1
|
Leszczynska KB, Freitas-Huhtamäki A, Jayaprakash C, Dzwigonska M, Vitorino FNL, Horth C, Wojnicki K, Gielniewski B, Szadkowska P, Kaza B, Nazarian J, Ciolkowski MK, Trubicka J, Grajkowska W, Garcia BA, Majewski J, Kaminska B, Mieczkowski J. H2A.Z histone variants facilitate HDACi-dependent removal of H3.3K27M mutant protein in pediatric high-grade glioma cells. Cell Rep 2024; 43:113707. [PMID: 38306270 PMCID: PMC11026119 DOI: 10.1016/j.celrep.2024.113707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are deadly pediatric brain tumors, non-resectable due to brainstem localization and diffusive growth. Over 80% of DIPGs harbor a mutation in histone 3 (H3.3 or H3.1) resulting in a lysine-to-methionine substitution (H3K27M). Patients with DIPG have a dismal prognosis with no effective therapy. We show that histone deacetylase (HDAC) inhibitors lead to a significant reduction in the H3.3K27M protein (up to 80%) in multiple glioma cell lines. We discover that the SB939-mediated H3.3K27M loss is partially blocked by a lysosomal inhibitor, chloroquine. The H3.3K27M loss is facilitated by co-occurrence of H2A.Z, as evidenced by the knockdown of H2A.Z isoforms. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis confirms the occupancy of H3.3K27M and H2A.Z at the same SB939-inducible genes. We discover a mechanism showing that HDAC inhibition in DIPG leads to pharmacological modulation of the oncogenic H3.3K27M protein levels. These findings show the possibility of directly targeting the H3.3K27M oncohistone.
Collapse
Affiliation(s)
- Katarzyna B Leszczynska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | | - Chinchu Jayaprakash
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Dzwigonska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Francisca N L Vitorino
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia Horth
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kamil Wojnicki
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bartlomiej Gielniewski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Paulina Szadkowska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Beata Kaza
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, University Children's Hospital Zürich, Zürich, Switzerland
| | | | | | | | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland; 3P-Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
2
|
Kikuchi M, Morita S, Wakamori M, Sato S, Uchikubo-Kamo T, Suzuki T, Dohmae N, Shirouzu M, Umehara T. Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nat Commun 2023; 14:4103. [PMID: 37460559 DOI: 10.1038/s41467-023-39735-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 writes by reading H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP replicates histone N-terminal tail acetylation within the H3-H4 tetramer to inherit epigenetic storage, and transcribes it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.
Collapse
Affiliation(s)
- Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Satoshi Morita
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Shin Sato
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Tomomi Uchikubo-Kamo
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
3
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. Involvement of the H3.3 Histone Variant in the Epigenetic Regulation of Gene Expression in the Nervous System, in Both Physiological and Pathological Conditions. Int J Mol Sci 2023; 24:11028. [PMID: 37446205 DOI: 10.3390/ijms241311028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
All the cells of an organism contain the same genome. However, each cell expresses only a minor fraction of its potential and, in particular, the genes encoding the proteins necessary for basal metabolism and the proteins responsible for its specific phenotype. The ability to use only the right and necessary genes involved in specific functions depends on the structural organization of the nuclear chromatin, which in turn depends on the epigenetic history of each cell, which is stored in the form of a collection of DNA and protein modifications. Among these modifications, DNA methylation and many kinds of post-translational modifications of histones play a key role in organizing the complex indexing of usable genes. In addition, non-canonical histone proteins (also known as histone variants), the synthesis of which is not directly linked with DNA replication, are used to mark specific regions of the genome. Here, we will discuss the role of the H3.3 histone variant, with particular attention to its loading into chromatin in the mammalian nervous system, both in physiological and pathological conditions. Indeed, chromatin modifications that mark cell memory seem to be of special importance for the cells involved in the complex processes of learning and memory.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
4
|
Are extraordinary nucleosome structures more ordinary than we thought? Chromosoma 2023:10.1007/s00412-023-00791-w. [PMID: 36917245 DOI: 10.1007/s00412-023-00791-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
The nucleosome is a DNA-protein assembly that is the basic unit of chromatin. A nucleosome can adopt various structures. In the canonical nucleosome structure, 145-147 bp of DNA is wrapped around a histone heterooctamer. The strong histone-DNA interactions cause the DNA to be inaccessible for nuclear processes such as transcription. Therefore, the canonical nucleosome structure has to be altered into different, non-canonical structures to increase DNA accessibility. While it is recognised that non-canonical structures do exist, these structures are not well understood. In this review, we discuss both the evidence for various non-canonical nucleosome structures in the nucleus and the factors that are believed to induce these structures. The wide range of non-canonical structures is likely to regulate the amount of accessible DNA, and thus have important nuclear functions.
Collapse
|
5
|
Shan Z, Zhang Y, Bu J, Li H, Zhang Z, Xiong J, Zhu B. The patterns and participants of parental histone recycling during DNA replication in Saccharomyces cerevisiae. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2267-6. [PMID: 36914923 DOI: 10.1007/s11427-022-2267-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 03/14/2023]
Abstract
Epigenetic information carried by histone modifications not only reflects the state of gene expression, but also participates in the maintenance of chromatin states and the regulation of gene expression. Recycling of parental histones to daughter chromatin after DNA replication is vital to mitotic inheritance of epigenetic information and the maintenance of cell identity, because the locus-specific modifications of the parental histones need to be maintained. To assess the precision of parental histone recycling, we developed a synthetic local label-chasing system in budding yeast Saccharomyces cerevisiae. Using this system, we observed that parental histone H3 can be recycled to their original position, thereby recovering their position information after DNA replication at all tested loci, including heterochromatin boundary, non-transcribed region, and actively transcribed regions. Moreover, the recycling rate appears to be affected by local chromatin environment. We surveyed a number of potential regulatory factors and observed that histone H3-H4 chaperon Asf1 contributed to parental histone recycling, while the eukaryotic replisome-associated components Mcm2 and Dpb3 displayed compounding effects in this process. In addition, the FACT complex also plays a role in the recycling of parental histones and helps to stabilize the nucleosomes.
Collapse
Affiliation(s)
- Zhongqing Shan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiachen Bu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huizhi Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Gómez-Marín E, Posavec-Marjanović M, Zarzuela L, Basurto-Cayuela L, Guerrero-Martínez J, Arribas G, Yerbes R, Ceballos-Chávez M, Rodríguez-Paredes M, Tomé M, Durán R, Buschbeck M, Reyes J. The high mobility group protein HMG20A cooperates with the histone reader PHF14 to modulate TGFβ and Hippo pathways. Nucleic Acids Res 2022; 50:9838-9857. [PMID: 36124662 PMCID: PMC9508832 DOI: 10.1093/nar/gkac766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/01/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
High mobility group (HMG) proteins are chromatin regulators with essential functions in development, cell differentiation and cell proliferation. The protein HMG20A is predicted by the AlphaFold2 software to contain three distinct structural elements, which we have functionally characterized: i) an amino-terminal, intrinsically disordered domain with transactivation activity; ii) an HMG box with higher binding affinity for double-stranded, four-way-junction DNA than for linear DNA; and iii) a long coiled-coil domain. Our proteomic study followed by a deletion analysis and structural modeling demonstrates that HMG20A forms a complex with the histone reader PHF14, via the establishment of a two-stranded alpha-helical coiled-coil structure. siRNA-mediated knockdown of either PHF14 or HMG20A in MDA-MB-231 cells causes similar defects in cell migration, invasion and homotypic cell-cell adhesion ability, but neither affects proliferation. Transcriptomic analyses demonstrate that PHF14 and HMG20A share a large subset of targets. We show that the PHF14-HMG20A complex modulates the Hippo pathway through a direct interaction with the TEAD1 transcription factor. PHF14 or HMG20A deficiency increases epithelial markers, including E-cadherin and the epithelial master regulator TP63 and impaired normal TGFβ-trigged epithelial-to-mesenchymal transition. Taken together, these data indicate that PHF14 and HMG20A cooperate in regulating several pathways involved in epithelial-mesenchymal plasticity.
Collapse
Affiliation(s)
- Elena Gómez-Marín
- Genome Biology Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Melanija Posavec-Marjanović
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
| | - Laura Zarzuela
- Cell Dynamics and Signaling Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Laura Basurto-Cayuela
- Genome Biology Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - José A Guerrero-Martínez
- Genome Biology Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Gonzalo Arribas
- Genome Biology Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Rosario Yerbes
- Cell Dynamics and Signaling Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - María Ceballos-Chávez
- Genome Biology Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Manuel Rodríguez-Paredes
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Mercedes Tomé
- Cell Dynamics and Signaling Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Raúl V Durán
- Cell Dynamics and Signaling Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Marcus Buschbeck
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - José C Reyes
- Genome Biology Department. Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| |
Collapse
|
7
|
Jonas F, Yaakov G, Barkai N. Rtt109 promotes nucleosome replacement ahead of the replication fork. Genome Res 2022; 32:1089-1098. [PMID: 35609993 PMCID: PMC9248883 DOI: 10.1101/gr.276674.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
DNA replication perturbs chromatin by triggering the eviction, replacement, and incorporation of nucleosomes. How this dynamic is orchestrated in time and space is poorly understood. Here, we apply a genetically encoded sensor for histone exchange to follow the time-resolved histone H3 exchange profile in budding yeast cells undergoing slow synchronous replication in nucleotide-limiting conditions. We find that new histones are incorporated not only behind, but also ahead of the replication fork. We provide evidence that Rtt109, the S-phase-induced acetyltransferase, stabilizes nucleosomes behind the fork but promotes H3 replacement ahead of the fork. Increased replacement ahead of the fork is independent of the primary Rtt109 acetylation target H3K56 and rather results from Vps75-dependent Rtt109 activity toward the H3 N terminus. Our results suggest that, at least under nucleotide-limiting conditions, selective incorporation of differentially modified H3s behind and ahead of the replication fork results in opposing effects on histone exchange, likely reflecting the distinct challenges for genome stability at these different regions.
Collapse
Affiliation(s)
- Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Furth N, Algranati D, Dassa B, Beresh O, Fedyuk V, Morris N, Kasper LH, Jones D, Monje M, Baker SJ, Shema E. H3-K27M-mutant nucleosomes interact with MLL1 to shape the glioma epigenetic landscape. Cell Rep 2022; 39:110836. [PMID: 35584667 DOI: 10.1016/j.celrep.2022.110836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 01/08/2023] Open
Abstract
Cancer-associated mutations in genes encoding histones dramatically reshape chromatin and support tumorigenesis. Lysine to methionine substitution of residue 27 on histone H3 (K27M) is a driver mutation in high-grade pediatric gliomas, known to abrogate polycomb repressive complex 2 (PRC2) activity. We applied single-molecule systems to image individual nucleosomes and delineate the combinatorial epigenetic patterns associated with H3-K27M expression. We found that chromatin marks on H3-K27M-mutant nucleosomes are dictated both by their incorporation preferences and by intrinsic properties of the mutation. Mutant nucleosomes not only preferentially bind PRC2 but also directly interact with MLL1, leading to genome-wide redistribution of H3K4me3. H3-K27M-mediated deregulation of repressive and active chromatin marks leads to unbalanced "bivalent" chromatin, which may support a poorly differentiated cellular state. This study provides evidence for a direct effect of H3-K27M oncohistone on the MLL1-H3K4me3 pathway and highlights the capability of single-molecule tools to reveal mechanisms of chromatin deregulation in cancer.
Collapse
Affiliation(s)
- Noa Furth
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Danielle Algranati
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Olga Beresh
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vadim Fedyuk
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Natasha Morris
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lawryn H Kasper
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Efrat Shema
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
9
|
Bočkaj I, Martini TEI, de Camargo Magalhães ES, Bakker PL, Meeuwsen-de Boer TGJ, Armandari I, Meuleman SL, Mondria MT, Stok C, Kok YP, Bakker B, Wardenaar R, Seiler J, Broekhuis MJC, van den Bos H, Spierings DCJ, Ringnalda FCA, Clevers H, Schüller U, van Vugt MATM, Foijer F, Bruggeman SWM. The H3.3K27M oncohistone affects replication stress outcome and provokes genomic instability in pediatric glioma. PLoS Genet 2021; 17:e1009868. [PMID: 34752469 PMCID: PMC8604337 DOI: 10.1371/journal.pgen.1009868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/19/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
While comprehensive molecular profiling of histone H3.3 mutant pediatric high-grade glioma has revealed extensive dysregulation of the chromatin landscape, the exact mechanisms driving tumor formation remain poorly understood. Since H3.3 mutant gliomas also exhibit high levels of copy number alterations, we set out to address if the H3.3K27M oncohistone leads to destabilization of the genome. Hereto, we established a cell culture model allowing inducible H3.3K27M expression and observed an increase in mitotic abnormalities. We also found enhanced interaction of DNA replication factors with H3.3K27M during mitosis, indicating replication defects. Further functional analyses revealed increased genomic instability upon replication stress, as represented by mitotic bulky and ultrafine DNA bridges. This co-occurred with suboptimal 53BP1 nuclear body formation after mitosis in vitro, and in human glioma. Finally, we observed a decrease in ultrafine DNA bridges following deletion of the K27M mutant H3F3A allele in primary high-grade glioma cells. Together, our data uncover a role for H3.3 in DNA replication under stress conditions that is altered by the K27M mutation, promoting genomic instability and potentially glioma development.
Collapse
Affiliation(s)
- Irena Bočkaj
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tosca E. I. Martini
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eduardo S. de Camargo Magalhães
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Petra L. Bakker
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tiny G. J. Meeuwsen-de Boer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Inna Armandari
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Saskia L. Meuleman
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marin T. Mondria
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Colin Stok
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Yannick P. Kok
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bjorn Bakker
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - René Wardenaar
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jonas Seiler
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- iPSC/CRISPR facility, Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mathilde J. C. Broekhuis
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- iPSC/CRISPR facility, Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hilda van den Bos
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Diana C. J. Spierings
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Femke C. A. Ringnalda
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ulrich Schüller
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Floris Foijer
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- iPSC/CRISPR facility, Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sophia W. M. Bruggeman
- Department of Ageing Biology/ERIBA, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Schachner LF, Jooß K, Morgan MA, Piunti A, Meiners MJ, Kafader JO, Lee AS, Iwanaszko M, Cheek MA, Burg JM, Howard SA, Keogh MC, Shilatifard A, Kelleher NL. Decoding the protein composition of whole nucleosomes with Nuc-MS. Nat Methods 2021; 18:303-308. [PMID: 33589837 PMCID: PMC7954958 DOI: 10.1038/s41592-020-01052-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Current proteomic approaches disassemble and digest nucleosome particles, blurring readouts of the 'histone code'. To preserve nucleosome-level information, we developed Nuc-MS, which displays the landscape of histone variants and their post-translational modifications (PTMs) in a single mass spectrum. Combined with immunoprecipitation, Nuc-MS quantified nucleosome co-occupancy of histone H3.3 with variant H2A.Z (sixfold over bulk) and the co-occurrence of oncogenic H3.3K27M with euchromatic marks (for example, a >15-fold enrichment of dimethylated H3K79me2). Nuc-MS is highly concordant with chromatin immunoprecipitation-sequencing (ChIP-seq) and offers a new readout of nucleosome-level biology.
Collapse
Affiliation(s)
- Luis F Schachner
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Kevin Jooß
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- The Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Marc A Morgan
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea Piunti
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Jared O Kafader
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- The Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Alexander S Lee
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- The Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marcus A Cheek
- EpiCypher, Inc., Research Triangle Park, Durham, NC, USA
| | | | - Sarah A Howard
- EpiCypher, Inc., Research Triangle Park, Durham, NC, USA
| | | | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- The Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
11
|
Parental nucleosome segregation and the inheritance of cellular identity. Nat Rev Genet 2021; 22:379-392. [PMID: 33500558 DOI: 10.1038/s41576-020-00312-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Gene expression programmes conferring cellular identity are achieved through the organization of chromatin structures that either facilitate or impede transcription. Among the key determinants of chromatin organization are the histone modifications that correlate with a given transcriptional status and chromatin state. Until recently, the details for the segregation of nucleosomes on DNA replication and their implications in re-establishing heritable chromatin domains remained unclear. Here, we review recent findings detailing the local segregation of parental nucleosomes and highlight important advances as to how histone methyltransferases associated with the establishment of repressive chromatin domains facilitate epigenetic inheritance.
Collapse
|
12
|
Abstract
Nucleosome dynamics and properties are central to all forms of genomic activities. Among the core histones, H3 variants play a pivotal role in modulating nucleosome structure and function. Here, we focus on the impact of H3 variants on various facets of development. The deposition of the replicative H3 variant following DNA replication is essential for the transmission of the epigenomic information encoded in posttranscriptional modifications. Through this process, replicative H3 maintains cell fate while, in contrast, the replacement H3.3 variant opposes cell differentiation during early embryogenesis. In later steps of development, H3.3 and specialized H3 variants are emerging as new, important regulators of terminal cell differentiation, including neurons and gametes. The specific pathways that regulate the dynamics of the deposition of H3.3 are paramount during reprogramming events that drive zygotic activation and the initiation of a new cycle of development.
Collapse
Affiliation(s)
- Benjamin Loppin
- Laboratoire de Biologie et de Modélisation de la Cellule, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, University of Lyon, F-69007 Lyon, France;
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
13
|
Molenaar TM, Pagès-Gallego M, Meyn V, van Leeuwen F. Application of Recombination -Induced Tag Exchange (RITE) to study histone dynamics in human cells. Epigenetics 2020; 15:901-913. [PMID: 32228348 PMCID: PMC7518693 DOI: 10.1080/15592294.2020.1741777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In eukaryotes, nucleosomes form a barrier to DNA templated reactions and must be dynamically disrupted to provide access to the genome. During nucleosome (re)assembly, histones can be replaced by new histones, erasing post-translational modifications. Measuring histone turnover in mammalian cells has mostly relied on inducible overexpression of histones, which may influence and distort natural histone deposition rates. We have previously used recombination-induced tag exchange (RITE) to study histone dynamics in budding yeast. RITE is a method to follow protein turnover by genetic switching of epitope tags using Cre recombinase and does not rely on inducible overexpression. Here, we applied RITE to study the dynamics of the replication-independent histone variant H3.3 in human cells. Epitope tag-switching could be readily detected upon induction of Cre-recombinase, enabling the monitoring old and new H3.3 in the same pool of cells. However, the rate of tag-switching was lower than in yeast cells. Analysis of histone H3.3 incorporation by chromatin immunoprecipitation did not recapitulate previously reported aspects of H3.3 dynamics such as high turnover rates in active promoters and enhancers. We hypothesize that asynchronous Cre-mediated DNA recombination in the cell population leads to a low time resolution of the H3.3-RITE system in human cells. We conclude that RITE enables the detection of old and new proteins in human cells and that the time-scale of tag-switching prevents the capture of high turnover events in a population of cells. Instead, RITE might be more suited for tracking long-lived histone proteins in human cells.
Collapse
Affiliation(s)
- Thom M Molenaar
- Division of Gene Regulation, Netherlands Cancer Institute , Amsterdam, The Netherlands
| | - Marc Pagès-Gallego
- Division of Gene Regulation, Netherlands Cancer Institute , Amsterdam, The Netherlands
| | - Vanessa Meyn
- Division of Gene Regulation, Netherlands Cancer Institute , Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute , Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam UMC, Location AMC, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
14
|
Dynamics of Asymmetric and Symmetric Divisions of Muscle Stem Cells In Vivo and on Artificial Niches. Cell Rep 2020; 30:3195-3206.e7. [DOI: 10.1016/j.celrep.2020.01.097] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
|
15
|
Zhang T, Zhang Z, Dong Q, Xiong J, Zhu B. Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells. Genome Biol 2020; 21:45. [PMID: 32085783 PMCID: PMC7035716 DOI: 10.1186/s13059-020-01957-w] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
H3K27ac is well recognized as a marker for active enhancers and a great indicator of enhancer activity. However, its functional impact on transcription has not been characterized. By substituting lysine 27 in histone variant H3.3 with arginine in mouse embryonic stem cells, we diminish the vast majority of H3K27ac at enhancers. However, the transcriptome is largely undisturbed in these mutant cells, likely because the other enhancer features remain largely unchanged, including chromatin accessibility, H3K4me1, and histone acetylation at other lysine residues. Our results clearly reveal that H3K27ac alone is not capable of functionally determining enhancer activity.
Collapse
Affiliation(s)
- Tiantian Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Abstract
Nucleosomes compact and organize genetic material on a structural level. However, they also alter local chromatin accessibility through changes in their position, through the incorporation of histone variants, and through a vast array of histone posttranslational modifications. The dynamic nature of chromatin requires histone chaperones to process, deposit, and evict histones in different tissues and at different times in the cell cycle. This review focuses on the molecular details of canonical and variant H3-H4 histone chaperone pathways that lead to histone deposition on DNA as they are currently understood. Emphasis is placed on the most established pathways beginning with the folding, posttranslational modification, and nuclear import of newly synthesized H3-H4 histones. Next, we review the deposition of replication-coupled H3.1-H4 in S-phase and replication-independent H3.3-H4 via alternative histone chaperone pathways. Highly specialized histone chaperones overseeing the deposition of histone variants are also briefly discussed.
Collapse
Affiliation(s)
- Prerna Grover
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada;
| | - Jonathon S Asa
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Eric I Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; .,Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
17
|
Gurova K, Chang HW, Valieva ME, Sandlesh P, Studitsky VM. Structure and function of the histone chaperone FACT - Resolving FACTual issues. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:S1874-9399(18)30159-7. [PMID: 30055319 PMCID: PMC6349528 DOI: 10.1016/j.bbagrm.2018.07.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
Abstract
FAcilitates Chromatin Transcription (FACT) has been considered essential for transcription through chromatin mostly based on cell-free experiments. However, FACT inactivation in cells does not cause a significant reduction in transcription. Moreover, not all mammalian cells require FACT for viability. Here we synthesize information from different organisms to reveal the core function(s) of FACT and propose a model that reconciles the cell-free and cell-based observations. We describe FACT structure and nucleosomal interactions, and their roles in FACT-dependent transcription, replication and repair. The variable requirements for FACT among different tumor and non-tumor cells suggest that various FACT-dependent processes have significantly different levels of relative importance in different eukaryotic cells. We propose that the stability of chromatin, which might vary among different cell types, dictates these diverse requirements for FACT to support cell viability. Since tumor cells are among the most sensitive to FACT inhibition, this vulnerability could be exploited for cancer treatment.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Maria E Valieva
- Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Poorva Sandlesh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Vasily M Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biology Faculty, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
18
|
Shastrula PK, Lund PJ, Garcia BA, Janicki SM. Rpp29 regulates histone H3.3 chromatin assembly through transcriptional mechanisms. J Biol Chem 2018; 293:12360-12377. [PMID: 29921582 DOI: 10.1074/jbc.ra118.001845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/30/2018] [Indexed: 01/26/2023] Open
Abstract
The histone H3 variant H3.3 is a highly conserved and dynamic regulator of chromatin organization. Therefore, fully elucidating its nucleosome incorporation mechanisms is essential to understanding its functions in epigenetic inheritance. We previously identified the RNase P protein subunit, Rpp29, as a repressor of H3.3 chromatin assembly. Here, we use a biochemical assay to show that Rpp29 interacts with H3.3 through a sequence element in its own N terminus, and we identify a novel interaction with histone H2B at an adjacent site. The fact that archaeal Rpp29 does not include this N-terminal region suggests that it evolved to regulate eukaryote-specific functions. Oncogenic H3.3 mutations alter the H3.3-Rpp29 interaction, which suggests that they could dysregulate Rpp29 function in chromatin assembly. We also used KNS42 cells, an H3.3(G34V) pediatric high-grade glioma cell line, to show that Rpp29 1) represses H3.3 incorporation into transcriptionally active protein-coding, rRNA, and tRNA genes; 2) represses mRNA, protein expression, and antisense RNA; and 3) represses euchromatic post-translational modifications (PTMs) and promotes heterochromatic PTM deposition (i.e. histone H3 Lys-9 trimethylation (H3K9me3) and H3.1/2/3K27me3). Notably, we also found that K27me2 is increased and K36me1 decreased on H3.3(G34V), which suggests that Gly-34 mutations dysregulate Lys-27 and Lys-36 methylation in cis The fact that Rpp29 represses H3.3 chromatin assembly and sense and antisense RNA and promotes H3K9me3 and H3K27me3 suggests that Rpp29 regulates H3.3-mediated epigenetic mechanisms by processing a transcribed signal that recruits H3.3 to its incorporation sites.
Collapse
Affiliation(s)
- Prashanth Krishna Shastrula
- From the Wistar Institute, Philadelphia, Pennsylvania 19104.,the Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania 19104, and
| | - Peder J Lund
- the Epigenetics Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Benjamin A Garcia
- the Epigenetics Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Susan M Janicki
- From the Wistar Institute, Philadelphia, Pennsylvania 19104,
| |
Collapse
|
19
|
Abstract
Histone chaperones are indispensable regulators of chromatin structure and function. Recent work has shown that they are frequently mis-regulated in cancer, which can have profound consequences on tumor growth and survival. Here, we focus on chaperones for the essential H3 histone variants H3.3 and CENP-A, specifically HIRA, DAXX/ATRX, DEK, and HJURP. This review summarizes recent studies elucidating their roles in regulating chromatin and discusses how cancer-specific chromatin interactions can be exploited to target cancer cells.
Collapse
Affiliation(s)
- Jonathan Nye
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniël P Melters
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yamini Dalal
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Siwek W, Gómez-Rodríguez M, Sobral D, Corrêa IR, Jansen LET. time-ChIP: A Method to Determine Long-Term Locus-Specific Nucleosome Inheritance. Methods Mol Biol 2018; 1832:131-158. [PMID: 30073525 DOI: 10.1007/978-1-4939-8663-7_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding chromatin dynamics is essential to define the contribution of chromatin to heritable gene silencing and the long-term maintenance of gene expression. Here we present a detailed protocol for time-ChIP, a novel method to measure histone turnover at high resolution across long timescales. This method is based on the SNAP-tag, a self-labeling enzyme that can be pulse labeled with small molecules in cells. Upon pulse biotinylation of a cohort of SNAP-tagged histones we can determine their abundance and fate across a chase period using a biotin-specific chromatin pulldown followed by DNA sequencing or quantitative PCR. This method is unique in its ability to trace the long-term fate of a chromatin bound histone pool, genome wide. In addition to a step by step protocol, we outline advantages and limitations of the method in relation to other existing techniques. time-ChIP can define regions of high and low histone turnover and identify the location of pools of long lived histones.
Collapse
Affiliation(s)
| | - Mariluz Gómez-Rodríguez
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Departamento de Ciencias Naturales and Matemáticas, Pontificia Universidad Javeriana, Cali, Colombia
| | | | | | | |
Collapse
|
21
|
Ramachandran S, Ahmad K, Henikoff S. Transcription and Remodeling Produce Asymmetrically Unwrapped Nucleosomal Intermediates. Mol Cell 2017; 68:1038-1053.e4. [PMID: 29225036 PMCID: PMC6421108 DOI: 10.1016/j.molcel.2017.11.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/29/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022]
Abstract
Nucleosomes are disrupted during transcription and other active processes, but the structural intermediates during nucleosome disruption in vivo are unknown. To identify intermediates, we mapped subnucleosomal protections in Drosophila cells using Micrococcal Nuclease followed by sequencing. At the first nucleosome position downstream of the transcription start site, we identified unwrapped intermediates, including hexasomes that lack either proximal or distal contacts. Inhibiting topoisomerases or depleting histone chaperones increased unwrapping, whereas inhibiting release of paused RNAPII or reducing RNAPII elongation decreased unwrapping. Our results indicate that positive torsion generated by elongating RNAPII causes transient loss of histone-DNA contacts. Using this mapping approach, we found that nucleosomes flanking human CTCF insulation sites are similarly disrupted. We also identified diagnostic subnucleosomal particle remnants in cell-free human DNA data as a relic of transcribed genes from apoptosing cells. Thus identification of subnucleosomal fragments from nuclease protection data represents a general strategy for structural epigenomics.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
22
|
Abstract
Semiconservative DNA replication has provided an elegant solution to the fundamental problem of how life is able to proliferate in a way that allows cells, organisms, and populations to survive and replicate many times over. Somewhat lost, however, in our admiration for this mechanism is an appreciation for the asymmetries that occur in the process of DNA replication. As we discuss in this review, these asymmetries arise as a consequence of the structure of the DNA molecule and the enzymatic mechanism of DNA synthesis. Increasing evidence suggests that asymmetries in DNA replication are able to play a central role in the processes of adaptation and evolution by shaping the mutagenic landscape of cells. Additionally, in eukaryotes, recent work has demonstrated that the inherent asymmetries in DNA replication may play an important role in the process of chromatin replication. As chromatin plays an essential role in defining cell identity, asymmetries generated during the process of DNA replication may play critical roles in cell fate decisions related to patterning and development.
Collapse
Affiliation(s)
- Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218; , ,
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218; , ,
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218; , ,
| |
Collapse
|
23
|
Xie J, Wooten M, Tran V, Chen X. Breaking Symmetry - Asymmetric Histone Inheritance in Stem Cells. Trends Cell Biol 2017; 27:527-540. [PMID: 28268050 DOI: 10.1016/j.tcb.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 01/17/2023]
Abstract
Asymmetric cell division (ACD) gives rise to two daughter cells with distinct fates. ACD is widely used during development and by many types of adult stem cells during tissue homeostasis and regeneration. ACD can be regulated by extrinsic cues, such as signaling molecules, as well as by intrinsic factors, such as organelles and cortex proteins. The recent discovery of asymmetric histone inheritance during stem cell ACD has revealed another intrinsic mechanism by which ACD produces two distinct daughters. In this review we discuss these findings in the context of cell-cycle regulation, as well as other studies of ACD, to begin understanding the underlying mechanisms and biological relevance of this phenomenon.
Collapse
Affiliation(s)
- Jing Xie
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vuong Tran
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA; Current address: Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North Seattle, Seattle, WA 98109, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
24
|
Chang HW, Studitsky VM. Chromatin replication: TRANSmitting the histone code. JOURNAL OF NATURE AND SCIENCE 2017; 3:e322. [PMID: 28393112 PMCID: PMC5384335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Efficient overcoming of the nucleosomal barrier and accurate maintenance of associated histone marks during chromatin replication are essential for normal functioning of the cell. Recent studies revealed new protein factors and histone modifications contributing to overcoming the nucleosomal barrier, and suggested an important role for DNA looping in survival of the original histones during replication. These studies suggest new possible mechanisms for transmitting the histone code to next generations of cells.
Collapse
Affiliation(s)
- Han-Wen Chang
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Vasily M. Studitsky
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Biology Faculty, Lomonosov Moscow State University; Moscow, Russia
| |
Collapse
|
25
|
Rychkov GN, Ilatovskiy AV, Nazarov IB, Shvetsov AV, Lebedev DV, Konev AY, Isaev-Ivanov VV, Onufriev AV. Partially Assembled Nucleosome Structures at Atomic Detail. Biophys J 2016; 112:460-472. [PMID: 28038734 DOI: 10.1016/j.bpj.2016.10.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/06/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022] Open
Abstract
The evidence is now overwhelming that partially assembled nucleosome states (PANS) are as important as the canonical nucleosome structure for the understanding of how accessibility to genomic DNA is regulated in cells. We use a combination of molecular dynamics simulation and atomic force microscopy to deliver, in atomic detail, structural models of three key PANS: the hexasome (H2A·H2B)·(H3·H4)2, the tetrasome (H3·H4)2, and the disome (H3·H4). Despite fluctuations of the conformation of the free DNA in these structures, regions of protected DNA in close contact with the histone core remain stable, thus establishing the basis for the understanding of the role of PANS in DNA accessibility regulation. On average, the length of protected DNA in each structure is roughly 18 basepairs per histone protein. Atomistically detailed PANS are used to explain experimental observations; specifically, we discuss interpretation of atomic force microscopy, Förster resonance energy transfer, and small-angle x-ray scattering data obtained under conditions when PANS are expected to exist. Further, we suggest an alternative interpretation of a recent genome-wide study of DNA protection in active chromatin of fruit fly, leading to a conclusion that the three PANS are present in actively transcribing regions in a substantial amount. The presence of PANS may not only be a consequence, but also a prerequisite for fast transcription in vivo.
Collapse
Affiliation(s)
- Georgy N Rychkov
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia; Institute of Physics, Nanotechnology and Telecommunications, NRU Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Andrey V Ilatovskiy
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California
| | - Igor B Nazarov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey V Shvetsov
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia; Institute of Applied Mathematics and Mechanics, NRU Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Dmitry V Lebedev
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia
| | - Alexander Y Konev
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia
| | - Vladimir V Isaev-Ivanov
- Division of Molecular and Radiation Biophysics, B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center "Kurchatov Institute", Orlova Roscha, Gatchina, Leningrad District, Russia
| | - Alexey V Onufriev
- Departments of Computer Science and Physics, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
26
|
Talbert PB, Henikoff S. Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Biol 2016; 18:115-126. [PMID: 27924075 DOI: 10.1038/nrm.2016.148] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most histones are assembled into nucleosomes behind the replication fork to package newly synthesized DNA. By contrast, histone variants, which are encoded by separate genes, are typically incorporated throughout the cell cycle. Histone variants can profoundly change chromatin properties, which in turn affect DNA replication and repair, transcription, and chromosome packaging and segregation. Recent advances in the study of histone replacement have elucidated the dynamic processes by which particular histone variants become substrates of histone chaperones, ATP-dependent chromatin remodellers and histone-modifying enzymes. Here, we review histone variant dynamics and the effects of replacing DNA synthesis-coupled histones with their replication-independent variants on the chromatin landscape.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA
| |
Collapse
|
27
|
Histone variant H3F3A promotes lung cancer cell migration through intronic regulation. Nat Commun 2016; 7:12914. [PMID: 27694942 PMCID: PMC5477500 DOI: 10.1038/ncomms12914] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/16/2016] [Indexed: 01/12/2023] Open
Abstract
Although several somatic single nucleotide variations in histone H3.3 have been investigated as cancer drivers, other types of aberration have not been well studied. Here, we demonstrate that overexpression of H3F3A, encoding H3.3, is associated with lung cancer progression and promotes lung cancer cell migration by activating metastasis-related genes. H3.3 globally activates gene expression through the occupation of intronic regions in lung cancer cells. Moreover, H3.3 binding regions show characteristics of regulatory DNA elements. We show that H3.3 is deposited at a specific intronic region of GPR87, where it modifies the chromatin status and directly activates GPR87 transcription. The expression levels of H3F3A and GPR87, either alone or in combination, are robust prognostic markers for early-stage lung cancer, and may indicate potential for the development of treatments involving GPR87 antagonists. In summary, our results demonstrate that intronic regulation by H3F3A may be a target for the development of novel therapeutic strategies. Histone variants act as transcriptional activators and repressors and have been linked to cancer progression. Park and Choi et al. show that the histone H3.3 overexpression is associated with early-stage lung cancer, and promotes cancer cell migration by upregulating a G-protein-coupled receptor.
Collapse
|
28
|
Lin S, Yuan ZF, Han Y, Marchione DM, Garcia BA. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells. J Biol Chem 2016; 291:15342-57. [PMID: 27226594 DOI: 10.1074/jbc.m116.726067] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 12/25/2022] Open
Abstract
How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2.
Collapse
Affiliation(s)
- Shu Lin
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| | - Zuo-Fei Yuan
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| | - Yumiao Han
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| | - Dylan M Marchione
- the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Benjamin A Garcia
- From the Epigenetics Program, Department of Biochemistry and Biophysics, and
| |
Collapse
|
29
|
Abstract
Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- a Basic Sciences Division, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | | |
Collapse
|
30
|
Histone Variant H3.3: A versatile H3 variant in health and in disease. SCIENCE CHINA-LIFE SCIENCES 2016; 59:245-56. [DOI: 10.1007/s11427-016-5006-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/26/2015] [Indexed: 01/24/2023]
|
31
|
Iglesias FM, Cerdán PD. Maintaining Epigenetic Inheritance During DNA Replication in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:38. [PMID: 26870059 PMCID: PMC4735446 DOI: 10.3389/fpls.2016.00038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
Biotic and abiotic stresses alter the pattern of gene expression in plants. Depending on the frequency and duration of stress events, the effects on the transcriptional state of genes are "remembered" temporally or transmitted to daughter cells and, in some instances, even to offspring (transgenerational epigenetic inheritance). This "memory" effect, which can be found even in the absence of the original stress, has an epigenetic basis, through molecular mechanisms that take place at the chromatin and DNA level but do not imply changes in the DNA sequence. Many epigenetic mechanisms have been described and involve covalent modifications on the DNA and histones, such as DNA methylation, histone acetylation and methylation, and RNAi dependent silencing mechanisms. Some of these chromatin modifications need to be stable through cell division in order to be truly epigenetic. During DNA replication, histones are recycled during the formation of the new nucleosomes and this process is tightly regulated. Perturbations to the DNA replication process and/or the recycling of histones lead to epigenetic changes. In this mini-review, we discuss recent evidence aimed at linking DNA replication process to epigenetic inheritance in plants.
Collapse
Affiliation(s)
| | - Pablo D. Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Buenos Aires, Argentina
- *Correspondence: Pablo D. Cerdán,
| |
Collapse
|
32
|
Tissue-specific expression of histone H3 variants diversified after species separation. Epigenetics Chromatin 2015; 8:35. [PMID: 26388943 PMCID: PMC4574566 DOI: 10.1186/s13072-015-0027-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/27/2015] [Indexed: 12/02/2022] Open
Abstract
Background The selective incorporation of appropriate histone variants into chromatin is critical for the regulation of genome function. Although many histone variants have been identified, a complete list has not been compiled. Results We screened mouse, rat and human genomes by in silico hybridization using canonical histone sequences. In the mouse genome, we identified 14 uncharacterized H3 genes, among which 13 are similar to H3.3 and do not have human or rat counterparts, and one is similar to human testis-specific H3 variant, H3T/H3.4, and had a rat paralog. Although some of these genes were previously annotated as pseudogenes, their tissue-specific expression was confirmed by sequencing the 3′-UTR regions of the transcripts. Certain new variants were also detected at the protein level by mass spectrometry. When expressed as GFP-tagged versions in mouse C2C12 cells, some variants were stably incorporated into chromatin and the genome-wide distributions of most variants were similar to that of H3.3. Moreover, forced expression of H3 variants in chromatin resulted in alternate gene expression patterns after cell differentiation. Conclusions We comprehensively identified and characterized novel mouse H3 variant genes that encoded highly conserved amino acid sequences compared to known histone H3. We speculated that the diversity of H3 variants acquired after species separation played a role in regulating tissue-specific gene expression in individual species. Their biological relevance and evolutionary aspect involving pseudogene diversification will be addressed by further functional analysis. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0027-3) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Abstract
Eukaryotic replication disrupts each nucleosome as the fork passes, followed by re-assembly of disrupted nucleosomes and incorporation of newly synthesized histones into nucleosomes in the daughter genomes. In this review, we examine this process of replication-coupled nucleosome assembly to understand how characteristic steady state nucleosome landscapes are attained. Recent studies have begun to elucidate mechanisms involved in histone transfer during replication and maturation of the nucleosome landscape after disruption by replication. A fuller understanding of replication-coupled nucleosome assembly will be needed to explain how epigenetic information is replicated at every cell division.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Corresponding author. E-mail:
| |
Collapse
|
34
|
Zoller B, Nicolas D, Molina N, Naef F. Structure of silent transcription intervals and noise characteristics of mammalian genes. Mol Syst Biol 2015. [PMID: 26215071 PMCID: PMC4547851 DOI: 10.15252/msb.20156257] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mammalian transcription occurs stochastically in short bursts interspersed by silent intervals showing a refractory period. However, the underlying processes and consequences on fluctuations in gene products are poorly understood. Here, we use single allele time-lapse recordings in mouse cells to identify minimal models of promoter cycles, which inform on the number and durations of rate-limiting steps responsible for refractory periods. The structure of promoter cycles is gene specific and independent of genomic location. Typically, five rate-limiting steps underlie the silent periods of endogenous promoters, while minimal synthetic promoters exhibit only one. Strikingly, endogenous or synthetic promoters with TATA boxes show simplified two-state promoter cycles. Since transcriptional bursting constrains intrinsic noise depending on the number of promoter steps, this explains why TATA box genes display increased intrinsic noise genome-wide in mammals, as revealed by single-cell RNA-seq. These findings have implications for basic transcription biology and shed light on interpreting single-cell RNA-counting experiments.
Collapse
Affiliation(s)
- Benjamin Zoller
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Damien Nicolas
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nacho Molina
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- The Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Huang H, Strømme CB, Saredi G, Hödl M, Strandsby A, González-Aguilera C, Chen S, Groth A, Patel DJ. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat Struct Mol Biol 2015; 22:618-26. [PMID: 26167883 DOI: 10.1038/nsmb.3055] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/04/2015] [Indexed: 12/11/2022]
Abstract
During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication.
Collapse
Affiliation(s)
- Hongda Huang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Caroline B Strømme
- Biotech Research and Innovation Centre (BRIC) Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Giulia Saredi
- Biotech Research and Innovation Centre (BRIC) Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Martina Hödl
- Biotech Research and Innovation Centre (BRIC) Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Anne Strandsby
- Biotech Research and Innovation Centre (BRIC) Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Cristina González-Aguilera
- Biotech Research and Innovation Centre (BRIC) Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Shoudeng Chen
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Anja Groth
- Biotech Research and Innovation Centre (BRIC) Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
36
|
Annunziato AT. The Fork in the Road: Histone Partitioning During DNA Replication. Genes (Basel) 2015; 6:353-71. [PMID: 26110314 PMCID: PMC4488668 DOI: 10.3390/genes6020353] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
In the following discussion the distribution of histones at the replication fork is examined, with specific attention paid to the question of H3/H4 tetramer "splitting." After a presentation of early experiments surrounding this topic, more recent contributions are detailed. The implications of these findings with respect to the transmission of histone modifications and epigenetic models are also addressed.
Collapse
Affiliation(s)
- Anthony T Annunziato
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
37
|
Svensson JP, Shukla M, Menendez-Benito V, Norman-Axelsson U, Audergon P, Sinha I, Tanny JC, Allshire RC, Ekwall K. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin. Genome Res 2015; 25:872-83. [PMID: 25778913 PMCID: PMC4448683 DOI: 10.1101/gr.188870.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation-exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation.
Collapse
Affiliation(s)
- J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Manu Shukla
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | | | - Ulrika Norman-Axelsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Pauline Audergon
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Indranil Sinha
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 57 Huddinge, Sweden
| |
Collapse
|
38
|
Yang F, Kemp CJ, Henikoff S. Anthracyclines induce double-strand DNA breaks at active gene promoters. Mutat Res 2015; 773:9-15. [PMID: 25705119 DOI: 10.1016/j.mrfmmm.2015.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Doxorubicin is a widely used chemotherapeutic drug that intercalates between DNA base-pairs and poisons Topoisomerase II, although the mechanistic basis for cell killing remains speculative. Doxorubicin and related anthracycline compounds have been shown to increase nucleosome turnover and/or eviction around promoters, which suggests that the resulting enhanced exposure of DNA might underlie cell killing. Previously, we showed that low doses of anthracyclines increase nucleosome turnover around active gene promoters, which suggests that loss of nucleosomes might contribute to cancer cell killing. Here we apply a genome-wide method to precisely map DNA double-strand breaks (DSBs) in cancer cells. We find that spontaneous DSBs occur preferentially around promoters of active genes, and that both anthracyclines and etoposide, a Topoisomerase II poison, increase DSBs around promoters, although CpG islands are conspicuously protected from DSBs. We propose that torsion-based enhancement of nucleosome turnover by anthracyclines exposes promoter DNA, ultimately causing DSBs around promoters.
Collapse
|
39
|
Kallappagoudar S, Yadav RK, Lowe BR, Partridge JF. Histone H3 mutations--a special role for H3.3 in tumorigenesis? Chromosoma 2015; 124:177-89. [PMID: 25773741 PMCID: PMC4446520 DOI: 10.1007/s00412-015-0510-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
Brain tumors are the most common solid tumors in children. Pediatric high-grade glioma (HGG) accounts for ∼8–12 % of these brain tumors and is a devastating disease as 70–90 % of patients die within 2 years of diagnosis. The failure to advance therapy for these children over the last 30 years is largely due to limited knowledge of the molecular basis for these tumors and a lack of disease models. Recently, sequencing of tumor cells revealed that histone H3 is frequently mutated in pediatric HGG, with up to 78 % of diffuse intrinsic pontine gliomas (DIPGs) carrying K27M and 36 % of non-brainstem gliomas carrying either K27M or G34R/V mutations. Although mutations in many chromatin modifiers have been identified in cancer, this was the first demonstration that histone mutations may be drivers of disease. Subsequent studies have identified high-frequency mutation of histone H3 to K36M in chondroblastomas and to G34W/L in giant cell tumors of bone, which are diseases of adolescents and young adults. Interestingly, the G34 mutations, the K36M mutations, and the majority of K27M mutations occur in genes encoding the replacement histone H3.3. Here, we review the peculiar characteristics of histone H3.3 and use this information as a backdrop to highlight current thinking about how the identified mutations may contribute to disease development.
Collapse
Affiliation(s)
- Satish Kallappagoudar
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | | | | | | |
Collapse
|
40
|
Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 2015; 16:178-89. [DOI: 10.1038/nrm3941] [Citation(s) in RCA: 650] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Gurard-Levin ZA, Quivy JP, Almouzni G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 2015; 83:487-517. [PMID: 24905786 DOI: 10.1146/annurev-biochem-060713-035536] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.
Collapse
Affiliation(s)
- Zachary A Gurard-Levin
- Institut Curie, Centre de Recherche; CNRS UMR 3664; Equipe Labellisée, Ligue contre le Cancer; and Université Pierre et Marie Curie, Paris F-75248, France;
| | | | | |
Collapse
|
42
|
Abstract
Histones package and compact DNA by assembling into nucleosome core particles. Most histones are synthesized at S phase for rapid deposition behind replication forks. In addition, the replacement of histones deposited during S phase by variants that can be deposited independently of replication provide the most fundamental level of chromatin differentiation. Alternative mechanisms for depositing different variants can potentially establish and maintain epigenetic states. Variants have also evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, and other processes. Investigations into the evolution, structure, and metabolism of histone variants provide a foundation for understanding the participation of chromatin in important cellular processes and in epigenetic memory.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024
| | - M Mitchell Smith
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
43
|
Harada A, Maehara K, Sato Y, Konno D, Tachibana T, Kimura H, Ohkawa Y. Incorporation of histone H3.1 suppresses the lineage potential of skeletal muscle. Nucleic Acids Res 2014; 43:775-86. [PMID: 25539924 PMCID: PMC4333396 DOI: 10.1093/nar/gku1346] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage potential is triggered by lineage-specific transcription factors in association with changes in the chromatin structure. Histone H3.3 variant is thought to play an important role in the regulation of lineage-specific genes. To elucidate the function of H3.3 in myogenic differentiation, we forced the expression of GFP-H3.1 to alter the balance between H3.1 and H3.3 in mouse C2C12 cells that could be differentiated into myotubes. GFP-H3.1 replaced H3.3 in the regulatory regions of skeletal muscle (SKM) genes and induced a decrease of H3K4 trimethylation (H3K4me3) and increase of H3K27 trimethylation (H3K27me3). Similar results were obtained by H3.3 knockdown. In contrast, MyoD-dependent H3.3 incorporation into SKM genes in fibroblasts induced an increase of H3K4me3 and H3K27me3. In mouse embryos, a bivalent modification of H3K4me3 and H3K27me3 was formed on H3.3-incorporated SKM genes before embryonic skeletal muscle differentiation. These results suggest that lineage potential is established through a selective incorporation of specific H3 variants that governs the balance of histone modifications.
Collapse
Affiliation(s)
- Akihito Harada
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazumitsu Maehara
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuko Sato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0021, Japan
| | - Daijiro Konno
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | - Taro Tachibana
- Department Bioengineering, Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0021, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0021, Japan
| |
Collapse
|
44
|
Ha M, Kraushaar DC, Zhao K. Genome-wide analysis of H3.3 dissociation reveals high nucleosome turnover at distal regulatory regions of embryonic stem cells. Epigenetics Chromatin 2014; 7:38. [PMID: 25598842 PMCID: PMC4297464 DOI: 10.1186/1756-8935-7-38] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The histone variant H3.3 plays a critical role in maintaining the pluripotency of embryonic stem cells (ESCs) by regulating gene expression programs important for lineage specification. H3.3 is deposited by various chaperones at regulatory sites, gene bodies, and certain heterochromatic sites such as telomeres and centromeres. Using Tet-inhibited expression of epitope-tagged H3.3 combined with ChIP-Seq we undertook genome-wide measurements of H3.3 dissociation rates across the ESC genome and examined the relationship between H3.3-nucleosome turnover and ESC-specific transcription factors, chromatin modifiers, and epigenetic marks. RESULTS Our comprehensive analysis of H3.3 dissociation rates revealed distinct H3.3 dissociation dynamics at various functional chromatin domains. At transcription start sites, H3.3 dissociates rapidly with the highest rate at nucleosome-depleted regions (NDRs) just upstream of Pol II binding, followed by low H3.3 dissociation rates across gene bodies. H3.3 turnover at transcription start sites, gene bodies, and transcription end sites was positively correlated with transcriptional activity. H3.3 is found decorated with various histone modifications that regulate transcription and maintain chromatin integrity. We find greatly varying H3.3 dissociation rates across various histone modification domains: high dissociation rates at active histone marks and low dissociation rates at heterochromatic marks. Well- defined zones of high H3.3-nucleosome turnover were detected at binding sites of ESC-specific pluripotency factors and chromatin remodelers, suggesting an important role for H3.3 in facilitating protein binding. Among transcription factor binding sites we detected higher H3.3 turnover at distal cis-acting sites compared to proximal genic transcription factor binding sites. Our results imply that fast H3.3 dissociation is a hallmark of interactions between DNA and transcriptional regulators. CONCLUSION Our study demonstrates that H3.3 turnover and nucleosome stability vary greatly across the chromatin landscape of embryonic stem cells. The presence of high H3.3 turnover at RNA Pol II binding sites at extragenic regions as well as at transcription start and end sites of genes, suggests a specific role for H3.3 in transcriptional initiation and termination. On the other hand, the presence of well-defined zones of high H3.3 dissociation at transcription factor and chromatin remodeler binding sites point to a broader role in facilitating accessibility.
Collapse
Affiliation(s)
- Misook Ha
- Samsung Advanced Institute of Technology, Samsung Electronics Corporation, Yongin-Si, 446-712 Gyeonggi-Do South Korea
| | - Daniel C Kraushaar
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892 USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892 USA
| |
Collapse
|
45
|
Ramachandran S, Zentner GE, Henikoff S. Asymmetric nucleosomes flank promoters in the budding yeast genome. Genome Res 2014; 25:381-90. [PMID: 25491770 PMCID: PMC4352886 DOI: 10.1101/gr.182618.114] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleosomes in active chromatin are dynamic, but whether they have distinct
structural conformations is unknown. To identify nucleosomes with alternative
structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that
5% of budding yeast (Saccharomyces cerevisiae) nucleosome positions
have asymmetric histone-DNA interactions. These asymmetric interactions are enriched
at nucleosome positions that flank promoters. Micrococcal nuclease (MNase)
sequence-based profiles of asymmetric nucleosome positions revealed a corresponding
asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA
contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin
immunoprecipitation mapping of selected nucleosome remodelers indicated that
asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is
required for maintaining nucleosomes at asymmetric positions. These results imply
that the asymmetric nucleosome-RSC complex is a metastable intermediate representing
partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis
during chromatin remodeling.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Gabriel E Zentner
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
46
|
Abstract
The widespread adoption of short-read DNA sequencing as a digital epigenomic readout platform has motivated the development of genome-wide tools that achieve base-pair resolution. New methods for footprinting and affinity purification of nucleosomes, RNA polymerases, chromatin remodellers and transcription factors have increased the resolution of epigenomic profiling by two orders of magnitude, leading to new insights into how the chromatin landscape affects gene regulation. These digital epigenomic tools have also been applied to directly profile both turnover kinetics and transcription in situ. In this Review, we describe how these new genome-wide tools allow interrogation of diverse aspects of the epigenome.
Collapse
|
47
|
Campos EI, Stafford JM, Reinberg D. Epigenetic inheritance: histone bookmarks across generations. Trends Cell Biol 2014; 24:664-74. [PMID: 25242115 DOI: 10.1016/j.tcb.2014.08.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022]
Abstract
Multiple circuitries ensure that cells respond correctly to the environmental cues within defined cellular programs. There is increasing evidence suggesting that cellular memory for these adaptive processes can be passed on through cell divisions and generations. However, the mechanisms by which this epigenetic information is transferred remain elusive, largely because it requires that such memory survive through gross chromatin remodeling events during DNA replication, mitosis, meiosis, and developmental reprogramming. Elucidating the processes by which epigenetic information survives and is transmitted is a central challenge in biology. In this review, we consider recent advances in understanding mechanisms of epigenetic inheritance with a focus on histone segregation at the replication fork, and how an epigenetic memory may get passed through the paternal lineage.
Collapse
Affiliation(s)
- Eric I Campos
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - James M Stafford
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
48
|
Abstract
In pluripotent stem cells, the interplay between signaling cues, epigenetic regulators and transcription factors orchestrates developmental potency. Flexibility in gene expression control is imparted by molecular changes to the nucleosomes, the building block of chromatin. Here, we review the current understanding of the role of chromatin as a plastic and integrative platform to direct gene expression changes in pluripotent stem cells, giving rise to distinct pluripotent states. We will further explore the concept of epigenetic asymmetry, focusing primarily on histone stoichiometry and their associated modifications, that is apparent at both the nucleosome and chromosome-wide levels, and discuss the emerging importance of these asymmetric chromatin configurations in diversifying epigenetic states and their implications for cell fate control.
Collapse
Affiliation(s)
- Wee-Wei Tee
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
49
|
Dutta B, Ren Y, Hao P, Sim KH, Cheow E, Adav S, Tam JP, Sze SK. Profiling of the Chromatin-associated Proteome Identifies HP1BP3 as a Novel Regulator of Cell Cycle Progression. Mol Cell Proteomics 2014; 13:2183-97. [PMID: 24830416 DOI: 10.1074/mcp.m113.034975] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Indexed: 12/31/2022] Open
Abstract
The chromatin-associated proteome (chromatome) regulates cellular gene expression by restricting access of transcriptional machinery to template DNA, and dynamic re-modeling of chromatin structure is required to regulate critical cell functions including growth and replication, DNA repair and recombination, and oncogenic transformation in progression to cancer. Central to the control of these processes is efficient regulation of the host cell cycle, which is maintained by rapid changes in chromatin conformation during normal cycle progression. A global overview of chromatin protein organization is therefore essential to fully understand cell cycle regulation, but the influence of the chromatome and chromatin binding topology on host cell cycle progression remains poorly defined. Here we used partial MNase digestion together with iTRAQ-based high-throughput quantitative proteomics to quantify chromatin-associated proteins during interphase progression. We identified a total of 481 proteins with high confidence that were involved in chromatin-dependent events including transcriptional regulation, chromatin re-organization, and DNA replication and repair, whereas the quantitative data revealed the temporal interactions of these proteins with chromatin during interphase progression. When combined with biochemical and functional assays, these data revealed a strikingly dynamic association of protein HP1BP3 with the chromatin complex during different stages of interphase, and uncovered a novel regulatory role for this molecule in transcriptional regulation. We report that HP1BP3 protein maintains heterochromatin integrity during G1-S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yan Ren
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Piliang Hao
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Kae Hwan Sim
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Esther Cheow
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Sunil Adav
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - James P Tam
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siu Kwan Sze
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
50
|
Abstract
Eukaryotic gene regulation involves a balance between packaging of the genome into nucleosomes and enabling access to regulatory proteins and RNA polymerase. Nucleosomes, consisting of DNA wrapped around a core of histone proteins, are integral components of gene regulation that restrict access to both regulatory sequences and the underlying template. In this review, Weber and Henikoff consider how histone variants and their interacting partners are involved in transcriptional regulation through the creation of unique chromatin states. Eukaryotic gene regulation involves a balance between packaging of the genome into nucleosomes and enabling access to regulatory proteins and RNA polymerase. Nucleosomes are integral components of gene regulation that restrict access to both regulatory sequences and the underlying template. Whereas canonical histones package the newly replicated genome, they can be replaced with histone variants that alter nucleosome structure, stability, dynamics, and, ultimately, DNA accessibility. Here we consider how histone variants and their interacting partners are involved in transcriptional regulation through the creation of unique chromatin states.
Collapse
Affiliation(s)
- Christopher M Weber
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|