1
|
Farmer AJ, Katariya R, Islam S, Rayhan MSA, Inlow MH, Ahmad SM, Schwab KR. trithorax is an essential regulator of cardiac Hox gene expression and anterior-posterior patterning of the Drosophila embryonic heart tube. Biol Open 2025; 14:bio061919. [PMID: 40172069 PMCID: PMC11993250 DOI: 10.1242/bio.061919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 04/04/2025] Open
Abstract
The precise regulation of transcription required for embryonic development is partially controlled by the actions of the Trithorax group (TrxG) and Polycomb group (PcG) proteins. The genes trithorax (trx), trithorax-related (trr), and SET domain containing 1 (Set1) encode COMPASS-like histone methyltransferases, a subgroup of TrxG proteins that impart H3K4 methylation modifications onto chromatin in order to activate and maintain transcription. In this study, we identify the role of these genes in the development of the embryonic heart of the fruit fly Drosophila melanogaster. trx, trr, and Set1 independently ensure proper cardiac cell divisions. Additionally, trx regulation of collinear Hox expression is necessary for the anterior-posterior cardiac patterning of the linear heart tube. trx inactivation in Drosophila results in a remarkable homeotic transformation of the posterior heart-proper segment into an aorta-like fate due to the loss of posterior abdominal A expression. Furthermore, cardiac expression of Antennapedia, Ultrabithorax, and Abdominal B is also deregulated in trx mutants. Together, these data suggest that the COMPASS-like histone methyltransferases are essential developmental regulators of cardiogenesis, being necessary for both cardiac cell divisions and heart patterning.
Collapse
Affiliation(s)
- Adam J. Farmer
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Rajnandani Katariya
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Sumaiya Islam
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Md. Sayeed Abu Rayhan
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Mark H. Inlow
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN 47809, USA
| | - Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Kristopher R. Schwab
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
2
|
Sánchez-Posada J, Derrick CJ, Noël ES. morphoHeart: A quantitative tool for integrated 3D morphometric analyses of heart and ECM during embryonic development. PLoS Biol 2025; 23:e3002995. [PMID: 39879226 PMCID: PMC11778784 DOI: 10.1371/journal.pbio.3002995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Heart development involves the complex structural remodelling of a linear heart tube into an asymmetrically looped and ballooned organ. Previous studies have associated regional expansion of extracellular matrix (ECM) space with tissue morphogenesis during development. We have developed morphoHeart, a 3D tissue segmentation and morphometry software with a user-friendly graphical interface (GUI) that delivers the first integrated 3D visualisation and multiparametric analysis of both heart and ECM morphology in live embryos. morphoHeart reveals that the ECM undergoes regional dynamic expansion and reduction during cardiac development, concomitant with chamber-specific morphological maturation. We use morphoHeart to demonstrate that regionalised ECM expansion driven by the ECM crosslinker Hapln1a promotes atrial lumen expansion during heart development. Finally, morphoHeart's GUI expands its use beyond that of cardiac tissue, allowing its segmentation and morphometric analysis tools to be applied to z-stack images of any fluorescently labelled tissue.
Collapse
Affiliation(s)
- Juliana Sánchez-Posada
- School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Christopher J. Derrick
- Biosciences Institute, Faculty of Biomedical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Emily S. Noël
- School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
3
|
Hasan MR, Kump AJ, Stepaniak EC, Panta M, Shashidhar K, Katariya R, Sabbir MK, Schwab KR, Inlow MH, Chen Y, Ahmad SM. Genome-Wide Expression Profiling and Phenotypic Analysis of Downstream Targets Identify the Fox Transcription Factor Jumeau as a Master Regulator of Cardiac Progenitor Cell Division. Int J Mol Sci 2024; 25:12933. [PMID: 39684645 DOI: 10.3390/ijms252312933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Forkhead box (Fox) transcription factors (TFs) mediate multiple conserved cardiogenic processes in both mammals and Drosophila. Our prior work identified the roles of two Drosophila Fox genes, jumeau (jumu) and Checkpoint suppressor 1-like (CHES-1-like), in cardiac progenitor cell specification and division, and in the proper positioning of cardiac cell subtypes. Fox TF binding sites are also significantly enriched in the enhancers of genes expressed in the heart, suggesting that these genes may play a core regulatory role in one or more of these cardiogenic processes. We identified downstream targets of Jumu by comparing transcriptional expression profiles of flow cytometry-sorted mesodermal cells from wild-type embryos and embryos completely lacking the jumu gene and found that genes with functional annotation and ontological features suggesting roles in cell division were overrepresented among Jumu targets. Phenotypic analysis of a subset of these targets identified 21 jumu-regulated genes that mediate cardiac progenitor cell division, one of which, Retinal Homeobox (Rx), was characterized in more detail. Finally, the observation that many of these 21 genes and/or their orthologs exhibit genetic or physical interactions among themselves indicates that Jumu is a master regulator acting as a hub of a cardiac progenitor cell division-mediating network.
Collapse
Affiliation(s)
- M Rezaul Hasan
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Andrew J Kump
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Evelyn C Stepaniak
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Manoj Panta
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Kuncha Shashidhar
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Rajnandani Katariya
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Mofazzal K Sabbir
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Kristopher R Schwab
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Mark H Inlow
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Department of Mathematical Sciences, Indiana State University, Terre Haute, IN 47809, USA
| | - Ye Chen
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86001, USA
| | - Shaad M Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
4
|
Moriya A, Nakato E, Li JP, Nakato H. Chondroitin sulfate in invertebrate development. PROTEOGLYCAN RESEARCH 2024; 2:e70009. [PMID: 39664970 PMCID: PMC11632948 DOI: 10.1002/pgr2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/16/2024] [Indexed: 12/13/2024]
Abstract
Chondroitin sulfate (CS) is one of the most evolutionarily conserved glycosaminoglycans (GAGs). Although CS's function in skeletal development is well established in vertebrates, CS exists in more primitive animal species with no cartilage or bone, such as C. elegans and Drosophila, indicating that the original role of CS was not in the skeletal system. In this review, we focus on the roles of CS and the mechanisms of action during development of two genetically trackable model organisms, C. elegans and Drosophila.
Collapse
Affiliation(s)
- Ayano Moriya
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Koh WS, Knudsen C, Izumikawa T, Nakato E, Grandt K, Kinoshita-Toyoda A, Toyoda H, Nakato H. Regulation of morphogen pathways by a Drosophila chondroitin sulfate proteoglycan Windpipe. J Cell Sci 2023; 136:jcs260525. [PMID: 36897575 PMCID: PMC10113886 DOI: 10.1242/jcs.260525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Morphogens provide quantitative and robust signaling systems to achieve stereotypic patterning and morphogenesis. Heparan sulfate (HS) proteoglycans (HSPGs) are key components of such regulatory feedback networks. In Drosophila, HSPGs serve as co-receptors for a number of morphogens, including Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp) and Unpaired (Upd, or Upd1). Recently, Windpipe (Wdp), a chondroitin sulfate (CS) proteoglycan (CSPG), was found to negatively regulate Upd and Hh signaling. However, the roles of Wdp, and CSPGs in general, in morphogen signaling networks are poorly understood. We found that Wdp is a major CSPG with 4-O-sulfated CS in Drosophila. Overexpression of wdp modulates Dpp and Wg signaling, showing that it is a general regulator of HS-dependent pathways. Although wdp mutant phenotypes are mild in the presence of morphogen signaling buffering systems, this mutant in the absence of Sulf1 or Dally, molecular hubs of the feedback networks, produces high levels of synthetic lethality and various severe morphological phenotypes. Our study indicates a close functional relationship between HS and CS, and identifies the CSPG Wdp as a novel component in morphogen feedback pathways.
Collapse
Affiliation(s)
- Woo Seuk Koh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Collin Knudsen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tomomi Izumikawa
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Eriko Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin Grandt
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Souidi A, Nakamori M, Zmojdzian M, Jagla T, Renaud Y, Jagla K. Deregulations of miR-1 and its target Multiplexin promote dilated cardiomyopathy associated with myotonic dystrophy type 1. EMBO Rep 2023; 24:e56616. [PMID: 36852954 PMCID: PMC10074075 DOI: 10.15252/embr.202256616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults. It is caused by the excessive expansion of noncoding CTG repeats, which when transcribed affects the functions of RNA-binding factors with adverse effects on alternative splicing, processing, and stability of a large set of muscular and cardiac transcripts. Among these effects, inefficient processing and down-regulation of muscle- and heart-specific miRNA, miR-1, have been reported in DM1 patients, but the impact of reduced miR-1 on DM1 pathogenesis has been unknown. Here, we use Drosophila DM1 models to explore the role of miR-1 in cardiac dysfunction in DM1. We show that miR-1 down-regulation in the heart leads to dilated cardiomyopathy (DCM), a DM1-associated phenotype. We combined in silico screening for miR-1 targets with transcriptional profiling of DM1 cardiac cells to identify miR-1 target genes with potential roles in DCM. We identify Multiplexin (Mp) as a new cardiac miR-1 target involved in DM1. Mp encodes a collagen protein involved in cardiac tube formation in Drosophila. Mp and its human ortholog Col15A1 are both highly enriched in cardiac cells of DCM-developing DM1 flies and in heart samples from DM1 patients with DCM, respectively. When overexpressed in the heart, Mp induces DCM, whereas its attenuation rescues the DCM phenotype of aged DM1 flies. Reduced levels of miR-1 and consecutive up-regulation of its target Mp/Col15A1 might be critical in DM1-associated DCM.
Collapse
Affiliation(s)
- Anissa Souidi
- iGReD Genetics Reproduction and Development Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Monika Zmojdzian
- iGReD Genetics Reproduction and Development Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Teresa Jagla
- iGReD Genetics Reproduction and Development Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Yoan Renaud
- iGReD Genetics Reproduction and Development Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Krzysztof Jagla
- iGReD Genetics Reproduction and Development Institute, Clermont Auvergne University, Clermont-Ferrand, France
| |
Collapse
|
7
|
Ducuing H, Gardette T, Pignata A, Kindbeiter K, Bozon M, Thoumine O, Delloye-Bourgeois C, Tauszig-Delamasure S, Castellani V. SlitC-PlexinA1 mediates iterative inhibition for orderly passage of spinal commissural axons through the floor plate. eLife 2020; 9:e63205. [PMID: 33345773 PMCID: PMC7775108 DOI: 10.7554/elife.63205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal commissural axon navigation across the midline in the floor plate requires repulsive forces from local Slit repellents. The long-held view is that Slits push growth cones forward and prevent them from turning back once they became sensitized to these cues after midline crossing. We analyzed with fluorescent reporters Slits distribution and FP glia morphology. We observed clusters of Slit-N and Slit-C fragments decorating a complex architecture of glial basal process ramifications. We found that PC2 proprotein convertase activity contributes to this pattern of ligands. Next, we studied Slit-C acting via PlexinA1 receptor shared with another FP repellent, the Semaphorin3B, through generation of a mouse model baring PlexinA1Y1815F mutation abrogating SlitC but not Sema3B responsiveness, manipulations in the chicken embryo, and ex vivo live imaging. This revealed a guidance mechanism by which SlitC constantly limits growth cone exploration, imposing ordered and forward-directed progression through aligned corridors formed by FP basal ramifications.
Collapse
Affiliation(s)
- Hugo Ducuing
- Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Faculté de Médecine et de PharmacieLyonFrance
| | - Thibault Gardette
- Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Faculté de Médecine et de PharmacieLyonFrance
| | - Aurora Pignata
- Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Faculté de Médecine et de PharmacieLyonFrance
| | - Karine Kindbeiter
- Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Faculté de Médecine et de PharmacieLyonFrance
| | - Muriel Bozon
- Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Faculté de Médecine et de PharmacieLyonFrance
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, UMR CNRS 5297 - University of BordeauxBordeauxFrance
| | - Céline Delloye-Bourgeois
- Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Faculté de Médecine et de PharmacieLyonFrance
| | - Servane Tauszig-Delamasure
- Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Faculté de Médecine et de PharmacieLyonFrance
| | - Valerie Castellani
- Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Faculté de Médecine et de PharmacieLyonFrance
| |
Collapse
|
8
|
Bonche R, Chessel A, Boisivon S, Smolen P, Thérond P, Pizette S. Two different sources of Perlecan cooperate for its function in the basement membrane of the Drosophila wing imaginal disc. Dev Dyn 2020; 250:542-561. [PMID: 33269518 DOI: 10.1002/dvdy.274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The basement membrane (BM) provides mechanical shaping of tissues during morphogenesis. The Drosophila BM proteoglycan Perlecan is vital for this process in the wing imaginal disc. This function is thought to be fostered by the heparan sulfate chains attached to the domain I of vertebrate Perlecan. However, this domain is not present in Drosophila, and the source of Perlecan for the wing imaginal disc BM remains unclear. Here, we tackle these two issues. RESULTS In silico analysis shows that Drosophila Perlecan holds a domain I. Moreover, by combining in situ hybridization of Perlecan mRNA and protein staining, together with tissue-specific Perlecan depletion, we find that there is an autonomous and a non-autonomous source for Perlecan deposition in the wing imaginal disc BM. We further show that both sources cooperate for correct distribution of Perlecan in the wing imaginal disc and morphogenesis of this tissue. CONCLUSIONS These results show that Perlecan is fully conserved in Drosophila, providing a valuable in vivo model system to study its role in BM function. The existence of two different sources for Perlecan incorporation in the wing imaginal disc BM raises the possibility that inter-organ communication mediated at the level of the BM is involved in organogenesis.
Collapse
Affiliation(s)
- Raphaël Bonche
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Aline Chessel
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Séverine Boisivon
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Prune Smolen
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Pascal Thérond
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Sandrine Pizette
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
9
|
Csordás G, Grawe F, Uhlirova M. Eater cooperates with Multiplexin to drive the formation of hematopoietic compartments. eLife 2020; 9:57297. [PMID: 33026342 PMCID: PMC7541089 DOI: 10.7554/elife.57297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Blood development in multicellular organisms relies on specific tissue microenvironments that nurture hematopoietic precursors and promote their self-renewal, proliferation, and differentiation. The mechanisms driving blood cell homing and their interactions with hematopoietic microenvironments remain poorly understood. Here, we use the Drosophila melanogaster model to reveal a pivotal role for basement membrane composition in the formation of hematopoietic compartments. We demonstrate that by modulating extracellular matrix components, the fly blood cells known as hemocytes can be relocated to tissue surfaces where they function similarly to their natural hematopoietic environment. We establish that the Collagen XV/XVIII ortholog Multiplexin in the tissue-basement membranes and the phagocytosis receptor Eater on the hemocytes physically interact and are necessary and sufficient to induce immune cell-tissue association. These results highlight the cooperation of Multiplexin and Eater as an integral part of a homing mechanism that specifies and maintains hematopoietic sites in Drosophila.
Collapse
Affiliation(s)
- Gábor Csordás
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ferdinand Grawe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Loganathan R, Little CD, Rongish BJ. Extracellular matrix dynamics in tubulogenesis. Cell Signal 2020; 72:109619. [PMID: 32247774 DOI: 10.1016/j.cellsig.2020.109619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Biological tubes form in a variety of shapes and sizes. Tubular topology of cells and tissues is a widely recognizable histological feature of multicellular life. Fluid secretion, storage, transport, absorption, exchange, and elimination-processes central to metazoans-hinge on the exquisite tubular architectures of cells, tissues, and organs. In general, the apparent structural and functional complexity of tubular tissues and organs parallels the architectural and biophysical properties of their constitution, i.e., cells and the extracellular matrix (ECM). Together, cellular and ECM dynamics determine the developmental trajectory, topological characteristics, and functional efficacy of biological tubes. In this review of tubulogenesis, we highlight the multifarious roles of ECM dynamics-the less recognized and poorly understood morphogenetic counterpart of cellular dynamics. The ECM is a dynamic, tripartite composite spanning the luminal, abluminal, and interstitial space within the tubulogenic realm. The critical role of ECM dynamics in the determination of shape, size, and function of tubes is evinced by developmental studies across multiple levels-from morphological through molecular-in model tubular organs.
Collapse
Affiliation(s)
| | - Charles D Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Brenda J Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
11
|
Wang T, Morency DT, Harris N, Davis GW. Epigenetic Signaling in Glia Controls Presynaptic Homeostatic Plasticity. Neuron 2020; 105:491-505.e3. [PMID: 31810838 PMCID: PMC7518042 DOI: 10.1016/j.neuron.2019.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 01/02/2023]
Abstract
Epigenetic gene regulation shapes neuronal fate in the embryonic nervous system. Post-embryonically, epigenetic signaling within neurons has been associated with impaired learning, autism, ataxia, and schizophrenia. Epigenetic factors are also enriched in glial cells. However, little is known about epigenetic signaling in glia and nothing is known about the intersection of glial epigenetic signaling and presynaptic homeostatic plasticity. During a screen for genes involved in presynaptic homeostatic synaptic plasticity, we identified an essential role for the histone acetyltransferase and deubiquitinase SAGA complex in peripheral glia. We present evidence that the SAGA complex is necessary for homeostatic plasticity, demonstrating involvement of four new genes in homeostatic plasticity. This is also evidence that glia participate in presynaptic homeostatic plasticity, invoking previously unexplored intercellular, homeostatic signaling at a tripartite synapse. We show, mechanistically, SAGA signaling regulates the composition of and signaling from the extracellular matrix during homeostatic plasticity.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Danielle T Morency
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Nathan Harris
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Bretaud S, Guillon E, Karppinen SM, Pihlajaniemi T, Ruggiero F. Collagen XV, a multifaceted multiplexin present across tissues and species. Matrix Biol Plus 2020; 6-7:100023. [PMID: 33543021 PMCID: PMC7852327 DOI: 10.1016/j.mbplus.2020.100023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/09/2023] Open
Abstract
Type XV collagen is a non-fibrillar collagen that is associated with basement membranes and belongs to the multiplexin subset of the collagen superfamily. Collagen XV was initially studied because of its sequence homology with collagen XVIII/endostatin whose anti-angiogenic and anti-tumorigenic properties were subjects of wide interest in the past years. But during the last fifteen years, collagen XV has gained growing attention with increasing number of studies that have attributed new functions to this widely distributed collagen/proteoglycan hybrid molecule. Despite the cumulative evidence of its functional pleiotropy and its evolutionary conserved function, no review compiling the current state of the art about collagen XV is currently available. Here, we thus provide the first comprehensive view of the knowledge gathered so far on the molecular structure, tissue distribution and functions of collagen XV in development, tissue homeostasis and disease with an evolutionary perspective. We hope that our review will open new roads for promising research on collagen XV in the coming years. Type XV collagen belongs to the multiplexin subset of the collagen superfamily. It is evolutionarily conserved collagen and associated with basement membranes. This collagen/proteoglycan hybrid molecule contains an anti-angiogenic restin domain. It has important functions in the cardiovascular and the neuromuscular systems. Its expression is dysregulated in various diseases including cancers.
Collapse
Key Words
- Animal models
- BM, basement membrane
- BMZ, basement membrane zone
- COL, collagenous domain
- CS, chondroitin sulfate
- CSPG, chondroitin sulfate proteoglycan
- Collagen-related disease
- Collagens
- Development
- ECM, extracellular matrix
- Evolution
- Extracellular matrix
- GAG, glycosaminoglycan
- HFD, High fat diet
- HS, heparan sulfate
- HSPG, heparan sulfate proteoglycan
- Multiplexin
- NC, non-collagenous domain
- TD, trimerization domain
- TSPN, Thrombospondin-1 N-terminal like domain
- dpf, day post-fertilization
Collapse
Affiliation(s)
- Sandrine Bretaud
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| | - Emilie Guillon
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| | - Sanna-Maria Karppinen
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230 Oulu, Finland
| | - Taina Pihlajaniemi
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230 Oulu, Finland
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| |
Collapse
|
13
|
Blice-Baum AC, Guida MC, Hartley PS, Adams PD, Bodmer R, Cammarato A. As time flies by: Investigating cardiac aging in the short-lived Drosophila model. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1831-1844. [PMID: 30496794 PMCID: PMC6527462 DOI: 10.1016/j.bbadis.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Aging is associated with a decline in heart function across the tissue, cellular, and molecular levels. The risk of cardiovascular disease grows significantly over time, and as developed countries continue to see an increase in lifespan, the cost of cardiovascular healthcare for the elderly will undoubtedly rise. The molecular basis for cardiac function deterioration with age is multifaceted and not entirely clear, and there is a limit to what investigations can be performed on human subjects or mammalian models. Drosophila melanogaster has emerged as a useful model organism for studying aging in a short timeframe, benefitting from a suite of molecular and genetic tools and displaying highly conserved traits of cardiac senescence. Here, we discuss recent advances in our understanding of cardiac aging and how the fruit fly has aided in these developments.
Collapse
Affiliation(s)
| | - Maria Clara Guida
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Paul S Hartley
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK.
| | - Peter D Adams
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Vaughan L, Marley R, Miellet S, Hartley PS. The impact of SPARC on age-related cardiac dysfunction and fibrosis in Drosophila. Exp Gerontol 2018; 109:59-66. [PMID: 29032244 PMCID: PMC6094046 DOI: 10.1016/j.exger.2017.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022]
Abstract
Tissue fibrosis, an accumulation of extracellular matrix proteins such as collagen, accompanies cardiac ageing in humans and this is linked to an increased risk of cardiac failure. The mechanisms driving age-related tissue fibrosis and cardiac dysfunction are unclear, yet clinically important. Drosophila is amenable to the study of cardiac ageing as well as collagen deposition; however it is unclear whether collagen accumulates in the ageing Drosophila heart. This work examined collagen deposition and cardiac function in ageing Drosophila, in the context of reduced expression of collagen-interacting protein SPARC (Secreted Protein Acidic and Rich in Cysteine) an evolutionarily conserved protein linked with fibrosis. Heart function was measured using high frame rate videomicroscopy. Collagen deposition was monitored using a fluorescently-tagged collagen IV reporter (encoded by the Viking gene) and staining of the cardiac collagen, Pericardin. The Drosophila heart accumulated collagen IV and Pericardin as flies aged. Associated with this was a decline in cardiac function. SPARC heterozygous flies lived longer than controls and showed little to no age-related cardiac dysfunction. As flies of both genotypes aged, cardiac levels of collagen IV (Viking) and Pericardin increased similarly. Over-expression of SPARC caused cardiomyopathy and increased Pericardin deposition. The findings demonstrate that, like humans, the Drosophila heart develops a fibrosis-like phenotype as it ages. Although having no gross impact on collagen accumulation, reduced SPARC expression extended Drosophila lifespan and cardiac health span. It is proposed that cardiac fibrosis in humans may develop due to the activation of conserved mechanisms and that SPARC may mediate cardiac ageing by mechanisms more subtle than gross accumulation of collagen.
Collapse
Affiliation(s)
- Leigh Vaughan
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Sara Miellet
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK
| | - Paul S Hartley
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK.
| |
Collapse
|
15
|
Dou C, Wang H, Zhou G, Zhu H, Wen H, Xu S. Slit3 regulates migration of endothelial progenitor cells by activation of the RhoA/Rho kinase pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3398-3404. [PMID: 31949717 PMCID: PMC6962882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/15/2018] [Indexed: 06/10/2023]
Abstract
Nerves and blood vessels are in close proximity, indicating possible biomolecular interactions. Slit/Robo signaling pathways play critical roles in cell proliferation and motility. Endothelial progenitor cells (EPCs) participate in angiogenesis and vascular homeostasis. EPC migration induced by Slit3 has not been fully characterized. Thus, the expression of Slit and Robo in EPCs was examined, and the chemotactic functions of Slit3 and the Slit/Robo signaling pathway regulatory mechanisms were explored. We observed that EPCs express mainly the Robo4 receptor, and its ligand Slit3 plays roles in regulation of EPCs migration through activating the RhoA/Rho related kinases. Regulation of Slit3/-Robo4 signaling in EPCs may provide a new therapeutic target for ischemic disease.
Collapse
Affiliation(s)
- Chunjiang Dou
- Medical College, Northwest University for NationalitiesLanzhou, China
| | - Haixia Wang
- Department of Cardiology, Lanzhou University Second HospitalLanzhou, China
| | - Gang Zhou
- Department of Cardiology, Gansu Provincial HospitalLanzhou, China
| | - Hai Zhu
- Department of Cardiology, Gansu Provincial HospitalLanzhou, China
| | - Huazhi Wen
- Department of Cardiology, Gansu Provincial HospitalLanzhou, China
| | - Shengkai Xu
- Department of Cardiology, Gansu Provincial HospitalLanzhou, China
| |
Collapse
|
16
|
Zhao J, Mommersteeg MTM. Slit-Robo signalling in heart development. Cardiovasc Res 2018; 114:794-804. [PMID: 29538649 PMCID: PMC5909645 DOI: 10.1093/cvr/cvy061] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/16/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
The Slit ligands and their Robo receptors are well-known for their roles during axon guidance in the central nervous system but are still relatively unknown in the cardiac field. However, data from different animal models suggest a broad involvement of the pathway in many aspects of heart development, from cardiac cell migration and alignment, lumen formation, chamber formation, to the formation of the ventricular septum, semilunar and atrioventricular valves, caval veins, and pericardium. Absence of one or more of the genes in the pathway results in defects ranging from bicuspid aortic valves to ventricular septal defects and abnormal venous connections to the heart. Congenital heart defects are the most common congenital malformations found in life new-born babies and progress in methods for large scale human genetic testing has significantly enhanced the identification of new causative genes involved in human congenital heart disease. Recently, loss of function variants in ROBO1 have also been linked to ventricular septal defects and tetralogy of Fallot in patients. Here, we will give an overview of the role of the Slit-Robo signalling pathway in Drosophila, zebrafish, and mouse heart development. The extent of these data warrant further attention on the SLIT-ROBO signalling pathway as a candidate for an array of human congenital heart defects.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Mathilda T M Mommersteeg
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
17
|
Li Y, Zhang XT, Wang XY, Wang G, Chuai M, Münsterberg A, Yang X. Robo signaling regulates the production of cranial neural crest cells. Exp Cell Res 2017; 361:73-84. [PMID: 28987541 DOI: 10.1016/j.yexcr.2017.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/08/2017] [Accepted: 10/03/2017] [Indexed: 11/27/2022]
Abstract
Slit/Robo signaling plays an important role in the guidance of developing neurons in developing embryos. However, it remains obscure whether and how Slit/Robo signaling is involved in the production of cranial neural crest cells. In this study, we examined Robo1 deficient mice to reveal developmental defects of mouse cranial frontal and parietal bones, which are derivatives of cranial neural crest cells. Therefore, we determined the production of HNK1+ cranial neural crest cells in early chick embryo development after knock-down (KD) of Robo1 expression. Detection of markers for pre-migratory and migratory neural crest cells, PAX7 and AP-2α, showed that production of both was affected by Robo1 KD. In addition, we found that the transcription factor slug is responsible for the aberrant delamination/EMT of cranial neural crest cells induced by Robo1 KD, which also led to elevated expression of E- and N-Cadherin. N-Cadherin expression was enhanced when blocking FGF signaling with dominant-negative FGFR1 in half of the neural tube. Taken together, we show that Slit/Robo signaling influences the delamination/EMT of cranial neural crest cells, which is required for cranial bone development.
Collapse
Affiliation(s)
- Yan Li
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China; The key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Tan Zhang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Xiao-Yu Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Guang Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
18
|
Dissecting the Role of the Extracellular Matrix in Heart Disease: Lessons from the Drosophila Genetic Model. Vet Sci 2017; 4:vetsci4020024. [PMID: 29056683 PMCID: PMC5606597 DOI: 10.3390/vetsci4020024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
The extracellular matrix (ECM) is a dynamic scaffold within organs and tissues that enables cell morphogenesis and provides structural support. Changes in the composition and organisation of the cardiac ECM are required for normal development. Congenital and age-related cardiac diseases can arise from mis-regulation of structural ECM proteins (Collagen, Laminin) or their receptors (Integrin). Key regulators of ECM turnover include matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMPs). MMP expression is increased in mice, pigs, and dogs with cardiomyopathy. The complexity and longevity of vertebrate animals makes a short-lived, genetically tractable model organism, such as Drosophila melanogaster, an attractive candidate for study. We survey ECM macromolecules and their role in heart development and growth, which are conserved between Drosophila and vertebrates, with focus upon the consequences of altered expression or distribution. The Drosophila heart resembles that of vertebrates during early development, and is amenable to in vivo analysis. Experimental manipulation of gene function in a tissue- or temporally-regulated manner can reveal the function of adhesion or ECM genes in the heart. Perturbation of the function of ECM proteins, or of the MMPs that facilitate ECM remodelling, induces cardiomyopathies in Drosophila, including cardiodilation, arrhythmia, and cardia bifida, that provide mechanistic insight into cardiac disease in mammals.
Collapse
|
19
|
Mapping Heart Development in Flies: Src42A Acts Non-Autonomously to Promote Heart Tube Formation in Drosophila. Vet Sci 2017; 4:vetsci4020023. [PMID: 29056682 PMCID: PMC5606601 DOI: 10.3390/vetsci4020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Congenital heart defects, clinically identified in both small and large animals, are multifactorial and complex. Although heritable factors are known to have a role in cardiovascular disease, the full genetic aetiology remains unclear. Model organism research has proven valuable in providing a deeper understanding of the essential factors in heart development. For example, mouse knock-out studies reveal a role for the Integrin adhesion receptor in cardiac tissue. Recent research in Drosophila melanogaster (the fruit fly), a powerful experimental model, has demonstrated that the link between the extracellular matrix and the cell, mediated by Integrins, is required for multiple aspects of cardiogenesis. Here we test the hypothesis that Integrins signal to the heart cells through Src42A kinase. Using the powerful genetics and cell biology analysis possible in Drosophila, we demonstrate that Src42A acts in early events of heart tube development. Careful examination of mutant heart tissue and genetic interaction data suggests that Src42A’s role is independent of Integrin and the Integrin-related Focal Adhesion Kinase. Rather, Src42A acts non-autonomously by promoting programmed cell death of the amnioserosa, a transient tissue that neighbors the developing heart.
Collapse
|
20
|
McFaul CMJ, Fernandez-Gonzalez R. Shape of my heart: Cell-cell adhesion and cytoskeletal dynamics during Drosophila cardiac morphogenesis. Exp Cell Res 2017; 358:65-70. [PMID: 28389210 DOI: 10.1016/j.yexcr.2017.03.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/25/2022]
Abstract
The fruit fly Drosophila melanogaster has recently emerged as an excellent system to investigate the genetics of cardiovascular development and disease. Drosophila provides an inexpensive and genetically-tractable in vivo system with a large number of conserved features. In addition, the Drosophila embryo is transparent, and thus amenable to time-lapse fluorescence microscopy, as well as biophysical and pharmacological manipulations. One of the conserved aspects of heart development from Drosophila to humans is the initial assembly of a tube. Here, we review the cellular behaviours and molecular dynamics important for the initial steps of heart morphogenesis in Drosophila, with particular emphasis on the cell-cell adhesion and cytoskeletal networks that cardiac precursors use to move, coordinate their migration, interact with other tissues and eventually sculpt a beating heart.
Collapse
Affiliation(s)
- Christopher M J McFaul
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
21
|
Abstract
The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi) reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.
Collapse
|
22
|
Kim HY, Jackson TR, Davidson LA. On the role of mechanics in driving mesenchymal-to-epithelial transitions. Semin Cell Dev Biol 2016; 67:113-122. [PMID: 27208723 DOI: 10.1016/j.semcdb.2016.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/27/2023]
Abstract
The mesenchymal-to-epithelial transition (MET) is an intrinsically mechanical process describing a multi-step progression where autonomous mesenchymal cells gradually become tightly linked, polarized epithelial cells. METs are fundamental to a wide range of biological processes, including the evolution of multicellular organisms, generation of primary and secondary epithelia during development and organogenesis, and the progression of diseases including cancer. In these cases, there is an interplay between the establishment of cell polarity and the mechanics of neighboring cells and microenvironment. In this review, we highlight a spectrum of METs found in normal development as well as in pathological lesions, and provide insight into the critical role mechanics play at each step. We define MET as an independent process, distinct from a reverse-EMT, and propose questions to further explore the cellular and physical mechanisms of MET.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R Jackson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lance A Davidson
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
On the Morphology of the Drosophila Heart. J Cardiovasc Dev Dis 2016; 3:jcdd3020015. [PMID: 29367564 PMCID: PMC5715677 DOI: 10.3390/jcdd3020015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022] Open
Abstract
The circulatory system of Drosophilamelanogaster represents an easily amenable genetic model whose analysis at different levels, i.e., from single molecules up to functional anatomy, has provided new insights into general aspects of cardiogenesis, heart physiology and cardiac aging, to name a few examples. In recent years, the Drosophila heart has also attracted the attention of researchers in the field of biomedicine. This development is mainly due to the fact that several genes causing human heart disease are also present in Drosophila, where they play the same or similar roles in heart development, maintenance or physiology as their respective counterparts in humans. This review will attempt to briefly introduce the anatomy of the Drosophila circulatory system and then focus on the different cell types and non-cellular tissue that constitute the heart.
Collapse
|
24
|
Li XT, Yu Q, Zhou QS, Zhao X, Liu ZY, Cui WZ, Liu QX. BmRobo2/3 is required for axon guidance in the silkworm Bombyx mori. Gene 2015; 577:174-9. [PMID: 26625973 DOI: 10.1016/j.gene.2015.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/21/2015] [Accepted: 11/23/2015] [Indexed: 01/15/2023]
Abstract
Axon guidance is critical for proper wiring of the nervous system. During the neural development, the axon guidance molecules play a key role and direct axons to choose the correct way to reach the target. Robo, as the receptor of axon guidance molecule Slit, is evolutionarily conserved from planarians to humans. However, the function of Robo in the silkworm, Bombyx mori, remained unknown. In this study, we cloned robo2/3 from B. mori (Bmrobo2/3), a homologue of robo2/3 in Tribolium castaneum. Moreover, BmRobo2/3 was localized in the neuropil, and RNAi-mediated knockdown of Bmrobo2/3 resulted in the longitudinal connectives forming closer to the midline. These data demonstrate that BmRobo2/3 is required for axon guidance in the silkworm.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qi Yu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qi-Sheng Zhou
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiao Zhao
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhao-Yang Liu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei-Zheng Cui
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Qing-Xin Liu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
25
|
Abstract
The formation of functional musculoskeletal system relies on proper connectivity between muscles and their corresponding tendon cells. In Drosophila, larval muscles are born during early embryonic stages, and elongate toward tendons that are embedded within the ectoderm in later. The Slit/Robo signaling pathway had been implicated in the process of muscle elongation toward tendons. Here we discuss our recent findings regarding the critical contribution of Slit cleavage for immobilization and stabilization of the Slit signal on the tendon cells. Slit cleavage produces 2 polypeptides, the N-terminal Slit-N, which is extremely stable, undergoes oligomerization, and associates with the tendon cell surfaces, and the C-terminal Slit-C, which rapidly degrades. Slit cleavage leads to immobilization of Slit signaling on tendons, leading to a short-range repulsion, which eventually arrest further muscle elongation. Robo2, which is co-expressed with Slit by the tendon cells facilitates Slit cleavage. This activity does not require the cytoplasmic signaling domain of Robo2. We suggest that Robo2-dependent Slit cleavage, and the formation of Slit-N oligomers on the tendon cell surfaces direct muscle elongation, and provide a stop signal for the approaching muscle, through binding to Robo and Robo3 receptors expressed by the muscles.
Collapse
Affiliation(s)
- Elly Ordan
- a Department of Molecular Genetics ; Weizmann Institute of Science ; Rehovot , Israel
| | - Talila Volk
- a Department of Molecular Genetics ; Weizmann Institute of Science ; Rehovot , Israel
| |
Collapse
|
26
|
Hallier B, Hoffmann J, Roeder T, Tögel M, Meyer H, Paululat A. The bHLH Transcription Factor Hand Regulates the Expression of Genes Critical to Heart and Muscle Function in Drosophila melanogaster. PLoS One 2015; 10:e0134204. [PMID: 26252215 PMCID: PMC4529270 DOI: 10.1371/journal.pone.0134204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 07/08/2015] [Indexed: 11/29/2022] Open
Abstract
Hand proteins belong to the highly conserved family of basic Helix-Loop-Helix transcription factors and are critical to distinct developmental processes, including cardiogenesis and neurogenesis in vertebrates. In Drosophila melanogaster a single orthologous hand gene is expressed with absence of the respective protein causing semilethality during early larval instars. Surviving adult animals suffer from shortened lifespan associated with a disorganized myofibrillar structure being apparent in the dorsal vessel, the wing hearts and in midgut tissue. Based on these data, the major biological significance of Hand seems to be related to muscle development, maintenance or function; however, up to now the physiological basis for Hand functionality remains elusive. Thus, the identification of genes whose expression is, directly or indirectly, regulated by Hand has considerable relevance with respect to understanding its biological functionality in flies and vertebrates. Beneficially, hand mutants are viable and exhibit affected tissues, which renders Drosophila an ideal model to investigate up- or downregulated target genes by a comparative microarray approach focusing on the respective tissues from mutant specimens. Our present work reveals for the first time that Drosophila Hand regulates the expression of numerous genes of diverse physiological relevancy, including distinct factors required for proper muscle development and function such as Zasp52 or Msp-300. These results relate Hand activity to muscle integrity and functionality and may thus be highly beneficial to the evaluation of corresponding hand phenotypes.
Collapse
Affiliation(s)
- Benjamin Hallier
- Department of Zoology/Developmental Biology, University of Osnabrück, 49069 Osnabrück, Germany
| | - Julia Hoffmann
- Department of Animal Physiology, University of Kiel, 24098 Kiel, Germany
| | - Thomas Roeder
- Department of Animal Physiology, University of Kiel, 24098 Kiel, Germany
| | - Markus Tögel
- Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Heiko Meyer
- Department of Zoology/Developmental Biology, University of Osnabrück, 49069 Osnabrück, Germany
| | - Achim Paululat
- Department of Zoology/Developmental Biology, University of Osnabrück, 49069 Osnabrück, Germany
- * E-mail:
| |
Collapse
|
27
|
Ordan E, Brankatschk M, Dickson B, Schnorrer F, Volk T. Slit cleavage is essential for producing an active, stable, non-diffusible short-range signal that guides muscle migration. Development 2015; 142:1431-6. [PMID: 25813540 DOI: 10.1242/dev.119131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
Abstract
During organogenesis, secreted signaling proteins direct cell migration towards their target tissue. In Drosophila embryos, developing muscles are guided by signals produced by tendons to promote the proper attachment of muscles to tendons, essential for proper locomotion. Previously, the repulsive protein Slit, secreted by tendon cells, has been proposed to be an attractant for muscle migration. However, our findings demonstrate that through tight control of its distribution, Slit repulsion is used for both directing and arresting muscle migration. We show that Slit cleavage restricts its distribution to tendon cells, allowing it to function as a short-range repellent that directs muscle migration and patterning, and promotes their halt upon reaching the target site. Mechanistically, we show that Slit processing produces a rapidly degraded C-terminal fragment and an active, stable N-terminal polypeptide that is tethered to the tendon cell membrane, which further protects it from degradation. Consistently, the requirement for Slit processing can be bypassed by providing an uncleavable, membrane-bound form of Slit that is stable and is retained on expressing tendon cells. Moreover, muscle elongation appears to be extremely sensitive to Slit levels, as replacing the entire full-length Slit with the stable Slit-N-polypeptide results in excessive repulsion, which leads to a defective muscle pattern. These findings reveal a novel cleavage-dependent regulatory mechanism controlling Slit spatial distribution, which may operate in other Slit-dependent processes.
Collapse
Affiliation(s)
- Elly Ordan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Barry Dickson
- Institute of Molecular Pathology (IMP), Vienna A-1030, Austria
| | - Frank Schnorrer
- Institute of Molecular Pathology (IMP), Vienna A-1030, Austria
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
28
|
Abstract
Many of the major discoveries in the fields of genetics and developmental biology have been made using the fruit fly, Drosophila melanogaster. With regard to heart development, the conserved network of core cardiac transcription factors that underlies cardiogenesis has been studied in great detail in the fly, and the importance of several signaling pathways that regulate heart morphogenesis, such as Slit/Robo, was first shown in the fly model. Recent technological advances have led to a large increase in the genomic data available from patients with congenital heart disease (CHD). This has highlighted a number of candidate genes and gene networks that are potentially involved in CHD. To validate genes and genetic interactions among candidate CHD-causing alleles and to better understand heart formation in general are major tasks. The specific limitations of the various cardiac model systems currently employed (mammalian and fish models) provide a niche for the fly model, despite its evolutionary distance to vertebrates and humans. Here, we review recent advances made using the Drosophila embryo that identify factors relevant for heart formation. These underline how this model organism still is invaluable for a better understanding of CHD.
Collapse
|
29
|
Vogler G, Liu J, Iafe TW, Migh E, Mihály J, Bodmer R. Cdc42 and formin activity control non-muscle myosin dynamics during Drosophila heart morphogenesis. ACTA ACUST UNITED AC 2014; 206:909-22. [PMID: 25267295 PMCID: PMC4178965 DOI: 10.1083/jcb.201405075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cdc42 and the formins dDAAM and Diaphanous play pivotal roles in heart lumen formation through the spatiotemporal regulation of the actomyosin network. During heart formation, a network of transcription factors and signaling pathways guide cardiac cell fate and differentiation, but the genetic mechanisms orchestrating heart assembly and lumen formation remain unclear. Here, we show that the small GTPase Cdc42 is essential for Drosophila melanogaster heart morphogenesis and lumen formation. Cdc42 genetically interacts with the cardiogenic transcription factor tinman; with dDAAM which belongs to the family of actin organizing formins; and with zipper, which encodes nonmuscle myosin II. Zipper is required for heart lumen formation, and its spatiotemporal activity at the prospective luminal surface is controlled by Cdc42. Heart-specific expression of activated Cdc42, or the regulatory formins dDAAM and Diaphanous caused mislocalization of Zipper and induced ectopic heart lumina, as characterized by luminal markers such as the extracellular matrix protein Slit. Placement of Slit at the lumen surface depends on Cdc42 and formin function. Thus, Cdc42 and formins play pivotal roles in heart lumen formation through the spatiotemporal regulation of the actomyosin network.
Collapse
Affiliation(s)
- Georg Vogler
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Jiandong Liu
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Timothy W Iafe
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Ede Migh
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6726 Szeged, Hungary
| | - József Mihály
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6726 Szeged, Hungary
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| |
Collapse
|
30
|
Hollfelder D, Frasch M, Reim I. Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2014; 14:26. [PMID: 24935095 PMCID: PMC4068974 DOI: 10.1186/1471-213x-14-26] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/09/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. RESULTS Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. CONCLUSIONS Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational analysis suggests that the β6/β3/β8 interface of the laminin β LN domain is highly critical for formation of contiguous cardiac ECM layers. Certain mutations in the collagen IV triple helix-forming domain may exert a semi-dominant effect leading to an overall weakening of ECM structures as well as intracellular accumulation of collagen and other molecules, thus paralleling observations made in other organisms and in connection with collagen-related diseases.
Collapse
Affiliation(s)
- Dominik Hollfelder
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Manfred Frasch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Ingolf Reim
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|
31
|
Volk T, Wang S, Rotstein B, Paululat A. Matricellular proteins in development: perspectives from the Drosophila heart. Matrix Biol 2014; 37:162-6. [PMID: 24726952 DOI: 10.1016/j.matbio.2014.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/16/2014] [Accepted: 03/25/2014] [Indexed: 12/29/2022]
Abstract
The Drosophila model represents an attractive system in which to study the functional contribution of specific genes to organ development. Within the embryo, the heart tube serves as an informative developmental paradigm to analyze functional aspects of matricellular proteins. Here, we describe two essential extracellular matricellular proteins, Multiplexin (Mp) and Lonely heart (Loh). Each of these proteins contributes to the development and morphogenesis of the heart tube by regulating the activity/localization of essential extracellular proteins. Mp, which is secreted by heart cardioblasts and is specifically distributed in the lumen of the heart tube, binds to the signaling protein Slit, and facilitates its local signaling at the heart's luminal domain. Loh is an ADAMTS-like protein, which serves as an adapter protein to Pericardin (a collagen-like protein), promoting its specific localization at the abluminal domain of the heart tube. We also introduce the Drosophila orthologues of matricellular proteins present in mammals, including Thrombospondin, and SPARC, and discuss a possible role for Teneurins (Ten-A and Ten-M) in the heart. Understanding the role of these proteins provides a novel developmental perspective into the functional contribution of matricellular proteins to organ development.
Collapse
Affiliation(s)
- T Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - S Wang
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - B Rotstein
- Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, D-49069 Osnabrueck, Germany
| | - A Paululat
- Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastr. 11, D-49069 Osnabrueck, Germany
| |
Collapse
|
32
|
Methods to assess Drosophila heart development, function and aging. Methods 2014; 68:265-72. [PMID: 24727147 DOI: 10.1016/j.ymeth.2014.03.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 12/11/2022] Open
Abstract
In recent years the Drosophila heart has become an established model for many different aspects of human cardiac disease. This model has allowed identification of disease-causing mechanisms underlying congenital heart disease and cardiomyopathies and has permitted the study of underlying genetic, metabolic and age-related contributions to heart function. In this review we discuss methods currently employed in the analysis of the Drosophila heart structure and function, such as optical methods to infer heart function and performance, electrophysiological and mechanical approaches to characterize cardiac tissue properties, and conclude with histological techniques used in the study of heart development and adult structure.
Collapse
|