. The qPCR metric does not reveal the heterogeneity and dynamics of telomeres. This is a critical issue since mutations in multiple genes including telomerase can cause telomere dysfunction and a loss of repeats. The smallest cellular telomere has been shown to arrest growth of the cell carrying the dysfunction telomere. A goal for the future is a simple method that takes into account the heterogeneity by measuring the highest and lowest values as part of the scheme to compare. In the absence of this technique, Southern blots need to be performed in a subset of qPCR samples for both mean telomere size and the upper and lower extremes of the distribution. Most importantly, there is a need for greater transparency in discussing the limitations of the qPCR data. Given the potentially exciting qPCR telomere size results emerging from clinical studies that relate qPCR mean telomere size estimates to disease states, the current ambiguities have become urgent issues to validate the findings and to set the right course for future clinical investigations.
Collapse
Affiliation(s)
- Arthur J Lustig
- Department of Biochemistry and Molecular Biology, Tulane University, USA
| |
Collapse
|
31
|
Greetham M, Skordalakes E, Lydall D, Connolly BA. The Telomere Binding Protein Cdc13 and the Single-Stranded DNA Binding Protein RPA Protect Telomeric DNA from Resection by Exonucleases. J Mol Biol 2015; 427:3023-30. [PMID: 26264873 PMCID: PMC4580210 DOI: 10.1016/j.jmb.2015.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 11/30/2022]
Abstract
The telomere is present at the ends of all eukaryotic chromosomes and usually consists of repetitive TG-rich DNA that terminates in a single-stranded 3' TG extension and a 5' CA-rich recessed strand. A biochemical assay that allows the in vitro observation of exonuclease-catalyzed degradation (resection) of telomeres has been developed. The approach uses an oligodeoxynucleotide that folds to a stem-loop with a TG-rich double-stranded region and a 3' single-stranded extension, typical of telomeres. Cdc13, the major component of the telomere-specific CST complex, strongly protects the recessed strand from the 5'→3' exonuclease activity of the model exonuclease from bacteriophage λ. The isolated DNA binding domain of Cdc13 is less effective at shielding telomeres. Protection is specific, not being observed in control DNA lacking the specific TG-rich telomere sequence. RPA, the eukaryotic single-stranded DNA binding protein, also inhibits telomere resection. However, this protein is non-specific, equally hindering the degradation of non-telomere controls.
Collapse
Affiliation(s)
- Matthew Greetham
- Institute for Cell and Molecular Biology, The University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - David Lydall
- Institute for Cell and Molecular Biology, The University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Bernard A Connolly
- Institute for Cell and Molecular Biology, The University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
32
|
Steinberg-Neifach O, Wellington K, Vazquez L, Lue NF. Combinatorial recognition of a complex telomere repeat sequence by the Candida parapsilosis Cdc13AB heterodimer. Nucleic Acids Res 2015; 43:2164-76. [PMID: 25662607 PMCID: PMC4344524 DOI: 10.1093/nar/gkv092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The telomere repeat units of Candida species are substantially longer and more complex than those in other organisms, raising interesting questions concerning the recognition mechanisms of telomere-binding proteins. Herein we characterized the properties of Candida parapsilosis Cdc13A and Cdc13B, two paralogs that are responsible for binding and protecting the telomere G-strand tails. We found that Cdc13A and Cdc13B can each form complexes with itself and a heterodimeric complex with each other. However, only the heterodimer exhibits high-affinity and sequence-specific binding to the telomere G-tail. EMSA and crosslinking analysis revealed a combinatorial mechanism of DNA recognition, which entails the A and B subunit making contacts to the 3′ and 5′ region of the repeat unit. While both the DBD and OB4 domain of Cdc13A can bind to the equivalent domain in Cdc13B, only the OB4 complex behaves as a stable heterodimer. The unstable Cdc13ABDBD complex binds G-strand with greatly reduced affinity but the same sequence specificity. Thus the OB4 domains evidently contribute to binding by promoting dimerization of the DBDs. Our investigation reveals a rare example of combinatorial recognition of single-stranded DNA and offers insights into the co-evolution of telomere DNA and cognate binding proteins.
Collapse
Affiliation(s)
- Olga Steinberg-Neifach
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Hostos Community College, City University of New York, 500 Grand Concourse, Bronx, NY 10451, USA
| | - Kemar Wellington
- Hostos Community College, City University of New York, 500 Grand Concourse, Bronx, NY 10451, USA
| | - Leslie Vazquez
- Hostos Community College, City University of New York, 500 Grand Concourse, Bronx, NY 10451, USA
| | - Neal F. Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
- To whom correspondence should be addressed. Tel: +1 212 746 6506; Fax: +1 212 746 8587;
| |
Collapse
|
33
|
The CDC13-STN1-TEN1 complex stimulates Pol α activity by promoting RNA priming and primase-to-polymerase switch. Nat Commun 2014; 5:5762. [PMID: 25503194 PMCID: PMC4269169 DOI: 10.1038/ncomms6762] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that Cdc13-Stn1-Ten1 (CST), an RPA-like ssDNA-binding complex, may regulate primase-Pol α (PP) activity at telomeres constitutively, and at other genomic locations under conditions of replication stress. Here we examine the mechanisms of PP stimulation by CST using purified complexes derived from Candida glabrata. While CST does not enhance isolated DNA polymerase activity, it substantially augments both primase activity and primase-to-polymerase switching. CST also simultaneously shortens the RNA and lengthens the DNA in the chimeric products. Stn1, the most conserved subunit of CST, is alone capable of PP stimulation. Both the N-terminal OB fold and the C-terminal winged-helix domains of Stn1 can bind to the Pol12 subunit of the PP complex, and stimulate PP activity. Our findings provide mechanistic insights on a well-conserved pathway of PP regulation that is critical for genome stability.
Collapse
|
34
|
Holstein EM, Clark KRM, Lydall D. Interplay between nonsense-mediated mRNA decay and DNA damage response pathways reveals that Stn1 and Ten1 are the key CST telomere-cap components. Cell Rep 2014; 7:1259-69. [PMID: 24835988 PMCID: PMC4518466 DOI: 10.1016/j.celrep.2014.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/20/2014] [Accepted: 04/10/2014] [Indexed: 11/30/2022] Open
Abstract
A large and diverse set of proteins, including CST complex, nonsense mediated decay (NMD), and DNA damage response (DDR) proteins, play important roles at the telomere in mammals and yeast. Here, we report that NMD, like the DDR, affects single-stranded DNA (ssDNA) production at uncapped telomeres. Remarkably, we find that the requirement for Cdc13, one of the components of CST, can be efficiently bypassed when aspects of DDR and NMD pathways are inactivated. However, identical genetic interventions do not bypass the need for Stn1 and Ten1, the partners of Cdc13. We show that disabling NMD alters the stoichiometry of CST components at telomeres and permits Stn1 to bind telomeres in the absence of Cdc13. Our data support a model that Stn1 and Ten1 can function in a Cdc13-independent manner and have implications for the function of CST components across eukaryotes.
Collapse
Affiliation(s)
- Eva-Maria Holstein
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Kate R M Clark
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
35
|
Zhao C, Wu L, Ren J, Xu Y, Qu X. Targeting Human Telomeric Higher-Order DNA: Dimeric G-Quadruplex Units Serve as Preferred Binding Site. J Am Chem Soc 2013; 135:18786-9. [DOI: 10.1021/ja410723r] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chuanqi Zhao
- Division
of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth
Resource Utilization and Laboratory of Chemical Biology, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Li Wu
- Division
of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth
Resource Utilization and Laboratory of Chemical Biology, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jinsong Ren
- Division
of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth
Resource Utilization and Laboratory of Chemical Biology, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yan Xu
- Division
of Chemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Xiaogang Qu
- Division
of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth
Resource Utilization and Laboratory of Chemical Biology, Changchun
Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
36
|
Lewis KA, Pfaff DA, Earley JN, Altschuler SE, Wuttke DS. The tenacious recognition of yeast telomere sequence by Cdc13 is fully exerted by a single OB-fold domain. Nucleic Acids Res 2013; 42:475-84. [PMID: 24057216 PMCID: PMC3874162 DOI: 10.1093/nar/gkt843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cdc13, the telomere end-binding protein from Saccharomyces cerevisiae, is a multidomain protein that specifically binds telomeric single-stranded DNA (ssDNA) with exquisitely high affinity to coordinate telomere maintenance. Recent structural and genetic data have led to the proposal that Cdc13 is the paralog of RPA70 within a telomere-specific RPA complex. Our understanding of Cdc13 structure and biochemistry has been largely restricted to studies of individual domains, precluding analysis of how each domain influences the activity of the others. To better facilitate a comparison to RPA70, we evaluated the ssDNA binding of full-length S. cerevisiae Cdc13 to its minimal substrate, Tel11. We found that, unlike RPA70 and the other known telomere end-binding proteins, the core Cdc13 ssDNA-binding activity is wholly contained within a single tight-binding oligosaccharide/oligonucleotide/oligopeptide binding (OB)-fold. Because two OB-folds are implicated in dimerization, we also evaluated the relationship between dimerization and ssDNA-binding activity and found that the two activities are independent. We also find that Cdc13 binding exhibits positive cooperativity that is independent of dimerization. This study reveals that, while Cdc13 and RPA70 share similar domain topologies, the corresponding domains have evolved different and specialized functions.
Collapse
Affiliation(s)
- Karen A Lewis
- Department of Chemistry and Biochemistry, UCB 543, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
37
|
Lue NF, Chan J. Duplication and functional specialization of the telomere-capping protein Cdc13 in Candida species. J Biol Chem 2013; 288:29115-23. [PMID: 23965999 DOI: 10.1074/jbc.m113.506519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The budding yeast G-tail binding complex CST (Cdc13-Stn1-Ten1) is crucial for both telomere protection and replication. Previous studies revealed a family of Cdc13 orthologues (Cdc13A) in Candida species that are unusually small but are nevertheless responsible for G-tail binding and the regulation of telomere lengths and structures. Here we report the identification and characterization of a second family of Cdc13-like proteins in the Candida clade, named Cdc13B. Phylogenetic analysis and sequence alignment indicate that Cdc13B probably arose through gene duplication prior to Candida speciation. Like Cdc13A, Cdc13B appears to be essential. Deleting one copy each of the CDC13A and CDC13B genes caused a synergistic effect on aberrant telomere elongation and t-circle accumulation, suggesting that the two paralogues mediate overlapping and nonredundant functions in telomere regulation. Interestingly, Cdc13B utilizes its C-terminal OB-fold domain (OB4) to mediate self-association and binding to Cdc13A. Moreover, the stability of the heterodimer is evidently greater than that of either homodimer. Both the Cdc13 A/A homodimer and A/B heterodimer, but not the B/B homodimer, recognized the telomere G-tail repeat with high affinity and sequence specificity. Our results reveal novel evolutionary elaborations of the G-tail-binding protein in Saccharomycotina yeast, suggesting a drastic remodeling of CDC13 that entails gene duplication, fusion, and functional specialization. The repeated and independent duplication of G-tail-binding proteins such as Cdc13 and Pot1 hints at the evolutionary advantage of having multiple G-tail-binding proteins.
Collapse
Affiliation(s)
- Neal F Lue
- From the Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, New York, New York 10065
| | | |
Collapse
|