1
|
Ito M, Yun Y, Kulkarni DS, Lee S, Sandhu S, Nuñez B, Hu L, Lee K, Lim N, Hirota RM, Prendergast R, Huang C, Huang I, Hunter N. Distinct and interdependent functions of three RING proteins regulate recombination during mammalian meiosis. Proc Natl Acad Sci U S A 2025; 122:e2412961121. [PMID: 39761402 PMCID: PMC11745341 DOI: 10.1073/pnas.2412961121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/21/2024] [Indexed: 01/30/2025] Open
Abstract
During meiosis, each pair of homologous chromosomes becomes connected by at least one crossover, as required for accurate segregation, and adjacent crossovers are widely separated thereby limiting total numbers. In coarsening models, this crossover patterning results from nascent recombination sites competing to accrue a limiting pro-crossover RING-domain protein (COR) that diffuses between synapsed chromosomes. Here, we delineate the localization dynamics of three mammalian CORs in the mouse and determine their interdependencies. RNF212, HEI10, and the newest member RNF212B show divergent spatiotemporal dynamics along synapsed chromosomes, including profound differences in spermatocytes and oocytes, that are not easily reconciled by elementary coarsening models. Contrasting mutant phenotypes and genetic requirements indicate that RNF212B, RNF212, and HEI10 play distinct but interdependent functions in regulating meiotic recombination and coordinating the events of meiotic prophase-I by integrating signals from DNA breaks, homolog synapsis, the cell-cycle, and incipient crossover sites.
Collapse
Affiliation(s)
- Masaru Ito
- HHMI, University of California, Davis, CA95616
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
- Institute for Protein Research, Osaka University, Osaka565-0871, Japan
| | - Yan Yun
- HHMI, University of California, Davis, CA95616
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
- Center for Reproductive Medicine, Clinical Research Center, Shantou Central Hospital, Shantou, China515041
| | - Dhananjaya S. Kulkarni
- HHMI, University of California, Davis, CA95616
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Sunkyung Lee
- HHMI, University of California, Davis, CA95616
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Sumit Sandhu
- HHMI, University of California, Davis, CA95616
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Briana Nuñez
- HHMI, University of California, Davis, CA95616
- Department of Biochemistry & Molecular Biology, Brown University, Providence, RI02912
| | - Linya Hu
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Kevin Lee
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Nelly Lim
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Rachel M. Hirota
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Rowan Prendergast
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Cynthia Huang
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Ivy Huang
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
| | - Neil Hunter
- HHMI, University of California, Davis, CA95616
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA95616
- Department of Molecular & Cellular Biology, University of California, Davis, CA95616
| |
Collapse
|
2
|
Voelkel-Meiman K, Liddle JC, Balsbaugh JL, MacQueen AJ. Proximity labeling reveals new functional relationships between meiotic recombination proteins in S. cerevisiae. PLoS Genet 2024; 20:e1011432. [PMID: 39405359 PMCID: PMC11508090 DOI: 10.1371/journal.pgen.1011432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Several protein ensembles facilitate crossover recombination and the associated assembly of synaptonemal complex (SC) during meiosis. In yeast, meiosis-specific factors including the DNA helicase Mer3, the "ZZS" complex consisting of Zip4, Zip2, and Spo16, the RING-domain protein Zip3, and the MutSγ heterodimer collaborate with crossover-promoting activity of the SC component, Zip1, to generate crossover-designated recombination intermediates. These ensembles also promote SC formation - the organized assembly of Zip1 with other structural proteins between aligned chromosome axes. We used proximity labeling to investigate spatial relationships between meiotic recombination and SC proteins in S. cerevisiae. We find that recombination initiation and SC factors are dispensable for proximity labeling of Zip3 by ZZS components, but proteins associated with early steps in recombination are required for Zip3 proximity labeling by MutSγ, suggesting that MutSγ joins Zip3 only after a recombination intermediate has been generated. We also find that zip1 separation-of-function mutants that are crossover deficient but still assemble SC fail to generate protein ensembles where Zip3 can engage ZZS and/or MutSγ. The SC structural protein Ecm11 is proximity labeled by ZZS proteins in a Zip4-dependent and Zip1-independent manner, but labeling of Ecm11 by Zip3 and MutSγ requires, at least in part, Zip1. Finally, mass spectrometry analysis of biotinylated proteins in eleven proximity labeling strains uncovered shared proximity targets of SC and crossover-associated proteins, some of which have not previously been implicated in meiotic recombination or SC formation, highlighting the potential of proximity labeling as a discovery tool.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Jennifer C. Liddle
- Proteomics and Metabolomics Facility, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jeremy L. Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut, United States of America
| | - Amy J. MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
3
|
Morgan C, Howard M, Henderson IR. HEI10 coarsening, chromatin and sequence polymorphism shape the plant meiotic recombination landscape. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102570. [PMID: 38838583 DOI: 10.1016/j.pbi.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Meiosis is a conserved eukaryotic cell division that produces spores required for sexual reproduction. During meiosis, chromosomes pair and undergo programmed DNA double-strand breaks, followed by homologous repair that can result in reciprocal crossovers. Crossover formation is highly regulated with typically few events per homolog pair. Crossovers additionally show wider spacing than expected from uniformly random placement - defining the phenomenon of interference. In plants, the conserved HEI10 E3 ligase is initially loaded along meiotic chromosomes, before maturing into a small number of foci, corresponding to crossover locations. We review the coarsening model that explains these dynamics as a diffusion and aggregation process, resulting in approximately evenly spaced HEI10 foci. We review how underlying chromatin states, and the presence of interhomolog polymorphisms, shape the meiotic recombination landscape, in light of the coarsening model. Finally, we consider future directions to understand the control of meiotic recombination in plant genomes.
Collapse
Affiliation(s)
- Chris Morgan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Martin Howard
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom.
| |
Collapse
|
4
|
Pannafino G, Chen JJ, Mithani V, Payero L, Gioia M, Crickard JB, Alani E. The Dmc1 recombinase physically interacts with and promotes the meiotic crossover functions of the Mlh1-Mlh3 endonuclease. Genetics 2024; 227:iyae066. [PMID: 38657110 PMCID: PMC11228845 DOI: 10.1093/genetics/iyae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80% of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates to perform its role in crossover resolution. We performed a gene dosage screen in baker's yeast to identify novel genetic interactors with Mlh1-Mlh3. Specifically, we looked for genes whose lowered dosage reduced meiotic crossing over using sensitized mlh3 alleles that disrupt the stability of the Mlh1-Mlh3 complex and confer defects in mismatch repair but do not disrupt meiotic crossing over. To our surprise we identified genetic interactions between MLH3 and DMC1, the recombinase responsible for recombination between homologous chromosomes during meiosis. We then showed that Mlh3 physically interacts with Dmc1 in vitro and in vivo. Partial complementation of Mlh3 crossover functions was observed when MLH3 was expressed under the control of the CLB1 promoter (NDT80 regulon), suggesting that Mlh3 function can be provided late in meiotic prophase at some functional cost. A model for how Dmc1 could facilitate Mlh1-Mlh3's role in crossover resolution is presented.
Collapse
Affiliation(s)
- Gianno Pannafino
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jun Jie Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Viraj Mithani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Lisette Payero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael Gioia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Joo JH, Hong S, Higashide MT, Choi EH, Yoon S, Lee MS, Kang HA, Shinohara A, Kleckner N, Kim KP. RPA interacts with Rad52 to promote meiotic crossover and noncrossover recombination. Nucleic Acids Res 2024; 52:3794-3809. [PMID: 38340339 DOI: 10.1093/nar/gkae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Meiotic recombination is initiated by programmed double-strand breaks (DSBs). Studies in Saccharomyces cerevisiae have shown that, following rapid resection to generate 3' single-stranded DNA (ssDNA) tails, one DSB end engages a homolog partner chromatid and is extended by DNA synthesis, whereas the other end remains associated with its sister. Then, after regulated differentiation into crossover- and noncrossover-fated types, the second DSB end participates in the reaction by strand annealing with the extended first end, along both pathways. This second-end capture is dependent on Rad52, presumably via its known capacity to anneal two ssDNAs. Here, using physical analysis of DNA recombination, we demonstrate that this process is dependent on direct interaction of Rad52 with the ssDNA binding protein, replication protein A (RPA). Furthermore, the absence of this Rad52-RPA joint activity results in a cytologically-prominent RPA spike, which emerges from the homolog axes at sites of crossovers during the pachytene stage of the meiotic prophase. Our findings suggest that this spike represents the DSB end of a broken chromatid caused by either the displaced leading DSB end or the second DSB end, which has been unable to engage with the partner homolog-associated ssDNA. These and other results imply a close correspondence between Rad52-RPA roles in meiotic recombination and mitotic DSB repair.
Collapse
Affiliation(s)
- Jeong H Joo
- Department of Life Sciences, Chung-Ang University, Seoul 06974, South Korea
| | - Soogil Hong
- Department of Life Sciences, Chung-Ang University, Seoul 06974, South Korea
| | - Mika T Higashide
- Institute for Protein Research, Graduate School of Science, Osaka University, Osaka 565-0871, Japan
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, South Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Deagu 41061, South Korea
| | - Seobin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul 06974, South Korea
| | - Min-Su Lee
- Department of Life Sciences, Chung-Ang University, Seoul 06974, South Korea
| | - Hyun Ah Kang
- Department of Life Sciences, Chung-Ang University, Seoul 06974, South Korea
| | - Akira Shinohara
- Institute for Protein Research, Graduate School of Science, Osaka University, Osaka 565-0871, Japan
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge 02138, USA
| | - Keun P Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
6
|
White MA, Weiner B, Chu L, Lim G, Kleckner NE. Crossover Interference Mediates Multiscale Patterning Along Meiotic Chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577645. [PMID: 38352537 PMCID: PMC10862706 DOI: 10.1101/2024.01.28.577645] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The classical phenomenon of crossover interference is a one-dimensional spatial patterning process that produces evenly spaced crossovers during meiosis. Quantitative analysis of diagnostic molecules along budding yeast chromosomes reveals that this process also sets up a second, interdigitated pattern of related but longer periodicity, in a "two-tiered" patterning process. The second tier corresponds to a previously mysterious minority set of crossovers. Thus, in toto, the two tiers account for all detected crossover events. Both tiers of patterning set up spatially clustered assemblies of three types of molecules ("triads") representing the three major components of meiotic chromosomes (crossover recombination complexes and chromosome axis and synaptonemal complex components), and give focal and domainal signals, respectively. Roles are suggested. All observed effects are economically and synthetically explained if crossover patterning is mediated by mechanical forces along prophase chromosomes. Intensity levels of domainal triad components are further modulated, dynamically, by the conserved protein remodeler Pch2/TRIP13.
Collapse
|
7
|
Legrand S, Saifudeen A, Bordelet H, Vernerey J, Guille A, Bignaud A, Thierry A, Acquaviva L, Gaudin M, Sanchez A, Johnson D, Friedrich A, Schacherer J, Neale MJ, Borde V, Koszul R, Llorente B. Absence of chromosome axis protein recruitment prevents meiotic recombination chromosome-wide in the budding yeast Lachancea kluyveri. Proc Natl Acad Sci U S A 2024; 121:e2312820121. [PMID: 38478689 PMCID: PMC10962940 DOI: 10.1073/pnas.2312820121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/24/2024] [Indexed: 03/27/2024] Open
Abstract
Meiotic recombination shows broad variations across species and along chromosomes and is often suppressed at and around genomic regions determining sexual compatibility such as mating type loci in fungi. Here, we show that the absence of Spo11-DSBs and meiotic recombination on Lakl0C-left, the chromosome arm containing the sex locus of the Lachancea kluyveri budding yeast, results from the absence of recruitment of the two chromosome axis proteins Red1 and Hop1, essential for proper Spo11-DSBs formation. Furthermore, cytological observation of spread pachytene meiotic chromosomes reveals that Lakl0C-left does not undergo synapsis. However, we show that the behavior of Lakl0C-left is independent of its particularly early replication timing and is not accompanied by any peculiar chromosome structure as detectable by Hi-C in this yet poorly studied yeast. Finally, we observed an accumulation of heterozygous mutations on Lakl0C-left and a sexual dimorphism of the haploid meiotic offspring, supporting a direct effect of this absence of meiotic recombination on L. kluyveri genome evolution and fitness. Because suppression of meiotic recombination on sex chromosomes is widely observed across eukaryotes, the mechanism for recombination suppression described here may apply to other species, with the potential to impact sex chromosome evolution.
Collapse
Affiliation(s)
- Sylvain Legrand
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Asma Saifudeen
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Hélène Bordelet
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Julien Vernerey
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Arnaud Guille
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Amaury Bignaud
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Laurent Acquaviva
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Maxime Gaudin
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Aurore Sanchez
- Institut Curie, Paris Sciences and Lettres University, Sorbonne Université, CNRS UMR 3244, Dynamics of Genetic Information, Paris75005, France
| | - Dominic Johnson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, BrightonBN1 9RH, United Kingdom
| | - Anne Friedrich
- Université de Strasbourg, CNRS, Génétique moléculaire, génomique, microbiologie UMR 7156, Strasbourg67000, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, Génétique moléculaire, génomique, microbiologie UMR 7156, Strasbourg67000, France
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, BrightonBN1 9RH, United Kingdom
| | - Valérie Borde
- Institut Curie, Paris Sciences and Lettres University, Sorbonne Université, CNRS UMR 3244, Dynamics of Genetic Information, Paris75005, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Bertrand Llorente
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| |
Collapse
|
8
|
Ahuja JS, Sandhu R, Huang L, Klein F, Börner GV. Temporal and Functional Relationship between Synaptonemal Complex Morphogenesis and Recombination during Meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575218. [PMID: 38260343 PMCID: PMC10802607 DOI: 10.1101/2024.01.11.575218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
During prophase of meiosis I, programmed double strand breaks (DSBs) are processed into crossovers, a critical requirement for segregation of homologous chromosomes (homologs) and genome haploidization in sexually reproducing organisms. Crossovers form via homologous recombination in close temporospatial association with morphogenesis of the synaptonemal complex (SC), a proteinaceous structure that connects paired homologs along their length during the pachytene stage. Synapsis and recombination are a paradigm for the interplay between higher order chromosome structure and DNA metabolism, yet their temporal and functional relationship remains poorly understood. Probing linkage between these processes in budding yeast, we show that SC assembly is associated with a distinct threshold number of unstable D-loops. The transition from bona fide paranemic D-loops to plectonemic DSB single end invasions (SEIs) is completed during midpachynema, when the SC is fully assembled. Double Holliday junctions (dHJs) form at the time of desynapsis and are resolved into crossovers during diplonema. The SC central element component Zip1 shepherds recombination through three transitions, including DSB first end strand exchange and second end capture, as well as dHJ resolution. Zip1 mediates SEI formation independent of its polymerization whereas precocious Zip1 assembly interferes with double Holliday junction resolution. Together, our findings indicate that the synaptonemal complex controls recombination while assembled but also beyond its disassembly, possibly by establishing spatial constraints at recombination sites.
Collapse
|
9
|
Tan Q, Zhang X, Luo Q, Xu YC, Zhang J, Liang WQ. The RING Domain of Rice HEI10 is Essential for Male, But Not Female Fertility. RICE (NEW YORK, N.Y.) 2024; 17:3. [PMID: 38180592 PMCID: PMC10769960 DOI: 10.1186/s12284-023-00681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
HEI10 is a conserved E3 ubiquitin ligase involved in crossover formation during meiosis, and is thus essential for both male and female gamete development. Here, we have discovered a novel allele of HEI10 in rice that produces a truncated HEI10 protein missing its N-terminal RING domain, namely sh1 (shorter hei10 1). Unlike previously reported hei10 null alleles that are completely sterile, sh1 exhibits complete male sterility but retains partial female fertility. The causative sh1 mutation is a 76 kb inversion between OsFYVE4 and HEI10, which breaks the integrity of both genes. Allelic tests and complementation assays revealed that the gamete developmental defects of sh1 were caused by disruption of HEI10. Further studies demonstrated that short HEI10 can correctly localise to the nucleus, where it could interact with other proteins that direct meiosis; expressing short HEI10 in hei10 null lines partially restores female fertility. Our data reveal an intriguing mutant allele of HEI10 with differential effects on male and female fertility, providing a new tool to explore similarities and differences between male and female meiosis.
Collapse
Affiliation(s)
- Qian Tan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Luo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Chun Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wan-Qi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
11
|
Pannafino G, Chen JJ, Mithani V, Payero L, Gioia M, Brooks Crickard J, Alani E. The Dmc1 recombinase physically interacts with and promotes the meiotic crossover functions of the Mlh1-Mlh3 endonuclease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566911. [PMID: 38014100 PMCID: PMC10680668 DOI: 10.1101/2023.11.13.566911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80 percent of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction (dHJ) intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates and whether it interacts with other meiotic factors prior to its role in crossover resolution. We performed a haploinsufficiency screen in baker's yeast to identify novel genetic interactors with Mlh1-Mlh3 using sensitized mlh3 alleles that disrupt the stability of the Mlh1-Mlh3 complex and confer defects in mismatch repair but do not disrupt meiotic crossing over. We identified several genetic interactions between MLH3 and DMC1, the recombinase responsible for recombination between homologous chromosomes during meiosis. We then showed that Mlh3 physically interacts with Dmc1 in vitro and at times in meiotic prophase when Dmc1 acts as a recombinase. Interestingly, restricting MLH3 expression to roughly the time of crossover resolution resulted in a mlh3 null-like phenotype for crossing over. Our data are consistent with a model in which Dmc1 nucleates a polymer of Mlh1-Mlh3 to promote crossing over.
Collapse
Affiliation(s)
- Gianno Pannafino
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Jun Jie Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Viraj Mithani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Lisette Payero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Michael Gioia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| |
Collapse
|
12
|
Börner GV, Hochwagen A, MacQueen AJ. Meiosis in budding yeast. Genetics 2023; 225:iyad125. [PMID: 37616582 PMCID: PMC10550323 DOI: 10.1093/genetics/iyad125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/13/2023] [Indexed: 08/26/2023] Open
Abstract
Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease (GRHD), Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
13
|
Antoniuk-Majchrzak J, Enkhbaatar T, Długajczyk A, Kaminska J, Skoneczny M, Klionsky DJ, Skoneczna A. Stability of Rad51 recombinase and persistence of Rad51 DNA repair foci depends on post-translational modifiers, ubiquitin and SUMO. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119526. [PMID: 37364618 DOI: 10.1016/j.bbamcr.2023.119526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
The DNA double-strand breaks are particularly deleterious, especially when an error-free repair pathway is unavailable, enforcing the error-prone recombination pathways to repair the lesion. Cells can resume the cell cycle but at the expense of decreased viability due to genome rearrangements. One of the major players involved in recombinational repair of DNA damage is Rad51 recombinase, a protein responsible for presynaptic complex formation. We previously showed that an increased level of this protein promotes the usage of illegitimate recombination. Here we show that the level of Rad51 is regulated via the ubiquitin-dependent proteolytic pathway. The ubiquitination of Rad51 depends on multiple E3 enzymes, including SUMO-targeted ubiquitin ligases. We also demonstrate that Rad51 can be modified by both ubiquitin and SUMO. Moreover, its modification with ubiquitin may lead to opposite effects: degradation dependent on Rad6, Rad18, Slx8, Dia2, and the anaphase-promoting complex, or stabilization dependent on Rsp5. We also show that post-translational modifications with SUMO and ubiquitin affect Rad51's ability to form and disassemble DNA repair foci, respectively, influencing cell cycle progression and cell viability in genotoxic stress conditions. Our data suggest the existence of a complex E3 ligases network that regulates Rad51 recombinase's turnover, its molecular activity, and access to DNA, limiting it to the proportions optimal for the actual cell cycle stage and growth conditions, e.g., stress. Dysregulation of this network would result in a drop in cell viability due to uncontrolled genome rearrangement in the yeast cells. In mammals would promote the development of genetic diseases and cancer.
Collapse
Affiliation(s)
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anna Długajczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| |
Collapse
|
14
|
Shinohara M, Shinohara A. The Msh5 complex shows homeostatic localization in response to DNA double-strand breaks in yeast meiosis. Front Cell Dev Biol 2023; 11:1170689. [PMID: 37274743 PMCID: PMC10232913 DOI: 10.3389/fcell.2023.1170689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Meiotic crossing over is essential for the segregation of homologous chromosomes. The formation and distribution of meiotic crossovers (COs), which are initiated by the formation of double-strand break (DSB), are tightly regulated to ensure at least one CO per bivalent. One type of CO control, CO homeostasis, maintains a consistent level of COs despite fluctuations in DSB numbers. Here, we analyzed the localization of proteins involved in meiotic recombination in budding yeast xrs2 hypomorphic mutants which show different levels of DSBs. The number of cytological foci with recombinases, Rad51 and Dmc1, which mark single-stranded DNAs at DSB sites is proportional to the DSB numbers. Among the pro-CO factor, ZMM/SIC proteins, the focus number of Zip3, Mer3, or Spo22/Zip4, was linearly proportional to reduced DSBs in the xrs2 mutant. In contrast, foci of Msh5, a component of the MutSγ complex, showed a non-linear response to reduced DSBs. We also confirmed the homeostatic response of COs by genetic analysis of meiotic recombination in the xrs2 mutants and found a chromosome-specific homeostatic response of COs. Our study suggests that the homeostatic response of the Msh5 assembly to reduced DSBs was genetically distinct from that of the Zip3 assembly for CO control.
Collapse
Affiliation(s)
- Miki Shinohara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Gioia M, Payero L, Salim S, Fajish V. G, Farnaz AF, Pannafino G, Chen JJ, Ajith VP, Momoh S, Scotland M, Raghavan V, Manhart CM, Shinohara A, Nishant KT, Alani E. Exo1 protects DNA nicks from ligation to promote crossover formation during meiosis. PLoS Biol 2023; 21:e3002085. [PMID: 37079643 PMCID: PMC10153752 DOI: 10.1371/journal.pbio.3002085] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/02/2023] [Accepted: 03/17/2023] [Indexed: 04/21/2023] Open
Abstract
In most sexually reproducing organisms crossing over between chromosome homologs during meiosis is essential to produce haploid gametes. Most crossovers that form in meiosis in budding yeast result from the biased resolution of double Holliday junction (dHJ) intermediates. This dHJ resolution step involves the actions of Rad2/XPG family nuclease Exo1 and the Mlh1-Mlh3 mismatch repair endonuclease. Here, we provide genetic evidence in baker's yeast that Exo1 promotes meiotic crossing over by protecting DNA nicks from ligation. We found that structural elements in Exo1 that interact with DNA, such as those required for the bending of DNA during nick/flap recognition, are critical for its role in crossing over. Consistent with these observations, meiotic expression of the Rad2/XPG family member Rad27 partially rescued the crossover defect in exo1 null mutants, and meiotic overexpression of Cdc9 ligase reduced the crossover levels of exo1 DNA-binding mutants to levels that approached the exo1 null. In addition, our work identified a role for Exo1 in crossover interference. Together, these studies provide experimental evidence for Exo1-protected nicks being critical for the formation of meiotic crossovers and their distribution.
Collapse
Affiliation(s)
- Michael Gioia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Lisette Payero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Sagar Salim
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - Ghanim Fajish V.
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Amamah F. Farnaz
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - Gianno Pannafino
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jun Jie Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - V. P. Ajith
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - Sherikat Momoh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Michelle Scotland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Carol M. Manhart
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - K. T. Nishant
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
- Center for High-Performance Computing, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
16
|
Kar FM, Vogel C, Hochwagen A. Meiotic DNA breaks activate a streamlined phospho-signaling response that largely avoids protein-level changes. Life Sci Alliance 2022; 5:e202201454. [PMID: 36271494 PMCID: PMC9438802 DOI: 10.26508/lsa.202201454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Meiotic cells introduce a numerous programmed DNA breaks into their genome to stimulate meiotic recombination and ensure controlled chromosome inheritance and fertility. A checkpoint network involving key kinases and phosphatases coordinates the repair of these DNA breaks, but the precise phosphorylation targets remain poorly understood. It is also unknown whether meiotic DNA breaks change gene expression akin to the canonical DNA-damage response. To address these questions, we analyzed the meiotic DNA break response in Saccharomyces cerevisiae using multiple systems-level approaches. We identified 332 DNA break-dependent phosphorylation sites, vastly expanding the number of known events during meiotic prophase. Less than half of these events occurred in recognition motifs for the known meiotic checkpoint kinases Mec1 (ATR), Tel1 (ATM), and Mek1 (CHK2), suggesting that additional kinases contribute to the meiotic DNA-break response. We detected a clear transcriptional program but detected only very few changes in protein levels. We attribute this dichotomy to a decrease in transcript levels after meiotic entry that dampens the effects of break-induced transcription sufficiently to cause only minimal changes in the meiotic proteome.
Collapse
Affiliation(s)
- Funda M Kar
- Department of Biology, New York University, New York City, NY, USA
| | - Christine Vogel
- Department of Biology, New York University, New York City, NY, USA
| | | |
Collapse
|
17
|
Tan T, Tan Y, Wang Y, Yang X, Zhai B, Zhang S, Yang X, Nie H, Gao J, Zhou J, Zhang L, Wang S. Negative supercoils regulate meiotic crossover patterns in budding yeast. Nucleic Acids Res 2022; 50:10418-10435. [PMID: 36107772 PMCID: PMC9561271 DOI: 10.1093/nar/gkac786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/21/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Interference exists ubiquitously in many biological processes. Crossover interference patterns meiotic crossovers, which are required for faithful chromosome segregation and evolutionary adaption. However, what the interference signal is and how it is generated and regulated is unknown. We show that yeast top2 alleles which cannot bind or cleave DNA accumulate a higher level of negative supercoils and show weaker interference. However, top2 alleles which cannot religate the cleaved DNA or release the religated DNA accumulate less negative supercoils and show stronger interference. Moreover, the level of negative supercoils is negatively correlated with crossover interference strength. Furthermore, negative supercoils preferentially enrich at crossover-associated Zip3 regions before the formation of meiotic DNA double-strand breaks, and regions with more negative supercoils tend to have more Zip3. Additionally, the strength of crossover interference and homeostasis change coordinately in mutants. These findings suggest that the accumulation and relief of negative supercoils pattern meiotic crossovers.
Collapse
Affiliation(s)
- Taicong Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Yingjin Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Ying Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University , Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education , Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health , Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine , Jinan, Shandong 250012, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University , Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education , Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health , Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine , Jinan, Shandong 250012, China
| | - Shuxian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- Advanced Medical Research Institute, Shandong University , Jinan, Shandong 250012, China
| | - Xuan Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
| | - Hui Nie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Jinmin Gao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- Advanced Medical Research Institute, Shandong University , Jinan, Shandong 250012, China
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University , Jinan 250014, Shandong, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University , China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University , Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education , Jinan, Shandong 250001, China
- Shandong Provincial Clinical Research Center for Reproductive Health , Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine , Jinan, Shandong 250012, China
| |
Collapse
|
18
|
Abstract
Segregation of chromosomes during meiosis, to form haploid gametes from diploid precursor cells, requires in most species formation of crossovers physically connecting homologous chromosomes. Along with sister chromatid cohesion, crossovers allow tension to be generated when chromosomes begin to segregate; tension signals that chromosome movement is proceeding properly. But crossovers too close to each other might result in less sister chromatid cohesion and tension and thus failed meiosis. Interference describes the non-random distribution of crossovers, which occur farther apart than expected from independence. We discuss both genetic and cytological methods of assaying crossover interference and models for interference, whose molecular mechanism remains to be elucidated. We note marked differences among species.
Collapse
Affiliation(s)
| | - Gerald R Smith
- Fred Hutchinson Cancer Center, Seattle, WA, United States.
| |
Collapse
|
19
|
Abstract
Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.
Collapse
|
20
|
Heldrich J, Milano CR, Markowitz TE, Ur S, Vale-Silva L, Corbett K, Hochwagen A. Two pathways drive meiotic chromosome axis assembly in Saccharomyces cerevisiae. Nucleic Acids Res 2022; 50:4545-4556. [PMID: 35412621 PMCID: PMC9071447 DOI: 10.1093/nar/gkac227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022] Open
Abstract
Successful meiotic recombination, and thus fertility, depends on conserved axis proteins that organize chromosomes into arrays of anchored chromatin loops and provide a protected environment for DNA exchange. Here, we show that the stereotypic chromosomal distribution of axis proteins in Saccharomyces cerevisiae is the additive result of two independent pathways: a cohesin-dependent pathway, which was previously identified and mediates focal enrichment of axis proteins at gene ends, and a parallel cohesin-independent pathway that recruits axis proteins to broad genomic islands with high gene density. These islands exhibit elevated markers of crossover recombination as well as increased nucleosome density, which we show is a direct consequence of the underlying DNA sequence. A predicted PHD domain in the center of the axis factor Hop1 specifically mediates cohesin-independent axis recruitment. Intriguingly, other chromosome organizers, including cohesin, condensin, and topoisomerases, are differentially depleted from the same regions even in non-meiotic cells, indicating that these DNA sequence-defined chromatin islands exert a general influence on the patterning of chromosome structure.
Collapse
Affiliation(s)
- Jonna Heldrich
- Department of Biology, New York University, New York, NY 10003, USA
| | - Carolyn R Milano
- Department of Biology, New York University, New York, NY 10003, USA
| | | | - Sarah N Ur
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
21
|
Abstract
Meiotic crossover recombination is required for faithful chromosome segregation and promotes genetic diversity by reshuffling alleles between parental chromosomes. Meiotic chromosomes are organized into arrays of loops that are anchored to the proteinaceous axes. The length of the meiotic chromosome axis is intimately associated with crossover frequencies in yeast and higher eukaryotes. However, how chromosome axis length is regulated in meiosis is unknown. Here, we demonstrate that cohesin regulator Pds5 interacts with proteasomes to regulate meiotic chromosome axis length by modulating ubiquitination. This regulatory mechanism also includes two ubiquitin E3 ligases, SCF (Skp–Cullin–F-box) and Ufd4. These findings identify a molecular pathway in regulating chromosome organization and reveal an unexpected function of the ubiquitin–proteasome system in meiosis. Meiotic crossover (CO) recombination is tightly regulated by chromosome architecture to ensure faithful chromosome segregation and to reshuffle alleles between parental chromosomes for genetic diversity of progeny. However, regulation of the meiotic chromosome loop/axis organization is poorly understood. Here, we identify a molecular pathway for axis length regulation. We show that the cohesin regulator Pds5 can interact with proteasomes. Meiosis-specific depletion of proteasomes and/or Pds5 results in a similarly shortened chromosome axis, suggesting proteasomes and Pds5 regulate axis length in the same pathway. Protein ubiquitination is accumulated in pds5 and proteasome mutants. Moreover, decreased chromosome axis length in these mutants can be largely rescued by decreasing ubiquitin availability and thus decreasing protein ubiquitination. Further investigation reveals that two ubiquitin E3 ligases, SCF (Skp–Cullin–F-box) and Ufd4, are involved in this Pds5–ubiquitin/proteasome pathway to cooperatively control chromosome axis length. These results support the hypothesis that ubiquitination of chromosome proteins results in a shortened chromosome axis, and cohesin–Pds5 recruits proteasomes onto chromosomes to regulate ubiquitination level and thus axis length. These findings reveal an unexpected role of the ubiquitin–proteasome system in meiosis and contribute to our knowledge of how Pds5 regulates meiotic chromosome organization. A conserved regulatory mechanism probably exists in higher eukaryotes.
Collapse
|
22
|
Pyatnitskaya A, Andreani J, Guérois R, De Muyt A, Borde V. The Zip4 protein directly couples meiotic crossover formation to synaptonemal complex assembly. Genes Dev 2022; 36:53-69. [PMID: 34969823 PMCID: PMC8763056 DOI: 10.1101/gad.348973.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Meiotic recombination is triggered by programmed double-strand breaks (DSBs), a subset of these being repaired as crossovers, promoted by eight evolutionarily conserved proteins, named ZMM. Crossover formation is functionally linked to synaptonemal complex (SC) assembly between homologous chromosomes, but the underlying mechanism is unknown. Here we show that Ecm11, a SC central element protein, localizes on both DSB sites and sites that attach chromatin loops to the chromosome axis, which are the starting points of SC formation, in a way that strictly requires the ZMM protein Zip4. Furthermore, Zip4 directly interacts with Ecm11, and point mutants that specifically abolish this interaction lose Ecm11 binding to chromosomes and exhibit defective SC assembly. This can be partially rescued by artificially tethering interaction-defective Ecm11 to Zip4. Mechanistically, this direct connection ensuring SC assembly from CO sites could be a way for the meiotic cell to shut down further DSB formation once enough recombination sites have been selected for crossovers, thereby preventing excess crossovers. Finally, the mammalian ortholog of Zip4, TEX11, also interacts with the SC central element TEX12, suggesting a general mechanism.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| | - Jessica Andreani
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Raphaël Guérois
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Arnaud De Muyt
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| | - Valérie Borde
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| |
Collapse
|
23
|
Nandanan KG, Salim S, Pankajam AV, Shinohara M, Lin G, Chakraborty P, Farnaz A, Steinmetz LM, Shinohara A, Nishant KT. Regulation of Msh4-Msh5 association with meiotic chromosomes in budding yeast. Genetics 2021; 219:6317832. [PMID: 34849874 DOI: 10.1093/genetics/iyab102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/08/2021] [Indexed: 01/06/2023] Open
Abstract
In the baker's yeast Saccharomyces cerevisiae, most of the meiotic crossovers are generated through a pathway involving the highly conserved mismatch repair related Msh4-Msh5 complex. To understand the role of Msh4-Msh5 in meiotic crossing over, we determined its genome wide in vivo binding sites in meiotic cells. We show that Msh5 specifically associates with DSB hotspots, chromosome axes, and centromeres on chromosomes. A basal level of Msh5 association with these chromosomal features is observed even in the absence of DSB formation (spo11Δ mutant) at the early stages of meiosis. But efficient binding to DSB hotspots and chromosome axes requires DSB formation and resection and is enhanced by double Holliday junction structures. Msh5 binding is also correlated to DSB frequency and enhanced on small chromosomes with higher DSB and crossover density. The axis protein Red1 is required for Msh5 association with the chromosome axes and DSB hotspots but not centromeres. Although binding sites of Msh5 and other pro-crossover factors like Zip3 show extensive overlap, Msh5 associates with centromeres independent of Zip3. These results on Msh5 localization in wild type and meiotic mutants have implications for how Msh4-Msh5 works with other pro-crossover factors to ensure crossover formation.
Collapse
Affiliation(s)
- Krishnaprasad G Nandanan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695016, India
| | - Sagar Salim
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695016, India
| | - Ajith V Pankajam
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695016, India
| | - Miki Shinohara
- Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Gen Lin
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Parijat Chakraborty
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695016, India
| | - Amamah Farnaz
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695016, India
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.,Department of Genetics, Stanford University, Stanford, CA 94305, USA.,Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Koodali T Nishant
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695016, India.,Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
24
|
He W, Verhees GF, Bhagwat N, Yang Y, Kulkarni DS, Lombardo Z, Lahiri S, Roy P, Zhuo J, Dang B, Snyder A, Shastry S, Moezpoor M, Alocozy L, Lee KG, Painter D, Mukerji I, Hunter N. SUMO fosters assembly and functionality of the MutSγ complex to facilitate meiotic crossing over. Dev Cell 2021; 56:2073-2088.e3. [PMID: 34214491 DOI: 10.1016/j.devcel.2021.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Crossing over is essential for chromosome segregation during meiosis. Protein modification by SUMO is implicated in crossover control, but pertinent targets have remained elusive. Here we identify Msh4 as a target of SUMO-mediated crossover regulation. Msh4 and Msh5 constitute the MutSγ complex, which stabilizes joint-molecule (JM) recombination intermediates and facilitates their resolution into crossovers. Msh4 SUMOylation enhances these processes to ensure that each chromosome pair acquires at least one crossover. Msh4 is directly targeted by E2 conjugase Ubc9, initially becoming mono-SUMOylated in response to DNA double-strand breaks, then multi/poly-SUMOylated forms arise as homologs fully engage. Mechanistically, SUMOylation fosters interaction between Msh4 and Msh5. We infer that initial SUMOylation of Msh4 enhances assembly of MutSγ in anticipation of JM formation, while secondary SUMOylation may promote downstream functions. Regulation of Msh4 by SUMO is distinct and independent of its previously described stabilization by phosphorylation, defining MutSγ as a hub for crossover control.
Collapse
Affiliation(s)
- Wei He
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Gerrik F Verhees
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Nikhil Bhagwat
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Ye Yang
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Dhananjaya S Kulkarni
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Zane Lombardo
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Sudipta Lahiri
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Pritha Roy
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Jiaming Zhuo
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Brian Dang
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Andriana Snyder
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Shashank Shastry
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Michael Moezpoor
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Lilly Alocozy
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Kathy Gyehyun Lee
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Daniel Painter
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Ishita Mukerji
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, CT, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
25
|
Vernekar DV, Reginato G, Adam C, Ranjha L, Dingli F, Marsolier MC, Loew D, Guérois R, Llorente B, Cejka P, Borde V. The Pif1 helicase is actively inhibited during meiotic recombination which restrains gene conversion tract length. Nucleic Acids Res 2021; 49:4522-4533. [PMID: 33823531 PMCID: PMC8096244 DOI: 10.1093/nar/gkab232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Meiotic recombination ensures proper chromosome segregation to form viable gametes and results in gene conversions events between homologs. Conversion tracts are shorter in meiosis than in mitotically dividing cells. This results at least in part from the binding of a complex, containing the Mer3 helicase and the MutLβ heterodimer, to meiotic recombination intermediates. The molecular actors inhibited by this complex are elusive. The Pif1 DNA helicase is known to stimulate DNA polymerase delta (Pol δ) -mediated DNA synthesis from D-loops, allowing long synthesis required for break-induced replication. We show that Pif1 is also recruited genome wide to meiotic DNA double-strand break (DSB) sites. We further show that Pif1, through its interaction with PCNA, is required for the long gene conversions observed in the absence of MutLβ recruitment to recombination sites. In vivo, Mer3 interacts with the PCNA clamp loader RFC, and in vitro, Mer3-MutLβ ensemble inhibits Pif1-stimulated D-loop extension by Pol δ and RFC-PCNA. Mechanistically, our results suggest that Mer3-MutLβ may compete with Pif1 for binding to RFC-PCNA. Taken together, our data show that Pif1's activity that promotes meiotic DNA repair synthesis is restrained by the Mer3-MutLβ ensemble which in turn prevents long gene conversion tracts and possibly associated mutagenesis.
Collapse
Affiliation(s)
- Dipti Vinayak Vernekar
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, Paris, France
| | - Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Céline Adam
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, Paris, France
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Marie-Claude Marsolier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,Unité Eco-anthropologie, Muséum national d'Histoire naturelle, CNRS UMR7206, Université de Paris, Paris, France
| | - Damarys Loew
- Institut Curie, Université PSL, LSMP, Paris, France
| | - Raphaël Guérois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Bertrand Llorente
- CRCM, Inserm, U1068, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105; CNRS, UMR7258, Marseille, France
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Valérie Borde
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, Paris, France
| |
Collapse
|
26
|
Kar FM, Hochwagen A. Phospho-Regulation of Meiotic Prophase. Front Cell Dev Biol 2021; 9:667073. [PMID: 33928091 PMCID: PMC8076904 DOI: 10.3389/fcell.2021.667073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Germ cells undergoing meiosis rely on an intricate network of surveillance mechanisms that govern the production of euploid gametes for successful sexual reproduction. These surveillance mechanisms are particularly crucial during meiotic prophase, when cells execute a highly orchestrated program of chromosome morphogenesis and recombination, which must be integrated with the meiotic cell division machinery to ensure the safe execution of meiosis. Dynamic protein phosphorylation, controlled by kinases and phosphatases, has emerged as one of the main signaling routes for providing readout and regulation of chromosomal and cellular behavior throughout meiotic prophase. In this review, we discuss common principles and provide detailed examples of how these phosphorylation events are employed to ensure faithful passage of chromosomes from one generation to the next.
Collapse
Affiliation(s)
- Funda M Kar
- Department of Biology, New York University, New York, NY, United States
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, United States
| |
Collapse
|
27
|
Nageswaran DC, Kim J, Lambing C, Kim J, Park J, Kim EJ, Cho HS, Kim H, Byun D, Park YM, Kuo P, Lee S, Tock AJ, Zhao X, Hwang I, Choi K, Henderson IR. HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis. NATURE PLANTS 2021; 7:452-467. [PMID: 33846593 PMCID: PMC7610654 DOI: 10.1038/s41477-021-00889-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/25/2021] [Indexed: 05/19/2023]
Abstract
Meiotic crossovers are tightly restricted in most eukaryotes, despite an excess of initiating DNA double-strand breaks. The majority of plant crossovers are dependent on class I interfering repair, with a minority formed via the class II pathway. Class II repair is limited by anti-recombination pathways; however, similar pathways repressing class I crossovers have not been identified. Here, we performed a forward genetic screen in Arabidopsis using fluorescent crossover reporters to identify mutants with increased or decreased recombination frequency. We identified HIGH CROSSOVER RATE1 (HCR1) as repressing crossovers and encoding PROTEIN PHOSPHATASE X1. Genome-wide analysis showed that hcr1 crossovers are increased in the distal chromosome arms. MLH1 foci significantly increase in hcr1 and crossover interference decreases, demonstrating an effect on class I repair. Consistently, yeast two-hybrid and in planta assays show interaction between HCR1 and class I proteins, including HEI10, PTD, MSH5 and MLH1. We propose that HCR1 plays a major role in opposition to pro-recombination kinases to restrict crossovers in Arabidopsis.
Collapse
Affiliation(s)
| | - Jaeil Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | | - Juhyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihye Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eun-Jung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyun Seob Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Heejin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dohwan Byun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeong Mi Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Seungchul Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Xiaohui Zhao
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
The role of SUMOylation during development. Biochem Soc Trans 2021; 48:463-478. [PMID: 32311032 PMCID: PMC7200636 DOI: 10.1042/bst20190390] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
During the development of multicellular organisms, transcriptional regulation plays an important role in the control of cell growth, differentiation and morphogenesis. SUMOylation is a reversible post-translational process involved in transcriptional regulation through the modification of transcription factors and through chromatin remodelling (either modifying chromatin remodelers or acting as a ‘molecular glue’ by promoting recruitment of chromatin regulators). SUMO modification results in changes in the activity, stability, interactions or localization of its substrates, which affects cellular processes such as cell cycle progression, DNA maintenance and repair or nucleocytoplasmic transport. This review focuses on the role of SUMO machinery and the modification of target proteins during embryonic development and organogenesis of animals, from invertebrates to mammals.
Collapse
|
29
|
Bhagwat NR, Owens SN, Ito M, Boinapalli JV, Poa P, Ditzel A, Kopparapu S, Mahalawat M, Davies OR, Collins SR, Johnson JR, Krogan NJ, Hunter N. SUMO is a pervasive regulator of meiosis. eLife 2021; 10:57720. [PMID: 33502312 PMCID: PMC7924959 DOI: 10.7554/elife.57720] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Protein modification by SUMO helps orchestrate the elaborate events of meiosis to faithfully produce haploid gametes. To date, only a handful of meiotic SUMO targets have been identified. Here, we delineate a multidimensional SUMO-modified meiotic proteome in budding yeast, identifying 2747 conjugation sites in 775 targets, and defining their relative levels and dynamics. Modified sites cluster in disordered regions and only a minority match consensus motifs. Target identities and modification dynamics imply that SUMOylation regulates all levels of chromosome organization and each step of meiotic prophase I. Execution-point analysis confirms these inferences, revealing functions for SUMO in S-phase, the initiation of recombination, chromosome synapsis and crossing over. K15-linked SUMO chains become prominent as chromosomes synapse and recombine, consistent with roles in these processes. SUMO also modifies ubiquitin, forming hybrid oligomers with potential to modulate ubiquitin signaling. We conclude that SUMO plays diverse and unanticipated roles in regulating meiotic chromosome metabolism. Most mammalian, yeast and other eukaryote cells have two sets of chromosomes, one from each parent, which contain all the cell’s DNA. Sex cells – like the sperm and egg – however, have half the number of chromosomes and are formed by a specialized type of cell division known as meiosis. At the start of meiosis, each cell replicates its chromosomes so that it has twice the amount of DNA. The cell then undergoes two rounds of division to form sex cells which each contain only one set of chromosomes. Before the cell divides, the two duplicated sets of chromosomes pair up and swap sections of their DNA. This exchange allows each new sex cell to have a unique combination of DNA, resulting in offspring that are genetically distinct from their parents. This complex series of events is tightly regulated, in part, by a protein called the 'small ubiquitin-like modifier' (or SUMO for short), which attaches itself to other proteins and modifies their behavior. This process, known as SUMOylation, can affect a protein’s stability, where it is located in the cell and how it interacts with other proteins. However, despite SUMO being known as a key regulator of meiosis, only a handful of its protein targets have been identified. To gain a better understanding of what SUMO does during meiosis, Bhagwat et al. set out to find which proteins are targeted by SUMO in budding yeast and to map the specific sites of modification. The experiments identified 2,747 different sites on 775 different proteins, suggesting that SUMO regulates all aspects of meiosis. Consistently, inactivating SUMOylation at different times revealed SUMO plays a role at every stage of meiosis, including the replication of DNA and the exchanges between chromosomes. In depth analysis of the targeted proteins also revealed that SUMOylation targets different groups of proteins at different stages of meiosis and interacts with other protein modifications, including the ubiquitin system which tags proteins for destruction. The data gathered by Bhagwat et al. provide a starting point for future research into precisely how SUMO proteins control meiosis in yeast and other organisms. In humans, errors in meiosis are the leading cause of pregnancy loss and congenital diseases. Most of the proteins identified as SUMO targets in budding yeast are also present in humans. So, this research could provide a platform for medical advances in the future. The next step is to study mammalian models, such as mice, to confirm that the regulation of meiosis by SUMO is the same in mammals as in yeast.
Collapse
Affiliation(s)
- Nikhil R Bhagwat
- Howard Hughes Medical Institute, University of California Davis, Davis, United States.,Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Shannon N Owens
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Masaru Ito
- Howard Hughes Medical Institute, University of California Davis, Davis, United States.,Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Jay V Boinapalli
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Philip Poa
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Alexander Ditzel
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Srujan Kopparapu
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Meghan Mahalawat
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Owen Richard Davies
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Sean R Collins
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Jeffrey R Johnson
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, United States
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, United States
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California Davis, Davis, United States.,Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States.,Department of Molecular & Cellular Biology, University of California Davis, Davis, United States
| |
Collapse
|
30
|
Wang S, Shang Y, Liu Y, Zhai B, Yang X, Zhang L. Crossover patterns under meiotic chromosome program. Asian J Androl 2021; 23:562-571. [PMID: 33533735 PMCID: PMC8577264 DOI: 10.4103/aja.aja_86_20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Repairing DNA double-strand breaks (DSBs) with homologous chromosomes as templates is the hallmark of meiosis. The critical outcome of meiotic homologous recombination is crossovers, which ensure faithful chromosome segregation and promote genetic diversity of progenies. Crossover patterns are tightly controlled and exhibit three characteristics: obligatory crossover, crossover interference, and crossover homeostasis. Aberrant crossover patterns are the leading cause of infertility, miscarriage, and congenital disease. Crossover recombination occurs in the context of meiotic chromosomes, and it is tightly integrated with and regulated by meiotic chromosome structure both locally and globally. Meiotic chromosomes are organized in a loop-axis architecture. Diverse evidence shows that chromosome axis length determines crossover frequency. Interestingly, short chromosomes show different crossover patterns compared to long chromosomes. A high frequency of human embryos are aneuploid, primarily derived from female meiosis errors. Dramatically increased aneuploidy in older women is the well-known “maternal age effect.” However, a high frequency of aneuploidy also occurs in young women, derived from crossover maturation inefficiency in human females. In addition, frequency of human aneuploidy also shows other age-dependent alterations. Here, current advances in the understanding of these issues are reviewed, regulation of crossover patterns by meiotic chromosomes are discussed, and issues that remain to be investigated are suggested.
Collapse
Affiliation(s)
- Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Yongliang Shang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanlei Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China.,Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China.,Advanced Medical Research Institute, Shandong University, Jinan 250014, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
31
|
Abstract
Meiotic recombination is triggered by programmed DNA double-strand breaks (DSBs), catalyzed by the type II topoisomerase-like Spo11 protein. Meiotic DSBs are repaired by homologous recombination, which produces either crossovers or noncrossovers, this decision being linked to the binding of proteins specific of each pathway. Mapping the binding of these proteins along chromosomes in wild type or mutant yeast background is extremely useful to understand how and at which step the decision to repair a DSB with a crossover is taken. It is now possible to obtain highly synchronous yeast meiotic populations, which, combined with appropriate negative controls, enable to detect by chromatin immunoprecipitation followed by sequencing (ChIP-Seq) the transient binding of diverse recombination proteins with high sensitivity and resolution.
Collapse
Affiliation(s)
- Aurore Sanchez
- Institut Curie - Research Center, UMR3244 CNRS, Pavillon Trouillet Rossignol, PSL Research University, Paris Cedex 05, France
- Paris Sorbonne Université, Paris, France
| | - Valérie Borde
- Institut Curie - Research Center, UMR3244 CNRS, Pavillon Trouillet Rossignol, PSL Research University, Paris Cedex 05, France.
- Paris Sorbonne Université, Paris, France.
| |
Collapse
|
32
|
Exo1 recruits Cdc5 polo kinase to MutLγ to ensure efficient meiotic crossover formation. Proc Natl Acad Sci U S A 2020; 117:30577-30588. [PMID: 33199619 DOI: 10.1073/pnas.2013012117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Crossovers generated during the repair of programmed meiotic double-strand breaks must be tightly regulated to promote accurate homolog segregation without deleterious outcomes, such as aneuploidy. The Mlh1-Mlh3 (MutLγ) endonuclease complex is critical for crossover resolution, which involves mechanistically unclear interplay between MutLγ and Exo1 and polo kinase Cdc5. Using budding yeast to gain temporal and genetic traction on crossover regulation, we find that MutLγ constitutively interacts with Exo1. Upon commitment to crossover repair, MutLγ-Exo1 associate with recombination intermediates, followed by direct Cdc5 recruitment that triggers MutLγ crossover activity. We propose that Exo1 serves as a central coordinator in this molecular interplay, providing a defined order of interaction that prevents deleterious, premature activation of crossovers. MutLγ associates at a lower frequency near centromeres, indicating that spatial regulation across chromosomal regions reduces risky crossover events. Our data elucidate the temporal and spatial control surrounding a constitutive, potentially harmful, nuclease. We also reveal a critical, noncatalytic role for Exo1, through noncanonical interaction with polo kinase. These mechanisms regulating meiotic crossovers may be conserved across species.
Collapse
|
33
|
Christophorou N, She W, Long J, Hurel A, Beaubiat S, Idir Y, Tagliaro-Jahns M, Chambon A, Solier V, Vezon D, Grelon M, Feng X, Bouché N, Mézard C. AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization. PLoS Genet 2020; 16:e1008894. [PMID: 32598340 PMCID: PMC7351236 DOI: 10.1371/journal.pgen.1008894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/10/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Meiotic crossovers (COs) are important for reshuffling genetic information between homologous chromosomes and they are essential for their correct segregation. COs are unevenly distributed along chromosomes and the underlying mechanisms controlling CO localization are not well understood. We previously showed that meiotic COs are mis-localized in the absence of AXR1, an enzyme involved in the neddylation/rubylation protein modification pathway in Arabidopsis thaliana. Here, we report that in axr1-/-, male meiocytes show a strong defect in chromosome pairing whereas the formation of the telomere bouquet is not affected. COs are also redistributed towards subtelomeric chromosomal ends where they frequently form clusters, in contrast to large central regions depleted in recombination. The CO suppressed regions correlate with DNA hypermethylation of transposable elements (TEs) in the CHH context in axr1-/- meiocytes. Through examining somatic methylomes, we found axr1-/- affects DNA methylation in a plant, causing hypermethylation in all sequence contexts (CG, CHG and CHH) in TEs. Impairment of the main pathways involved in DNA methylation is epistatic over axr1-/- for DNA methylation in somatic cells but does not restore regular chromosome segregation during meiosis. Collectively, our findings reveal that the neddylation pathway not only regulates hormonal perception and CO distribution but is also, directly or indirectly, a major limiting pathway of TE DNA methylation in somatic cells. In sexually reproducing organisms, each parent transmits one and only one copy of each chromosome to their progeny via their packaging in haploid gametes. To ensure the proper transmission of the chromosomes, pairs of homologous chromosomes must associate and exchange genetic information (also called reciprocal recombination) during a special division called meiosis that lead to the formation of the gametes. The recombination process is highly controlled in terms of number and localization of the events along the chromosomes. Disruption of this control may cause an inappropriate transmission of the chromosomes in the gametes leading to abnormal chromosome numbers in the offspring which is usually deleterious. In the plant Arabidopis thaliana, we show that when the pathway modifying proteins through ubiquitination/neddylation is impaired, the number of reciprocal recombination events is maintained but they are delocalized toward the ends of the chromosomes and some chromosomes do not exchange material. We also detected changes of patterns for DNA methylation, an epigenetic modification localised on DNA cytosines. Furthermore, we demonstrate that the methylation of cytosines is not causal to the localization change of meiotic recombination events.
Collapse
Affiliation(s)
- Nicolas Christophorou
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Wenjing She
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jincheng Long
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Aurélie Hurel
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Sébastien Beaubiat
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Yassir Idir
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Marina Tagliaro-Jahns
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Aurélie Chambon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Victor Solier
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Daniel Vezon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
- * E-mail: (NB); (CM)
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
- * E-mail: (NB); (CM)
| |
Collapse
|
34
|
Shinohara M, Bishop DK, Shinohara A. Distinct Functions in Regulation of Meiotic Crossovers for DNA Damage Response Clamp Loader Rad24(Rad17) and Mec1(ATR) Kinase. Genetics 2019; 213:1255-1269. [PMID: 31597673 PMCID: PMC6893372 DOI: 10.1534/genetics.119.302427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/02/2019] [Indexed: 11/18/2022] Open
Abstract
The number and distribution of meiotic crossovers (COs) are highly regulated, reflecting the requirement for COs during the first round of meiotic chromosome segregation. CO control includes CO assurance and CO interference, which promote at least one CO per chromosome bivalent and evenly-spaced COs, respectively. Previous studies revealed a role for the DNA damage response (DDR) clamp and the clamp loader in CO formation by promoting interfering COs and interhomolog recombination, and also by suppressing ectopic recombination. In this study, we use classical tetrad analysis of Saccharomyces cerevisiae to show that a mutant defective in RAD24, which encodes the DDR clamp loader (RAD17 in other organisms), displayed reduced CO frequencies on two shorter chromosomes (III and V), but not on a long chromosome (chromosome VII). The residual COs in the rad24 mutant do not show interference. In contrast to rad24, mutants defective in the ATR kinase homolog Mec1, including a mec1 null and a mec1 kinase-dead mutant, show slight or few defects in CO frequency. On the other hand, mec1 COs show defects in interference, similar to the rad24 mutant. Our results support a model in which the DDR clamp and clamp-loader proteins promote interfering COs by recruiting pro-CO Zip, Mer, and Msh proteins to recombination sites, while the Mec1 kinase regulates CO distribution by a distinct mechanism. Moreover, CO formation and its control are implemented in a chromosome-specific manner, which may reflect a role for chromosome size in regulation.
Collapse
Affiliation(s)
- Miki Shinohara
- Institute for Protein Research, Osaka University, 565-0871, Japan
- Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
- Department of Radiation Oncology, University of Chicago, Illinois 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | - Douglas K Bishop
- Department of Radiation Oncology, University of Chicago, Illinois 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, 565-0871, Japan
| |
Collapse
|
35
|
Pyatnitskaya A, Borde V, De Muyt A. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 2019; 128:181-198. [PMID: 31236671 DOI: 10.1007/s00412-019-00714-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022]
Abstract
Accurate segregation of homologous chromosomes during meiosis depends on the ability of meiotic cells to promote reciprocal exchanges between parental DNA strands, known as crossovers (COs). For most organisms, including budding yeast and other fungi, mammals, nematodes, and plants, the major CO pathway depends on ZMM proteins, a set of molecular actors specifically devoted to recognize and stabilize CO-specific DNA intermediates that are formed during homologous recombination. The progressive implementation of ZMM-dependent COs takes place within the context of the synaptonemal complex (SC), a proteinaceous structure that polymerizes between homologs and participates in close homolog juxtaposition during prophase I of meiosis. While SC polymerization starts from ZMM-bound sites and ZMM proteins are required for SC polymerization in budding yeast and the fungus Sordaria, other organisms differ in their requirement for ZMM in SC elongation. This review provides an overview of ZMM functions and discusses their collaborative tasks for CO formation and SC assembly, based on recent findings and on a comparison of different model organisms.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Paris Sorbonne Université, Paris, France
| | - Valérie Borde
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| | - Arnaud De Muyt
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| |
Collapse
|
36
|
Crossover recombination and synapsis are linked by adjacent regions within the N terminus of the Zip1 synaptonemal complex protein. PLoS Genet 2019; 15:e1008201. [PMID: 31220082 PMCID: PMC6605668 DOI: 10.1371/journal.pgen.1008201] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/02/2019] [Accepted: 05/17/2019] [Indexed: 11/19/2022] Open
Abstract
Accurate chromosome segregation during meiosis relies on the prior establishment of at least one crossover recombination event between homologous chromosomes. Most meiotic recombination intermediates that give rise to interhomolog crossovers are embedded within a hallmark chromosomal structure called the synaptonemal complex (SC), but the mechanisms that coordinate the processes of SC assembly (synapsis) and crossover recombination remain poorly understood. Among known structural components of the budding yeast SC, the Zip1 protein is unique for its independent role in promoting crossover recombination; Zip1 is specifically required for the large subset of crossovers that also rely on the meiosis-specific MutSγ complex. Here we report that adjacent regions within Zip1’s N terminus encompass its crossover and synapsis functions. We previously showed that deletion of Zip1 residues 21–163 abolishes tripartite SC assembly and prevents robust SUMOylation of the SC central element component, Ecm11, but allows excess MutSγ crossover recombination. We find the reciprocal phenotype when Zip1 residues 2–9 or 10–14 are deleted; in these mutants SC assembles and Ecm11 is hyperSUMOylated, but MutSγ crossovers are strongly diminished. Interestingly, Zip1 residues 2–9 or 2–14 are required for the normal localization of Zip3, a putative E3 SUMO ligase and pro-MutSγ crossover factor, to Zip1 polycomplex structures and to recombination initiation sites. By contrast, deletion of Zip1 residues 15–20 does not detectably prevent Zip3’s localization at Zip1 polycomplex and supports some MutSγ crossing over but prevents normal SC assembly and Ecm11 SUMOylation. Our results highlight distinct N terminal regions that are differentially critical for Zip1’s roles in crossing over and SC assembly; we speculate that the adjacency of these regions enables Zip1 to serve as a liaison, facilitating crosstalk between the two processes by bringing crossover recombination and synapsis factors within close proximity of one another. Reproductive cell formation relies on a nuclear division cycle called meiosis, wherein two homologous sets of chromosomes are reduced to one. At the crux of (and critically required for) meiotic chromosome segregation is a transient association between homologous chromosomes established by a crossover recombination event. Recombination intermediates embed within a ~100 nm wide proteinaceous structure that connects aligned homologous axes, the synaptonemal complex (SC). While genetic data implicate certain SC structural proteins in crossover formation, it is unclear how such coiled-coil, rod-like proteins carry out their recombination function. Our structure-function analysis of the yeast SC transverse filament protein, Zip1, reveals pro-crossover and pro-synapsis functions that are encompassed by adjacent N terminal regions. We also discovered that the pro-crossover region of Zip1 promotes proper localization of pro-crossover factor and putative SUMO ligase, Zip3, to meiotic recombination sites. Zip3 is known to not only promote crossovers but also to influence the post-translational modification of another SC structural component, Ecm11, which is dispensable for crossovers. Our findings raise the possibility that Zip1’s N terminus acts as a liaison to connect pro-crossover factors (like Zip3) to SC assembly proteins (such as Ecm11) in order to coordinate the two landmark meiotic chromosomal processes.
Collapse
|
37
|
Abstract
A central feature of meiosis is pairing of homologous chromosomes, which occurs in two stages: coalignment of axes followed by installation of the synaptonemal complex (SC). Concomitantly, recombination complexes reposition from on-axis association to the SC central region. We show here that, in the fungus Sordaria macrospora, this critical transition is mediated by robust interaxis bridges that contain an axis component (Spo76/Pds5), DNA, plus colocalizing Mer3/Msh4 recombination proteins and the Zip2-Zip4 mediator complex. Mer3-Msh4-Zip2-Zip4 colocalizing foci are first released from their tight axis association, dependent on the SC transverse-filament protein Sme4/Zip1, before moving to bridges and thus to a between-axis position. Ensuing shortening of bridges and accompanying juxtaposition of axes to 100 nm enables installation of SC central elements at sites of between-axis Mer3-Msh4-Zip2-Zip4 complexes. We show also that the Zip2-Zip4 complex has an intrinsic affinity for chromosome axes at early leptotene, where it localizes independently of recombination, but is dependent on Mer3. Then, later, Zip2-Zip4 has an intrinsic affinity for the SC central element, where it ultimately localizes to sites of crossover complexes at the end of pachytene. These and other findings suggest that the fundamental role of Zip2-Zip4 is to mediate the recombination/structure interface at all post-double-strand break stages. We propose that Zip2-Zip4 directly mediates a molecular handoff of Mer3-Msh4 complexes, from association with axis components to association with SC central components, at the bridge stage, and then directly mediates central region installation during SC nucleation.
Collapse
|
38
|
Hinch AG, Zhang G, Becker PW, Moralli D, Hinch R, Davies B, Bowden R, Donnelly P. Factors influencing meiotic recombination revealed by whole-genome sequencing of single sperm. Science 2019; 363:eaau8861. [PMID: 30898902 PMCID: PMC6445350 DOI: 10.1126/science.aau8861] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023]
Abstract
Recombination is critical to meiosis and evolution, yet many aspects of the physical exchange of DNA via crossovers remain poorly understood. We report an approach for single-cell whole-genome DNA sequencing by which we sequenced 217 individual hybrid mouse sperm, providing a kilobase-resolution genome-wide map of crossovers. Combining this map with molecular assays measuring stages of recombination, we identified factors that affect crossover probability, including PRDM9 binding on the non-initiating template homolog and telomere proximity. These factors also influence the time for sites of recombination-initiating DNA double-strand breaks to find and engage their homologs, with rapidly engaging sites more likely to form crossovers. We show that chromatin environment on the template homolog affects positioning of crossover breakpoints. Our results also offer insights into recombination in the pseudoautosomal region.
Collapse
Affiliation(s)
| | - Gang Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Philipp W Becker
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Robert Hinch
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Department of Statistics, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Hong S, Joo JH, Yun H, Kim K. The nature of meiotic chromosome dynamics and recombination in budding yeast. J Microbiol 2019; 57:221-231. [PMID: 30671743 DOI: 10.1007/s12275-019-8541-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022]
Abstract
During meiosis, crossing over allows for the exchange of genes between homologous chromosomes, enabling their segregation and leading to genetic variation in the resulting gametes. Spo11, a topoisomerase-like protein expressed in eukaryotes, and diverse accessory factors induce programmed double-strand breaks (DSBs) to initiate meiotic recombination during the early phase of meiosis after DNA replication. DSBs are further repaired via meiosis-specific homologous recombination. Studies on budding yeast have provided insights into meiosis and genetic recombination and have improved our understanding of higher eukaryotic systems. Cohesin, a chromosome-associated multiprotein complex, mediates sister chromatid cohesion (SCC), and is conserved from yeast to humans. Diverse cohesin subunits in budding yeast have been identified in DNA metabolic pathways, such as DNA replication, chromosome segregation, recombination, DNA repair, and gene regulation. During cell cycle, SCC is established by multiple cohesin subunits, which physically bind sister chromatids together and modulate proteins that involve in the capturing and separation of sister chromatids. Cohesin components include at least four core subunits that establish and maintain SCC: two structural maintenance chromosome subunits (Smc1 and Smc3), an α-kleisin subunit (Mcd1/Scc1 during mitosis and Rec8 during meiosis), and Scc3/Irr1 (SA1 and SA2). In addition, the cohesin-associated factors Pds5 and Rad61 regulate structural modifications and cell cyclespecific dynamics of chromatin to ensure accurate chromosome segregation. In this review, we discuss SCC and the recombination pathway, as well as the relationship between the two processes in budding yeast, and we suggest a possible conserved mechanism for meiotic chromosome dynamics from yeast to humans.
Collapse
Affiliation(s)
- Soogil Hong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeong Hwan Joo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyeseon Yun
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Keunpil Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
40
|
Lake CM, Nielsen RJ, Bonner AM, Eche S, White-Brown S, McKim KS, Hawley RS. Narya, a RING finger domain-containing protein, is required for meiotic DNA double-strand break formation and crossover maturation in Drosophila melanogaster. PLoS Genet 2019; 15:e1007886. [PMID: 30615609 PMCID: PMC6336347 DOI: 10.1371/journal.pgen.1007886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/17/2019] [Accepted: 12/10/2018] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination, which is necessary to ensure that homologous chromosomes segregate properly, begins with the induction of meiotic DNA double-strand breaks (DSBs) and ends with the repair of a subset of those breaks into crossovers. Here we investigate the roles of two paralogous genes, CG12200 and CG31053, which we have named Narya and Nenya, respectively, due to their relationship with a structurally similar protein named Vilya. We find that narya recently evolved from nenya by a gene duplication event, and we show that these two RING finger domain-containing proteins are functionally redundant with respect to a critical role in DSB formation. Narya colocalizes with Vilya foci, which are known to define recombination nodules, or sites of crossover formation. A separation-of-function allele of narya retains the capacity for DSB formation but cannot mature those DSBs into crossovers. We further provide data on the physical interaction of Narya, Nenya and Vilya, as assayed by the yeast two-hybrid system. Together these data support the view that all three RING finger domain-containing proteins function in the formation of meiotic DNA DSBs and in the process of crossing over. Errors in chromosome segregation during meiosis are the leading cause of miscarriages and can result in genetic abnormalities like Down syndrome or Turner syndrome. For chromosomes to segregate faithfully, they must recombine with their homolog during the early steps of meiosis. An essential component of the process of meiotic recombination is creating the lesions (double-strand breaks, DSBs) that are required to form a crossover with the homologous chromosome. Crossovers are required to ensure chromosomes segregate properly at the first meiotic division. In this study we have identified two genes, narya and nenya, that are essential in DSB formation. We found that narya arose from a duplication of nenya, and these two genes are functionally redundant. In addition to its role in DSB formation, narya also plays a role in processing DSBs into crossovers. Strengthening our knowledge about the mechanism by which Narya both creates DSBs and processes them into crossovers will lead to a better understanding of the process of meiotic chromosome segregation not only in flies but many other organisms, as these genes have homologs in yeast, worms, plants, mice and humans.
Collapse
Affiliation(s)
- Cathleen M. Lake
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Rachel J. Nielsen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Amanda M. Bonner
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Salam Eche
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sanese White-Brown
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
41
|
Role of Cis, Trans, and Inbreeding Effects on Meiotic Recombination in Saccharomyces cerevisiae. Genetics 2018; 210:1213-1226. [PMID: 30291109 DOI: 10.1534/genetics.118.301644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination is a major driver of genome evolution by creating new genetic combinations. To probe the factors driving variability of meiotic recombination, we used a high-throughput method to measure recombination rates in hybrids between SK1 and a total of 26 Saccharomyces cerevisiae strains from different geographic origins and habitats. Fourteen intervals were monitored for each strain, covering chromosomes VI and XI entirely, and part of chromosome I. We found an average number of crossovers per chromosome ranging between 1.0 and 9.5 across strains ("domesticated" or not), which is higher than the average between 0.5 and 1.5 found in most organisms. In the different intervals analyzed, recombination showed up to ninefold variation across strains but global recombination landscapes along chromosomes varied less. We also built an incomplete diallel experiment to measure recombination rates in one region of chromosome XI in 10 different crosses involving five parental strains. Our overall results indicate that recombination rate is increasingly positively correlated with sequence similarity between homologs (i) in DNA double-strand-break-rich regions within intervals, (ii) in entire intervals, and (iii) at the whole genome scale. Therefore, these correlations cannot be explained by cis effects only. We also estimated that cis and trans effects explained 38 and 17%, respectively, of the variance of recombination rate. In addition, by using a quantitative genetics analysis, we identified an inbreeding effect that reduces recombination rate in homozygous genotypes, while other interaction effects (specific combining ability) or additive effects (general combining ability) are found to be weak. Finally, we measured significant crossover interference in some strains, and interference intensity was positively correlated with crossover number.
Collapse
|
42
|
Lukaszewicz A, Lange J, Keeney S, Jasin M. Control of meiotic double-strand-break formation by ATM: local and global views. Cell Cycle 2018; 17:1155-1172. [PMID: 29963942 PMCID: PMC6110601 DOI: 10.1080/15384101.2018.1464847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/19/2018] [Accepted: 04/08/2018] [Indexed: 10/28/2022] Open
Abstract
DNA double-strand breaks (DSBs) generated by the SPO11 protein initiate meiotic recombination, an essential process for successful chromosome segregation during gametogenesis. The activity of SPO11 is controlled by multiple factors and regulatory mechanisms, such that the number of DSBs is limited and DSBs form at distinct positions in the genome and at the right time. Loss of this control can affect genome integrity or cause meiotic arrest by mechanisms that are not fully understood. Here we focus on the DSB-responsive kinase ATM and its functions in regulating meiotic DSB numbers and distribution. We review the recently discovered roles of ATM in this context, discuss their evolutionary conservation, and examine future research perspectives.
Collapse
Affiliation(s)
- Agnieszka Lukaszewicz
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
43
|
Pacheco S, Maldonado-Linares A, Marcet-Ortega M, Rojas C, Martínez-Marchal A, Fuentes-Lazaro J, Lange J, Jasin M, Keeney S, Fernández-Capetillo O, Garcia-Caldés M, Roig I. ATR is required to complete meiotic recombination in mice. Nat Commun 2018; 9:2622. [PMID: 29977027 PMCID: PMC6033890 DOI: 10.1038/s41467-018-04851-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
Precise execution of recombination during meiosis is essential for forming chromosomally-balanced gametes. Meiotic recombination initiates with the formation and resection of DNA double-strand breaks (DSBs). Cellular responses to meiotic DSBs are critical for efficient repair and quality control, but molecular features of these remain poorly understood, particularly in mammals. Here we report that the DNA damage response protein kinase ATR is crucial for meiotic recombination and completion of meiotic prophase in mice. Using a hypomorphic Atr mutation and pharmacological inhibition of ATR in vivo and in cultured spermatocytes, we show that ATR, through its effector kinase CHK1, promotes efficient RAD51 and DMC1 assembly at RPA-coated resected DSB sites and establishment of interhomolog connections during meiosis. Furthermore, our findings suggest that ATR promotes local accumulation of recombination markers on unsynapsed axes during meiotic prophase to favor homologous chromosome synapsis. These data reveal that ATR plays multiple roles in mammalian meiotic recombination.
Collapse
Affiliation(s)
- Sarai Pacheco
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Andros Maldonado-Linares
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Marina Marcet-Ortega
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Cristina Rojas
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Ana Martínez-Marchal
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Judit Fuentes-Lazaro
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Montserrat Garcia-Caldés
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
| |
Collapse
|
44
|
Adam C, Guérois R, Citarella A, Verardi L, Adolphe F, Béneut C, Sommermeyer V, Ramus C, Govin J, Couté Y, Borde V. The PHD finger protein Spp1 has distinct functions in the Set1 and the meiotic DSB formation complexes. PLoS Genet 2018; 14:e1007223. [PMID: 29444071 PMCID: PMC5828529 DOI: 10.1371/journal.pgen.1007223] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/27/2018] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
Histone H3K4 methylation is a feature of meiotic recombination hotspots shared by many organisms including plants and mammals. Meiotic recombination is initiated by programmed double-strand break (DSB) formation that in budding yeast takes place in gene promoters and is promoted by histone H3K4 di/trimethylation. This histone modification is recognized by Spp1, a PHD finger containing protein that belongs to the conserved histone H3K4 methyltransferase Set1 complex. During meiosis, Spp1 binds H3K4me3 and interacts with a DSB protein, Mer2, to promote DSB formation close to gene promoters. How Set1 complex- and Mer2- related functions of Spp1 are connected is not clear. Here, combining genome-wide localization analyses, biochemical approaches and the use of separation of function mutants, we show that Spp1 is present within two distinct complexes in meiotic cells, the Set1 and the Mer2 complexes. Disrupting the Spp1-Set1 interaction mildly decreases H3K4me3 levels and does not affect meiotic recombination initiation. Conversely, the Spp1-Mer2 interaction is required for normal meiotic recombination initiation, but dispensable for Set1 complex-mediated histone H3K4 methylation. Finally, we provide evidence that Spp1 preserves normal H3K4me3 levels independently of the Set1 complex. We propose a model where Spp1 works in three ways to promote recombination initiation: first by depositing histone H3K4 methylation (Set1 complex), next by “reading” and protecting histone H3K4 methylation, and finally by making the link with the chromosome axis (Mer2-Spp1 complex). This work deciphers the precise roles of Spp1 in meiotic recombination and opens perspectives to study its functions in other organisms where H3K4me3 is also present at recombination hotspots. Meiotic recombination is a conserved pathway of sexual reproduction that is required to faithfully segregate homologous chromosomes and produce viable gametes. Recombination events between homologous chromosomes are triggered by the programmed formation of DNA breaks, which occur preferentially at places called hotspots. In many organisms, these hotspots are located close to a particular chromatin modification, the methylation of lysine 4 of histone H3 (H3K4me3). It was previously shown in the budding yeast model that one protein, Spp1, plays an important function in this process. We further explored the functional link between Spp1 and its interacting partners, and show that Spp1 shows genetically separable functions, by depositing the H3K4me3 mark on the chromatin, “reading” and protecting it, and linking it to the recombination proteins. We provide evidence that Spp1 is in distinct complexes to perform these functions. This work opens perspectives for understanding the process in other eukaryotes such as mammals, where most of the proteins involved are conserved.
Collapse
Affiliation(s)
- Céline Adam
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
| | - Raphaël Guérois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Anna Citarella
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
| | - Laura Verardi
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
| | - Florine Adolphe
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
| | - Claire Béneut
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
| | - Vérane Sommermeyer
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
| | - Claire Ramus
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Jérôme Govin
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Valérie Borde
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Université Pierre et Marie Curie (UPMC), Paris, France
- * E-mail:
| |
Collapse
|
45
|
De Muyt A, Pyatnitskaya A, Andréani J, Ranjha L, Ramus C, Laureau R, Fernandez-Vega A, Holoch D, Girard E, Govin J, Margueron R, Couté Y, Cejka P, Guérois R, Borde V. A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation. Genes Dev 2018; 32:283-296. [PMID: 29440262 PMCID: PMC5859969 DOI: 10.1101/gad.308510.117] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/24/2018] [Indexed: 11/24/2022]
Abstract
De Muyt et al. identified the ZZS (Zip2–Zip4–Spo16) complex, required for crossover formation, which carries two distinct activities: one provided by Zip4, which acts as hub through physical interactions with components of the chromosome axis and the crossover machinery, and the other carried by Zip2 and Spo16, which preferentially bind branched DNA molecules in vitro. Meiotic crossover formation requires the stabilization of early recombination intermediates by a set of proteins and occurs within the environment of the chromosome axis, a structure important for the regulation of meiotic recombination events. The molecular mechanisms underlying and connecting crossover recombination and axis localization are elusive. Here, we identified the ZZS (Zip2–Zip4–Spo16) complex, required for crossover formation, which carries two distinct activities: one provided by Zip4, which acts as hub through physical interactions with components of the chromosome axis and the crossover machinery, and the other carried by Zip2 and Spo16, which preferentially bind branched DNA molecules in vitro. We found that Zip2 and Spo16 share structural similarities to the structure-specific XPF–ERCC1 nuclease, although it lacks endonuclease activity. The XPF domain of Zip2 is required for crossover formation, suggesting that, together with Spo16, it has a noncatalytic DNA recognition function. Our results suggest that the ZZS complex shepherds recombination intermediates toward crossovers as a dynamic structural module that connects recombination events to the chromosome axis. The identification of the ZZS complex improves our understanding of the various activities required for crossover implementation and is likely applicable to other organisms, including mammals.
Collapse
Affiliation(s)
- Arnaud De Muyt
- UMR3244, Centre Nationnal de la Recherche Scientifique (CNRS), Institut Curie, PSL (Paris Sciences and Letters) Research University, 75005 Paris, France.,Université Pierre et Marie Curie (UPMC), 75005 Paris, France
| | - Alexandra Pyatnitskaya
- UMR3244, Centre Nationnal de la Recherche Scientifique (CNRS), Institut Curie, PSL (Paris Sciences and Letters) Research University, 75005 Paris, France.,Université Pierre et Marie Curie (UPMC), 75005 Paris, France
| | - Jessica Andréani
- Institut de Biologie Intégrative de la Cellule (I2BC), Institut de biologie et de technologies de Saclay (iBiTec-S), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), UMR9198, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France.,Université Paris Sud, 91400 Orsay, France
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Claire Ramus
- University of Grenoble Alpes, CEA, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Biosciences et Biotechnologies de Grenoble (BIG-BGE), 38000 Grenoble, France
| | - Raphaëlle Laureau
- UMR3244, Centre Nationnal de la Recherche Scientifique (CNRS), Institut Curie, PSL (Paris Sciences and Letters) Research University, 75005 Paris, France.,Université Pierre et Marie Curie (UPMC), 75005 Paris, France
| | - Ambra Fernandez-Vega
- UMR3244, Centre Nationnal de la Recherche Scientifique (CNRS), Institut Curie, PSL (Paris Sciences and Letters) Research University, 75005 Paris, France.,Université Pierre et Marie Curie (UPMC), 75005 Paris, France
| | - Daniel Holoch
- Université Pierre et Marie Curie (UPMC), 75005 Paris, France.,Institut Curie, PSL Research University, UMR934, CNRS, 75005 Paris, France
| | - Elodie Girard
- Institut Curie, PSL Research University, Mines ParisTech, U900, INSERM, 75005 Paris, France
| | - Jérome Govin
- University of Grenoble Alpes, CEA, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Biosciences et Biotechnologies de Grenoble (BIG-BGE), 38000 Grenoble, France
| | - Raphaël Margueron
- Université Pierre et Marie Curie (UPMC), 75005 Paris, France.,Institut Curie, PSL Research University, UMR934, CNRS, 75005 Paris, France
| | - Yohann Couté
- University of Grenoble Alpes, CEA, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Biosciences et Biotechnologies de Grenoble (BIG-BGE), 38000 Grenoble, France
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland
| | - Raphaël Guérois
- Institut de Biologie Intégrative de la Cellule (I2BC), Institut de biologie et de technologies de Saclay (iBiTec-S), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), UMR9198, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France.,Université Paris Sud, 91400 Orsay, France
| | - Valérie Borde
- UMR3244, Centre Nationnal de la Recherche Scientifique (CNRS), Institut Curie, PSL (Paris Sciences and Letters) Research University, 75005 Paris, France.,Université Pierre et Marie Curie (UPMC), 75005 Paris, France
| |
Collapse
|
46
|
Lawrence EJ, Griffin CH, Henderson IR. Modification of meiotic recombination by natural variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5471-5483. [PMID: 28992351 DOI: 10.1093/jxb/erx306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is a specialized cell division that produces haploid gametes required for sexual reproduction. During the first meiotic division, homologous chromosomes pair and undergo reciprocal crossing over, which recombines linked sequence variation. Meiotic recombination frequency varies extensively both within and between species. In this review, we will examine the molecular basis of meiotic recombination rate variation, with an emphasis on plant genomes. We first consider cis modification caused by polymorphisms at the site of recombination, or elsewhere on the same chromosome. We review cis effects caused by mismatches within recombining joint molecules, the effect of structural hemizygosity, and the role of specific DNA sequence motifs. In contrast, trans modification of recombination is exerted by polymorphic loci encoding diffusible molecules, which are able to modulate recombination on the same and/or other chromosomes. We consider trans modifiers that act to change total recombination levels, hotspot locations, or interactions between homologous and homeologous chromosomes in polyploid species. Finally, we consider the significance of genetic variation that modifies meiotic recombination for adaptation and evolution of plant species.
Collapse
Affiliation(s)
- Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Catherine H Griffin
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
47
|
Abstract
The segregation of homologous chromosomes in meiosis depends on their ability to locate one another in the nucleus and establish a physical association through crossing over. A tightly regulated number of crossovers (COs) emerges following repair of induced DNA double-strand breaks by homologous recombination (HR), but the process of how HR intermediates transition into COs is still poorly understood. Two recent studies by Ahuja et al. and Rao et al. have revealed a role for chromosomally localized proteasomes in choreographing both homologous chromosome pairing and the evolution of HR intermediates into segregation-competent COs. Using chemical inhibition of the proteasome and mutant analysis, the collective data reveal conserved functions for both the proteasome and a family of E3 ligases that can direct or compete with its activity in ensuring CO formation. Here, we review these findings and the impact of the discovery that protein modification dynamics and proteasomal activity cooperate to regulate key meiotic processes.
Collapse
Affiliation(s)
- Aleksandar Vujin
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Monique Zetka
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
48
|
Shodhan A, Kataoka K, Mochizuki K, Novatchkova M, Loidl J. A Zip3-like protein plays a role in crossover formation in the SC-less meiosis of the protist Tetrahymena. Mol Biol Cell 2017; 28:825-833. [PMID: 28100637 PMCID: PMC5349789 DOI: 10.1091/mbc.e16-09-0678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 11/11/2022] Open
Abstract
When programmed meiotic DNA double-strand breaks (DSBs) undergo recombinational repair, genetic crossovers (COs) may be formed. A certain level of this is required for the faithful segregation of chromosomes, but the majority of DSBs are processed toward a safer alternative, namely noncrossovers (NCOs), via nonreciprocal DNA exchange. At the crossroads between these two DSB fates is the Msh4-Msh5 (MutSγ) complex, which stabilizes CO-destined recombination intermediates and members of the Zip3/RNF212 family of RING finger proteins, which in turn stabilize MutSγ. These proteins function in the context of the synaptonemal complex (SC) and mainly act on SC-dependent COs. Here we show that in the SC-less ciliate Tetrahymena, Zhp3 (a protein distantly related to Zip3/RNF212), together with MutSγ, is responsible for the majority of COs. This activity of Zhp3 suggests an evolutionarily conserved SC-independent strategy for balancing CO:NCO ratios. Moreover, we report a novel meiosis-specific protein, Sa15, as an interacting partner of Zhp3. Sa15 forms linear structures in meiotic prophase nuclei to which Zhp3 localizes. Sa15 is required for a wild-type level of CO formation. Its linear organization suggests the existence of an underlying chromosomal axis that serves as a scaffold for Zhp3 and other recombination proteins.
Collapse
Affiliation(s)
- Anura Shodhan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences and
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences and
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences and
- Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Josef Loidl
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
49
|
Ziolkowski PA, Underwood CJ, Lambing C, Martinez-Garcia M, Lawrence EJ, Ziolkowska L, Griffin C, Choi K, Franklin FCH, Martienssen RA, Henderson IR. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev 2017; 31:306-317. [PMID: 28223312 PMCID: PMC5358726 DOI: 10.1101/gad.295501.116] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 11/24/2022]
Abstract
During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Charles J Underwood
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Liliana Ziolkowska
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Catherine Griffin
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
50
|
Ahuja JS, Sandhu R, Mainpal R, Lawson C, Henley H, Hunt PA, Yanowitz JL, Börner GV. Control of meiotic pairing and recombination by chromosomally tethered 26S proteasome. Science 2017; 355:408-411. [PMID: 28059715 DOI: 10.1126/science.aaf4778] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/12/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022]
Abstract
During meiosis, paired homologous chromosomes (homologs) become linked via the synaptonemal complex (SC) and crossovers. Crossovers mediate homolog segregation and arise from self-inflicted double-strand breaks (DSBs). Here, we identified a role for the proteasome, the multisubunit protease that degrades proteins in the nucleus and cytoplasm, in homolog juxtaposition and crossing over. Without proteasome function, homologs failed to pair and instead remained associated with nonhomologous chromosomes. Although dispensable for noncrossover formation, a functional proteasome was required for a coordinated transition that entails SC assembly between longitudinally organized chromosome axes and stable strand exchange of crossover-designated DSBs. Notably, proteolytic core and regulatory proteasome particles were recruited to chromosomes by Zip3, the ortholog of mammalian E3 ligase RNF212, and SC protein Zip1 . We conclude that proteasome functions along meiotic chromosomes are evolutionarily conserved.
Collapse
Affiliation(s)
- Jasvinder S Ahuja
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University (CSU), Cleveland, OH, USA
| | - Rima Sandhu
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University (CSU), Cleveland, OH, USA
| | - Rana Mainpal
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Hanna Henley
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University (CSU), Cleveland, OH, USA
| | - Patricia A Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G Valentin Börner
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University (CSU), Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|