1
|
Désaubry L, Kanthasamy AG, Nebigil CG. Prokineticin signaling in heart-brain developmental axis: Therapeutic options for heart and brain injuries. Pharmacol Res 2020; 160:105190. [PMID: 32937177 PMCID: PMC7674124 DOI: 10.1016/j.phrs.2020.105190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
Heart and brain development occur simultaneously during the embryogenesis, and both organ development and injuries are interconnected. Early neuronal and cardiac injuries share mutual cellular events, such as angiogenesis and plasticity that could either delay disease progression or, in the long run, result in detrimental health effects. For this reason, the common mechanisms provide a new and previously undervalued window of opportunity for intervention. Because angiogenesis, cardiogenesis and neurogenesis are essential for the development and regeneration of the heart and brain, we discuss therein the role of prokineticin as an angiogenic neuropeptide in heart-brain development and injuries. We focus on the role of prokineticin signaling and the effect of drugs targeting prokineticin receptors in neuroprotection and cardioprotection, with a special emphasis on heart failure, neurodegenerativParkinson's disease and ischemic heart and brain injuries. Indeed, prokineticin triggers common pro-survival signaling pathway in heart and brain. Our review aims at stimulating researchers and clinicians in neurocardiology to focus on the role of prokineticin signaling in the reciprocal interaction between heart and brain. We hope to facilitate the discovery of new treatment strategies, acting in both heart and brain degenerative diseases.
Collapse
Affiliation(s)
- Laurent Désaubry
- Regenerative Nanomedicine, UMR 1260, INSERM, University of Strasbourg, Strasbourg, France
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Canan G Nebigil
- Regenerative Nanomedicine, UMR 1260, INSERM, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
2
|
Li F, Xu L, Hui X, Huang W, Yang F. Directed differentiation of granular cells from crayfish hematopoietic tissue cells. FISH & SHELLFISH IMMUNOLOGY 2019; 88:28-35. [PMID: 30826415 DOI: 10.1016/j.fsi.2019.02.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Hemocytes are the major immune cells of crustaceans. New hemocyte production is required throughout the life cycle of these animals to maintain a functional immune system. The mechanism of crustacean hematopoiesis has just begun to be understood and new methods are needed for the investigation of this process. Here we report the directed differentiation of granular cells (GCs) from the hematopoietic tissue (HPT) cells of Cherax quadricarinatus in vitro. We started by providing the cultured HPT cells with different additives to induce possible differentiation. We found that crayfish muscle extract greatly promoted the physical status of the cells and induced the formation of refractile cytoplasmic granules. The transcription of marker genes and the production of functional prophenoloxidase further confirmed the formation of mature GCs. In our experiments, young GCs usually started to develop in ∼2 weeks post induction and over 60% of the cells became mature within 3-4 weeks. This is the first time that the fully differentiation of crustacean hemocytes is accomplished in vitro. It provides a powerful tool for in-depth study of crustacean hematopoiesis.
Collapse
Affiliation(s)
- Fang Li
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China.
| | - Limei Xu
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Xuan Hui
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Wanzhen Huang
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
3
|
Jia Z, Wang M, Wang X, Wang L, Song L. The receptor for activated C kinase 1 (RACK1) functions in hematopoiesis through JNK activation in Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2016; 57:252-261. [PMID: 27542616 DOI: 10.1016/j.fsi.2016.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/08/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Receptor for activated C kinase 1 (RACK1) is a WD-domain repeating protein which involves in the mediation of various biological processes, including innate immune response. In the present study, a RACK1 (designed as EsRACK1) gene from Chinese mitten crab E. sinensis was cloned by rapid amplification of cDNA ends (RACE) technique. The full-length cDNA sequence of EsRACK1 was of 1117 bp with an open reading frame (ORF) of 957 bp encoding a polypeptide of 318 amino acids containing seven WD repeats. EsRACK1 shared 62%-99% similarities with previously identified RACK1s in amino acid sequence, and it was clustered with the RACK1 from Pacifastacus leniusculus in the phylogenetic tree. The mRNA transcripts of EsRACK1 were constitutively expressed in various tissues with the highest expression level in hepatopancreas. The expression of EsRACK1 mRNA in hemocytes were significantly up-regulated post the stimulations with Vibrio anguillarum and Pichia pastoris. After exposure to CdCl2 and pentachlorophenol, the transcripts of EsRACK1 in hemocytes were up-regulated at the late phase from 12 h. When EsRACK1 was knocked down by dsRNA based RNAi, the total hemocyte counts, new-born hemocytes and phosphorylation of JNK were all significantly decreased. In addition, EsRACK1 transcription and phosphorylation of JNK were both decreased in hematopoietic tissue post Aeromonas hydrophila challenge. All the results suggested that EsRACK1 was involved in the innate immune response of the crab and participated in the production of new-born hemocytes through activation of JNK.
Collapse
MESH Headings
- Aeromonas hydrophila/physiology
- Amino Acid Sequence
- Animals
- Arthropod Proteins/chemistry
- Arthropod Proteins/genetics
- Arthropod Proteins/metabolism
- Base Sequence
- Brachyura/drug effects
- Brachyura/genetics
- Brachyura/immunology
- Brachyura/microbiology
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Hematopoiesis/drug effects
- Herbicides/toxicity
- Immunity, Innate
- Metals, Heavy/toxicity
- Phylogeny
- Pichia/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors for Activated C Kinase
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Sequence Alignment
- Tissue Distribution
- Up-Regulation
- Vibrio/physiology
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiudan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
4
|
Malagoli D, Mandrioli M, Tascedda F, Ottaviani E. Circulating phagocytes: the ancient and conserved interface between immune and neuroendocrine function. Biol Rev Camb Philos Soc 2015; 92:369-377. [PMID: 26548761 DOI: 10.1111/brv.12234] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023]
Abstract
Immune and neuroendocrine functions display significant overlap in highly divergent and evolutionarily distant models such as molluscs, crustaceans, insects and mammals. Fundamental players in this crosstalk are professional phagocytes: macrophages in vertebrates and immunocytes in invertebrates. Although they have different developmental origins, macrophages and immunocytes possess comparable functions and differentiate under the control of evolutionarily conserved transcription factors. Macrophages and immunocytes share their pools of receptors, signalling molecules and pathways with neural cells and the neuro-endocrine system. In crustaceans, adult transdifferentiation of circulating haemocytes into neural cells has been documented recently. In light of developmental, molecular and functional evidence, we propose that the immune-neuroendocrine role of circulating phagocytes pre-dates the split of protostomian and deuterostomian superphyla and has been conserved during the evolution of the main groups of metazoans.
Collapse
Affiliation(s)
- Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| | - Enzo Ottaviani
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 213/D, 41122, Modena, Italy
| |
Collapse
|
5
|
Bedont JL, Blackshaw S. Constructing the suprachiasmatic nucleus: a watchmaker's perspective on the central clockworks. Front Syst Neurosci 2015; 9:74. [PMID: 26005407 PMCID: PMC4424844 DOI: 10.3389/fnsys.2015.00074] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/23/2015] [Indexed: 11/13/2022] Open
Abstract
The circadian system constrains an organism's palette of behaviors to portions of the solar day appropriate to its ecological niche. The central light-entrained clock in the suprachiasmatic nucleus (SCN) of the mammalian circadian system has evolved a complex network of interdependent signaling mechanisms linking multiple distinct oscillators to serve this crucial function. However, studies of the mechanisms controlling SCN development have greatly lagged behind our understanding of its physiological functions. We review advances in the understanding of adult SCN function, what has been described about SCN development to date, and the potential of both current and future studies of SCN development to yield important insights into master clock function, dysfunction, and evolution.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Physiology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Center for High-Throughput Biology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
6
|
Chang YT, Lin CY, Tsai CY, Siva VS, Chu CY, Tsai HJ, Song YL. The new face of the old molecules: crustin Pm4 and transglutaminase type I serving as rnps down-regulate astakine-mediated hematopoiesis. PLoS One 2013; 8:e72793. [PMID: 24013515 PMCID: PMC3754954 DOI: 10.1371/journal.pone.0072793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/12/2013] [Indexed: 12/31/2022] Open
Abstract
Astakine is an important cytokine that is involved in crustacean hematopoiesis. Interestingly, the protein levels of astakine increased dramatically in plasma of LPS-injected shrimp while mRNA levels remained unchanged. Here, we investigated the involvement of astakine 3'-untranslated region (UTR) in its protein expression. The 3'-UTR of astakine down-regulated the expression of reporter protein but the mRNA stability of reporter gene was unaffected. We identified the functional regulatory elements of astakine 3'-UTR, where 3'-UTR242-483 acted as repressor. The electrophoresis mobility shift assay (EMSA), RNA pull-down assay and LC/MS/MS were performed to identify the protein association. We noted that crustin Pm4 and shrimp transglutaminase I (STG I) were associated to astakine 3'-UTR242-483, while two other proteins have yet to be revealed. Depletion of hemocytic crustin Pm4 and STG I significantly increased the protein level of astakine while astakine mRNA level remained unaffected. Lipopolysaccharide (LPS) stimulated the secretion of crustin Pm4 and STG I from hemocytes to plasma and increased the astakine level to stimulate the hemocytes proliferation. Altogether, we identified the shrimp crustin Pm4 and STG I as novel RNA binding proteins that play an important role in down-regulating astakine expression at post-transcriptional level and are crucial for the maintenance of hematopoiesis.
Collapse
Affiliation(s)
- Yun-Tsan Chang
- Institute of Zoology, National Taiwan University, Taipei, Taiwan, ROC
| | - Cheng-Yung Lin
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan, ROC
| | - Che-Yiang Tsai
- Institute of Zoology, National Taiwan University, Taipei, Taiwan, ROC
| | - Vinu S. Siva
- Institute of Zoology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chia-Ying Chu
- Institute of Zoology, National Taiwan University, Taipei, Taiwan, ROC
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Huai-Jen Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan, ROC
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Yen-Ling Song
- Institute of Zoology, National Taiwan University, Taipei, Taiwan, ROC
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|
7
|
Noonin C, Watthanasurorot A, Winberg S, Söderhäll I. Circadian regulation of melanization and prokineticin homologues is conserved in the brain of freshwater crayfish and zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:218-226. [PMID: 23500514 DOI: 10.1016/j.dci.2013.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
Circadian clock is important to living organisms to adjust to the external environment. This clock has been extensively studied in mammals, and prokineticin 2 (Prok2) acts as one of the messenger between the central nervous system and peripheral tissues. In this study, expression profiles of Prok1 and Prok2 were investigated in a non-mammalian vertebrate brain, zebrafish, and the expression was compared to the Prok homologues, astakines (Ast1 and Ast2) in crayfish. These transcripts exhibited circadian oscillation in the brain, and Ast1 had similar pattern to Prok2. In addition, the expression of tyrosinase, an enzyme which expression is regulated by E-box elements like in Prok2, was also examined in zebrafish brain and was compared with the expression of prophenoloxidase (proPO), the melanization enzyme, in crayfish brain. Interestingly, the expressions of both Tyr and proPO displayed circadian rhythm in a similar pattern to Prok2 and Ast1, respectively. Therefore, this study shows that circadian oscillation of prokineticin homologues and enzymes involved in melanization are conserved.
Collapse
Affiliation(s)
- Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Norbyv. 18A, 752 36 Uppsala, Sweden
| | | | | | | |
Collapse
|
8
|
Söderhäll I. Recent advances in crayfish hematopoietic stem cell culture: a model for studies of hemocyte differentiation and immunity. Cytotechnology 2013; 65:691-5. [PMID: 23686548 DOI: 10.1007/s10616-013-9578-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/29/2013] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis is the process by which blood cells (hemocytes) mature and subsequently enter the circulation and we have developed a new technique to culture the hematopoietic progenitor cells in vitro. The reason for the successful culture was the isolation of a plasma protein that turned out to be a novel cytokine, astakine 1 (Ast1) containing a domain present in several vertebrates, so-called prokineticins. Now we have detected several astakines from other invertebrate species. Depending on our discovery of the cytokine Ast1 we have an opportunity to study in detail the differentiation of cells in the hematopoietic tissue of a crustacean, a tissue of evolutionary interest for studies of the connection between the vascular system and the nervous system. We have been able to isolate the entire hematopoietic tissue and for the first time detected a link between this tissue and the brain. We have further localized a proliferation center in the tissue and characterized its different parts. We have also used this system to isolate a new hematopoietic factor CHF that is important in the crossroad between apoptosis and hemocyte differentiation. Our technique for culture of crayfish hematopoietic stem cells provides a simple tool for studying the mechanism of hematopoiesis, but also enables detailed studies of immune defense reactions. Further, the culture system has been used for studies of viral defense and the system is suitable for gene silencing which allows functional characterization of different molecules involved in host defense as well as in hemocyte differentiation.
Collapse
Affiliation(s)
- Irene Söderhäll
- Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden,
| |
Collapse
|
9
|
Fedorka KM, Copeland EK, Winterhalter WE. Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects. J Exp Biol 2013; 216:4005-10. [DOI: 10.1242/jeb.091538] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Summary
To improve thermoregulation in colder environments, insects are expected to darken their cuticles with melanin via the phenoloxidase cascade; a phenomenon predicted by the thermal melanin hypothesis. However, the phenoloxidase cascade also plays a significant role in insect immunity, leading to the additional hypothesis that the thermal environment indirectly shapes immune function via direct selection on cuticle color. Support for the latter hypothesis comes from the cricket Allonemobius socius (Scudder), where cuticle darkness and immune-related phenoloxidase activity increase with latitude. However, thermal environments vary seasonally as well as geographically, suggesting that seasonal plasticity in immunity may also exist. Although seasonal fluctuations in vertebrate immune function are common (due to flux in breeding or resource abundance), seasonality in invertebrate immunity has not been widely explored. We addressed this possibility by rearing crickets in simulated summer and fall environments and assayed their cuticle color and immune function. Prior to estimating immunity, crickets were placed in a common environment to minimize metabolic rate differences. Fall-like individuals exhibited darker cuticles, a greater phenoloxidase activity and greater resistance to the bacteria Serratia marcescens. These data support the hypothesis that changes in the thermal environment modify cuticle color, which indirectly shapes immune investment through pleiotropy. This hypothesis may represent a widespread mechanism governing immunity in numerous systems, considering that most insects operate in seasonally and geographically variable thermal environments.
Collapse
|