1
|
Oliva A, Foare R, Campbell P, Twine NA, Bauer DC, Johar AS. A Pangenomic Approach to Improve Population Genetics Analysis and Reference Bias in Underrepresented Middle Eastern and Horn of Africa Populations. Biomolecules 2025; 15:582. [PMID: 40305331 PMCID: PMC12025191 DOI: 10.3390/biom15040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Genomics plays a crucial role in addressing health disparities, yet most studies rely on the hg38 linear reference genome, limiting the potential of pangenomic approaches, particularly for underrepresented populations. In this study, we focus on characterising East African populations, particularly Somalis, by constructing a variation graph using Mozabites from the Human Genome Diversity Project (HGDP) given their ancestral affinity with Somalis. We evaluated the effectiveness of this graph-based reference in estimating effective population sizes (Ne) in Bedouins compared to the hg38 reference and examined its impact on allele frequencies and genome-wide association studies (GWAS). Applying a coalescent model to the graph-based reference produced a Ne estimate of approximately 17 for the Bedouin population, which was significantly lower than the estimate from the hg38 reference (approximately 79,000). Only the graph-based estimate fell within the 95% confidence interval in simulations, indicating improved accuracy. Moreover, graph variants exhibited significantly lower allele frequencies (p-value < 2.2 × 10-16), suggesting potential effects on the interpretation and power of GWAS. Notably, GWAS variants specific to Bedouins derived from the graph showed lower frequencies (p = 0.023) than those obtained from the linear reference. These findings suggest that a pangenomic approach, informed by populations with ancestral affinities such as the Mozabites, provides more accurate estimates of Ne and allele frequencies. This highlights the importance of pangenomic strategies to better capture genetic diversity in underrepresented populations, a critical step towards improving population genetics studies, personalised medicine, and equitable healthcare.
Collapse
Affiliation(s)
- Adrien Oliva
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne 3169, Australia; (N.A.T.); (D.C.B.)
| | - Rachel Foare
- Life Sciences and Health Graduate School, Université Paris-Saclay, 3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France;
| | - Peter Campbell
- Information Management and Technology (IM&T), Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne 3169, Australia;
| | - Natalie A. Twine
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne 3169, Australia; (N.A.T.); (D.C.B.)
| | - Denis C. Bauer
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne 3169, Australia; (N.A.T.); (D.C.B.)
| | - Angad Singh Johar
- Menzies Institute of Medical Research, The University of Tasmania, Hobart 7000, Australia;
| |
Collapse
|
2
|
Chekroun I, Shenbagam S, Almarri MA, Mokrab Y, Uddin M, Alkhnbashi OS, Zaki MS, Najmabadi H, Kahrizi K, Fakhro KA, Almontashiri NAM, Ali FR, Özbek U, Reversade B, Alkuraya FS, Alsheikh-Ali A, Abou Tayoun AN. Genomics of rare diseases in the Greater Middle East. Nat Genet 2025; 57:505-514. [PMID: 39901015 DOI: 10.1038/s41588-025-02075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025]
Abstract
The Greater Middle East (GME) represents a concentrated region of unparalleled genetic diversity, characterized by an abundance of distinct alleles, founder mutations and extensive autozygosity driven by high consanguinity rates. These genetic hallmarks present a unique, yet vastly untapped resource for genomic research on Mendelian diseases. Despite this immense potential, the GME continues to face substantial challenges in comprehensive data collection and analysis. This Perspective highlights the region's unique position as a natural laboratory for genetic discovery and explores the challenges that have stifled progress thus far. Importantly, we propose strategic solutions, advocating for an all-inclusive research approach. With targeted investment and focused efforts, the latent genetic wealth in the GME can be transformed into a global hub for genomic research that will redefine and advance our understanding of the human genome.
Collapse
Affiliation(s)
- Ikram Chekroun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Shruti Shenbagam
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, UAE
| | - Mohamed A Almarri
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Younes Mokrab
- Research Branch, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Health Sciences, Qatar University, Doha, Qatar
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Omer S Alkhnbashi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Khalid A Fakhro
- Research Branch, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Naif A M Almontashiri
- College of Applied Medical Sciences and Center for Genetics and Inherited Diseases, Taibah University, Madinah, Kingdom of Saudi Arabia
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Uğur Özbek
- Rare and Undiagnosed Disease Platform, IBG-Izmir Biomedicine and Genome Center, Izmir, Türkiye
| | - Bruno Reversade
- Laboratory of Human Genetics and Therapeutics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- Lifera Omics, Riyadh, Kingdom of Saudi Arabia
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Dubai Health, Dubai, UAE
| | - Ahmad N Abou Tayoun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE.
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, UAE.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE.
| |
Collapse
|
3
|
Vilà-Valls L, Abdeli A, Lucas-Sánchez M, Bekada A, Calafell F, Benhassine T, Comas D. Understanding the genomic heterogeneity of North African Imazighen: from broad to microgeographical perspectives. Sci Rep 2024; 14:9979. [PMID: 38693301 PMCID: PMC11063056 DOI: 10.1038/s41598-024-60568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
The strategic location of North Africa has led to cultural and demographic shifts, shaping its genetic structure. Historical migrations brought different genetic components that are evident in present-day North African genomes, along with autochthonous components. The Imazighen (plural of Amazigh) are believed to be the descendants of autochthonous North Africans and speak various Amazigh languages, which belong to the Afro-Asiatic language family. However, the arrival of different human groups, especially during the Arab conquest, caused cultural and linguistic changes in local populations, increasing their heterogeneity. We aim to characterize the genetic structure of the region, using the largest Amazigh dataset to date and other reference samples. Our findings indicate microgeographical genetic heterogeneity among Amazigh populations, modeled by various admixture waves and different effective population sizes. A first admixture wave is detected group-wide around the twelfth century, whereas a second wave appears in some Amazigh groups around the nineteenth century. These events involved populations with higher genetic ancestry from south of the Sahara compared to the current North Africans. A plausible explanation would be the historical trans-Saharan slave trade, which lasted from the Roman times to the nineteenth century. Furthermore, our investigation shows that assortative mating in North Africa has been rare.
Collapse
Affiliation(s)
- Laura Vilà-Valls
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Amine Abdeli
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté Des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - Marcel Lucas-Sánchez
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Francesc Calafell
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Traki Benhassine
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté Des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene, Alger, Algeria
| | - David Comas
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
4
|
Pichkar Y, Creanza N. Fine-scale cultural variation reinforces genetic structure in England. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 37377289 DOI: 10.1002/ajpa.24789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVES Genes and languages both contain signatures of human evolution, population movement, and demographic history. Cultural traits like language are transmitted by interactions between people, and these traits influence how people interact. In particular, if groups of people differentiate each other based on some qualities of their cultures, and if these qualities are passed to the next generation, then this differentiation can result in barriers to gene flow. Previous work finds such barriers to gene flow between groups that speak different languages, and we explore this phenomenon further: can more subtle cultural differences also produce genetic structure in a population? We focus on whether subtle, dialect-level linguistic differences in England have influenced genetic population structure, likely by affecting mating preferences. MATERIALS AND METHODS We analyze spatially dense linguistic and genetic data-both of which independently contain spatially structured variation in England-to examine whether the cultural differences represented by variation in English phonology colocalize with higher genetic rates of change. RESULTS We find that genetic variation and dialect markers have similar spatial distributions on a country-wide scale, and that throughout England, linguistic boundaries colocalize with the boundaries of genetic clusters found using fineSTRUCTURE. DISCUSSION This gene-language covariation, in the absence of geographic barriers that could coordinate cultural and genetic differentiation, suggests that similar social forces influenced both dialect boundaries and the genetic population structure of England.
Collapse
Affiliation(s)
- Yakov Pichkar
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Nicole Creanza
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Avnat E, Shapira G, Shoval S, Israel-Elgali I, Alkelai A, Shuldiner AR, Gonzaga-Jauregui C, Zidan J, Maray T, Shomron N, Friedman E. Comprehensive Genetic Analysis of Druze Provides Insights into Carrier Screening. Genes (Basel) 2023; 14:genes14040937. [PMID: 37107695 PMCID: PMC10137689 DOI: 10.3390/genes14040937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Druze individuals, like many genetically homogeneous and isolated populations, harbor recurring pathogenic variants (PV) in autosomal recessive (AR) disorders. METHODS Variant calling of whole-genome sequencing (WGS) of 40 Druze from the Human Genome Diversity Project (HGDP) was performed (HGDP-cohort). Additionally, we performed whole exome sequencing (WES) of 118 Druze individuals: 38 trios and 2 couples, representing geographically distinct clans (WES-cohort). Rates of validated PV were compared with rates in worldwide and Middle Eastern populations, from the gnomAD and dbSNP datasets. RESULTS Overall, 34 PVs were identified: 30 PVs in genes underlying AR disorders, 3 additional PVs were associated with autosomal dominant (AD) disorders, and 1 PV with X-linked-dominant inherited disorder in the WES cohort. CONCLUSIONS The newly identified PVs associated with AR conditions should be considered for incorporation into prenatal-screening options offered to Druze individuals after an extension and validation of the results in a larger study.
Collapse
Affiliation(s)
- Eden Avnat
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guy Shapira
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shelly Shoval
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Ifat Israel-Elgali
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Anna Alkelai
- Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | | | - Claudia Gonzaga-Jauregui
- Regeneron Genetics Center, Tarrytown, NY 10591, USA
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla 04510, Querétaro, Mexico
| | - Jamal Zidan
- The Oncology Department, Ziv Medical Center, and the Azrieli Faculty of Medicine, Bar-Ilan University, Zefat 13206, Israel
| | - Taiseer Maray
- Golan for Development, Majdal Shams 1243800, Golan Heights
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Eitan Friedman
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- The Meirav High Risk Clinic, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel
| |
Collapse
|
6
|
Rodríguez-Varela R, Moore KHS, Ebenesersdóttir SS, Kilinc GM, Kjellström A, Papmehl-Dufay L, Alfsdotter C, Berglund B, Alrawi L, Kashuba N, Sobrado V, Lagerholm VK, Gilbert E, Cavalleri GL, Hovig E, Kockum I, Olsson T, Alfredsson L, Hansen TF, Werge T, Munters AR, Bernhardsson C, Skar B, Christophersen A, Turner-Walker G, Gopalakrishnan S, Daskalaki E, Omrak A, Pérez-Ramallo P, Skoglund P, Girdland-Flink L, Gunnarsson F, Hedenstierna-Jonson C, Gilbert MTP, Lidén K, Jakobsson M, Einarsson L, Victor H, Krzewińska M, Zachrisson T, Storå J, Stefánsson K, Helgason A, Götherström A. The genetic history of Scandinavia from the Roman Iron Age to the present. Cell 2023; 186:32-46.e19. [PMID: 36608656 DOI: 10.1016/j.cell.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 01/07/2023]
Abstract
We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Varela
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden.
| | | | - S Sunna Ebenesersdóttir
- deCODE Genetics/AMGEN, Inc., 102 Reykjavik, Iceland; Department of Anthropology, University of Iceland, 102 Reykjavik, Iceland
| | - Gulsah Merve Kilinc
- Department of Bioinformatics, Graduate School of Health Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Anna Kjellström
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | | | - Clara Alfsdotter
- Department of Archaeology, Bohusläns Museum, Museigatan 1, 451 19 Udevalla, Sweden
| | - Birgitta Berglund
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Loey Alrawi
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Natalija Kashuba
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden; Department of Archaeology and Ancient History, Archaeology, Uppsala University, 752 38 Uppsala, Sweden; Department of Organismal Biology, Human Evolution, and SciLife Lab, Uppsala University, 75236 Uppsala, Sweden
| | - Verónica Sobrado
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Vendela Kempe Lagerholm
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Edmund Gilbert
- School of Pharmacy and Biomolecular Sciences, RCSI, D02 YN77 Dublin, Ireland; FutureNeuro SFI Research Centre, RCSI, D02 YN77 Dublin, Ireland
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, RCSI, D02 YN77 Dublin, Ireland; FutureNeuro SFI Research Centre, RCSI, D02 YN77 Dublin, Ireland
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; Centre for Bioinformatics, Department of Informatics, University of Oslo, 166 0450 Oslo, Norway
| | - Ingrid Kockum
- Center for Molecular Medicine, Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Tomas Olsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Thomas F Hansen
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, 4000 Roskilde, Denmark; Danish Headache Center, Department of Neurology, Copenhagen University Hospital, 2600 Glostrup, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, 4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus, Denmark
| | - Arielle R Munters
- Department of Organismal Biology, Human Evolution, and SciLife Lab, Uppsala University, 75236 Uppsala, Sweden
| | - Carolina Bernhardsson
- Department of Organismal Biology, Human Evolution, and SciLife Lab, Uppsala University, 75236 Uppsala, Sweden
| | - Birgitte Skar
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Axel Christophersen
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Gordon Turner-Walker
- Department of Archaeology and Anthropology National Museum of Natural Science, 404023 Taichung City, Taiwan
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, the GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Eva Daskalaki
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Ayça Omrak
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Patxi Pérez-Ramallo
- isoTROPIC Research Group, Department of Archaeology, Max Planck Institute for Geoanthropology, 07745 Jena, Germany; Department of Medical and Surgical Specialities, Faculty of Medicine and Nursing, University of the Basque Country (EHU), Donostia-San Sebastián 20014, Spain
| | | | - Linus Girdland-Flink
- Department of Archaeology, School of Geosciences, University of Aberdeen, AB24 3FX Aberdeen, UK; School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Fredrik Gunnarsson
- Department of Museum Archaeology, Kalmar County Museum, Box 104, Kalmar 39121, Sweden
| | | | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, the GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark; Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Kerstin Lidén
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, and SciLife Lab, Uppsala University, 75236 Uppsala, Sweden
| | - Lars Einarsson
- Kronan, Marine Archaeological Department, Kalmar County Museum, Box 104, Kalmar S-39121, Sweden
| | - Helena Victor
- Department of Museum Archaeology, Kalmar County Museum, Box 104, Kalmar 39121, Sweden
| | - Maja Krzewińska
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | | | - Jan Storå
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Kári Stefánsson
- deCODE Genetics/AMGEN, Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| | - Agnar Helgason
- deCODE Genetics/AMGEN, Inc., 102 Reykjavik, Iceland; Department of Anthropology, University of Iceland, 102 Reykjavik, Iceland.
| | - Anders Götherström
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
7
|
Srigyan M, Bolívar H, Ureña I, Santana J, Petersen A, Iriarte E, Kırdök E, Bergfeldt N, Mora A, Jakobsson M, Abdo K, Braemer F, Smith C, Ibañez JJ, Götherström A, Günther T, Valdiosera C. Bioarchaeological evidence of one of the earliest Islamic burials in the Levant. Commun Biol 2022; 5:554. [PMID: 35672445 PMCID: PMC9174286 DOI: 10.1038/s42003-022-03508-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
The Middle East plays a central role in human history harbouring a vast diversity of ethnic, cultural and religious groups. However, much remains to be understood about past and present genomic diversity in this region. Here we present a multidisciplinary bioarchaeological analysis of two individuals dated to the late 7th and early 8th centuries, the Umayyad Era, from Tell Qarassa, an open-air site in modern-day Syria. Radiocarbon dates and burial type are consistent with one of the earliest Islamic Arab burials in the Levant. Interestingly, we found genomic similarity to a genotyped group of modern-day Bedouins and Saudi rather than to most neighbouring Levantine groups. This study represents the genomic analysis of a secondary use site with characteristics consistent with an early Islamic burial in the Levant. We discuss our findings and possible historic scenarios in the light of forces such as genetic drift and their possible interaction with religious and cultural processes (including diet and subsistence practices). Ancient genomic and archaeological data combine to identify a surprisingly early Islamic burial in modern day Syria.
Collapse
Affiliation(s)
- Megha Srigyan
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Héctor Bolívar
- Centre for Palaeogenetics, 10691, Stockholm, Sweden.,Instituto del Patrimonio Cultural de España, 28040, Madrid, Spain
| | - Irene Ureña
- Centre for Palaeogenetics, 10691, Stockholm, Sweden
| | - Jonathan Santana
- Department of Historical Sciences, Universidad de Las Palmas de Gran Canaria, Las Palmas de G.C., E35001, Spain
| | | | - Eneko Iriarte
- Laboratorio de Evolución Humana, Departamento de Historia, Geografía y Comunicación, Universidad de Burgos, 09001, Burgos, Spain
| | - Emrah Kırdök
- Department of Biotechnology, Mersin University, 33343, Mersin, Turkey
| | | | - Alice Mora
- Dept. Archaeology and History, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Khaled Abdo
- General Directorate of Antiquities and Museums, Damascus, Syrian Arab Republic
| | - Frank Braemer
- Université Côte d'Azur, CNRS, Culture et Environment, Préhistoire Antiquité Moyen Age, Nice, France
| | - Colin Smith
- Laboratorio de Evolución Humana, Departamento de Historia, Geografía y Comunicación, Universidad de Burgos, 09001, Burgos, Spain.,Dept. Archaeology and History, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Juan José Ibañez
- Archaeology of Social Dynamics, Milà i Fontanals Institution, Spanish National Research Council (CSIC), Barcelona, Spain
| | | | - Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| | - Cristina Valdiosera
- Laboratorio de Evolución Humana, Departamento de Historia, Geografía y Comunicación, Universidad de Burgos, 09001, Burgos, Spain. .,Dept. Archaeology and History, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
8
|
Truelsen D, Tvedebrink T, Mogensen HS, Farzad MS, Shan MA, Morling N, Pereira V, Børsting C. Assessment of the effectiveness of the EUROFORGEN NAME and Precision ID Ancestry panel markers for ancestry investigations. Sci Rep 2021; 11:18595. [PMID: 34545122 PMCID: PMC8452675 DOI: 10.1038/s41598-021-97654-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/11/2021] [Indexed: 11/08/2022] Open
Abstract
The EUROFORGEN NAME panel is a regional ancestry panel designed to differentiate individuals from the Middle East, North Africa, and Europe. The first version of the panel was developed for the MassARRAY system and included 111 SNPs. Here, a custom AmpliSeq EUROFORGEN NAME panel with 102 of the original 111 loci was used to sequence 1098 individuals from 14 populations from Europe, the Middle East, North Africa, North-East Africa, and South-Central Asia. These samples were also sequenced with a global ancestry panel, the Precision ID Ancestry Panel. The GenoGeographer software was used to assign the AIM profiles to reference populations and calculate the weight of the evidence as likelihood ratios. The combination of the EUROFORGEN NAME and Precision ID Ancestry panels led to fewer ambiguous assignments, especially for individuals from the Middle East and South-Central Asia. The likelihood ratios showed that North African individuals could be separated from European and Middle Eastern individuals using the Precision ID Ancestry Panel. The separation improved with the addition of the EUROFORGEN NAME panel. The analyses also showed that the separation of Middle Eastern populations from European and South-Central Asian populations was challenging even when both panels were applied.
Collapse
Affiliation(s)
- D Truelsen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - T Tvedebrink
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Mathematical Sciences, Aalborg University, 9220, Aalborg, Denmark
| | - H S Mogensen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - M S Farzad
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - M A Shan
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - N Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Mathematical Sciences, Aalborg University, 9220, Aalborg, Denmark
| | - V Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - C Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
9
|
Almarri MA, Haber M, Lootah RA, Hallast P, Al Turki S, Martin HC, Xue Y, Tyler-Smith C. The genomic history of the Middle East. Cell 2021; 184:4612-4625.e14. [PMID: 34352227 PMCID: PMC8445022 DOI: 10.1016/j.cell.2021.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/17/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
The Middle East region is important to understand human evolution and migrations but is underrepresented in genomic studies. Here, we generated 137 high-coverage physically phased genome sequences from eight Middle Eastern populations using linked-read sequencing. We found no genetic traces of early expansions out-of-Africa in present-day populations but found Arabians have elevated Basal Eurasian ancestry that dilutes their Neanderthal ancestry. Population sizes within the region started diverging 15–20 kya, when Levantines expanded while Arabians maintained smaller populations that derived ancestry from local hunter-gatherers. Arabians suffered a population bottleneck around the aridification of Arabia 6 kya, while Levantines had a distinct bottleneck overlapping the 4.2 kya aridification event. We found an association between movement and admixture of populations in the region and the spread of Semitic languages. Finally, we identify variants that show evidence of selection, including polygenic selection. Our results provide detailed insights into the genomic and selective histories of the Middle East. Middle Easterners do not have ancestry from an early out-of-Africa expansion Basal Eurasian and African ancestry in Arabians deplete their Neanderthal ancestry Populations experienced bottlenecks overlapping aridification events Identification of recent single and polygenic signals of selection in Arabia
Collapse
Affiliation(s)
- Mohamed A Almarri
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates.
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK.
| | - Reem A Lootah
- Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates
| | - Pille Hallast
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK; Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Saeed Al Turki
- Translational Pathology, Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia; Department of Genetics & Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Yali Xue
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Chris Tyler-Smith
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
10
|
Milane A, Khazen G, Olaywan L, Zarzour F, Mohty R, Sarkis A, Zalloua P, Barbari A. Frequency of ABCB1 C3435T and CYP3A5*3 Genetic Polymorphisms in the Lebanese Population. EXP CLIN TRANSPLANT 2021; 19:434-438. [PMID: 34053421 DOI: 10.6002/ect.2021.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES CYP3A5 and ABCB1 are highly implicated in the pharmacokinetics and pharmacodynamics of immunosuppressive agents, such as calcineurin inhibitors and mammalian target of rapamycin inhibitors. The polymorphisms of their coding genes play important roles in the interindividual and intraindividual differences of bioavailability of these drugs. In this study, our objective was to investigate, in a Lebanese population,the frequency of ABCB1C3435T (rs1045642) and CYP3A5*3 (rs776746) polymorphisms and to compare the results to preexisting data from other populations. MATERIALS AND METHODS We determined the frequencies of the allelic variants of interest for 1824 Lebanese participants, and we compared these results with those from other major ethnic groups. RESULTS The allelic frequencies were 91.4% (C) and 8.6% (T) for CYP3A5*3 and 50.8% (T) and 49.2% (C) for ABCB1 C3435T. Our results were significantly different from most other world populations, except the European population. CONCLUSIONS The frequencies of gene variants of interest in our Lebanese population were similar to those found in European populations. Most of our study population were CYP3A5*3 carriers, and more than half may have a lower P-glycoprotein efflux pump. These characteristics might render Lebanese transplant recipients more prone to the development of drug toxicity and in need of lower drug doses.
Collapse
Affiliation(s)
- Aline Milane
- From the School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lucas-Sánchez M, Serradell JM, Comas D. Population history of North Africa based on modern and ancient genomes. Hum Mol Genet 2020; 30:R17-R23. [PMID: 33284971 DOI: 10.1093/hmg/ddaa261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/09/2023] Open
Abstract
Compared with the rest of the African continent, North Africa has provided limited genomic data. Nonetheless, the genetic data available show a complex demographic scenario characterized by extensive admixture and drift. Despite the continuous gene flow from the Middle East, Europe and sub-Saharan Africa, an autochthonous genetic component that dates back to pre-Holocene times is still present in North African groups. The comparison of ancient and modern genomes has evidenced a genetic continuity in the region since Epipaleolithic times. Later population movements, especially the gene flow from the Middle East associated with the Neolithic, have diluted the genetic autochthonous component, creating an east to west gradient. Recent historical movements, such as the Arabization, have also contributed to the genetic landscape observed currently in North Africa and have culturally transformed the region. Genome analyses have not shown evidence of a clear correlation between cultural and genetic diversity in North Africa, as there is no genetic pattern of differentiation between Tamazight (i.e. Berber) and Arab speakers as a whole. Besides the gene flow received from neighboring areas, the analysis of North African genomes has shown that the region has also acted as a source of gene flow since ancient times. As a result of the genetic uniqueness of North African groups and the lack of available data, there is an urgent need for the study of genetic variation in the region and its implications in health and disease.
Collapse
Affiliation(s)
- Marcel Lucas-Sánchez
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jose M Serradell
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
12
|
Abstract
The study of ancient genomes has burgeoned at an incredible rate in the last decade. The result is a shift in archaeological narratives, bringing with it a fierce debate on the place of genetics in anthropological research. Archaeogenomics has challenged and scrutinized fundamental themes of anthropological research, including human origins, movement of ancient and modern populations, the role of social organization in shaping material culture, and the relationship between culture, language, and ancestry. Moreover, the discussion has inevitably invoked new debates on indigenous rights, ownership of ancient materials, inclusion in the scientific process, and even the meaning of what it is to be a human. We argue that the broad and seemingly daunting ethical, methodological, and theoretical challenges posed by archaeogenomics, in fact, represent the very cutting edge of social science research. Here, we provide a general review of the field by introducing the contemporary discussion points and summarizing methodological and ethical concerns, while highlighting the exciting possibilities of ancient genome studies in archaeology from an anthropological perspective.
Collapse
Affiliation(s)
- Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14221, USA
| | - Michael Frachetti
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
13
|
Characterization of ancestry informative markers in the Tigray population of Ethiopia: A contribution to the identification process of dead migrants in the Mediterranean Sea. Forensic Sci Int Genet 2020; 45:102207. [DOI: 10.1016/j.fsigen.2019.102207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 01/16/2023]
|
14
|
Rotstein DL, Marrie RA, Maxwell C, Gandhi S, Schultz SE, Fung K, Tu K. MS risk in immigrants in the McDonald era: A population-based study in Ontario, Canada. Neurology 2019; 93:e2203-e2215. [PMID: 31690681 DOI: 10.1212/wnl.0000000000008611] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/13/2019] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To determine risk factors for multiple sclerosis (MS) in immigrants and to compare MS risk in immigrants and long-term residents in Ontario, Canada. METHODS We applied a validated algorithm to linked, population-based immigration and health claims data to identify incident cases of MS in immigrants and long-term residents between 1994 and 2016. We conducted 2 multivariable Cox proportional hazards regression analyses: 1 analysis limited to the immigrant cohort assessing potential risk factors for developing MS, and 1 analysis comparing MS risk between immigrants and matched long-term residents (1:3 match). RESULTS We identified 2,304,302 immigrants for the immigrant-only analysis, of whom 1,526 (0.066%) developed MS. Risk was greatest in those <15 years old at landing (referent <15 years; 16-30 years: hazard ratio [HR] 0.73, 95% confidence interval [CI] 0.63-0.85; 31-45 years: HR 0.55, 95% CI 0.47-0.64). Immigrants from the Middle East (HR 1.22, 95% CI 1.06-1.40) were at greater MS risk than immigrants from Western nations; all other regions had lower risk (p < 0.0001). The matched analysis included 2,207,751 immigrants and 6,362,169 long-term residents. Immigrants were less likely to develop MS than long-term residents (p < 0.0001), although this lower risk was attenuated with longer residence in Canada. CONCLUSIONS MS incidence in immigrants to Ontario, Canada, varied widely by region of origin, with greatest risk seen in those from the Middle East. Longer residence in Canada was associated with increased risk, even with migration in adulthood, suggesting that environmental exposures into adulthood contribute to MS risk.
Collapse
Affiliation(s)
- Dalia L Rotstein
- From the Department of Medicine (D.L.R.) and Departments of Family and Community Medicine and Institute for Health Policy, Management and Evaluation (K.T.), University of Toronto; St. Michael's Hospital (D.L.R.), Toronto, Ontario; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg; Schools of Pharmacy and Public Health and Health Systems (C.M.), University of Waterloo; Institute for Clinical Evaluative Sciences (C.M., S.G., S.E.S., K.F.); and Toronto Western Hospital University Health Network (K.T.), Ontario, Canada.
| | - Ruth Ann Marrie
- From the Department of Medicine (D.L.R.) and Departments of Family and Community Medicine and Institute for Health Policy, Management and Evaluation (K.T.), University of Toronto; St. Michael's Hospital (D.L.R.), Toronto, Ontario; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg; Schools of Pharmacy and Public Health and Health Systems (C.M.), University of Waterloo; Institute for Clinical Evaluative Sciences (C.M., S.G., S.E.S., K.F.); and Toronto Western Hospital University Health Network (K.T.), Ontario, Canada
| | - Colleen Maxwell
- From the Department of Medicine (D.L.R.) and Departments of Family and Community Medicine and Institute for Health Policy, Management and Evaluation (K.T.), University of Toronto; St. Michael's Hospital (D.L.R.), Toronto, Ontario; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg; Schools of Pharmacy and Public Health and Health Systems (C.M.), University of Waterloo; Institute for Clinical Evaluative Sciences (C.M., S.G., S.E.S., K.F.); and Toronto Western Hospital University Health Network (K.T.), Ontario, Canada
| | - Sima Gandhi
- From the Department of Medicine (D.L.R.) and Departments of Family and Community Medicine and Institute for Health Policy, Management and Evaluation (K.T.), University of Toronto; St. Michael's Hospital (D.L.R.), Toronto, Ontario; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg; Schools of Pharmacy and Public Health and Health Systems (C.M.), University of Waterloo; Institute for Clinical Evaluative Sciences (C.M., S.G., S.E.S., K.F.); and Toronto Western Hospital University Health Network (K.T.), Ontario, Canada
| | - Susan E Schultz
- From the Department of Medicine (D.L.R.) and Departments of Family and Community Medicine and Institute for Health Policy, Management and Evaluation (K.T.), University of Toronto; St. Michael's Hospital (D.L.R.), Toronto, Ontario; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg; Schools of Pharmacy and Public Health and Health Systems (C.M.), University of Waterloo; Institute for Clinical Evaluative Sciences (C.M., S.G., S.E.S., K.F.); and Toronto Western Hospital University Health Network (K.T.), Ontario, Canada
| | - Kinwah Fung
- From the Department of Medicine (D.L.R.) and Departments of Family and Community Medicine and Institute for Health Policy, Management and Evaluation (K.T.), University of Toronto; St. Michael's Hospital (D.L.R.), Toronto, Ontario; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg; Schools of Pharmacy and Public Health and Health Systems (C.M.), University of Waterloo; Institute for Clinical Evaluative Sciences (C.M., S.G., S.E.S., K.F.); and Toronto Western Hospital University Health Network (K.T.), Ontario, Canada
| | - Karen Tu
- From the Department of Medicine (D.L.R.) and Departments of Family and Community Medicine and Institute for Health Policy, Management and Evaluation (K.T.), University of Toronto; St. Michael's Hospital (D.L.R.), Toronto, Ontario; Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg; Schools of Pharmacy and Public Health and Health Systems (C.M.), University of Waterloo; Institute for Clinical Evaluative Sciences (C.M., S.G., S.E.S., K.F.); and Toronto Western Hospital University Health Network (K.T.), Ontario, Canada
| |
Collapse
|
15
|
Laitman Y, Friebel TM, Yannoukakos D, Fostira F, Konstantopoulou I, Figlioli G, Bonanni B, Manoukian S, Zuradelli M, Tondini C, Pasini B, Peterlongo P, Plaseska-Karanfilska D, Jakimovska M, Majidzadeh K, Zarinfam S, Loizidou MA, Hadjisavvas A, Michailidou K, Kyriacou K, Behar DM, Molho RB, Ganz P, James P, Parsons MT, Sallam A, Olopade OI, Seth A, Chenevix-Trench G, Leslie G, McGuffog L, Marafie MJ, Megarbane A, Al-Mulla F, Rebbeck TR, Friedman E. The spectrum of BRCA1 and BRCA2 pathogenic sequence variants in Middle Eastern, North African, and South European countries. Hum Mutat 2019; 40:e1-e23. [PMID: 31209999 DOI: 10.1002/humu.23842] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/25/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
BRCA1 BRCA2 mutational spectrum in the Middle East, North Africa, and Southern Europe is not well characterized. The unique history and cultural practices characterizing these regions, often involving consanguinity and inbreeding, plausibly led to the accumulation of population-specific founder pathogenic sequence variants (PSVs). To determine recurring BRCA PSVs in these locales, a search in PUBMED, EMBASE, BIC, and CIMBA was carried out combined with outreach to researchers from the relevant countries for unpublished data. We identified 232 PSVs in BRCA1 and 239 in BRCA2 in 25 of 33 countries surveyed. Common PSVs that were detected in four or more countries were c.5266dup (p.Gln1756Profs), c.181T>G (p.Cys61Gly), c.68_69del (p.Glu23Valfs), c.5030_5033del (p.Thr1677Ilefs), c.4327C>T (p.Arg1443Ter), c.5251C>T (p.Arg1751Ter), c.1016dup (p.Val340Glyfs), c.3700_3704del (p.Val1234Glnfs), c.4065_4068del (p.Asn1355Lysfs), c.1504_1508del (p.Leu502Alafs), c.843_846del (p.Ser282Tyrfs), c.798_799del (p.Ser267Lysfs), and c.3607C>T (p.Arg1203Ter) in BRCA1 and c.2808_2811del (p.Ala938Profs), c.5722_5723del (p.Leu1908Argfs), c.9097dup (p.Thr3033Asnfs), c.1310_1313del (p. p.Lys437Ilefs), and c.5946del (p.Ser1982Argfs) for BRCA2. Notably, some mutations (e.g., p.Asn257Lysfs (c.771_775del)) were observed in unrelated populations. Thus, seemingly genotyping recurring BRCA PSVs in specific populations may provide first pass BRCA genotyping platform.
Collapse
Affiliation(s)
- Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, The Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Gisella Figlioli
- Genome Diagnostics Program, IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Monica Zuradelli
- Medical Oncology and Hematology Department, Humanitas Cancer Center, Milan, Italy
| | - Carlo Tondini
- Department of Medical Oncology, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Dijana Plaseska-Karanfilska
- Macedonian Academy of Sciences and Arts Research Centre for Genetic Engineering and Biotechnology, Skopje, Republic of Macedonia
| | - Milena Jakimovska
- Macedonian Academy of Sciences and Arts Research Centre for Genetic Engineering and Biotechnology, Skopje, Republic of Macedonia
| | - Keivan Majidzadeh
- Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shiva Zarinfam
- Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Maria A Loizidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | | | - Rinat Bernstein Molho
- The Institute of Oncology, Sheba Medical Center, Tel-Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Patricia Ganz
- Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research, Jonsson Comprehensive Cancer Centre, UCLA, Los Angeles, CA
| | - Paul James
- Parkville Familial Cancer Peter MacCallum Cancer Center, Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Queensland Institute of Medical Research, Brisbane, Australia
| | - Aminah Sallam
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL
| | | | - Arun Seth
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Queensland Institute of Medical Research, Brisbane, Australia
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | | | | | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Timothy R Rebbeck
- Dana-Farber Cancer Institute, Boston, MA
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, The Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
16
|
Raveane A, Aneli S, Montinaro F, Athanasiadis G, Barlera S, Birolo G, Boncoraglio G, Di Blasio AM, Di Gaetano C, Pagani L, Parolo S, Paschou P, Piazza A, Stamatoyannopoulos G, Angius A, Brucato N, Cucca F, Hellenthal G, Mulas A, Peyret-Guzzon M, Zoledziewska M, Baali A, Bycroft C, Cherkaoui M, Chiaroni J, Di Cristofaro J, Dina C, Dugoujon JM, Galan P, Giemza J, Kivisild T, Mazieres S, Melhaoui M, Metspalu M, Myers S, Pereira L, Ricaut FX, Brisighelli F, Cardinali I, Grugni V, Lancioni H, Pascali VL, Torroni A, Semino O, Matullo G, Achilli A, Olivieri A, Capelli C. Population structure of modern-day Italians reveals patterns of ancient and archaic ancestries in Southern Europe. SCIENCE ADVANCES 2019; 5:eaaw3492. [PMID: 31517044 PMCID: PMC6726452 DOI: 10.1126/sciadv.aaw3492] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 05/10/2023]
Abstract
European populations display low genetic differentiation as the result of long-term blending of their ancient founding ancestries. However, it is unclear how the combination of ancient ancestries related to early foragers, Neolithic farmers, and Bronze Age nomadic pastoralists can explain the distribution of genetic variation across Europe. Populations in natural crossroads like the Italian peninsula are expected to recapitulate the continental diversity, but have been systematically understudied. Here, we characterize the ancestry profiles of Italian populations using a genome-wide dataset representative of modern and ancient samples from across Italy, Europe, and the rest of the world. Italian genomes capture several ancient signatures, including a non-steppe contribution derived ultimately from the Caucasus. Differences in ancestry composition, as the result of migration and admixture, have generated in Italy the largest degree of population structure detected so far in the continent, as well as shaping the amount of Neanderthal DNA in modern-day populations.
Collapse
Affiliation(s)
- A. Raveane
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- Department of Zoology, University of Oxford, Oxford, UK
| | - S. Aneli
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - F. Montinaro
- Department of Zoology, University of Oxford, Oxford, UK
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - G. Athanasiadis
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - S. Barlera
- Department of Cardiovascular Research, Istituto di Ricovero e Cura a Carattere Scientifico–Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - G. Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - G. Boncoraglio
- Department of Cerebrovascular Diseases, IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- PhD Program in Neuroscience, University Milano-Bicocca, Monza, Italy
| | - A. M. Di Blasio
- Istituto Auxologico Italiano, IRCCS, Centro di Ricerche e Tecnologie Biomediche, Milano, Italy
| | - C. Di Gaetano
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - L. Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- APE lab, Department of Biology, University of Padua, Padua, Italy
| | - S. Parolo
- Computational Biology Unit, Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - P. Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - A. Piazza
- Department of Medical Sciences, University of Turin, Turin, Italy
- Academy of Sciences, Turin, Italy
| | - G. Stamatoyannopoulos
- Department of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - A. Angius
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - N. Brucato
- Evolutionary Medicine Group, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse, France
| | - F. Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - G. Hellenthal
- University College London Genetics Institute (UGI), University College London, London, UK
| | - A. Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Lanusei, Italy
| | - M. Peyret-Guzzon
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M. Zoledziewska
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - A. Baali
- Faculté des Sciences Semlalia de Marrakech (FSSM), Université Cadi Ayyad, Marrakech, Morocco
| | - C. Bycroft
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M. Cherkaoui
- Faculté des Sciences Semlalia de Marrakech (FSSM), Université Cadi Ayyad, Marrakech, Morocco
| | - J. Chiaroni
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | - J. Di Cristofaro
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
- Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | - C. Dina
- l’institut du thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - J. M. Dugoujon
- Evolutionary Medicine Group, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse, France
| | - P. Galan
- Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Université Paris 13/Inserm U1153/Inra U1125/ Cnam, COMUE Sorbonne Paris Cité, F-93017 Bobigny, France
| | - J. Giemza
- l’institut du thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - T. Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Herestraat 49, box 604, Leuven 3000, Belgium
| | - S. Mazieres
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - M. Melhaoui
- Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - M. Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - S. Myers
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - L. Pereira
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - F. X. Ricaut
- Evolutionary Medicine Group, Laboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, Toulouse, France
| | - F. Brisighelli
- Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - I. Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - V. Grugni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - H. Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - V. L. Pascali
- Section of Legal Medicine, Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - A. Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - O. Semino
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - G. Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
- IIGM (Italian Institute for Genomic Medicine), Turin, Italy
| | - A. Achilli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - A. Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - C. Capelli
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Gladstein AL, Hammer MF. Substructured Population Growth in the Ashkenazi Jews Inferred with Approximate Bayesian Computation. Mol Biol Evol 2019; 36:1162-1171. [PMID: 30840069 DOI: 10.1093/molbev/msz047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Ashkenazi Jews (AJ) are a population isolate sharing ancestry with both European and Middle Eastern populations that has likely resided in Central Europe since at least the tenth century. Between the 11th and 16th centuries, the AJ population expanded eastward leading to two culturally distinct communities in Western/Central and Eastern Europe. Our aim was to determine whether the western and eastern groups are genetically distinct, and if so, what demographic processes contributed to population differentiation. We used Approximate Bayesian Computation to choose among models of AJ history and to infer demographic parameter values, including divergence times, effective population sizes, and levels of gene flow. For the ABC analysis, we used allele frequency spectrum and identical by descent-based statistics to capture information on a wide timescale. We also mitigated the effects of ascertainment bias when performing ABC on SNP array data by jointly modeling and inferring SNP discovery. We found that the most likely model was population differentiation between Eastern and Western AJ ∼400 years ago. The differentiation between the Eastern and Western AJ could be attributed to more extreme population growth in the Eastern AJ (0.250 per generation) than the Western AJ (0.069 per generation).
Collapse
Affiliation(s)
- Ariella L Gladstein
- Department of Ecology, Evolution and Biology, University of Arizona, Tucson, AZ
| | - Michael F Hammer
- Arizona Research Laboratory Division of Biotechnology, University of Arizona, Tucson, AZ
| |
Collapse
|
18
|
Pereira V, Freire-Aradas A, Ballard D, Børsting C, Diez V, Pruszkowska-Przybylska P, Ribeiro J, Achakzai NM, Aliferi A, Bulbul O, Carceles MDP, Triki-Fendri S, Rebai A, Court DS, Morling N, Lareu MV, Carracedo Á, Phillips C. Development and validation of the EUROFORGEN NAME (North African and Middle Eastern) ancestry panel. Forensic Sci Int Genet 2019; 42:260-267. [PMID: 31404905 DOI: 10.1016/j.fsigen.2019.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023]
Abstract
Inference of biogeographic origin is an important factor in clinical, population and forensic genetics. The information provided by AIMs (Ancestry Informative Markers) can allow the differentiation of major continental population groups, and several AIM panels have been developed for this purpose. However, from these major population groups, Eurasia covers a wide area between two continents that is difficult to differentiate genetically. These populations display a gradual genetic cline from West Europe to South Asia in terms of allele frequency distribution. Although differences have been reported between Europe and South Asia, Middle East populations continue to be a target of further investigations due to the lack of genetic variability, therefore hampering their genetic differentiation from neighboring populations. In the present study, a custom-built ancestry panel was developed to analyze North African and Middle Eastern populations, designated the 'NAME' panel. The NAME panel contains 111 SNPs that have patterns of allele frequency differentiation that can distinguish individuals originating in North Africa and the Middle East when combined with a previous set of 126 Global AIM-SNPs.
Collapse
Affiliation(s)
- V Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - A Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - D Ballard
- Faculty of Life Sciences and Medicine, King's College, London, UK
| | - C Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - V Diez
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - P Pruszkowska-Przybylska
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark; Department of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Poland
| | - J Ribeiro
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - N M Achakzai
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - A Aliferi
- Faculty of Life Sciences and Medicine, King's College, London, UK
| | - O Bulbul
- Institute of Forensic Science, Istanbul University, Istanbul, Turkey
| | | | - S Triki-Fendri
- Centre of Biotechnology of Sfax, Bioinformatics Research Group, Sfax, Tunisia
| | - A Rebai
- Centre of Biotechnology of Sfax, Bioinformatics Research Group, Sfax, Tunisia
| | | | - N Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - M V Lareu
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - Á Carracedo
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - C Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Yardumian A, Schurr TG. The Geography of Jewish Ethnogenesis. JOURNAL OF ANTHROPOLOGICAL RESEARCH 2019. [DOI: 10.1086/702709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Jeong C, Balanovsky O, Lukianova E, Kahbatkyzy N, Flegontov P, Zaporozhchenko V, Immel A, Wang CC, Ixan O, Khussainova E, Bekmanov B, Zaibert V, Lavryashina M, Pocheshkhova E, Yusupov Y, Agdzhoyan A, Koshel S, Bukin A, Nymadawa P, Turdikulova S, Dalimova D, Churnosov M, Skhalyakho R, Daragan D, Bogunov Y, Bogunova A, Shtrunov A, Dubova N, Zhabagin M, Yepiskoposyan L, Churakov V, Pislegin N, Damba L, Saroyants L, Dibirova K, Atramentova L, Utevska O, Idrisov E, Kamenshchikova E, Evseeva I, Metspalu M, Outram AK, Robbeets M, Djansugurova L, Balanovska E, Schiffels S, Haak W, Reich D, Krause J. The genetic history of admixture across inner Eurasia. Nat Ecol Evol 2019; 3:966-976. [PMID: 31036896 PMCID: PMC6542712 DOI: 10.1038/s41559-019-0878-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/18/2019] [Indexed: 12/29/2022]
Abstract
The indigenous populations of inner Eurasia-a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra-harbour tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine and Uzbekistan. We furthermore report additional damage-reduced genome-wide data of two previously published individuals from the Eneolithic Botai culture in Kazakhstan (~5,400 BP). We find that present-day inner Eurasian populations are structured into three distinct admixture clines stretching between various western and eastern Eurasian ancestries, mirroring geography. The Botai and more recent ancient genomes from Siberia show a decrease in contributions from so-called 'ancient North Eurasian' ancestry over time, which is detectable only in the northern-most 'forest-tundra' cline. The intermediate 'steppe-forest' cline descends from the Late Bronze Age steppe ancestries, while the 'southern steppe' cline further to the south shows a strong West/South Asian influence. Ancient genomes suggest a northward spread of the southern steppe cline in Central Asia during the first millennium BC. Finally, the genetic structure of Caucasus populations highlights a role of the Caucasus Mountains as a barrier to gene flow and suggests a post-Neolithic gene flow into North Caucasus populations from the steppe.
Collapse
Affiliation(s)
- Choongwon Jeong
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
- Eurasia3angle Research Group, Max Planck Institute for the Science of Human History, Jena, Germany.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Oleg Balanovsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow, Russia
| | - Elena Lukianova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nurzhibek Kahbatkyzy
- Department of Population Genetics, Institute of General Genetics and Cytology, Science Committee, Ministry of Education and Science of the Republic of Kazakhstan, Almaty, Kazakhstan
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of South Bohemia and Biology Centre, Czech Academy of Sciences, České Budĕjovice, Czech Republic
| | - Valery Zaporozhchenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow, Russia
| | - Alexander Immel
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Chuan-Chao Wang
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Anthropology and Ethnology, Xiamen University, Xiamen, China
| | - Olzhas Ixan
- Department of Population Genetics, Institute of General Genetics and Cytology, Science Committee, Ministry of Education and Science of the Republic of Kazakhstan, Almaty, Kazakhstan
| | - Elmira Khussainova
- Department of Population Genetics, Institute of General Genetics and Cytology, Science Committee, Ministry of Education and Science of the Republic of Kazakhstan, Almaty, Kazakhstan
| | - Bakhytzhan Bekmanov
- Department of Population Genetics, Institute of General Genetics and Cytology, Science Committee, Ministry of Education and Science of the Republic of Kazakhstan, Almaty, Kazakhstan
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Victor Zaibert
- Institute of Archeology and Steppe Civilization, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | | | - Yuldash Yusupov
- Institute of Strategic Research of the Republic of Bashkortostan, Ufa, Russia
| | - Anastasiya Agdzhoyan
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow, Russia
| | - Sergey Koshel
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Shahlo Turdikulova
- Center for Advanced Technologies, Ministry of Innovational Development, Tashkent, Uzbekistan
| | - Dilbar Dalimova
- Center for Advanced Technologies, Ministry of Innovational Development, Tashkent, Uzbekistan
| | | | - Roza Skhalyakho
- Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow, Russia
| | - Denis Daragan
- Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow, Russia
| | - Yuri Bogunov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow, Russia
| | - Anna Bogunova
- Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow, Russia
| | - Alexandr Shtrunov
- Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow, Russia
| | - Nadezhda Dubova
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia
| | - Maxat Zhabagin
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- National Center for Biotechnology, Astana, Kazakhstan
| | - Levon Yepiskoposyan
- Laboratory of Ethnogenomics, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Vladimir Churakov
- Udmurt Institute of History, Language and Literature, Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences, Izhevsk, Russia
| | - Nikolay Pislegin
- Udmurt Institute of History, Language and Literature, Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences, Izhevsk, Russia
| | - Larissa Damba
- Research Institute of Medical and Social Problems and Control, Healthcare Department of Tuva Republic, Kyzyl, Russia
| | | | - Khadizhat Dibirova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow, Russia
| | | | - Olga Utevska
- V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Eldar Idrisov
- Astrakhan Branch, Russian Presidential Academy of National Economy and Public Administration under the President of the Russian Federation, Astrakhan, Russia
| | | | - Irina Evseeva
- Northern State Medical University, Arkhangelsk, Russia
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Alan K Outram
- Department of Archaeology, University of Exeter, Exeter, UK
| | - Martine Robbeets
- Eurasia3angle Research Group, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Leyla Djansugurova
- Department of Population Genetics, Institute of General Genetics and Cytology, Science Committee, Ministry of Education and Science of the Republic of Kazakhstan, Almaty, Kazakhstan
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Elena Balanovska
- Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow, Russia
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
21
|
Badache H, Boussetta S, Elgaaeid AB, Cherni L, El-khil HK. Investigation of the genetic structure of Kabyle and Chaouia Algerian populations through the polymorphism of Alu insertion markers. Ann Hum Biol 2019; 46:150-159. [DOI: 10.1080/03014460.2019.1588994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hocine Badache
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Amel Benammar Elgaaeid
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
- Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Houssein Khodjet El-khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
- Higher Institute of Biotechnology, University of Monastir, Tunisia
- Department of Biomedical Sciences, College of Health Sciences Qatar University, Doha, Qatar
| |
Collapse
|
22
|
Zalloua P, Collins CJ, Gosling A, Biagini SA, Costa B, Kardailsky O, Nigro L, Khalil W, Calafell F, Matisoo-Smith E. Ancient DNA of Phoenician remains indicates discontinuity in the settlement history of Ibiza. Sci Rep 2018; 8:17567. [PMID: 30514893 PMCID: PMC6279797 DOI: 10.1038/s41598-018-35667-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Ibiza was permanently settled around the 7th century BCE by founders arriving from west Phoenicia. The founding population grew significantly and reached its height during the 4th century BCE. We obtained nine complete mitochondrial genomes from skeletal remains from two Punic necropoli in Ibiza and a Bronze Age site from Formentara. We also obtained low coverage (0.47X average depth) of the genome of one individual, directly dated to 361-178 cal BCE, from the Cas Molí site on Ibiza. We analysed and compared ancient DNA results with 18 new mitochondrial genomes from modern Ibizans to determine the ancestry of the founders of Ibiza. The mitochondrial results indicate a predominantly recent European maternal ancestry for the current Ibizan population while the whole genome data suggest a significant Eastern Mediterranean component. Our mitochondrial results suggest a genetic discontinuity between the early Phoenician settlers and the island's modern inhabitants. Our data, while limited, suggest that the Eastern or North African influence in the Punic population of Ibiza was primarily male dominated.
Collapse
Affiliation(s)
- Pierre Zalloua
- School of Medicine, Lebanese American University, Byblos, Lebanon.
| | - Catherine J Collins
- Department of Anatomy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Anna Gosling
- Department of Anatomy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Simone Andrea Biagini
- Department de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Benjamí Costa
- Museu Arqueològic d'Eivissa i Formentera, Universitat de Barcelona, Illes Balears, Spain
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Lorenzo Nigro
- Facoltà di Lettere e Filosofia, Università di Roma, La Sapienza, Rome, Italy
| | - Wissam Khalil
- Department of Arts and Archaeology, Lebanese University, Beirut, Lebanon
| | - Francesc Calafell
- Department de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
23
|
Aboukaoud M, Israel S, Brautbar C, Eyal S. Genetic Basis of Delayed Hypersensitivity Reactions to Drugs in Jewish and Arab Populations. Pharm Res 2018; 35:211. [PMID: 30225831 DOI: 10.1007/s11095-018-2472-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
Genetic variation can affect drug pharmacokinetics and pharmacodynamics and contribute to variability between individuals in response to medications. Specifically, differences in allele frequencies among individuals and ethnic groups have been associated with variation in their propensity to develop drug hypersensitivity reactions (HSRs). This article reviews the current knowledge on the genetic background of HSRs and its relevance to Jewish and Arab populations. The focus is on human leukocyte antigen (HLA) alleles and haplotypes as predictive markers of HSRs ("immunopharmacogenetics"), but other genes and alleles are described as well. Also discussed is the translation of the pharmacogenetic information to practice recommendations.
Collapse
Affiliation(s)
- Mohammed Aboukaoud
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Room 613, Ein Kerem, 91120, Jerusalem, Israel
| | - Shoshana Israel
- Tissue Typing Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Chaim Brautbar
- Tissue Typing Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Room 613, Ein Kerem, 91120, Jerusalem, Israel.
| |
Collapse
|
24
|
Elkamel S, Boussetta S, Khodjet-El-Khil H, Benammar Elgaaied A, Cherni L. Ancient and recent Middle Eastern maternal genetic contribution to North Africa as viewed by mtDNA diversity in Tunisian Arab populations. Am J Hum Biol 2018; 30:e23100. [PMID: 29359455 DOI: 10.1002/ajhb.23100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Through previous mitochondrial DNA studies, the Middle Eastern maternal genetic contribution to Tunisian populations appears limited. In fact, most of the studied communities were cosmopolitan, or of Berber or Andalusian origin. To provide genetic evidence for the actual contribution of Middle Eastern mtDNA lineages to Tunisia, we focused on two Arab speaking populations from Kairouan and Wesletia known to belong to an Arab genealogical lineage. MATERIALS AND METHODS A total of 114 samples were sequenced for the mtDNA HVS-I and HVS-II regions. Using these data, we evaluated the distribution of Middle Eastern haplogroups in the study populations, constructed interpolation maps, and established phylogenetic networks allowing estimation of the coalescence time for three specific Middle Eastern subclades (R0a, J1b, and T1). RESULTS Both studied populations displayed North African genetic structure and Middle Eastern lineages with a frequency of 12% and 28.12% in Kairouan and Wesletia, respectively. TMRCA estimates for haplogroups T1a, R0a, and J1b in Tunisian Arabian samples were around 15 000 YBP, 9000 to 5000 YBP, and 960 to 600 YBP, respectively. CONCLUSIONS The Middle Eastern maternal genetic contribution to Tunisian populations, as to other North African populations, occurred mostly in deep prehistory. They were brought in different migration waves during the Upper Paleolithic, probably with the expansion of Iberomaurusian culture, and during Epipaleolithic and Early Neolithic periods, which are concomitant with the Capsian civilization. Middle Eastern lineages also came to Tunisia during the recent Islamic expansion of the 7th CE and the subsequent massive Bedouin migration during the 11th CE.
Collapse
Affiliation(s)
- Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Houssein Khodjet-El-Khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia.,High Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
25
|
Ifekwunigwe JO, Wagner JK, Yu JH, Harrell TM, Bamshad MJ, Royal CD. A Qualitative Analysis of How Anthropologists Interpret the Race Construct. AMERICAN ANTHROPOLOGIST 2017; 119:422-434. [PMID: 30078844 PMCID: PMC6075721 DOI: 10.1111/aman.12890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This article assesses anthropological thinking about the race concept and its applications. Drawn from a broader national survey of geneticists' and anthropologists' views on race, in this analysis, we provide a qualitative account of anthropologists' perspectives. We delve deeper than simply asserting that "race is a social construct." Instead, we explore the differential ways in which anthropologists describe and interpret how race is constructed. Utilizing the heuristic of constructors, shifters, and reconcilers, we also illustrate the ways in which anthropologists conceptualize their interpretations of race along a broad spectrum as well as what these differential approaches reveal about the ideological and biological consequences of socially defined races, such as racism in general and racialized health disparities in particular. [race concept, social construction, racism, health disparities].
Collapse
Affiliation(s)
- Jayne O Ifekwunigwe
- Center on Genomics, Race, Identity, Difference (GRID), Duke University, Durham, NC 27708;
| | - Jennifer K Wagner
- Center for Translational Bioethics and Health Care Policy, Geisinger Health System, Danville, PA 17822;
| | - Joon-Ho Yu
- Department of Pediatrics, University of Washington, Seattle, WA 98105;
| | | | - Michael J Bamshad
- Departments of Pediatrics and Genome Sciences, University of Washington, Seattle, WA 98105;
| | - Charmaine D Royal
- Departments of African and African American Studies, Biology and Community and Family Medicine and Center on Genomics, Race, Identity, Difference Duke University, Durham, NC 27708;
| |
Collapse
|
26
|
Jithesh PV, Scaria V. From genomes to genomic medicine: enabling personalized and precision medicine in the Middle East. Per Med 2017; 14:377-382. [DOI: 10.2217/pme-2017-0048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Puthen Veettil Jithesh
- Division of Biomedical Informatics Research, Sidra Medical & Research Center, OPC Building, PO Box 26999, Doha, Qatar
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110 025, India
| |
Collapse
|
27
|
Lactase persistence in Tunisia as a result of admixture with other Mediterranean populations. GENES AND NUTRITION 2017; 12:20. [PMID: 28855970 PMCID: PMC5571577 DOI: 10.1186/s12263-017-0573-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/14/2017] [Indexed: 01/06/2023]
Abstract
Background The ability to digest lactose after weaning, namely, lactase persistence (LP), is encoded by polymorphisms in the MCM6 gene and varies widely in frequency among different human populations. Although, evolution of LP-related genetic variants was investigated in many groups of Sub-Saharan African, Middle Eastern, and European ancestry, only few studies have focused on populations from North Africa and no data are especially available from the Tunisian one. For this reason, there is an urgent need to investigate the frequency patterns at these loci in Tunisia since this adaptive trait is implicated in health. Methods Forty SNPs covering the LCT/MCM6 genes and including the two functional variants − 13,910 C > T and − 22,018 G > A were genotyped in 117 Tunisian individuals using the Sequenom Mass Array technology. The observed nucleotide and haplotype patterns of variation were then compared with those of several African, European, and Mediterranean human groups for which comparable data were publicly available. Admixture analysis on a 5 Mb genomic region surrounding the LCT/MCM6 loci was also performed by extracting genotypes from a previously generated genome-wide dataset in order to deepen the reconstruction of the evolutionary history of these loci. Results We found that lactase non-persistence (LNP)-related alleles and haplotypes were predominantly present in the examined population. A clear differentiation between Tunisian, African, and North European/North Italian samples was found, while the Tunisian population showed more genetic affinity to Central and South Italian groups. Conclusions Our study provided a first report of LP-associated alleles and haplotypes in the Tunisian population. We highlighted a gradient followed by LP diffusion from Europe to North Africa. Based on the rich historic background of Tunisia, we suggest that this adaptive trait was introduced in that geographic region by a relatively recent gene flow. Electronic supplementary material The online version of this article (doi:10.1186/s12263-017-0573-3) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Haber M, Doumet-Serhal C, Scheib C, Xue Y, Danecek P, Mezzavilla M, Youhanna S, Martiniano R, Prado-Martinez J, Szpak M, Matisoo-Smith E, Schutkowski H, Mikulski R, Zalloua P, Kivisild T, Tyler-Smith C. Continuity and Admixture in the Last Five Millennia of Levantine History from Ancient Canaanite and Present-Day Lebanese Genome Sequences. Am J Hum Genet 2017; 101:274-282. [PMID: 28757201 PMCID: PMC5544389 DOI: 10.1016/j.ajhg.2017.06.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
The Canaanites inhabited the Levant region during the Bronze Age and established a culture that became influential in the Near East and beyond. However, the Canaanites, unlike most other ancient Near Easterners of this period, left few surviving textual records and thus their origin and relationship to ancient and present-day populations remain unclear. In this study, we sequenced five whole genomes from ∼3,700-year-old individuals from the city of Sidon, a major Canaanite city-state on the Eastern Mediterranean coast. We also sequenced the genomes of 99 individuals from present-day Lebanon to catalog modern Levantine genetic diversity. We find that a Bronze Age Canaanite-related ancestry was widespread in the region, shared among urban populations inhabiting the coast (Sidon) and inland populations (Jordan) who likely lived in farming societies or were pastoral nomads. This Canaanite-related ancestry derived from mixture between local Neolithic populations and eastern migrants genetically related to Chalcolithic Iranians. We estimate, using linkage-disequilibrium decay patterns, that admixture occurred 6,600–3,550 years ago, coinciding with recorded massive population movements in Mesopotamia during the mid-Holocene. We show that present-day Lebanese derive most of their ancestry from a Canaanite-related population, which therefore implies substantial genetic continuity in the Levant since at least the Bronze Age. In addition, we find Eurasian ancestry in the Lebanese not present in Bronze Age or earlier Levantines. We estimate that this Eurasian ancestry arrived in the Levant around 3,750–2,170 years ago during a period of successive conquests by distant populations.
Collapse
|
29
|
Chaubey G, Ayub Q, Rai N, Prakash S, Mushrif-Tripathy V, Mezzavilla M, Pathak AK, Tamang R, Firasat S, Reidla M, Karmin M, Rani DS, Reddy AG, Parik J, Metspalu E, Rootsi S, Dalal K, Khaliq S, Mehdi SQ, Singh L, Metspalu M, Kivisild T, Tyler-Smith C, Villems R, Thangaraj K. "Like sugar in milk": reconstructing the genetic history of the Parsi population. Genome Biol 2017; 18:110. [PMID: 28615043 PMCID: PMC5470188 DOI: 10.1186/s13059-017-1244-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Parsis are one of the smallest religious communities in the world. To understand the population structure and demographic history of this group in detail, we analyzed Indian and Pakistani Parsi populations using high-resolution genetic variation data on autosomal and uniparental loci (Y-chromosomal and mitochondrial DNA). Additionally, we also assayed mitochondrial DNA polymorphisms among ancient Parsi DNA samples excavated from Sanjan, in present day Gujarat, the place of their original settlement in India. RESULTS Among present-day populations, the Parsis are genetically closest to Iranian and the Caucasus populations rather than their South Asian neighbors. They also share the highest number of haplotypes with present-day Iranians and we estimate that the admixture of the Parsis with Indian populations occurred ~1,200 years ago. Enriched homozygosity in the Parsi reflects their recent isolation and inbreeding. We also observed 48% South-Asian-specific mitochondrial lineages among the ancient samples, which might have resulted from the assimilation of local females during the initial settlement. Finally, we show that Parsis are genetically closer to Neolithic Iranians than to modern Iranians, who have witnessed a more recent wave of admixture from the Near East. CONCLUSIONS Our results are consistent with the historically-recorded migration of the Parsi populations to South Asia in the 7th century and in agreement with their assimilation into the Indian sub-continent's population and cultural milieu "like sugar in milk". Moreover, in a wider context our results support a major demographic transition in West Asia due to the Islamic conquest.
Collapse
Affiliation(s)
- Gyaneshwer Chaubey
- Evolutionary Biology Group, Estonian Biocentre, Riia23b, Tartu, 51010, Estonia.
| | - Qasim Ayub
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Niraj Rai
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Present address: Birbal Sahni Institute of Palaeosciences, Lucknow, 226007, India
| | - Satya Prakash
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Veena Mushrif-Tripathy
- Department of Archaeology, Deccan College Post-Graduate and Research Institute, Pune, Maharashtra, 411006, India
| | - Massimo Mezzavilla
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Ajai Kumar Pathak
- Evolutionary Biology Group, Estonian Biocentre, Riia23b, Tartu, 51010, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Rakesh Tamang
- Department of Zoology, University of Calcutta, Kolkata, 700073, India
| | - Sadaf Firasat
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, 74200, Pakistan
| | - Maere Reidla
- Evolutionary Biology Group, Estonian Biocentre, Riia23b, Tartu, 51010, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Monika Karmin
- Evolutionary Biology Group, Estonian Biocentre, Riia23b, Tartu, 51010, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia.,Department of Psychology, University of Auckland, Auckland, 1142, New Zealand
| | - Deepa Selvi Rani
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Alla G Reddy
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Jüri Parik
- Evolutionary Biology Group, Estonian Biocentre, Riia23b, Tartu, 51010, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Ene Metspalu
- Evolutionary Biology Group, Estonian Biocentre, Riia23b, Tartu, 51010, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Siiri Rootsi
- Evolutionary Biology Group, Estonian Biocentre, Riia23b, Tartu, 51010, Estonia
| | - Kurush Dalal
- Centre for Archaeology (CfA), Centre for Extra Mural Studies (CEMS) University of Mumbai (Kalina Campus) Vidyanagri, Santacruz E Mumbai, 400098, India
| | - Shagufta Khaliq
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore, 54000, Pakistan
| | - Syed Qasim Mehdi
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, 74200, Pakistan
| | - Lalji Singh
- Genome foundation, C/o Prasad Hospital, Nacharam, Hyderabad, 500076, India
| | - Mait Metspalu
- Evolutionary Biology Group, Estonian Biocentre, Riia23b, Tartu, 51010, Estonia
| | - Toomas Kivisild
- Evolutionary Biology Group, Estonian Biocentre, Riia23b, Tartu, 51010, Estonia.,Division of Biological Anthropology, University of Cambridge, Cambridge, CB2 3QG, UK
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Richard Villems
- Evolutionary Biology Group, Estonian Biocentre, Riia23b, Tartu, 51010, Estonia.,Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | | |
Collapse
|
30
|
Arauna LR, Mendoza-Revilla J, Mas-Sandoval A, Izaabel H, Bekada A, Benhamamouch S, Fadhlaoui-Zid K, Zalloua P, Hellenthal G, Comas D. Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North Africa. Mol Biol Evol 2017; 34:318-329. [PMID: 27744413 PMCID: PMC5644363 DOI: 10.1093/molbev/msw218] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
North Africa is characterized by its diverse cultural and linguistic groups and its genetic heterogeneity. Genomic data has shown an amalgam of components mixed since pre-Holocean times. Though no differences have been found in uniparental and classical markers between Berbers and Arabs, the two main ethnic groups in the region, the scanty genomic data available have highlighted the singularity of Berbers. We characterize the genetic heterogeneity of North African groups, focusing on the putative differences of Berbers and Arabs, and estimate migration dates. We analyze genome-wide autosomal data in five Berber and six Arab groups, and compare them to Middle Easterns, sub-Saharans, and Europeans. Haplotype-based methods show a lack of correlation between geographical and genetic populations, and a high degree of genetic heterogeneity, without strong differences between Berbers and Arabs. Berbers enclose genetically diverse groups, from isolated endogamous groups with high autochthonous component frequencies, large homozygosity runs and low effective population sizes, to admixed groups with high frequencies of sub-Saharan and Middle Eastern components. Admixture time estimates show a complex pattern of recent historical migrations, with a peak around the 7th century C.E. coincident with the Arabization of the region; sub-Saharan migrations since the 1st century B.C. in agreement with Roman slave trade; and a strong migration in the 17th century C.E., coincident with a huge impact of the trans-Atlantic and trans-Saharan trade of sub-Saharan slaves in the Modern Era. The genetic complexity found should be taken into account when selecting reference groups in population genetics and biomedical studies.
Collapse
Affiliation(s)
- Lara R Arauna
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Mendoza-Revilla
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.,Genetics Institute, University College London, London, United Kingdom
| | - Alex Mas-Sandoval
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain.,Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Hassan Izaabel
- Laboratoire de Biologie Cellulaire et Génétique Moléculaire (LBCGM), Université IBNZOHR, Agadir, Morocco
| | - Asmahan Bekada
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Soraya Benhamamouch
- Département de Biotechnologie, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 (Ahmad Ben Bella), Oran, Algeria
| | - Karima Fadhlaoui-Zid
- Laboratoire de Génetique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Université El Manar, Tunis, Tunisia
| | - Pierre Zalloua
- The Lebanese American University, Chouran, Beirut, Lebanon
| | | | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
31
|
Brucato N, Kusuma P, Beaujard P, Sudoyo H, Cox MP, Ricaut FX. Genomic admixture tracks pulses of economic activity over 2,000 years in the Indian Ocean trading network. Sci Rep 2017; 7:2919. [PMID: 28592861 PMCID: PMC5462752 DOI: 10.1038/s41598-017-03204-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/27/2017] [Indexed: 01/24/2023] Open
Abstract
The Indian Ocean has long been a hub of interacting human populations. Following land- and sea-based routes, trade drove cultural contacts between far-distant ethnic groups in Asia, India, the Middle East and Africa, creating one of the world's first proto-globalized environments. However, the extent to which population mixing was mediated by trade is poorly understood. Reconstructing admixture times from genomic data in 3,006 individuals from 187 regional populations reveals a close association between bouts of human migration and trade volumes during the last 2,000 years across the Indian Ocean trading system. Temporal oscillations in trading activity match phases of contraction and expansion in migration, with high water marks following the expansion of the Silk Roads in the 5th century AD, the rise of maritime routes in the 11th century and a drastic restructuring of the trade network following the arrival of Europeans in the 16th century. The economic fluxes of the Indian Ocean trade network therefore directly shaped exchanges of genes, in addition to goods and concepts.
Collapse
Affiliation(s)
- Nicolas Brucato
- Evolutionary Medicine Group, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse UMR 5288 CNRS, Université Toulouse III, Université de Toulouse, Toulouse, France.
| | - Pradiptajati Kusuma
- Evolutionary Medicine Group, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse UMR 5288 CNRS, Université Toulouse III, Université de Toulouse, Toulouse, France.,Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Philippe Beaujard
- Institut des Mondes Africains, UMR 8171 CNRS UMR 243 IRD, Paris, France
| | - Herawati Sudoyo
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia.,Department of Medical Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Murray P Cox
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - François-Xavier Ricaut
- Evolutionary Medicine Group, Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse UMR 5288 CNRS, Université Toulouse III, Université de Toulouse, Toulouse, France
| |
Collapse
|
32
|
Baker JL, Rotimi CN, Shriner D. Human ancestry correlates with language and reveals that race is not an objective genomic classifier. Sci Rep 2017; 7:1572. [PMID: 28484253 PMCID: PMC5431528 DOI: 10.1038/s41598-017-01837-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
Genetic and archaeological studies have established a sub-Saharan African origin for anatomically modern humans with subsequent migrations out of Africa. Using the largest multi-locus data set known to date, we investigated genetic differentiation of early modern humans, human admixture and migration events, and relationships among ancestries and language groups. We compiled publicly available genome-wide genotype data on 5,966 individuals from 282 global samples, representing 30 primary language families. The best evidence supports 21 ancestries that delineate genetic structure of present-day human populations. Independent of self-identified ethno-linguistic labels, the vast majority (97.3%) of individuals have mixed ancestry, with evidence of multiple ancestries in 96.8% of samples and on all continents. The data indicate that continents, ethno-linguistic groups, races, ethnicities, and individuals all show substantial ancestral heterogeneity. We estimated correlation coefficients ranging from 0.522 to 0.962 between ancestries and language families or branches. Ancestry data support the grouping of Kwadi-Khoe, Kx’a, and Tuu languages, support the exclusion of Omotic languages from the Afroasiatic language family, and do not support the proposed Dené-Yeniseian language family as a genetically valid grouping. Ancestry data yield insight into a deeper past than linguistic data can, while linguistic data provide clarity to ancestry data.
Collapse
Affiliation(s)
- Jennifer L Baker
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A, Room 4047, 12 South Drive, Bethesda, Maryland, 20892, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A, Room 4047, 12 South Drive, Bethesda, Maryland, 20892, USA.
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Building 12A, Room 4047, 12 South Drive, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
33
|
Ehler E, Vanek D. Forensic genetic analyses in isolated populations with examples of central European Valachs and Roma. J Forensic Leg Med 2017; 48:46-52. [PMID: 28454050 DOI: 10.1016/j.jflm.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/22/2017] [Accepted: 04/09/2017] [Indexed: 01/27/2023]
Abstract
Isolated populations present a constant threat to the correctness of forensic genetic casework. In this review article we present several examples of how analyzing samples from isolated populations can bias the results of the forensic statistics and analyses. We select our examples from isolated populations from central and southeastern Europe, namely the Valachs and the European Roma. We also provide the reader with general strategies and principles to improve the laboratory practice (best practice) and reporting of samples from supposedly isolated populations. These include reporting the precise population data used for computing the forensic statistics, using the appropriate θ correction factor for calculating allele frequencies, typing ancestry informative markers in samples of unknown or uncertain ethnicity and establishing ethnic-specific forensic databases.
Collapse
Affiliation(s)
- Edvard Ehler
- Department of Biology and Environmental Studies, Charles University in Prague, Faculty of Education, Magdaleny Rettigove 4, Prague, 116 39, Czech Republic; Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland.
| | - Daniel Vanek
- Forensic DNA Service, Janovskeho 18, Prague 7, 170 00, Czech Republic; Charles University in Prague, 2nd Faculty of Medicine, V Uvalu 84, Prague, 150 06, Czech Republic; Nemocnice Na Bulovce, Institute of Legal Medicine, Budinova 2, Prague, 180 81, Czech Republic.
| |
Collapse
|
34
|
Xue J, Lencz T, Darvasi A, Pe’er I, Carmi S. The time and place of European admixture in Ashkenazi Jewish history. PLoS Genet 2017; 13:e1006644. [PMID: 28376121 PMCID: PMC5380316 DOI: 10.1371/journal.pgen.1006644] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/18/2017] [Indexed: 12/21/2022] Open
Abstract
The Ashkenazi Jewish (AJ) population is important in genetics due to its high rate of Mendelian disorders. AJ appeared in Europe in the 10th century, and their ancestry is thought to comprise European (EU) and Middle-Eastern (ME) components. However, both the time and place of admixture are subject to debate. Here, we attempt to characterize the AJ admixture history using a careful application of new and existing methods on a large AJ sample. Our main approach was based on local ancestry inference, in which we first classified each AJ genomic segment as EU or ME, and then compared allele frequencies along the EU segments to those of different EU populations. The contribution of each EU source was also estimated using GLOBETROTTER and haplotype sharing. The time of admixture was inferred based on multiple statistics, including ME segment lengths, the total EU ancestry per chromosome, and the correlation of ancestries along the chromosome. The major source of EU ancestry in AJ was found to be Southern Europe (≈60–80% of EU ancestry), with the rest being likely Eastern European. The inferred admixture time was ≈30 generations ago, but multiple lines of evidence suggest that it represents an average over two or more events, pre- and post-dating the founder event experienced by AJ in late medieval times. The time of the pre-bottleneck admixture event, which was likely Southern European, was estimated to ≈25–50 generations ago. The Ashkenazi Jewish population has resided in Europe for much of its 1000-year existence. However, its ethnic and geographic origins are controversial, due to the scarcity of reliable historical records. Previous genetic studies have found links to Middle-Eastern and European ancestries, but the admixture history has not been studied in detail yet, partly due to technical difficulties in disentangling signals from multiple admixture events. Here, we present an in-depth analysis of the sources of European gene flow and the time of admixture events by using multiple new and existing methods and extensive simulations. Our results suggest a model of at least two events of European admixture. One event slightly pre-dated a late medieval founder event and was likely from a Southern European source. Another event post-dated the founder event and likely occurred in Eastern Europe. These results, as well as the methods introduced, will be highly valuable for geneticists and other researchers interested in Ashkenazi Jewish origins.
Collapse
Affiliation(s)
- James Xue
- Department of Computer Science, Columbia University, New York, New York, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Todd Lencz
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of the North Shore–Long Island Jewish Health System, Glen Oaks, New York, United States of America
- Departments of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, United States of America
| | - Ariel Darvasi
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itsik Pe’er
- Department of Computer Science, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
35
|
Mapping Post-Glacial expansions: The Peopling of Southwest Asia. Sci Rep 2017; 7:40338. [PMID: 28059138 PMCID: PMC5216412 DOI: 10.1038/srep40338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/05/2016] [Indexed: 11/24/2022] Open
Abstract
Archaeological, palaeontological and geological evidence shows that post-glacial warming released human populations from their various climate-bound refugia. Yet specific connections between these refugia and the timing and routes of post-glacial migrations that ultimately established modern patterns of genetic variation remain elusive. Here, we use Y-chromosome markers combined with autosomal data to reconstruct population expansions from regional refugia in Southwest Asia. Populations from three regions in particular possess distinctive autosomal genetic signatures indicative of likely refugia: one, in the north, centered around the eastern coast of the Black Sea, the second, with a more Levantine focus, and the third in the southern Arabian Peninsula. Modern populations from these three regions carry the widest diversity and may indeed represent the most likely descendants of the populations responsible for the Neolithic cultures of Southwest Asia. We reveal the distinct and datable expansion routes of populations from these three refugia throughout Southwest Asia and into Europe and North Africa and discuss the possible correlations of these migrations to various cultural and climatic events evident in the archaeological record of the past 15,000 years.
Collapse
|
36
|
Haber M, Mezzavilla M, Bergström A, Prado-Martinez J, Hallast P, Saif-Ali R, Al-Habori M, Dedoussis G, Zeggini E, Blue-Smith J, Wells R, Xue Y, Zalloua P, Tyler-Smith C. Chad Genetic Diversity Reveals an African History Marked by Multiple Holocene Eurasian Migrations. Am J Hum Genet 2016; 99:1316-1324. [PMID: 27889059 PMCID: PMC5142112 DOI: 10.1016/j.ajhg.2016.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/24/2016] [Indexed: 12/02/2022] Open
Abstract
Understanding human genetic diversity in Africa is important for interpreting the evolution of all humans, yet vast regions in Africa, such as Chad, remain genetically poorly investigated. Here, we use genotype data from 480 samples from Chad, the Near East, and southern Europe, as well as whole-genome sequencing from 19 of them, to show that many populations today derive their genomes from ancient African-Eurasian admixtures. We found evidence of early Eurasian backflow to Africa in people speaking the unclassified isolate Laal language in southern Chad and estimate from linkage-disequilibrium decay that this occurred 4,750–7,200 years ago. It brought to Africa a Y chromosome lineage (R1b-V88) whose closest relatives are widespread in present-day Eurasia; we estimate from sequence data that the Chad R1b-V88 Y chromosomes coalesced 5,700–7,300 years ago. This migration could thus have originated among Near Eastern farmers during the African Humid Period. We also found that the previously documented Eurasian backflow into Africa, which occurred ∼3,000 years ago and was thought to be mostly limited to East Africa, had a more westward impact affecting populations in northern Chad, such as the Toubou, who have 20%–30% Eurasian ancestry today. We observed a decline in heterozygosity in admixed Africans and found that the Eurasian admixture can bias inferences on their coalescent history and confound genetic signals from adaptation and archaic introgression.
Collapse
|
37
|
Abstract
The Druze are an aggregate of communities in the Levant and Near East living almost exclusively in the mountains of Syria, Lebanon and Israel whose ~1000 year old religion formally opposes mixed marriages and conversions. Despite increasing interest in genetics of the population structure of the Druze, their population history remains unknown. We investigated the genetic relationships between Israeli Druze and both modern and ancient populations. We evaluated our findings in light of three hypotheses purporting to explain Druze history that posit Arabian, Persian or mixed Near Eastern-Levantine roots. The biogeographical analysis localised proto-Druze to the mountainous regions of southeastern Turkey, northern Iraq and southeast Syria and their descendants clustered along a trajectory between these two regions. The mixed Near Eastern–Middle Eastern localisation of the Druze, shown using both modern and ancient DNA data, is distinct from that of neighbouring Syrians, Palestinians and most of the Lebanese, who exhibit a high affinity to the Levant. Druze biogeographic affinity, migration patterns, time of emergence and genetic similarity to Near Eastern populations are highly suggestive of Armenian-Turkish ancestries for the proto-Druze.
Collapse
|
38
|
Hugh-Jones D, Verweij KJ, St. Pourcain B, Abdellaoui A. Assortative mating on educational attainment leads to genetic spousal resemblance for polygenic scores. INTELLIGENCE 2016. [DOI: 10.1016/j.intell.2016.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Creanza N, Feldman MW. Worldwide genetic and cultural change in human evolution. Curr Opin Genet Dev 2016; 41:85-92. [PMID: 27644074 DOI: 10.1016/j.gde.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/04/2016] [Accepted: 08/19/2016] [Indexed: 01/04/2023]
Abstract
Both genetic variation and certain culturally transmitted phenotypes show geographic signatures of human demographic history. As a result of the human cultural predisposition to migrate to new areas, humans have adapted to a large number of different environments. Migration to new environments alters genetic selection pressures, and comparative genetic studies have pinpointed numerous likely targets of this selection. However, humans also exhibit many cultural adaptations to new environments, such as practices related to clothing, shelter, and food. Human culture interacts with genes and the environment in complex ways, and studying genes and culture together can deepen our understanding of human evolution.
Collapse
Affiliation(s)
- Nicole Creanza
- Department of Biology Stanford University, Gilbert Hall, 371 Serra Mall, Stanford, CA 94305, United States; Department of Biological Sciences, Vanderbilt University, 465 21st Ave. South, Nashville, TN 37212, United States.
| | - Marcus W Feldman
- Department of Biology Stanford University, Gilbert Hall, 371 Serra Mall, Stanford, CA 94305, United States
| |
Collapse
|
40
|
Mascher M, Schuenemann VJ, Davidovich U, Marom N, Himmelbach A, Hübner S, Korol A, David M, Reiter E, Riehl S, Schreiber M, Vohr SH, Green RE, Dawson IK, Russell J, Kilian B, Muehlbauer GJ, Waugh R, Fahima T, Krause J, Weiss E, Stein N. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet 2016; 48:1089-93. [PMID: 27428749 DOI: 10.1038/ng.3611] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
The cereal grass barley was domesticated about 10,000 years before the present in the Fertile Crescent and became a founder crop of Neolithic agriculture. Here we report the genome sequences of five 6,000-year-old barley grains excavated at a cave in the Judean Desert close to the Dead Sea. Comparison to whole-exome sequence data from a diversity panel of present-day barley accessions showed the close affinity of ancient samples to extant landraces from the Southern Levant and Egypt, consistent with a proposed origin of domesticated barley in the Upper Jordan Valley. Our findings suggest that barley landraces grown in present-day Israel have not experienced major lineage turnover over the past six millennia, although there is evidence for gene flow between cultivated and sympatric wild populations. We demonstrate the usefulness of ancient genomes from desiccated archaeobotanical remains in informing research into the origin, early domestication and subsequent migration of crop species.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Verena J Schuenemann
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Senckenberg Center for Human Evolution and Paleoenvironment, University of Tübingen, Tübingen, Germany
| | - Uri Davidovich
- Institute of Archaeology, Hebrew University, Jerusalem, Israel
| | - Nimrod Marom
- Laboratory of Archaeozoology, Zinman Institute of Archaeology, University of Haifa, Haifa, Israel
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Sariel Hübner
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biotechnology, Tel Hai College, Upper Galilee, Israel
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel.,Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Michal David
- Martin (Szusz) Department of Land of Israel Studies and Archaeology, Bar-Ilan University, Ramat-Gan, Israel
| | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Simone Riehl
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Senckenberg Center for Human Evolution and Paleoenvironment, University of Tübingen, Tübingen, Germany
| | - Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Samuel H Vohr
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Ian K Dawson
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Joanne Russell
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Gary J Muehlbauer
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, USA.,Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Robbie Waugh
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee, UK.,Division of Plant Sciences, University of Dundee, Dundee, UK
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, Israel.,Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.,Senckenberg Center for Human Evolution and Paleoenvironment, University of Tübingen, Tübingen, Germany.,Max Planck Institute for the Science of Human History, Jena, Germany
| | - Ehud Weiss
- Martin (Szusz) Department of Land of Israel Studies and Archaeology, Bar-Ilan University, Ramat-Gan, Israel
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| |
Collapse
|
41
|
Elkamel S, Cherni L, Alvarez L, Marques SL, Prata MJ, Boussetta S, Benammar-Elgaaied A, Khodjet-El-Khil H. The Orientalisation of North Africa: New hints from the study of autosomal STRs in an Arab population. Ann Hum Biol 2016; 44:180-190. [DOI: 10.1080/03014460.2016.1205135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- High Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - Luis Alvarez
- Instituto de Investigação e Inovação em Saúde/Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Sofia L. Marques
- Instituto de Investigação e Inovação em Saúde/Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Maria J. Prata
- Instituto de Investigação e Inovação em Saúde/Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Amel Benammar-Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Houssein Khodjet-El-Khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculté de Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
42
|
Gandini F, Achilli A, Pala M, Bodner M, Brandini S, Huber G, Egyed B, Ferretti L, Gómez-Carballa A, Salas A, Scozzari R, Cruciani F, Coppa A, Parson W, Semino O, Soares P, Torroni A, Richards MB, Olivieri A. Mapping human dispersals into the Horn of Africa from Arabian Ice Age refugia using mitogenomes. Sci Rep 2016; 6:25472. [PMID: 27146119 PMCID: PMC4857117 DOI: 10.1038/srep25472] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/18/2016] [Indexed: 01/29/2023] Open
Abstract
Rare mitochondrial lineages with relict distributions can sometimes be disproportionately informative about deep events in human prehistory. We have studied one such lineage, haplogroup R0a, which uniquely is most frequent in Arabia and the Horn of Africa, but is distributed much more widely, from Europe to India. We conclude that: (1) the lineage ancestral to R0a is more ancient than previously thought, with a relict distribution across the Mediterranean/Southwest Asia; (2) R0a has a much deeper presence in Arabia than previously thought, highlighting the role of at least one Pleistocene glacial refugium, perhaps on the Red Sea plains; (3) the main episode of dispersal into Eastern Africa, at least concerning maternal lineages, was at the end of the Late Glacial, due to major expansions from one or more refugia in Arabia; (4) there was likely a minor Late Glacial/early postglacial dispersal from Arabia through the Levant and into Europe, possibly alongside other lineages from a Levantine refugium; and (5) the presence of R0a in Southwest Arabia in the Holocene at the nexus of a trading network that developed after ~3 ka between Africa and the Indian Ocean led to some gene flow even further afield, into Iran, Pakistan and India.
Collapse
Affiliation(s)
- Francesca Gandini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy.,School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy.,Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Maria Pala
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefania Brandini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Balazs Egyed
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, and Instituto de Ciencias Forenses, Facultade de Medicina, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain
| | - Rosaria Scozzari
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| | - Martin B Richards
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, UK
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Pavia, Italy
| |
Collapse
|
43
|
Soueid J, Kourtian S, Makhoul NJ, Makoukji J, Haddad S, Ghanem SS, Kobeissy F, Boustany RM. RYR2, PTDSS1 and AREG genes are implicated in a Lebanese population-based study of copy number variation in autism. Sci Rep 2016; 6:19088. [PMID: 26742492 PMCID: PMC4705475 DOI: 10.1038/srep19088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/02/2015] [Indexed: 11/11/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental disorders characterized by ritualistic-repetitive behaviors and impaired verbal and non-verbal communication. Objectives were to determine the contribution of genetic variation to ASDs in the Lebanese. Affymetrix Cytogenetics Whole-Genome 2.7 M and CytoScan(™) HD Arrays were used to detect CNVs in 41 Lebanese autistic children and 35 non-autistic, developmentally delayed and intellectually disabled patients. 33 normal participants were used as controls. 16 de novo CNVs and 57 inherited CNVs, including recognized pathogenic 16p11.2 duplications and 2p16.3 deletions were identified. A duplication at 1q43 classified as likely pathogenic encompasses RYR2 as a potential ASD candidate gene. This previously identified CNV has been classified as both pathogenic, and, of uncertain significance. A duplication of unknown significance at 10q11.22, proposed as a modulator for phenotypic disease expression in Rett syndrome, was also identified. The novel potential autism susceptibility genes PTDSS1 and AREG were uncovered and warrant further genetic and functional analyses. Previously described and novel genetic targets in ASD were identified in Lebanese families with autism. These findings may lead to improved diagnosis of ASDs and informed genetic counseling, and may also lead to untapped therapeutic targets applicable to Lebanese and non-Lebanese patients.
Collapse
MESH Headings
- Adolescent
- Amphiregulin/deficiency
- Amphiregulin/genetics
- Autism Spectrum Disorder/genetics
- Autism Spectrum Disorder/physiopathology
- Case-Control Studies
- Child
- Child, Preschool
- Chromosome Aberrations
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 10
- Chromosomes, Human, Pair 16
- Chromosomes, Human, Pair 2
- DNA Copy Number Variations
- Developmental Disabilities/genetics
- Developmental Disabilities/physiopathology
- Female
- Gene Deletion
- Genome, Human
- Humans
- Lebanon
- Male
- Nitrogenous Group Transferases/deficiency
- Nitrogenous Group Transferases/genetics
- Ryanodine Receptor Calcium Release Channel/deficiency
- Ryanodine Receptor Calcium Release Channel/genetics
Collapse
Affiliation(s)
- Jihane Soueid
- American University of Beirut Medical Center Special Kids Clinic, Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine, Lebanon
| | - Silva Kourtian
- American University of Beirut Medical Center Special Kids Clinic, Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine, Lebanon
- Department of Biological and Environmental Sciences, Faculty of Science, Beirut Arab University, Lebanon
| | - Nadine J. Makhoul
- American University of Beirut Medical Center Special Kids Clinic, Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine, Lebanon
| | - Joelle Makoukji
- American University of Beirut Medical Center Special Kids Clinic, Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine, Lebanon
| | - Sariah Haddad
- American University of Beirut Medical Center Special Kids Clinic, Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine, Lebanon
| | - Simona S. Ghanem
- American University of Beirut Medical Center Special Kids Clinic, Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine, Lebanon
| | - Firas Kobeissy
- Biochemistry and Molecular Genetics, American university of Beirut, Lebanon
| | - Rose-Mary Boustany
- American University of Beirut Medical Center Special Kids Clinic, Neurogenetics Program and Division of Pediatric Neurology, Departments of Pediatrics and Adolescent Medicine, Lebanon
- Biochemistry and Molecular Genetics, American university of Beirut, Lebanon
| |
Collapse
|
44
|
Malhi RS, Bader AC. ENGAGING NATIVE AMERICANS IN GENOMICS RESEARCH. AMERICAN ANTHROPOLOGIST 2015; 117:743-744. [PMID: 27799658 DOI: 10.1111/aman.12369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Haber M, Mezzavilla M, Xue Y, Comas D, Gasparini P, Zalloua P, Tyler-Smith C. Genetic evidence for an origin of the Armenians from Bronze Age mixing of multiple populations. Eur J Hum Genet 2015; 24:931-6. [PMID: 26486470 PMCID: PMC4820045 DOI: 10.1038/ejhg.2015.206] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/12/2015] [Accepted: 07/21/2015] [Indexed: 02/04/2023] Open
Abstract
The Armenians are a culturally isolated population who historically inhabited a region in the Near East bounded by the Mediterranean and Black seas and the Caucasus, but remain under-represented in genetic studies and have a complex history including a major geographic displacement during World War I. Here, we analyse genome-wide variation in 173 Armenians and compare them with 78 other worldwide populations. We find that Armenians form a distinctive cluster linking the Near East, Europe, and the Caucasus. We show that Armenian diversity can be explained by several mixtures of Eurasian populations that occurred between ~3000 and ~2000 bce, a period characterized by major population migrations after the domestication of the horse, appearance of chariots, and the rise of advanced civilizations in the Near East. However, genetic signals of population mixture cease after ~1200 bce when Bronze Age civilizations in the Eastern Mediterranean world suddenly and violently collapsed. Armenians have since remained isolated and genetic structure within the population developed ~500 years ago when Armenia was divided between the Ottomans and the Safavid Empire in Iran. Finally, we show that Armenians have higher genetic affinity to Neolithic Europeans than other present-day Near Easterners, and that 29% of Armenian ancestry may originate from an ancestral population that is best represented by Neolithic Europeans.
Collapse
Affiliation(s)
- Marc Haber
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Massimo Mezzavilla
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK.,Institute for Maternal and Child Health -IRCCS 'Burlo Garofolo'-Trieste, University of Trieste, Trieste, Italy
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - David Comas
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | - Paolo Gasparini
- Institute for Maternal and Child Health -IRCCS 'Burlo Garofolo'-Trieste, University of Trieste, Trieste, Italy
| | - Pierre Zalloua
- The Lebanese American University, Chouran, Beirut, Lebanon
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| |
Collapse
|
46
|
Zanetti D, Carreras-Torres R, Esteban E, Via M, Moral P. Potential Signals of Natural Selection in the Top Risk Loci for Coronary Artery Disease: 9p21 and 10q11. PLoS One 2015; 10:e0134840. [PMID: 26252781 PMCID: PMC4529309 DOI: 10.1371/journal.pone.0134840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/15/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is a complex disease and the leading cause of death in the world. Populations of different ancestry do not always share the same risk markers. Natural selective processes may be the cause of some of the population differences detected for specific risk mutations. OBJECTIVE In this study, 384 single nucleotide polymorphisms (SNPs) located in four genomic regions associated with CAD (1p13, 1q41, 9p21 and 10q11) are analysed in a set of 19 populations from Europe, Middle East and North Africa and also in Asian and African samples from the 1000 Genomes Project. The aim of this survey is to explore for the first time whether the genetic variability in these genomic regions is better explained by demography or by natural selection. RESULTS The results indicate significant differences in the structure of genetic variation and in the LD patterns among populations that probably explain the population disparities found in markers of susceptibility to CAD. CONCLUSIONS The results are consistent with potential signature of positive selection in the 9p21 region and of balancing selection in the 9p21 and 10q11. Specifically, in Europe three CAD risk markers in the 9p21 region (rs9632884, rs1537371 and rs1333042) show consistent signals of positive selection. The results of this study are consistent with a potential selective role of CAD in the configuration of genetic diversity in current human populations.
Collapse
Affiliation(s)
- Daniela Zanetti
- Department of Animal Biology-Anthropology, University of Barcelona, Barcelona, Spain
| | | | - Esther Esteban
- Department of Animal Biology-Anthropology, University of Barcelona, Barcelona, Spain
- Biodiversity Research Institute, University of Barcelona, Spain
| | - Marc Via
- Department of Psychiatry and Clinical Psychobiology and Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Barcelona, Spain
| | - Pedro Moral
- Department of Animal Biology-Anthropology, University of Barcelona, Barcelona, Spain
- Biodiversity Research Institute, University of Barcelona, Spain
| |
Collapse
|
47
|
Pagani L, Schiffels S, Gurdasani D, Danecek P, Scally A, Chen Y, Xue Y, Haber M, Ekong R, Oljira T, Mekonnen E, Luiselli D, Bradman N, Bekele E, Zalloua P, Durbin R, Kivisild T, Tyler-Smith C. Tracing the route of modern humans out of Africa by using 225 human genome sequences from Ethiopians and Egyptians. Am J Hum Genet 2015; 96:986-91. [PMID: 26027499 PMCID: PMC4457944 DOI: 10.1016/j.ajhg.2015.04.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022] Open
Abstract
The predominantly African origin of all modern human populations is well established, but the route taken out of Africa is still unclear. Two alternative routes, via Egypt and Sinai or across the Bab el Mandeb strait into Arabia, have traditionally been proposed as feasible gateways in light of geographic, paleoclimatic, archaeological, and genetic evidence. Distinguishing among these alternatives has been difficult. We generated 225 whole-genome sequences (225 at 8× depth, of which 8 were increased to 30×; Illumina HiSeq 2000) from six modern Northeast African populations (100 Egyptians and five Ethiopian populations each represented by 25 individuals). West Eurasian components were masked out, and the remaining African haplotypes were compared with a panel of sub-Saharan African and non-African genomes. We showed that masked Northeast African haplotypes overall were more similar to non-African haplotypes and more frequently present outside Africa than were any sets of haplotypes derived from a West African population. Furthermore, the masked Egyptian haplotypes showed these properties more markedly than the masked Ethiopian haplotypes, pointing to Egypt as the more likely gateway in the exodus to the rest of the world. Using five Ethiopian and three Egyptian high-coverage masked genomes and the multiple sequentially Markovian coalescent (MSMC) approach, we estimated the genetic split times of Egyptians and Ethiopians from non-African populations at 55,000 and 65,000 years ago, respectively, whereas that of West Africans was estimated to be 75,000 years ago. Both the haplotype and MSMC analyses thus suggest a predominant northern route out of Africa via Egypt.
Collapse
Affiliation(s)
- Luca Pagani
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK; Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 1QH, UK; Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Stephan Schiffels
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Deepti Gurdasani
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Petr Danecek
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Yuan Chen
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Marc Haber
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK; The Lebanese American University, Chouran, Beirut 1102 2801, Lebanon
| | - Rosemary Ekong
- Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, UK
| | - Tamiru Oljira
- University of Addis Ababa and Center of Human Genetic Diversity, PO Box 1176, Ethiopia
| | - Ephrem Mekonnen
- University of Addis Ababa and Center of Human Genetic Diversity, PO Box 1176, Ethiopia
| | - Donata Luiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Neil Bradman
- Henry Stewart Group, 28/30 Little Russell Street, London WC1A 2HN, UK
| | - Endashaw Bekele
- University of Addis Ababa and Center of Human Genetic Diversity, PO Box 1176, Ethiopia
| | - Pierre Zalloua
- The Lebanese American University, Chouran, Beirut 1102 2801, Lebanon; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Richard Durbin
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Toomas Kivisild
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 1QH, UK
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
48
|
Kasthurinaidu SP, Ramasamy T, Ayyavoo J, Dave DK, Adroja DA. GST M1-T1 null allele frequency patterns in geographically assorted human populations: a phylogenetic approach. PLoS One 2015; 10:e0118660. [PMID: 25867025 PMCID: PMC4395045 DOI: 10.1371/journal.pone.0118660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
Genetic diversity in drug metabolism and disposition is mainly considered as the outcome of the inter-individual genetic variation in polymorphism of drug-xenobiotic metabolizing enzyme (XME). Among the XMEs, glutathione-S-transferases (GST) gene loci are an important candidate for the investigation of diversity in allele frequency, as the deletion mutations in GST M1 and T1 genotypes are associated with various cancers and genetic disorders of all major Population Affiliations (PAs). Therefore, the present population based phylogenetic study was focused to uncover the frequency distribution pattern in GST M1 and T1 null genotypes among 45 Geographically Assorted Human Populations (GAHPs). The frequency distribution pattern for GST M1 and T1 null alleles have been detected in this study using the data derived from literatures representing 44 populations affiliated to Africa, Asia, Europe, South America and the genome of PA from Gujarat, a region in western India. Allele frequency counting for Gujarat PA and scattered plot analysis for geographical distribution among the PAs were performed in SPSS-21. The GST M1 and GST T1 null allele frequencies patterns of the PAs were computed in Seqboot, Gendist program of Phylip software package (3.69 versions) and Unweighted Pair Group method with Arithmetic Mean in Mega-6 software. Allele frequencies from South African Xhosa tribe, East African Zimbabwe, East African Ethiopia, North African Egypt, Caucasian, South Asian Afghanistan and South Indian Andhra Pradesh have been identified as the probable seven patterns among the 45 GAHPs investigated in this study for GST M1-T1 null genotypes. The patternized null allele frequencies demonstrated in this study for the first time addresses the missing link in GST M1-T1 null allele frequencies among GAHPs.
Collapse
Affiliation(s)
- Senthilkumar Pitchalu Kasthurinaidu
- Department of Biotechnology, Shree M. & N. Virani Science College, Rajkot, Gujarat, 360 005, India
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, 625 021, India
| | - Thirumurugan Ramasamy
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620 024, India
- * E-mail: (TR)
| | - Jayachitra Ayyavoo
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamilnadu, 625 021, India
| | - Dhvani Kirtikumar Dave
- Department of Biotechnology, Shree M. & N. Virani Science College, Rajkot, Gujarat, 360 005, India
| | - Divya Anantray Adroja
- Department of Biotechnology, Shree M. & N. Virani Science College, Rajkot, Gujarat, 360 005, India
| |
Collapse
|
49
|
Ghassibe-Sabbagh M, Haber M, Salloum AK, Al-Sarraj Y, Akle Y, Hirbli K, Romanos J, Mouzaya F, Gauguier D, Platt DE, El-Shanti H, Zalloua PA. T2DM GWAS in the Lebanese population confirms the role of TCF7L2 and CDKAL1 in disease susceptibility. Sci Rep 2014; 4:7351. [PMID: 25483131 PMCID: PMC5376673 DOI: 10.1038/srep07351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 11/14/2014] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies (GWAS) of multiple populations with distinctive genetic and lifestyle backgrounds are crucial to the understanding of Type 2 Diabetes Mellitus (T2DM) pathophysiology. We report a GWAS on the genetic basis of T2DM in a 3,286 Lebanese participants. More than 5,000,000 SNPs were directly genotyped or imputed using the 1000 Genomes Project reference panels. We identify genome-wide significant variants in two loci CDKAL1 and TCF7L2, independent of sex, age and BMI, with leading variants rs7766070 (OR = 1.39, P = 4.77 × 10(-9)) and rs34872471 (OR = 1.35, P = 1.01 × 10(-8)) respectively. The current study is the first GWAS to find genomic regions implicated in T2DM in the Lebanese population. The results support a central role of CDKAL1 and TCF7L2 in T2DM susceptibility in Southwest Asian populations and provide a plausible component for understanding molecular mechanisms involved in the disease.
Collapse
Affiliation(s)
| | - Marc Haber
- Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon
| | | | | | - Yasmine Akle
- Centre Hospitalier du Nord-CHN, Zgharta, Lebanon
| | - Kamal Hirbli
- 1] Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon [2] University Medical Center - Rizk Hospital (UMC-RH), Lebanon
| | - Jihane Romanos
- Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon
| | - Francis Mouzaya
- Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon
| | | | - Daniel E Platt
- Bioinformatics and Pattern Discovery, IBM T. J. Watson Research Centre, Yorktown Hgts, NY 10598, USA
| | - Hatem El-Shanti
- 1] Shafallah Medical Genetics Center, Doha, Qatar [2] University of Iowa Carver College of Medicine, Iowa City
| | - Pierre A Zalloua
- 1] Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon [2] Harvard School of Public Health, Boston MA 02215, USA
| |
Collapse
|
50
|
Jalkh N, Sahbatou M, Chouery E, Megarbane A, Leutenegger AL, Serre JL. Genome-wide inbreeding estimation within Lebanese communities using SNP arrays. Eur J Hum Genet 2014; 23:1364-9. [PMID: 25424710 DOI: 10.1038/ejhg.2014.246] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 08/29/2014] [Accepted: 09/19/2014] [Indexed: 12/14/2022] Open
Abstract
Consanguineous marriages have been widely practiced in several global communities with varying rates depending on religion, culture, and geography. In consanguineous marriages, parents pass to their children autozygous segments known as homozygous by descent segments. In this study, single-nucleotide polymorphisms were analyzed in 165 unrelated Lebanese people from Greek Orthodox, Maronite, Shiite and Sunni communities. Runs of homozygosity, total inbreeding levels, remote consanguinity, and population admixture and structure were estimated. The inbreeding coefficient value was estimated to be 1.61% in offspring of unrelated parents over three generations and 8.33% in offspring of first cousins. From these values, remote consanguinity values, resulting from genetic drift or recurrent consanguineous unions, were estimated in offspring of unrelated and first-cousin parents to be 0.61 and 1.2%, respectively. This remote consanguinity value suggests that for any unrelated marriages in Lebanon, the mates could be related as third cousins or as second cousins once removed. Under the assumption that 25% of marriages occur between first cousins, the mean inbreeding value of 2.3% may explain the increased incidence of recessive disease in offspring. Our analysis reveals a common ancestral population in the four Lebanese communities we studied.
Collapse
Affiliation(s)
- Nadine Jalkh
- Unité de Génétique Médicale et Laboratoire associé INSERM à l'Unité UMR_S910, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon.,EA 2493 « pathologie cellulaire & génétique, de la conception à la naissance », Université de Versailles-Saint Quentin en Yvelines, Yvelines, France
| | | | - Eliane Chouery
- Unité de Génétique Médicale et Laboratoire associé INSERM à l'Unité UMR_S910, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
| | - André Megarbane
- Unité de Génétique Médicale et Laboratoire associé INSERM à l'Unité UMR_S910, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
| | | | - Jean-Louis Serre
- EA 2493 « pathologie cellulaire & génétique, de la conception à la naissance », Université de Versailles-Saint Quentin en Yvelines, Yvelines, France
| |
Collapse
|