1
|
Lu Y, Zhang Y, Zhao H, Li Q, Liu Y, Zuo Y, Xu Q, Zuo H, Li Y, Li Y. Chronic stress model simulated by salbutamol promotes tumorigenesis of gastric cancer cells through β2-AR/ERK/EMT pathway. J Cancer 2022; 13:401-412. [PMID: 35069890 PMCID: PMC8771504 DOI: 10.7150/jca.65403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/21/2021] [Indexed: 01/04/2023] Open
Abstract
Chronic stress induced by long-term anxiety and depression can promote the malignant progression of gastric cancer. β2-adrenergic receptor (β2-AR) is a critical mediator for chronic stress-induced multiple processes of tumor cells. However, the function of chronic stress in gastric cancer and its potential mechanisms in vivo and in vitro, especially at the cellular level, remain unknown. Here, we provide further evidence that chronic stress affected behavior and hypothalamus pituitary adrenal axis related hormone levels in mice. Furthermore, immunofluorescence showed that emotion affected the expression of epithelial-mesenchymal transition (EMT) markers in patients' tissues. To address this, salbutamol, a specific agonist of β2-AR, was utilized for simulating chronic stress and demonstrating the mechanism of stress in tumor progression at the molecular level both in vivo and in vitro. Salbutamol significantly induced EMT, migration and invasion via ERK (Extracellular-signal-regulated kinase) phosphorylation, and the effects were reversed by the β2-AR antagonist ICI-118,551. The promoting effects of salbutamol on EMT, migration and invasion were inhibited by phosphorylation inhibitor of ERK PD98059 in vitro. Analysis of xenograft models revealed that salbutamol significantly promoted tumor growth and adrenal volume, while ICI-118,551 inhibited these effects. In addition, salbutamol increased the expression of mesenchymal marker N-cadherin and decreased epithelial marker E-cadherin in transplanted tumor tissue. In conclusion, salbutamol simulates a chronic stress model, which promotes tumorigenesis of gastric cancer cells through β2-AR/ERK/EMT pathway.
Collapse
Affiliation(s)
- YanJie Lu
- Department of Pathology, Chengde Medical College, Chengde, Hebei, China.,Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Ying Zhang
- Department of Pathology, Chengde Medical College, Chengde, Hebei, China
| | - HanZheng Zhao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingshan Li
- Department of oncology, The First Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Ying Liu
- Department of Pathology, Chengde Medical College, Chengde, Hebei, China
| | - YanZhen Zuo
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Qian Xu
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Hongyan Zuo
- Department of Pathology, Chengde Medical College, Chengde, Hebei, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Li
- Department of Pathology, Chengde Medical College, Chengde, Hebei, China.,Beijing Institute of Radiation Medicine, Beijing, China
| | - YuHong Li
- Department of Pathology, Chengde Medical College, Chengde, Hebei, China.,Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| |
Collapse
|
2
|
Al-Harazi O, Kaya IH, Al-Eid M, Alfantoukh L, Al Zahrani AS, Al Sebayel M, Kaya N, Colak D. Identification of Gene Signature as Diagnostic and Prognostic Blood Biomarker for Early Hepatocellular Carcinoma Using Integrated Cross-Species Transcriptomic and Network Analyses. Front Genet 2021; 12:710049. [PMID: 34659334 PMCID: PMC8511318 DOI: 10.3389/fgene.2021.710049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is considered the most common type of liver cancer and the fourth leading cause of cancer-related deaths in the world. Since the disease is usually diagnosed at advanced stages, it has poor prognosis. Therefore, reliable biomarkers are urgently needed for early diagnosis and prognostic assessment. Methods: We used genome-wide gene expression profiling datasets from human and rat early HCC (eHCC) samples to perform integrated genomic and network-based analyses, and discovered gene markers that are expressed in blood and conserved in both species. We then used independent gene expression profiling datasets for peripheral blood mononuclear cells (PBMCs) for eHCC patients and from The Cancer Genome Atlas (TCGA) database to estimate the diagnostic and prognostic performance of the identified gene signature. Furthermore, we performed functional enrichment, interaction networks and pathway analyses. Results: We identified 41 significant genes that are expressed in blood and conserved across species in eHCC. We used comprehensive clinical data from over 600 patients with HCC to verify the diagnostic and prognostic value of 41-gene-signature. We developed a prognostic model and a risk score using the 41-geneset that showed that a high prognostic index is linked to a worse disease outcome. Furthermore, our 41-gene signature predicted disease outcome independently of other clinical factors in multivariate regression analysis. Our data reveals a number of cancer-related pathways and hub genes, including EIF4E, H2AFX, CREB1, GSK3B, TGFBR1, and CCNA2, that may be essential for eHCC progression and confirm our gene signature's ability to detect the disease in its early stages in patients' biological fluids instead of invasive procedures and its prognostic potential. Conclusion: Our findings indicate that integrated cross-species genomic and network analysis may provide reliable markers that are associated with eHCC that may lead to better diagnosis, prognosis, and treatment options.
Collapse
Affiliation(s)
- Olfat Al-Harazi
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ibrahim H Kaya
- AlFaisal University, College of Medicine, Riyadh, Saudi Arabia
| | - Maha Al-Eid
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Lina Alfantoukh
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ali Saeed Al Zahrani
- Gulf Centre for Cancer Control and Prevention, King Faisal Special Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Al Sebayel
- Liver and Small Bowel Transplantation and Hepatobiliary-Pancreatic Surgery Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Department of Surgery, University of Almaarefa, Riyadh, Saudi Arabia
| | - Namik Kaya
- Translational Genomics Department, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Lu Y, Zhao H, Liu Y, Zuo Y, Xu Q, Liu L, Li X, Zhu H, Zhang Y, Zhang S, Zhao X, Li Y. Chronic Stress Activates PlexinA1/VEGFR2-JAK2-STAT3 in Vascular Endothelial Cells to Promote Angiogenesis. Front Oncol 2021; 11:709057. [PMID: 34485146 PMCID: PMC8415364 DOI: 10.3389/fonc.2021.709057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022] Open
Abstract
It is known that chronic stress modulates multiple processes in a complex microenvironment, such as angiogenesis and immune function. However, the role of chronic stress inducing tumor angiogenesis and how it contributes to tumor progression are not quite clear. The following study assess psychological state from numerous ambulatory cancer cases (n=332), and chronic stress-related hormone levels were further measured. Here, we show that chronic stress not only causes behavioral changes in human, most importantly attributed to an elevated level of stress-related hormones. To address this, isoprenaline, the agonist of β2-adrenergic receptor (β2-AR), was utilized for simulating chronic stress and demonstrating the mechanism of stress in tumor angiogenesis at molecular level both in vivo and in vitro. As suggested by this study, isoprenaline promote VEGF autocrine of HUVECs, which can induce plexinA1 and VEGFR2 expression. Moreover, we show that isoprenaline promoted the expression of p-JAK2 and p-STAT3 in vitro. The results reveal that, isoprenaline enhances the autocrine of VEGF in HUVECs and up-regulating plexinA1 and VEGFR2 levels, thus activating the phosphorylation of JAK2-STAT3 pathway, the two essential parts during angiogenesis. The present work indicates that, the mechanism of chronic stress in enhancing angiogenesis is probably achieved through activating the plexinA1/VEGFR2-JAK2-STAT3 signal transduction pathway within HUVECs, and this is probably a candidate target for developing a strategy against angiogenesis in cancer.
Collapse
Affiliation(s)
- YanJie Lu
- Department of Pathology, Chengde Medical College, Chengde, China.,Cancer Research Laboratory, Chengde Medical College, Chengde, China
| | - HanZheng Zhao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Liu
- Department of Pathology, Chengde Medical College, Chengde, China
| | - YanZhen Zuo
- Cancer Research Laboratory, Chengde Medical College, Chengde, China
| | - Qian Xu
- Cancer Research Laboratory, Chengde Medical College, Chengde, China
| | - Lei Liu
- Cancer Research Laboratory, Chengde Medical College, Chengde, China
| | - XiaoMin Li
- Department of Psychology, Chengde Medical College, Chengde, China
| | - HongBin Zhu
- Department of General Surgery, The 983rd Hospital of the Joint Service Support Force of Chinese People's Liberation Army, Tianjin, China
| | - Ying Zhang
- Department of Pathology, Chengde Medical College, Chengde, China
| | - Shuling Zhang
- Department of Laboratory, Chengde County Hospital, Chengde, China
| | - XiangYang Zhao
- Cancer Research Laboratory, Chengde Medical College, Chengde, China.,Department of General Surgery, The 983rd Hospital of the Joint Service Support Force of Chinese People's Liberation Army, Tianjin, China
| | - YuHong Li
- Department of Pathology, Chengde Medical College, Chengde, China.,Cancer Research Laboratory, Chengde Medical College, Chengde, China
| |
Collapse
|
4
|
Follain G, Osmani N, Gensbittel V, Asokan N, Larnicol A, Mercier L, Garcia-Leon MJ, Busnelli I, Pichot A, Paul N, Carapito R, Bahram S, Lefebvre O, Goetz JG. Impairing flow-mediated endothelial remodeling reduces extravasation of tumor cells. Sci Rep 2021; 11:13144. [PMID: 34162963 PMCID: PMC8222393 DOI: 10.1038/s41598-021-92515-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
Tumor progression and metastatic dissemination are driven by cell-intrinsic and biomechanical cues that favor the growth of life-threatening secondary tumors. We recently identified pro-metastatic vascular regions with blood flow profiles that are permissive for the arrest of circulating tumor cells. We have further established that such flow profiles also control endothelial remodeling, which favors extravasation of arrested CTCs. Yet, how shear forces control endothelial remodeling is unknown. In the present work, we aimed at dissecting the cellular and molecular mechanisms driving blood flow-dependent endothelial remodeling. Transcriptomic analysis of endothelial cells revealed that blood flow enhanced VEGFR signaling, among others. Using a combination of in vitro microfluidics and intravital imaging in zebrafish embryos, we now demonstrate that the early flow-driven endothelial response can be prevented upon specific inhibition of VEGFR tyrosine kinase and subsequent signaling. Inhibitory targeting of VEGFRs reduced endothelial remodeling and subsequent metastatic extravasation. These results confirm the importance of VEGFR-dependent endothelial remodeling as a driving force of CTC extravasation and metastatic dissemination. Furthermore, the present work suggests that therapies targeting endothelial remodeling might be a relevant clinical strategy in order to impede metastatic progression.
Collapse
Affiliation(s)
- Gautier Follain
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Turku Bioscience Center,, University of Turku, Åbo Akademi University, 20520, Turku, Finland
| | - Naël Osmani
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Valentin Gensbittel
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Nandini Asokan
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Annabel Larnicol
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Luc Mercier
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- UMR 5297, Interdisciplinary Institute for Neurosciences, CNRS Université de Bordeaux, 33076, Bordeaux, France
| | - Maria Jesus Garcia-Leon
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Ignacio Busnelli
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Angelique Pichot
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Nicodème Paul
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Raphaël Carapito
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Seiamak Bahram
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France
| | - Olivier Lefebvre
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, CRBS, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67000, Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
5
|
Hu J, Zhang ZH, Zhu Z, Chen J, Hu X, Chen H. Specific intracellular binding peptide as sPD-L1 antibody mimic: Robust binding capacity and intracellular region specific modulation upon applied to sensing research. Biosens Bioelectron 2021; 185:113269. [PMID: 33930752 DOI: 10.1016/j.bios.2021.113269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Accepted: 04/16/2021] [Indexed: 02/08/2023]
Abstract
Programmed death ligand 1 (PD-L1) immune checkpoint has been regarded as a new target for predicting cancer immunotherapy. As a transmembrane protein, PD-L1 has very low blood concentration and is likely to deplete their native activity when separated from the membrane environment due to significant hydrophobic domains, which make it difficult to measure sensitively. The reported PD-L1 aptamers and antibodies are both extracellular region binding molecules with the overlapping binding sites, which seriously limit with the construction of biosensor. Specific intracellular binding peptide (SIBP) as a unique PD-L1 intracellular region homing probe molecule is utilized for specifically capture targets. A simple and sensitive surface plasmon resonance (SPR) sandwich assay was constructed to detect serum soluble PD-L1 (sPD-L1) based on the unique and strong binding ability of SIBP to the intracellular region of sPD-L1. The designed SPR sensor showed great selectivity and wide dynamic response range of sPD-L1 concentration from 10 ng/mL to 2000 ng/mL. The limit of detection was calculated to be 1.749 ng/mL (S/N = 3). Owing to the SIBP's strong and specific binding ability with sPD-L1, the sensitive sensor can successfully detect sPD-L1 in serum samples, paving the way for the development of efficient test tools for clinical diagnosis and analysis.
Collapse
Affiliation(s)
- Junjie Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Zhao-Huan Zhang
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Zhongzheng Zhu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, PR China
| | - Jie Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China; School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
6
|
HDAC6 promotes growth, migration/invasion, and self-renewal of rhabdomyosarcoma. Oncogene 2020; 40:578-591. [PMID: 33199827 PMCID: PMC7855743 DOI: 10.1038/s41388-020-01550-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 01/20/2023]
Abstract
Rhabdomyosarcoma (RMS) is a devastating pediatric sarcoma. The survival outcomes remain poor for patients with relapsed or metastatic disease. Effective targeted therapy is lacking due to our limited knowledge of the underlying cellular and molecular mechanisms leading to disease progression. In this study, we used functional assays in vitro and in vivo (zebrafish and xenograft mouse models) to demonstrate the crucial role of HDAC6, a cytoplasmic histone deacetylase, in driving RMS tumor growth, self-renewal, and migration/invasion. Treatment with HDAC6-selective inhibitors recapitulates the HDAC6 loss-of-function phenotypes. HDAC6 regulates cytoskeletal dynamics to promote tumor cell migration and invasion. RAC1, a Rho family GTPase, is an essential mediator of HDAC6 function, and is necessary and sufficient for RMS cell migration and invasion. High expression of RAC1 correlates with poor clinical prognosis in RMS patients. Targeting the HDAC6-RAC1 axis represents a promising therapeutic option for improving survival outcomes of RMS patients.
Collapse
|
7
|
Casey MJ, Stewart RA. Pediatric Cancer Models in Zebrafish. Trends Cancer 2020; 6:407-418. [PMID: 32348736 PMCID: PMC7194396 DOI: 10.1016/j.trecan.2020.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Pediatric cancer is a leading cause of death in children and adolescents. Improvements in pediatric cancer treatment that include the alleviation of long-term adverse effects require a deeper understanding of the genetic, epigenetic, and developmental factors driving these cancers. Here, we review how the unique attributes of the zebrafish model system in embryology, imaging, and scalability have been used to identify new mechanisms of tumor initiation, progression, and relapse and for drug discovery. We focus on zebrafish models of leukemias, neural tumors and sarcomas - the most common and difficult childhood cancers to treat.
Collapse
Affiliation(s)
- Mattie J Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
8
|
Abstract
Copy number variants (CNVs) refer to the loss or gain of copies of a genomic DNA region. While some CNVs may play a role in species evolution by enriching the diversity of an organism, CNVs may also be linked to certain diseases such as neurological disorders, early onset obesity, and cancer. CNVs may affect gene expression by direct overlap of the genic region or by an indirect effect where the CNV is located outside the gene location. These indirect CNV regions may contain regulatory elements such as transcription enhancers or repressors as well as regulators such as miRNAs which may work at the level of transcription or translation. Danio rerio (zebrafish) is an excellent model organism for CNV studies. Zebrafish genomes contain a large amount of variation with 14.6% of the zebrafish reference genome found to be copy number variable. This level of variation is more than four times the percentage of reference genome sequence covered by similarly common CNVs in humans. It is this high level of variation that makes zebrafish interesting to investigate the effects of CNV on gene expression. Additionally, zebrafish share 70% of genetic similarities with humans, and 84% of genes associated with human disease are also found in zebrafish. Expressive quantitative trait loci (eQTL) analysis may be used in zebrafish to explore how CNVs may affect gene expression in both a direct and indirect manner. eQTL analysis may be performed for cis associations with a 1-Mb (megabase) window upstream and downstream from the transcription probe midpoint to CGH midpoint. Trans associations (variants that are located beyond the 1-Mb window of the gene either on the same chromosome as the gene or on a different chromosome) may be investigated as well through eQTL analysis; however, trans associations require more tests to be performed than cis associations, which limits power to detect associations. Pairwise associations between each pair of copy number variant and gene will be investigated separately from the same individual using Spearman rank correlations with significant associations found being followed with a multi-test correction technique to assess significance of those CNV gene expression associations. An association between a CNV to a gene expression phenotype should be considered significant only if the p value from the analysis of the observed data is lower than the 0.001 tail threshold from a distribution of the minimal p values (which are found from all comparisons for a given gene from 10,000 permutations of the expression phenotypes). Associations between CNVs and genes may be found to be direct or indirect as well as positive (increased copy number-increased expression) or negative (increased copy number-decreased expression, decreased copy number-increased expression). Ongoing analyses with these associations will investigate the impact of CNVs on gene functionality including immune function and potential disease susceptibility.
Collapse
|
9
|
Yohe ME, Heske CM, Stewart E, Adamson PC, Ahmed N, Antonescu CR, Chen E, Collins N, Ehrlich A, Galindo RL, Gryder BE, Hahn H, Hammond S, Hatley ME, Hawkins DS, Hayes MN, Hayes-Jordan A, Helman LJ, Hettmer S, Ignatius MS, Keller C, Khan J, Kirsch DG, Linardic CM, Lupo PJ, Rota R, Shern JF, Shipley J, Sindiri S, Tapscott SJ, Vakoc CR, Wexler LH, Langenau DM. Insights into pediatric rhabdomyosarcoma research: Challenges and goals. Pediatr Blood Cancer 2019; 66:e27869. [PMID: 31222885 PMCID: PMC6707829 DOI: 10.1002/pbc.27869] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Overall survival rates for pediatric patients with high-risk or relapsed rhabdomyosarcoma (RMS) have not improved significantly since the 1980s. Recent studies have identified a number of targetable vulnerabilities in RMS, but these discoveries have infrequently translated into clinical trials. We propose streamlining the process by which agents are selected for clinical evaluation in RMS. We believe that strong consideration should be given to the development of combination therapies that add biologically targeted agents to conventional cytotoxic drugs. One example of this type of combination is the addition of the WEE1 inhibitor AZD1775 to the conventional cytotoxic chemotherapeutics, vincristine and irinotecan.
Collapse
Affiliation(s)
| | | | | | | | - Nabil Ahmed
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | - Rene L. Galindo
- University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Heidi Hahn
- University Medical Center Gӧttingen, Gӧttingen, Germany
| | | | - Mark E. Hatley
- St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Douglas S. Hawkins
- Seattle Children’s Hospital, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA 98105
| | - Madeline N. Hayes
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02114
| | | | - Lee J. Helman
- Children’s Hospital of Los Angeles, Los Angeles, CA 90027
| | | | | | - Charles Keller
- Children’s Cancer Therapy Development Institute, Beaverton, OR 97005
| | - Javed Khan
- National Cancer Institute, Bethesda, MD 20892
| | | | | | - Philip J. Lupo
- Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Rossella Rota
- Children’s Hospital Bambino Gesù, IRCCS, Rome, Italy
| | | | - Janet Shipley
- The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | - David M. Langenau
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA 02114
| |
Collapse
|
10
|
Identification of RECK as an evolutionarily conserved tumor suppressor gene for zebrafish malignant peripheral nerve sheath tumors. Oncotarget 2018; 9:23494-23504. [PMID: 29805750 PMCID: PMC5955097 DOI: 10.18632/oncotarget.25236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 04/08/2018] [Indexed: 12/13/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are a type of sarcoma with poor prognosis due to their complex genetic changes, invasive growth, and insensitivity to chemo- and radiotherapies. One of the most frequently lost chromosome arms in human MPNSTs is chromosome 9p. However, the cancer driver genes located on it remain largely unknown, except the tumor suppressor gene, p16 (INK4)/CDKN2A. Previously, we identified RECK as a tumor suppressor gene candidate on chromosome 9p using zebrafish-human comparative oncogenomics. In this study, we investigated the tumorigenesis of the reck gene using zebrafish genetic models in both tp53 and ribosomal protein gene mutation background. We also examined the biological effects of RECK gene restoration in human MPNST cell lines. These results provide the first genetic evidence that reck is a bona fide tumor suppressor gene for MPNSTs in zebrafish. In addition, restoration of the RECK gene in human MPNST cells leads to growth inhibition suggesting that the reactivation of RECK could serve as a potential therapeutic strategy for MPNSTs.
Collapse
|
11
|
Drummond CJ, Hanna JA, Garcia MR, Devine DJ, Heyrana AJ, Finkelstein D, Rehg JE, Hatley ME. Hedgehog Pathway Drives Fusion-Negative Rhabdomyosarcoma Initiated From Non-myogenic Endothelial Progenitors. Cancer Cell 2018; 33:108-124.e5. [PMID: 29316425 PMCID: PMC5790179 DOI: 10.1016/j.ccell.2017.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/30/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022]
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that histologically resembles embryonic skeletal muscle. RMS occurs throughout the body and an exclusively myogenic origin does not account for RMS occurring in sites devoid of skeletal muscle. We previously described an RMS model activating a conditional constitutively active Smoothened mutant (SmoM2) with aP2-Cre. Using genetic fate mapping, we show SmoM2 expression in Cre-expressing endothelial progenitors results in myogenic transdifferentiation and RMS. We show that endothelium and skeletal muscle within the head and neck arise from Kdr-expressing progenitors, and that hedgehog pathway activation results in aberrant expression of myogenic specification factors as a potential mechanism driving RMS genesis. These findings suggest that RMS can originate from aberrant development of non-myogenic cells.
Collapse
Affiliation(s)
- Catherine J Drummond
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason A Hanna
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Matthew R Garcia
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Daniel J Devine
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Alana J Heyrana
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mark E Hatley
- Department of Oncology, MS-352, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
12
|
Lu Y, Xu Q, Zuo Y, Liu L, Liu S, Chen L, Wang K, Lei Y, Zhao X, Li Y. Isoprenaline/β2-AR activates Plexin-A1/VEGFR2 signals via VEGF secretion in gastric cancer cells to promote tumor angiogenesis. BMC Cancer 2017; 17:875. [PMID: 29262812 PMCID: PMC5738852 DOI: 10.1186/s12885-017-3894-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 12/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background The role of stress signals in regulating gastric cancer initiation and progression is not quite clear. It is known that stress signals modulate multiple processes such as immune function, cell migration and angiogenesis. However, few studies have investigated the mechanisms of how stress signals contribute to gastric cancer angiogenesis. Methods Here, we used β2-adrenergic receptor (β2-AR) agonist isoprenaline to imitate a stress signal and demonstrated the molecular mechanism underlying stress’s influence on tumor angiogenesis. Results We found that isoprenaline stimulated vascular endothelial growth factor (VEGF) secretion in gastric cancer cells and plexin-A1 expression was induced by human recombinant VEGF165 in both gastric cancer cells and vascular endothelial cells. Furthermore, interfere with plexin-A1 expression in gastric cancer cells influence HUVEC tube formation, migration and tumor growth in vivo. Conclusions These findings suggest that isoprenaline stimulate VGEF secretion and subsequently up-regulate the expression of plexin-A1 and VEGFR2 in gastric cancer cells, which form a positive impetus to promote tumor angiogenesis. This study reveals a novel molecular mechanism that a stress signal like isoprenaline may enhance angiogenesis via activating plexin-A1/VEGFR2 signaling pathway in gastric cancer, which may be a potential target in development of an anti-angiogenic therapy for gastric cancer.
Collapse
Affiliation(s)
- Yanjie Lu
- Department of Pathology; Cancer Research Laboratory, Chengde Medical College, Shangerdaohezi Avenue, Chengde, Hebei, 067000, People's Republic of China
| | - Qian Xu
- Institute of Basic Medical Sciences, Chengde Medical College, Chengde, 067000, People's Republic of China
| | - Yanzhen Zuo
- Department of Pharmacology, Chengde Medical College, Chengde, 067000, People's Republic of China
| | - Lei Liu
- Department of Pathogenic Microorganism, Chengde Medical College, Chengde, 067000, People's Republic of China
| | - Shaochen Liu
- Department of Pathology, Chengde Medical College, Chengde, 067000, People's Republic of China
| | - Lei Chen
- Department of General Surgery, the 266th Hospital of Chinese People's Liberation Army, Puning Avenue, Chengde, Hebei, 067000, People's Republic of China
| | - Kang Wang
- Department of Pathology, Chengde Medical College, Chengde, 067000, People's Republic of China
| | - Yuntao Lei
- Department of Pathology, Chengde Medical College, Chengde, 067000, People's Republic of China
| | - Xiangyang Zhao
- Department of General Surgery, the 266th Hospital of Chinese People's Liberation Army, Puning Avenue, Chengde, Hebei, 067000, People's Republic of China.
| | - Yuhong Li
- Department of Pathology; Cancer Research Laboratory, Chengde Medical College, Shangerdaohezi Avenue, Chengde, Hebei, 067000, People's Republic of China.
| |
Collapse
|
13
|
Heßelbach K, Kim GJ, Flemming S, Häupl T, Bonin M, Dornhof R, Günther S, Merfort I, Humar M. Disease relevant modifications of the methylome and transcriptome by particulate matter (PM 2.5) from biomass combustion. Epigenetics 2017; 12:779-792. [PMID: 28742980 PMCID: PMC5739103 DOI: 10.1080/15592294.2017.1356555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Exposure to particulate matter (PM) is recognized as a major health hazard, but molecular responses are still insufficiently described. We analyzed the epigenetic impact of ambient PM2.5 from biomass combustion on the methylome of primary human bronchial epithelial BEAS-2B cells using the Illumina HumanMethylation450 BeadChip. The transcriptome was determined by the Affymetrix HG-U133 Plus 2.0 Array. PM2.5 induced genome wide alterations of the DNA methylation pattern, including differentially methylated CpGs in the promoter region associated with CpG islands. Gene ontology analysis revealed that differentially methylated genes were significantly clustered in pathways associated with the extracellular matrix, cellular adhesion, function of GTPases, and responses to extracellular stimuli, or were involved in ion binding and shuttling. Differential methylations also affected tandem repeats. Additionally, 45 different miRNA CpG loci showed differential DNA methylation, most of them proximal to their promoter. These miRNAs are functionally relevant for lung cancer, inflammation, asthma, and other PM-associated diseases. Correlation of the methylome and transcriptome demonstrated a clear bias toward transcriptional activation by hypomethylation. Genes that exhibited both differential methylation and expression were functionally linked to cytokine and immune responses, cellular motility, angiogenesis, inflammation, wound healing, cell growth, differentiation and development, or responses to exogenous matter. Disease ontology of differentially methylated and expressed genes indicated their prominent role in lung cancer and their participation in dominant cancer related signaling pathways. Thus, in lung epithelial cells, PM2.5 alters the methylome of genes and noncoding transcripts or elements that might be relevant for PM- and lung-associated diseases.
Collapse
Affiliation(s)
- Katharina Heßelbach
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Gwang-Jin Kim
- b Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Stephan Flemming
- b Pharmaceutical Bioinformatics, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Thomas Häupl
- c Department of Rheumatology and Clinical Immunology , Charité University Hospital Berlin , Germany
| | - Marc Bonin
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Regina Dornhof
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Stefan Günther
- d Pharmaceutical Bioinformatics and Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg , Freiburg , Germany
| | - Irmgard Merfort
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Matjaz Humar
- a Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg , Freiburg , Germany
| |
Collapse
|
14
|
D'Agati G, Beltre R, Sessa A, Burger A, Zhou Y, Mosimann C, White RM. A defect in the mitochondrial protein Mpv17 underlies the transparent casper zebrafish. Dev Biol 2017; 430:11-17. [PMID: 28760346 DOI: 10.1016/j.ydbio.2017.07.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
The casper strain of zebrafish is widely used in studies ranging from cancer to neuroscience. casper offers the advantage of relative transparency throughout adulthood, making it particularly useful for in vivo imaging by epifluorescence, confocal, and light sheet microscopy. casper was developed by selective breeding of two previously described recessive pigment mutants: 1) nacre, which harbors an inactivating mutation of the mitfa gene, rendering the fish devoid of pigmented melanocytes; and 2) roy orbison, a mutant with a so-far unidentified genetic cause that lacks reflective iridophores. To clarify the molecular nature of the roy orbison mutation, such that it can inform studies using casper, we undertook an effort to positionally clone the roy orbison mutation. We find that roy orbison is caused by an intronic defect in the gene mpv17, encoding an inner mitochondrial membrane protein that has been implicated in the human mitochondrial DNA depletion syndrome. The roy orbison mutation is phenotypically and molecularly remarkably similar to another zebrafish iridophore mutant called transparent. Using Cas9-induced crispants and germline mutants with a disrupted mpv17 open reading frame, we show in trans-heterozygote embryos that new frameshift alleles of mpv17, roy orbison, and transparent fail to complement each other. Our work provides genetic evidence that both roy orbison and transparent affect the mpv17 locus by a similar if not identical genetic lesion. Identification of mpv17 mutants will allow for further work probing the relationship between mitochondrial function and pigmentation, which has to date received little attention.
Collapse
Affiliation(s)
- Gianluca D'Agati
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Rosanna Beltre
- Hematology&Oncology, Children's Hospital Boston, Boston, MA, United States
| | - Anna Sessa
- Hematology&Oncology, Children's Hospital Boston, Boston, MA, United States
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Yi Zhou
- Hematology&Oncology, Children's Hospital Boston, Boston, MA, United States
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Richard M White
- Cancer Biology&Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
15
|
Wirbisky SE, Freeman JL. Atrazine exposure elicits copy number alterations in the zebrafish genome. Comp Biochem Physiol C Toxicol Pharmacol 2017; 194:1-8. [PMID: 28111253 PMCID: PMC5325771 DOI: 10.1016/j.cbpc.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/30/2022]
Abstract
Atrazine is an agricultural herbicide used throughout the Midwestern United States that frequently contaminates potable water supplies resulting in human exposure. Using the zebrafish model system, an embryonic atrazine exposure was previously reported to decrease spawning rates with an increase in progesterone and ovarian follicular atresia in adult females. In addition, alterations in genes associated with distinct molecular pathways of the endocrine system were observed in brain and gonad tissue of the adult females and males. Current hypotheses for mechanistic changes in the developmental origins of health and disease include genetic (e.g., copy number alterations) or epigenetic (e.g., DNA methylation) mechanisms. As such, in the current study we investigated whether an atrazine exposure would generate copy number alterations (CNAs) in the zebrafish genome. A zebrafish fibroblast cell line was used to limit detection to CNAs caused by the chemical exposure. First, cells were exposed to a range of atrazine concentrations and a crystal violet assay was completed, showing confluency decreased by ~60% at 46.3μM. Cells were then exposed to 0, 0.463, 4.63, or 46.3μM atrazine and array comparative genomic hybridization completed. Results showed 34, 21, and 44 CNAs in the 0.463, 4.63, and 46.3μM treatments, respectively. Furthermore, CNAs were associated with previously reported gene expression alterations in adult male and female zebrafish. This study demonstrates that atrazine exposure can generate CNAs that are linked to gene expression alterations observed in adult zebrafish exposed to atrazine during embryogenesis providing a mechanism of the developmental origins of atrazine endocrine disruption.
Collapse
Affiliation(s)
- Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN, 47909, United States.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47909, United States.
| |
Collapse
|
16
|
Tenente IM, Hayes MN, Ignatius MS, McCarthy K, Yohe M, Sindiri S, Gryder B, Oliveira ML, Ramakrishnan A, Tang Q, Chen EY, Petur Nielsen G, Khan J, Langenau DM. Myogenic regulatory transcription factors regulate growth in rhabdomyosarcoma. eLife 2017; 6. [PMID: 28080960 PMCID: PMC5231408 DOI: 10.7554/elife.19214] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric malignacy of muscle with myogenic regulatory transcription factors MYOD and MYF5 being expressed in this disease. Consensus in the field has been that expression of these factors likely reflects the target cell of transformation rather than being required for continued tumor growth. Here, we used a transgenic zebrafish model to show that Myf5 is sufficient to confer tumor-propagating potential to RMS cells and caused tumors to initiate earlier and have higher penetrance. Analysis of human RMS revealed that MYF5 and MYOD are mutually-exclusively expressed and each is required for sustained tumor growth. ChIP-seq and mechanistic studies in human RMS uncovered that MYF5 and MYOD bind common DNA regulatory elements to alter transcription of genes that regulate muscle development and cell cycle progression. Our data support unappreciated and dominant oncogenic roles for MYF5 and MYOD convergence on common transcriptional targets to regulate human RMS growth. DOI:http://dx.doi.org/10.7554/eLife.19214.001
Collapse
Affiliation(s)
- Inês M Tenente
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,GABBA Program, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Madeline N Hayes
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Myron S Ignatius
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,Molecular Medicine, Greehey Children's Cancer Research Institute, San Antonio, United States
| | - Karin McCarthy
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Marielle Yohe
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - Sivasish Sindiri
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - Berkley Gryder
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - Mariana L Oliveira
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ashwin Ramakrishnan
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Qin Tang
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Eleanor Y Chen
- Department of Pathology, University of Washington, Seattle, United States
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, United States
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - David M Langenau
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| |
Collapse
|
17
|
Hayes MN, Langenau DM. Discovering novel oncogenic pathways and new therapies using zebrafish models of sarcoma. Methods Cell Biol 2017; 138:525-561. [PMID: 28129857 DOI: 10.1016/bs.mcb.2016.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sarcoma is a type of cancer affecting connective, supportive, or soft tissue of mesenchymal origin. Despite rare incidence in adults (<1%), over 15% of pediatric cancers are sarcoma. Sadly, both adults and children with relapsed or metastatic disease have devastatingly high rates of mortality. Current treatment options for sarcoma include surgery, radiation, and/or chemotherapy; however, significant limitations exist with respect to the efficacy of these strategies. Strong impetus has been placed on the development of novel therapies and preclinical models for uncovering mechanisms involved in the development, progression, and therapy resistance of sarcoma. Over the past 15 years, the zebrafish has emerged as a powerful genetic model of human cancer. High genetic conservation when combined with a unique susceptibility to develop sarcoma has made the zebrafish an effective tool for studying these diseases. Transgenic and gene-activation strategies have been employed to develop zebrafish models of rhabdomyosarcoma, malignant peripheral nerve sheath tumors, Ewing's sarcoma, chordoma, hemangiosarcoma, and liposarcoma. These models all display remarkable molecular and histopathological conservation with their human cancer counterparts and have offered excellent platforms for understanding disease progression in vivo. Short tumor latency and the amenability of zebrafish for ex vivo manipulation, live imaging studies, and tumor cell transplantation have allowed for efficient study of sarcoma initiation, growth, self-renewal, and maintenance. When coupled with facile chemical genetic approaches, zebrafish models of sarcoma have provided a strong translational tool to uncover novel drug pathways and new therapeutic strategies.
Collapse
Affiliation(s)
- M N Hayes
- Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States
| | - D M Langenau
- Massachusetts General Hospital, Boston, MA, United States; Massachusetts General Hospital, Charlestown, MA, United States; Harvard Stem Cell Institute, Boston, MA, United States
| |
Collapse
|
18
|
McKinnon T, Venier R, Dickson BC, Kabaroff L, Alkema M, Chen L, Shern JF, Yohe ME, Khan J, Gladdy RA. Kras activation in p53-deficient myoblasts results in high-grade sarcoma formation with impaired myogenic differentiation. Oncotarget 2016; 6:14220-32. [PMID: 25992772 PMCID: PMC4546462 DOI: 10.18632/oncotarget.3856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/04/2015] [Indexed: 11/25/2022] Open
Abstract
While genomic studies have improved our ability to classify sarcomas, the molecular mechanisms involved in the formation and progression of many sarcoma subtypes are unknown. To better understand developmental origins and genetic drivers involved in rhabdomyosarcomagenesis, we describe a novel sarcoma model system employing primary murine p53-deficient myoblasts that were isolated and lentivirally transduced with KrasG12D. Myoblast cell lines were characterized and subjected to proliferation, anchorage-independent growth and differentiation assays to assess the effects of transgenic KrasG12D expression. KrasG12D overexpression transformed p53−/− myoblasts as demonstrated by an increased anchorage-independent growth. Induction of differentiation in parental myoblasts resulted in activation of key myogenic regulators. In contrast, Kras-transduced myoblasts had impaired terminal differentiation. p53−/− myoblasts transformed by KrasG12D overexpression resulted in rapid, reproducible tumor formation following orthotopic injection into syngeneic host hindlimbs. Pathological analysis revealed high-grade sarcomas with myogenic differentiation based on the expression of muscle-specific markers, such as Myod1 and Myog. Gene expression patterns of murine sarcomas shared biological pathways with RMS gene sets as determined by gene set enrichment analysis (GSEA) and were 61% similar to human RMS as determined by metagene analysis. Thus, our novel model system is an effective means to model high-grade sarcomas along the RMS spectrum.
Collapse
Affiliation(s)
- Timothy McKinnon
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Rosemarie Venier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Brendan C Dickson
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Leah Kabaroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Manon Alkema
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Li Chen
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institute of Health, Gaithersburg, MD, USA
| | - Jack F Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institute of Health, Gaithersburg, MD, USA
| | - Marielle E Yohe
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institute of Health, Gaithersburg, MD, USA
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institute of Health, Gaithersburg, MD, USA
| | - Rebecca A Gladdy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Ontario Institute for Cancer Research, Cancer Stem Cell Program, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Faber-Hammond JJ, Brown KH. Pseudo-De Novo Assembly and Analysis of Unmapped Genome Sequence Reads in Wild Zebrafish Reveal Novel Gene Content. Zebrafish 2016; 13:95-102. [PMID: 26886859 PMCID: PMC4799696 DOI: 10.1089/zeb.2015.1154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zebrafish represents the third vertebrate with an officially completed genome, yet it remains incomplete with additions and corrections continuing with the current release, GRCz10, having 13% of zebrafish cDNA sequences unmapped. This disparity may result from population differences, given that the genome reference was generated from clonal individuals with limited genetic diversity. This is supported by the recent analysis of a single wild zebrafish, which identified over 5.2 million SNPs and 1.6 million in/dels in the previous genome build, zv9. Re-examination of this sequence data set indicated that 13.8% of quality sequence reads failed to align to GRCz10. Using a novel bioinformatics de novo assembly pipeline on these unmappable reads, we identified 1,514,491 novel contigs covering ∼224 Mb of genomic sequence. Among these, 1083 contigs were found to contain a potential gene coding sequence. RNA-seq data comparison confirmed that 362 contigs contained a transcribed DNA sequence, suggesting that a large amount of functional genomic sequence remains unannotated in the zebrafish reference genome. By utilizing the bioinformatics pipeline developed in this study, the zebrafish genome will be bolstered as a model for human disease research. Adaptation of the pipeline described here also offers a cost-efficient and effective method to identify and map novel genetic content across any genome and will ultimately aid in the completion of additional genomes for a broad range of species.
Collapse
Affiliation(s)
| | - Kim H Brown
- Department of Biology, Portland State University , Portland, Oregon
| |
Collapse
|
20
|
Ceol CJ, Houvras Y. Uncharted Waters: Zebrafish Cancer Models Navigate a Course for Oncogene Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:3-19. [PMID: 27165347 DOI: 10.1007/978-3-319-30654-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over a decade has elapsed since the first genetically-engineered zebrafish cancer model was described. During this time remarkable progress has been made. Sophisticated genetic tools have been built to generate oncogene expressing cancers and characterize multiple models of solid and blood tumors. These models have led to unique insights into mechanisms of tumor initiation and progression. New drug targets have been identified, particularly through the functional analysis of cancer genomes. Now in the second decade, zebrafish cancer models are poised for even faster growth as they are used in high-throughput genetic analyses to elucidate key mechanisms underlying critical cancer phenotypes.
Collapse
Affiliation(s)
- Craig J Ceol
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| | - Yariv Houvras
- Departments of Surgery and Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
21
|
Abstract
The zebrafish has emerged as an important model for studying cancer biology. Identification of DNA, RNA and chromatin abnormalities can give profound insight into the mechanisms of tumorigenesis and the there are many techniques for analyzing the genomes of these tumors. Here, I present an overview of the available technologies for analyzing tumor genomes in the zebrafish, including array based methods as well as next-generation sequencing technologies. I also discuss the ways in which zebrafish tumor genomes can be compared to human genomes using cross-species oncogenomics, which act to filter genomic noise and ultimately uncover central drivers of malignancy. Finally, I discuss downstream analytic tools, including network analysis, that can help to organize the alterations into coherent biological frameworks that can then be investigated further.
Collapse
Affiliation(s)
- Richard M White
- Memorial Sloan Kettering Cancer Center, 415 East 68th Street, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Chernyavskaya Y, Kent B, Sadler KC. Zebrafish Discoveries in Cancer Epigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:169-97. [PMID: 27165354 DOI: 10.1007/978-3-319-30654-4_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cancer epigenome is fundamentally different than that of normal cells. How these differences arise in and contribute to carcinogenesis is not known, and studies using model organisms such as zebrafish provide an opportunity to address these important questions. Modifications of histones and DNA comprise the complex epigenome, and these influence chromatin structure, genome stability and gene expression, all of which are fundamental to the cellular changes that cause cancer. The cancer genome atlas covers the wide spectrum of genetic changes associated with nearly every cancer type, however, this catalog is currently uni-dimensional. As the pattern of epigenetic marks and chromatin structure in cancer cells is described and overlaid on the mutational landscape, the map of the cancer genome becomes multi-dimensional and highly complex. Two major questions remain in the field: (1) how the epigenome becomes repatterned in cancer and (2) which of these changes are cancer-causing. Zebrafish provide a tractable in vivo system to monitor the epigenome during transformation and to identify epigenetic drivers of cancer. In this chapter, we review principles of cancer epigenetics and discuss recent work using zebrafish whereby epigenetic modifiers were established as cancer driver genes, thus providing novel insights into the mechanisms of epigenetic reprogramming in cancer.
Collapse
Affiliation(s)
- Yelena Chernyavskaya
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Brandon Kent
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- School of Biomedical Science, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kirsten C Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- School of Biomedical Science, Icahn School of Medicine at Mount Sinai, 1020, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Biology Program, New York University Abu Dhabi, Saadiyat Campus, 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
23
|
Vleeshouwer-Neumann T, Phelps M, Bammler TK, MacDonald JW, Jenkins I, Chen EY. Histone Deacetylase Inhibitors Antagonize Distinct Pathways to Suppress Tumorigenesis of Embryonal Rhabdomyosarcoma. PLoS One 2015; 10:e0144320. [PMID: 26636678 PMCID: PMC4670218 DOI: 10.1371/journal.pone.0144320] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/15/2015] [Indexed: 02/01/2023] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) is the most common soft tissue cancer in children. The prognosis of patients with relapsed or metastatic disease remains poor. ERMS genomes show few recurrent mutations, suggesting that other molecular mechanisms such as epigenetic regulation might play a major role in driving ERMS tumor biology. In this study, we have demonstrated the diverse roles of histone deacetylases (HDACs) in the pathogenesis of ERMS by characterizing effects of HDAC inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; also known as vorinostat) in vitro and in vivo. TSA and SAHA suppress ERMS tumor growth and progression by inducing myogenic differentiation as well as reducing the self-renewal and migratory capacity of ERMS cells. Differential expression profiling and pathway analysis revealed downregulation of key oncogenic pathways upon HDAC inhibitor treatment. By gain-of-function, loss-of-function, and chromatin immunoprecipitation (ChIP) studies, we show that Notch1- and EphrinB1-mediated pathways are regulated by HDACs to inhibit differentiation and enhance migratory capacity of ERMS cells, respectively. Our study demonstrates that aberrant HDAC activity plays a major role in ERMS pathogenesis. Druggable targets in the molecular pathways affected by HDAC inhibitors represent novel therapeutic options for ERMS patients.
Collapse
Affiliation(s)
| | - Michael Phelps
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Isaac Jenkins
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eleanor Y. Chen
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
24
|
Cross-species oncogenomics using zebrafish models of cancer. Curr Opin Genet Dev 2015; 30:73-9. [PMID: 26070506 DOI: 10.1016/j.gde.2015.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
The zebrafish is a relatively recent addition to cancer modeling. These models have now been extensively used in cross-species oncogenomic analyses at both the DNA and RNA levels. The goal of such studies is to identify conserved events that occur in both human and fish tumors which may act as central drivers of tumor phenotypes. Numerous comparisons of somatic DNA changes, using array CGH and exome sequencing, have demonstrated a relatively small set of conserved changes across species. In contrast, striking conservation of RNA expression patterns have been observed between the two species in models such as melanoma, leukemia, and rhabdomyosarcoma. In the future, the zebrafish will increasingly be used to model epigenetic and noncoding aspects of cancer biology.
Collapse
|
25
|
Tong Y, Merino D, Nimmervoll B, Gupta K, Wang YD, Finkelstein D, Dalton J, Ellison DW, Ma X, Zhang J, Malkin D, Gilbertson RJ. Cross-Species Genomics Identifies TAF12, NFYC, and RAD54L as Choroid Plexus Carcinoma Oncogenes. Cancer Cell 2015; 27:712-27. [PMID: 25965574 PMCID: PMC4458854 DOI: 10.1016/j.ccell.2015.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/16/2014] [Accepted: 04/10/2015] [Indexed: 01/04/2023]
Abstract
Choroid plexus carcinomas (CPCs) are poorly understood and frequently lethal brain tumors with few treatment options. Using a mouse model of the disease and a large cohort of human CPCs, we performed a cross-species, genome-wide search for oncogenes within syntenic regions of chromosome gain. TAF12, NFYC, and RAD54L co-located on human chromosome 1p32-35.3 and mouse chromosome 4qD1-D3 were identified as oncogenes that are gained in tumors in both species and required for disease initiation and progression. TAF12 and NFYC are transcription factors that regulate the epigenome, whereas RAD54L plays a central role in DNA repair. Our data identify a group of concurrently gained oncogenes that cooperate in the formation of CPC and reveal potential avenues for therapy.
Collapse
Affiliation(s)
- Yiai Tong
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Diana Merino
- Genetics and Genome Biology Program, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Birgit Nimmervoll
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kirti Gupta
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - James Dalton
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Xiaotu Ma
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1X8, Canada; Division of Hematology/Oncology, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Richard J Gilbertson
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
26
|
Blackburn JS, Langenau DM. Zebrafish as a model to assess cancer heterogeneity, progression and relapse. Dis Model Mech 2015; 7:755-62. [PMID: 24973745 PMCID: PMC4073265 DOI: 10.1242/dmm.015842] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clonal evolution is the process by which genetic and epigenetic diversity is created within malignant tumor cells. This process culminates in a heterogeneous tumor, consisting of multiple subpopulations of cancer cells that often do not contain the same underlying mutations. Continuous selective pressure permits outgrowth of clones that harbor lesions that are capable of enhancing disease progression, including those that contribute to therapy resistance, metastasis and relapse. Clonal evolution and the resulting intratumoral heterogeneity pose a substantial challenge to biomarker identification, personalized cancer therapies and the discovery of underlying driver mutations in cancer. The purpose of this Review is to highlight the unique strengths of zebrafish cancer models in assessing the roles that intratumoral heterogeneity and clonal evolution play in cancer, including transgenesis, imaging technologies, high-throughput cell transplantation approaches and in vivo single-cell functional assays.
Collapse
Affiliation(s)
- Jessica S Blackburn
- Department of Molecular Pathology, Regenerative Medicine and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA. Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - David M Langenau
- Department of Molecular Pathology, Regenerative Medicine and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA. Harvard Stem Cell Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
27
|
Hettmer S, Li Z, Billin AN, Barr FG, Cornelison DDW, Ehrlich AR, Guttridge DC, Hayes-Jordan A, Helman LJ, Houghton PJ, Khan J, Langenau DM, Linardic CM, Pal R, Partridge TA, Pavlath GK, Rota R, Schäfer BW, Shipley J, Stillman B, Wexler LH, Wagers AJ, Keller C. Rhabdomyosarcoma: current challenges and their implications for developing therapies. Cold Spring Harb Perspect Med 2014; 4:a025650. [PMID: 25368019 PMCID: PMC4208704 DOI: 10.1101/cshperspect.a025650] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rhabdomyosarcoma (RMS) represents a rare, heterogeneous group of mesodermal malignancies with skeletal muscle differentiation. One major subgroup of RMS tumors (so-called "fusion-positive" tumors) carries exclusive chromosomal translocations that join the DNA-binding domain of the PAX3 or PAX7 gene to the transactivation domain of the FOXO1 (previously known as FKHR) gene. Fusion-negative RMS represents a heterogeneous spectrum of tumors with frequent RAS pathway activation. Overtly metastatic disease at diagnosis is more frequently found in individuals with fusion-positive than in those with fusion-negative tumors. RMS is the most common pediatric soft-tissue sarcoma, and approximately 60% of all children and adolescents diagnosed with RMS are cured by currently available multimodal therapies. However, a curative outcome is achieved in <30% of high-risk individuals with RMS, including all those diagnosed as adults, those diagnosed with fusion-positive tumors during childhood (including metastatic and nonmetastatic tumors), and those diagnosed with metastatic disease during childhood (including fusion-positive and fusion-negative tumors). This white paper outlines current challenges in RMS research and their implications for developing more effective therapies. Urgent clinical problems include local control, systemic disease, need for improved risk stratification, and characterization of differences in disease course in children and adults. Biological challenges include definition of the cellular functions of PAX-FOXO1 fusion proteins, clarification of disease heterogeneity, elucidation of the cellular origins of RMS, delineation of the tumor microenvironment, and identification of means for rational selection and testing of new combination therapies. To streamline future therapeutic developments, it will be critical to improve access to fresh tumor tissue for research purposes, consider alternative trial designs to optimize early clinical testing of candidate drugs, coalesce advocacy efforts to garner public and industry support, and facilitate collaborative efforts between academia and industry.
Collapse
|
28
|
Glycogen synthase kinase 3 inhibitors induce the canonical WNT/β-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proc Natl Acad Sci U S A 2014; 111:5349-54. [PMID: 24706870 DOI: 10.1073/pnas.1317731111] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) is a common pediatric malignancy of muscle, with relapse being the major clinical challenge. Self-renewing tumor-propagating cells (TPCs) drive cancer relapse and are confined to a molecularly definable subset of ERMS cells. To identify drugs that suppress ERMS self-renewal and induce differentiation of TPCs, a large-scale chemical screen was completed. Glycogen synthase kinase 3 (GSK3) inhibitors were identified as potent suppressors of ERMS growth through inhibiting proliferation and inducing terminal differentiation of TPCs into myosin-expressing cells. In support of GSK3 inhibitors functioning through activation of the canonical WNT/β-catenin pathway, recombinant WNT3A and stabilized β-catenin also enhanced terminal differentiation of human ERMS cells. Treatment of ERMS-bearing zebrafish with GSK3 inhibitors activated the WNT/β-catenin pathway, resulting in suppressed ERMS growth, depleted TPCs, and diminished self-renewal capacity in vivo. Activation of the canonical WNT/β-catenin pathway also significantly reduced self-renewal of human ERMS, indicating a conserved function for this pathway in modulating ERMS self-renewal. In total, we have identified an unconventional tumor suppressive role for the canonical WNT/β-catenin pathway in regulating self-renewal of ERMS and revealed therapeutic strategies to target differentiation of TPCs in ERMS.
Collapse
|